MAX3825U [MAXIM]

+3.3V, 2.5Gbps Quad Transimpedance Amplifier for System Interconnects; + 3.3V , 2.5Gbps的四跨阻放大器的系统互连
MAX3825U
型号: MAX3825U
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+3.3V, 2.5Gbps Quad Transimpedance Amplifier for System Interconnects
+ 3.3V , 2.5Gbps的四跨阻放大器的系统互连

放大器
文件: 总8页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1855 Rev 0; 11/00  
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
General Description  
Features  
The MAX3825 is a quad transimpedance amplifier (TIA)  
intended for 2.5Gbps system interconnect applications.  
Each of the four channels converts a small photodiode  
current to a measurable differential voltage with a tran-  
simpedance gain of 3.7k. The circuit features  
o Single +3.3V Supply  
o 93mW per Channel Power Dissipation  
o 460nA Input-Referred Noise  
RMS  
o 20ps Deterministic Jitter  
460nA  
of input-referred noise per channel corre-  
RMS  
o 2.4GHz Small-Signal Bandwidth  
o No External Compensation  
sponding to an optical input sensitivity of -22.3dBm  
(BER 1 × 10-14). The quad transimpedance amplifier  
has 20ps of deterministic jitter and a 2.4GHz small-sig-  
nal bandwidth. The MAX3825 is optimized for use with  
a quad PIN photodetector array with a standard fiber  
pitch of 250µm.  
o 40dB Power-Supply Rejection Ratio  
o Compact Die with 250µm Channel Pitch  
o 100Differential Output Impedance  
The MAX3825 operates from a single +3.3V supply  
over a 0°C to +85°C temperature range. With a +3.3V  
supply, each channel dissipates 93mW of power. A DC  
cancellation circuit on each channel provides a true dif-  
ferential output swing over a wide range of input cur-  
rents.  
Ordering Information  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX3825U/D  
0°C to +85°C  
Dice*  
*Dice are designed to operate with a 0°C to +120°C junction  
temperature, but are tested and guaranteed only at T = +25°C.  
A
Each channel has an independent supply and ground  
to allow all or any combination of channels to be con-  
nected. This device is available in dice only.  
Applications  
ATM Switching  
Networks  
High-Speed Parallel  
Optical Links  
System Interconnects  
SDH/SONET  
Backplanes  
Typical Operating Circuit appears at end of data sheet.  
Dense Digital Cross-  
Connects  
Chip Topography/Pad Configuration  
V
V
V
V
V
OUT3+ OUT3- V  
V
OUT4+ OUT4-V  
OUT1-  
34  
OUT2+ OUT2-  
CCO3  
CCO1 OUT1+  
CCO1 CCO2  
CCO2  
CCO3 CCO4  
CCO4  
N.C.  
36  
35  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24 23 22  
21  
20  
GNDO4  
GNDO1  
37  
19  
18  
GNDO3  
ENABLE  
GNDO2  
GNDF  
38  
39  
17  
16  
GNDI3  
VCCI3  
GNDI2  
VCCI2  
40  
41  
15  
14  
VCCI4  
GNDI4  
VCCI1  
GNDI1  
42  
43  
V
44  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CCFILT  
N.C. N.C. FILTER  
IN1 FILT1 IN2 FILT2 IN3 FILT3 IN4 FILT4  
N.C. N.C.  
________________________________________________________________ Maxim Integrated Products  
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Output Voltage OUT1 , OUT2 ,  
V
V
, V  
, V  
, V  
, V  
,
OUT3 , OUT4 ............................(V - 1.5V) to (V + 0.5V)  
CCO1 CCO2 CCO3 CCO4  
CC  
CC  
, V  
, V  
, V  
...............-0.5V to +6.0V  
ENABLE Voltage.........................................-0.5V to (V  
+ 0.5V)  
CCI1 CCI2 CCI3 CCI4 CCFILT  
CC  
Input Current: IN1, IN2, IN3, IN4...........................-4mA to +4mA  
FILTER Current..................................................-24mA to +24mA  
Filter Current: FILT1, FILT2, FILT3, FILT4 .............-6mA to +6mA  
Operating Temperature Range (TA)........................0°C to +85°C  
Storage Temperature Range.............................-55°C to +150°C  
Operating Junction Temperature (T )................-55°C to +150°C  
J
Processing Temperature..................................................+400°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.14V to +3.6V, T = 0°C to +85°C. Typical values are at +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
A
MIN  
TYP  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
Single channel  
Dual channel  
Quad channel  
28  
56  
40  
80  
Supply Current  
I
mA  
CC  
112  
0.89  
160  
0.99  
Input Bias Voltage  
DC Input Overload  
Transimpedance  
I
= 0  
V
mA  
k  
IN  
1.7  
3.0  
3.7  
180  
720  
50  
4.5  
57  
Z
10µAp-p, 100 differential load  
21  
Filter Resistor RFILTER  
R
FILTER  
Filter Resistors RFILT14  
R
FILT_  
43  
50  
Single-Ended Output Impedance  
Transimpedance Linear Range  
R
O
(Note 1)  
µAp-p  
Maximum Differential Output  
Range  
I
= 2mAp-p  
mVp-p  
230  
-5  
340  
480  
+5  
IN  
Output Offset Voltage  
V
I
IN  
= 10µAp-p  
mV  
V
offset  
V
- 0.09  
Output Common Mode Voltage  
50loads to V  
CC  
CC  
Note 1: Gain at 50µAp-p is within 10% of the small signal gain.  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.14V to +3.6V, T = 0°C to +85°C. Typical values are at +3.3V, T = +25°C, unless otherwise noted. Total source capaci-  
CC  
A
A
tance = 0.7pF.) (Note 2)  
MIN  
TYP  
MAX  
PARAMETER  
AC Input Overload  
SYMBOL  
CONDITIONS  
UNITS  
2
(Note 3)  
(Note 4)  
mAp-p  
460  
60  
600  
100  
Input Referred Noise  
Low-Frequency Cutoff  
I
nA  
rms  
N
kHz  
Deterministic Jitter (Note 5)  
Power-Supply Rejection Ratio  
Small-Signal Bandwidth  
DJ  
PSRR  
BW  
I
> 100µAp-p  
20  
40  
45  
ps  
dB  
IN  
(Note 6)  
2.4  
GHz  
ps  
50  
Maximum Skew (Note 7)  
Any two channels within a chip  
2
_______________________________________________________________________________________  
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.14V to +3.6V, T = 0°C to +85°C. Typical values are at +3.3V, T = +25°C, unless otherwise noted. Total source capaci-  
CC  
A
A
tance = 0.7pF.) (Note 2)  
Note 2: AC characteristics are guaranteed by design and characterization.  
Note 3: The maximum input current is specified with output deterministic jitter 45ps.  
Note 4: No external compensation capacitors are used. Measured with I = 30µA  
Note 5: Deterministic jitter is the arithmetic sum of pattern-dependent jitter and pulse width distortion. Measured with a 2 -1 PRBS  
with 100 consecutive 0s and 100 consecutive 1s applied to a single channel. See Typical Operating Characteristics.  
.
avg  
IN  
13  
Note 6: PSRR = -20log(V  
/ V ), f 2MHz. Measured by applying DC current = 30µA, and applying 100mVp-p signal  
noise(on VCC)  
OUT  
at power supply.  
Note 7: Measured by applying the same input signal to all channels. Skew measurements are made at the 50% point of the transition.  
Typical Operating Characteristics  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
INPUT-REFERRED RMS NOISE CURRENT  
vs. DC INPUT CURRENT  
DETERMINISTIC JITTER  
vs. INPUT AMPLITUDE  
FREQUENCY RESPONSE  
50  
1400  
1200  
1000  
800  
600  
400  
200  
0
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
C
IN  
= 0.7pF  
0
10  
100  
DC INPUT CURRENT (µA)  
1000  
1
10  
100  
1000  
10,000  
0
400  
800  
1200  
1600  
2000  
FREQUENCY (MHz)  
INPUT CURRENT AMPLITUDE (µAp-p)  
DIFFERENTIAL OUTPUT AMPLITUDE  
vs. TEMPERATURE  
DC TRANSFER FUNCTION  
410  
390  
370  
350  
330  
310  
290  
270  
250  
200  
INPUT = 2mAp-p  
V
CC  
= +3.6V  
100  
0
V
CC  
= +3.14V  
-100  
-200  
-15  
10  
35  
60  
85  
-100  
-50  
0
50  
100  
AMBIENT TEMPERATURE (°C)  
INPUT CURRENT (µA)  
_______________________________________________________________________________________  
3
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, T = +25°C, unless otherwise noted.)  
CC  
A
ELECTRICAL EYE DIAGRAM  
ELECTRICAL EYE DIAGRAM  
INPUT = 2mAp-p, 2.5Gbps, 213 - 1 PRBS  
INPUT = 20µAp-p, 2.5Gbps, 213 - 1 PRBS  
10mV/div  
10mV/div  
R
L
= 100DIFFERENTIAL  
R
L
= 100DIFFERENTIAL  
50ps/div  
50ps/div  
Pad Description  
PAD  
NAME  
N.C.  
FUNCTION  
No Connection. Leave open and unconnected.  
Connection to internal 180Filter Resistor to V  
1, 2, 12, 13  
3
FILTER  
IN1 to IN4  
for Photodiode Array Cathode Bias  
CCFILT  
4, 6, 8, 10  
Signal Inputs. Channel 1 to channel 4 signal inputs.  
Filter Connections. Channel 1 to channel 4 connection to internal filter resistors (720to  
5, 7, 9, 11  
FILT1 to FILT4  
V
).  
CCFILT  
14, 17, 40, 43  
15, 16, 41, 42  
GNDI4 to GNDI1  
to V  
Input Stage Ground Connections. Channel 4 to channel 1 input stage ground.  
Input Stage Supply Connections. Channel 4 to channel 1 input stage positive supply.  
DC Feedback Disable. Disables DC feedback of all four channels when connected to the  
V
CCI4  
CCI1  
18  
ENABLE  
positive supply (V ). Left unconnected for normal operation.  
CC  
20, 19, 38, 37  
21, 24  
GNDO4 to GNDO1 Output Stage Ground Connections. Channel 4 to channel 1 output stage ground.  
V
Channel 4 Output Stage Positive Supply  
CCO4  
22, 26, 30, 34  
23, 27, 31, 35  
25, 28  
OUT4- to OUT1-  
Inverting Outputs. Channel 4 to channel 1 negative outputs.  
OUT4+ to OUT1+ Noninverting Outputs. Channel 4 to channel 1 positive outputs.  
V
V
V
Channel 3 Output Stage Positive Supply  
Channel 2 Output Stage Positive Supply  
Channel 1 Output Stage Positive Supply  
Ground Connection for the Filters. Filter grounds.  
Power Supply Connection for Filter Resistor  
CCO3  
CCO2  
CCO1  
29, 32  
33, 36  
39  
GNDF  
44  
V
CCFILT  
4
_______________________________________________________________________________________  
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
Functional Diagram  
V
CC  
FILT  
720Ω  
FILT_  
D2  
D1  
V
CCO_  
R1  
50Ω  
OUT_+  
R = 1.3kΩ  
F
Q2  
VCCI_  
V
CCO_  
IN_  
Q1  
R2  
50Ω  
C1  
PARAPHASE  
AMP  
OUT_-  
GNDI_  
R5  
Q3  
VCCI_  
Q5  
REFERENCE  
AMP  
R3  
R4  
GNDI_  
GNDI_  
DC  
Q4  
CANCELLATION  
AMP  
MAX3825  
ENABLE  
GNDO_  
Figure 1. Functional Diagram for One Channel of the MAX3825  
DC Cancellation Loop  
Detailed Description  
The DC cancellation loop removes the DC component  
of the input signal by using low-frequency feedback.  
This feature centers the signal within the MAX3825s  
dynamic range, reducing pulse-width distortion.  
The MAX3825 quad TIA circuit is designed for 2.5Gbps  
SONET/SDH applications. It comprises a transimped-  
ance amplifier, a paraphase amplifier with CML out-  
puts, and a DC cancellation loop to reduce pulse-width  
distortion (Figure 1).  
The output of the paraphrase amplifier is sensed through  
resistors R3 and R4 and then filtered, amplified, and fed  
back to the base of transistor Q4. The transistor draws  
the DC component of the input signal away from the  
transimpedance amplifiers summing node.  
Transimpedance Amplifier  
The signal current at IN_ flows into the summing node  
of a high-gain amplifier. Shunt feedback through R  
F
converts this current to a voltage with a gain of 1300.  
Diodes D1 and D2 clamp the output voltage for large  
input currents. GNDI_ is a direct connection to the emit-  
ter of the input transistor and must be connected  
directly to the photodetector AC ground return for best  
performance.  
The MAX3825 DC cancellation loop is internally com-  
pensated and does not require external capacitors in  
most 2.5Gbps applications. The DC cancellation loop  
for all channels can be disabled by connecting  
ENABLE to the positive supply (V ). ENABLE is inter-  
CC  
_______________________________________________________________________________________  
5
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
nally pulled low, so it does not need to be bonded out  
for the DC cancellation loop to function.  
Table 1. Optical Power Relations  
PARAMETER  
Average Power  
SYMBOL  
RELATION  
= (P + P )/2  
The MAX3825 minimizes pulse-width distortion for data  
sequences exhibiting a 50% duty cycle and mark den-  
sity. An input signal with a duty cycle and mark density  
significantly different from 50% will cause the MAX3825  
to operate improperly.  
P
P
AVG  
AVG  
0
1
Extinction Ratio  
r
r = P /P  
e 1 0  
e
Optical Power of a 1”  
Optical Power of a 0”  
P
P
P = 2P  
(r )/(r + 1)  
e e  
1
0
1
AVG  
P = 2P  
/(r + 1)  
e
0
AVG  
DC cancellation current drawn from the input creates  
noise. This is not a problem for a low-level signal with  
little or no DC component. Preamplifier noise increases  
for a signal with significant DC component (see Typical  
Operating Characteristics).  
P
= P - P = 2P  
1 0 AVG  
IN  
Signal Amplitude  
P
IN  
(r - 1)/(r + 1)  
e
e
Note: Assuming a 50% input duty cycle and mark density  
Paraphase Amplifier and Output Stage  
The paraphase amplifier converts single-ended inputs  
to differential outputs, and introduces a voltage gain of  
2.8. This signal drives an internally biased emitter cou-  
pled pair, Q2 and Q3, which forms the output stage  
(Figure 1). Resistors R1 and R2 provide back-termina-  
tion at the outputs, absorbing reflections between the  
MAX3825 and its load.  
POWER  
PI  
P
IN  
P
AVG  
The differential outputs are designed to drive a 100Ω  
load between OUT_+ and OUT_-. The MAX3825 can  
also drive higher output impedances, resulting in  
increased gain and output voltage swing.  
PO  
TIME  
Applications Information  
The MAX3825 is a quad TIA that is ideal for 2.5Gbps  
SONET/SDH receivers. Its features allow easy design  
into a fiberoptic module.  
Figure 2. Optical Power Definitions  
where ρ is the photodiode responsivity in A/W and I is  
N
Optical Power Relations  
Many of the MAX3825 specifications relate to the input  
signal amplitude. When working with fiberoptic  
receivers, the input is usually expressed in terms of  
average optical power and extinction ratio. Table 1  
shows relations that are helpful for converting optical  
power to an input signal when designing with the  
MAX3825 (Figure 2). The definitions are true if the mark  
density and duty cycle of the input data are 50%.  
in µA.  
Input Optical Overload  
The overload is the largest input that the MAX3825  
accepts while meeting specifications. The optical over-  
load can be estimated in terms of average power with  
the following equation:  
I
MAX  
2ρ  
Overload =10log  
10  
dBm  
Optical Sensitivity Calculation  
The input-referred RMS noise current (I ) of the  
N
MAX3825 generally determines the receiver sensitivity.  
To obtain a system bit error rate (BER) of 1 × 10-14, the  
signal-to-noise ratio must always exceed 15.3. The  
input sensitivity, expressed in average power, can be  
estimated as:  
where ρ is the photodiode responsivity in A/W and I  
MAX  
is in mA.  
Optical Linear Range  
The MAX3825s outputs limit when the input signal  
exceeds 50µAp-p. The MAX3825 operates in a linear  
range for inputs not exceeding:  
15.3I (r +1)  
N e  
Sensitivity =10log  
10  
2ρ(r 1) × 1000  
e
6
_______________________________________________________________________________________  
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
V
CCI_  
50µA(r +1)  
e
Linear Range =10log  
dBm  
10  
2ρ(r 1) × 1000  
e
500  
where ρ is the photodiode responsivity in A/W.  
Ground  
V
CCI_  
Connect all input ground connections as close as pos-  
sible to the AC ground of the photodetector diode. The  
photodetector AC ground is usually the ground of the  
filter capacitor from the photodetector cathode. The  
total loop (from GNDI_, through the bypass capacitor  
and the diode, and back to IN_) should be as short as  
possible.  
1.3kΩ  
IN_  
0.1pF  
200Ω  
Photodiode Filter  
GNDI_  
Supply voltage noise at the cathode of the photodiode  
produces a current I = C  
V/t, which reduces the  
is the photodiode capaci-  
PD  
Figure 3. Equivalent Input Circuit  
receiver sensitivity (C  
PD  
tance). The filter resistor of the MAX3825, combined  
with an external capacitor, can be used to reduce this  
noise (see the Typical Application Circuit). Current gen-  
erated by the supply noise voltage is divided between  
V
CCO_  
C
and C . The input noise current due to supply  
PD  
FILTER  
noise is (assuming the filter capacitor is much larger  
than the photodiode capacitance):  
50Ω  
50Ω  
(V  
)(C  
)
PD  
OUT+  
NOISE  
I
=
NOISE  
(R  
)(C  
)
FILTER  
FILTER  
OUT-  
Another important parameter is the inductance at the  
photodiode arrays common cathode. It is important to  
keep this inductance to a minimum to reduce the cou-  
pling between the photodiodes. To keep this inductance  
small, keep all bond wires as short as possible.  
Wire Bonding  
For high current density and reliable operation, the  
MAX3825 uses gold metalization. Connections to the  
die should be made with gold wire only, using ball  
bonding techniques. Wedge bonding is not recom-  
mended. Die thickness is typically 14 mils (mm).  
Interface Models  
Refer to Figures 3 and 4 for the equivalent input and  
output circuits of the MAX3825.  
Chip Information  
TRANSISTOR COUNT: 1469  
GNDO_  
PROCESS: BIPOLAR (SILICON GERMANIUM)  
DIE SIZE: 65 99mils/(1651 2515 microns)  
Figure 4. Equivalent Output Circuit  
_______________________________________________________________________________________  
7
+3.3V, 2.5Gbps Quad Transimpedance Amplifier  
for System Interconnects  
Typical Application Circuit  
V
CC  
R
R
= 180Ω  
FILTER  
V
CC  
FILTER  
FILT1  
PIN ARRAY  
= 720Ω  
= 720Ω  
FILT1  
IN1+  
IN1-  
OUT1+  
OUT1-  
OUT1+  
OUT1-  
50Ω  
50Ω  
IN1  
R
FILT2  
FILT2  
IN2  
IN2+  
IN2-  
OUT2+  
OUT2-  
OUT2+  
OUT2-  
50Ω  
50Ω  
R
R
= 720Ω  
= 720Ω  
FILT3  
FILT3  
IN3  
IN3+  
IN3-  
OUT3+  
OUT3-  
OUT3+  
OUT3-  
50Ω  
50Ω  
FILT4  
FILT4  
IN4  
OUT4+  
OUT4-  
IN4+  
IN4-  
OUT4+  
OUT4-  
50Ω  
50Ω  
MAX3825  
QUAD TIA  
MAX3822  
QUAD LIMITING AMP  
C
FILTER  
LOP  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY