MAX3740EVKIT [MAXIM]

Evaluation Kit for the MAX3740 ; 评估板MAX3740\n
MAX3740EVKIT
型号: MAX3740EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit for the MAX3740
评估板MAX3740\n

文件: 总9页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2694; Rev 0; 12/02  
MAX3740 Evaluation Kit  
General Description  
The MAX3740 evaluation kit (EV kit) is an assembled  
demonstration board that provides complete optical  
and electrical evaluation of the MAX3740 VCSEL driver.  
Features  
Fully Assembled and Tested  
Single +3.3V Power-Supply Operation  
Allows Optical and Electrical Evaluation  
Allows Evaluation with DS1858 in SFP Layout  
The EV kit has an electrical section and an optical sec-  
tion. The output of the electrical evaluation section is  
interfaced to an SMA connector, which can be connect-  
ed to a 50terminated oscilloscope. The optical sec-  
tion of the evaluation board is populated with a DS1858  
digital potentiometer and allows evaluation of the  
MAX3740 in an SFP layout. With slight modifications, a  
common-cathode VCSEL also can be evaluated using  
the electrical side of the EV kit.  
Ordering Information  
PART  
TEMP RANGE  
IC PACKAGE  
MAX3740EVKIT  
-40°C to +85°C  
24 QFN  
Electrical Evaluation Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
C1, C2, C5, C9,  
C13, C15, C16,  
C17  
R10, R26, R27,  
6
0.1µF 10% ceramic capacitors  
(0402)  
Open  
8
1
R34, R35, R36  
R14  
R15  
R16  
1
1
1
20kpotentiometer  
50kpotentiometer  
500kpotentiometer  
0.047µF 10% ceramic capacitor  
(0402)  
C3  
C4, C6, C7, C8,  
C11, C12  
0.01µF 10% ceramic capacitors  
(0402)  
NPN transistors (SOT23)  
Zetex FMMT491A  
6
1
1
Q1, Q2  
Q3  
2
1
C10  
Open  
MOSFET (SOT23)  
Zetex BS170F  
10µF 10% ceramic capacitor  
(0805)  
C14  
JU1JU8, JU10  
J1J7  
9
7
2-pin headers, 0.1in centers  
10µF 10% tantalum capacitor,  
case B  
SMA connectors, round contacts  
C18  
1
TP1TP11,  
TP20, TP21  
13  
Test points  
D1  
D2  
1
1
VCSEL laser and photodiode*  
LED, red T1 package  
U1  
1
1
9
1
1
MAX3740ETG (24 QFN)  
MAX495ESA (8 SO)  
Shunts  
600ferrite beads (0603)  
Murata BLM18HD102SN1  
U2  
L1, L2, L3  
L4  
3
1
None  
None  
None  
1µH inductor (1008CS)  
Coilcraft 1008CS-102XKBC  
MAX3740 EV board  
MAX3740 data sheet  
R1, R2  
R3  
2
1
1
2
2
1
1
2
10kpotentiometers  
350resistor (0402)  
2.49kresistor (0402)  
499resistors (0402)  
10kresistors (0402)  
0resistor (0402)*  
*These components are not supplied but can be populated if  
the user wants to test the VCSEL with the electrical side of the  
EV kit.  
R4  
R5, R12  
R6, R13  
R7  
R8  
4.7kresistor (0402)  
49.9resistors (0402)  
R9, R11  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX3740 Evaluation Kit  
Optical Evaluation  
Component List  
Quick Start  
Electrical Evaluation  
In the electrical configuration, an automatic power-con-  
trol (APC) test circuit is included to emulate a semicon-  
ductor laser with a monitor photodiode. Monitor diode  
current is provided by transistor Q1, which is controlled  
by an operational amplifier (U2). The APC test circuit,  
consisting of U2 and Q1, applies the simulated monitor  
diode current to the MD pin of the MAX3740. To ensure  
proper operation in the electrical configuration, set up  
the evaluation board as follows:  
DESIGNATION QTY  
DESCRIPTION  
0.01µF 10% ceramic capacitor  
(0402)  
C19  
C20, C25, C27  
C21  
1
3
1
1
4
0.1µF 10% ceramic capacitors  
(0402)  
10µF 10% tantalum capacitor,  
case B  
0.047µF 10% ceramic capacitor  
(0402)  
1) Place shunts on JU4JU8 and JU10 (see the  
Adjustment and Control Descriptions section for  
details).  
C22  
C23, C26, C28,  
C29  
0.01µF 10% ceramic capacitors  
(0201)  
2) Remove shunts JU1 and JU2.  
C30  
J9, J10  
JU9  
1
2
1
Open  
3) To enable the outputs, connect TX_DISABLE to  
GND by placing a shunt on JU3.  
SMA connectors, round contacts  
2-pin header, 0.1in center  
Note: When performing the following resistance  
checks, autoranging DMMs may forward bias the  
on-chip ESD protection and cause inaccurate mea-  
surements. To avoid this problem, manually set the  
DMM to a high range.  
1µH inductor (1008CS)  
Coilcraft 1008CS-102XKBC  
L5  
1
600ferrite bead (0603)  
Murata BLM18HD102SN1  
L6  
1
3
4
4) Adjust R15, the R  
potentiometer, for 1.7kΩ  
BIASSET  
R17, R18, R28  
4.7kresistors (0603)  
resistance between TP4 (BIASSET) and ground.  
R21, R22, R23,  
R33  
5) Adjust R1, the R potentiometer, for 10kΩ  
PWRSET  
Open  
resistance between TP2 (REF) and pin 1 (MD) of JU2.  
R24  
R25  
1
1
2
1
1
350resistor (0201)  
1.7kresistor (0201)  
0resistors (0201)  
49.9resistor (0402)  
20kresistor (0402)  
6) Adjust R14, the R  
potentiometer, for 20kΩ  
PEAKSET  
resistance between TP10 (PEAKSET) and ground to  
disable peaking.  
R29, R30  
R31  
7) Adjust R16, the RTC potentiometer, for 0resis-  
tance between TP7 (TC1) and TP8 (TC2) to disable  
temperature compensation.  
R32  
TP13TP19,  
TP22, TP23  
8) Adjust R2, the R potentiometer, for 10kΩ  
MODSET  
9
Test points  
resistance between TP9 (MODSET) and ground.  
U3  
U4  
1
1
MAX3740ETG (24-pin QFN)  
9) Apply a differential input signal (250mV  
to  
P-P  
DS1858 (16-pin BGA, 1.5mm pitch)  
2200mV ) between SMA connectors J5 and J7  
P-P  
(IN+ and IN-).  
10) Attach a high-speed oscilloscope with a 50input  
Component Suppliers  
to SMA connector J6 (OUT).  
SUPPLIER  
AVX  
PHONE  
FAX  
11) Connect a +3.3V supply between TP20 (VCC) and  
TP21 (GND). Adjust the power supply until the volt-  
age between TP11 and ground is +3.3V.  
803-946-0690  
847-639-6400  
814-237-1431  
516-543-7100  
803-626-3123  
847-639-1469  
814-238-0490  
516-864-7630  
Coilcraft  
Murata  
12) Adjust R1 (R  
) until the desired laser bias  
PWRSET  
current is achieved.  
Zetex  
V
PIN1_JU5  
I
=
BIAS  
49.9Ω  
2
_______________________________________________________________________________________  
MAX3740 Evaluation Kit  
13) The MD and BIAS currents can be monitored at TP1  
(V ) and TP3 (V ) using the equa-  
9) Adjust R16, the R  
potentiometer, for 0resis-  
TC  
tance between TP7 (TC1) and TP8 (TC2), to disable  
temperature compensation.  
PWRMON  
tions below:  
BIASMON  
10) Adjust R2, the R  
potentiometer, for 10kΩ  
MODSET  
V
2×R  
PWRMON  
I
=
=
resistance between TP9 (MODSET) and ground.  
MD  
PWRSET  
11) Apply a differential input signal (250mV  
to  
P-P  
2200mV ) between SMA connectors J5 and J7  
P-P  
9× V  
(IN+ and IN-).  
BIASMON  
350Ω  
I
BIAS  
12) Attach the VCSEL fiber connector to an optical/elec-  
trical converter.  
Note: If the voltage at TP1 exceeds V  
typ) or TP3 exceeds V  
signal is asserted and latched.  
(0.8V  
PMTH  
13) Connect a +3.3V supply between TP20 (VCC) and  
TP21 (GND). Adjust the power supply until the volt-  
age between TP11 and ground is +3.3V.  
(0.8V typ), the FAULT  
BMTH  
14) Adjust R2 until the desired laser modulation current  
is achieved.  
14) Adjust R1 (R  
) until desired average optical  
PWRSET  
power is achieved.  
15) The MD and BIAS currents can be monitored at TP1  
(V ) and TP3 (V ) using the follow-  
Signal Amplitude (V)  
I
=
MOD  
PWRMON  
ing equations:  
BIASMON  
50Ω  
15) Adjust R14 (R  
) until the desired amount of  
PEAKSET  
peaking is achieved.  
V
2×R  
PWRMON  
I
=
=
MD  
PWRSET  
Optical Evaluation with Mechanical  
Potentiometers  
For optical evaluation of the MAX3740, configure the  
evaluation kit as follows:  
9× V  
BIASMON  
350Ω  
I
BIAS  
1) Place shunts on JU2, JU6, JU7, JU8, and JU10 (see  
Note: If the voltage at TP1 exceeds V  
(0.8V  
PMTH  
the Adjustment and Control Descriptions section).  
typ) or TP3 exceeds V  
(0.8V typ), the FAULT  
BMTH  
2) Remove components L2 and C9. Remove the  
shunts from JU1, JU4, and JU5.  
signal is asserted and latched.  
16) Adjust R2 (R ) until the desired optical  
MODSET  
3) Install a 0resistor at R7 to connect the anode of  
amplitude is achieved. Optical amplitude can be  
observed on an oscilloscope connected to an opti-  
cal/electrical converter. VCSEL overshoot and ring-  
ing can be improved by appropriate selection of  
R10 and C10, as described in the Design  
Procedure section of the MAX3740 data sheet.  
the VCSEL to the output.  
4) To enable the outputs, connect TX_DISABLE to  
GND by placing a shunt on JU3.  
5) Connect a common-cathode VCSEL as shown in  
Figure 1. Keep leads short to reduce reflection.  
17) To improve the falling edge of a VCSEL, adjust R14  
Note: When performing the following resistance  
checks, autoranging DMMs may forward bias the  
on-chip ESD protection and cause inaccurate mea-  
surements. To avoid this problem, manually set the  
DMM to a high range.  
(R  
PEAKSET  
).  
Optical Evaluation Using the DS1858  
Digital Potentiometer with Monitors  
The MAX3740 optical evaluation side is similar to an SFP  
transmitter. In this configuration, R  
and R  
PWRSET  
6) Adjust R15, the R  
potentiometer, for 1.7kΩ  
MODSET  
BIASSET  
are provided by the DS1858 digital potentiometer. The  
DS1858 also monitors the PWRMON and BIASMON out-  
puts of the MAX3740. Control for the DS1858 is provided  
through a two-wire interface at TP14 (MOD-DEF2) and  
TP15 (MOD-DEF1). For control of the digital potentiome-  
ter, refer to the DS1858 data sheet.  
resistance between TP4 (BIASSET) and ground.  
7) Adjust R1, the R potentiometer, for 10kΩ  
PWRSET  
resistance between TP2 (REF) and pin 1 (MD) of JU2.  
8) Adjust R14, the R  
potentiometer, for 20kΩ  
PEAKSET  
resistance between TP10 (PEAKSET) and ground to  
disable peaking.  
_______________________________________________________________________________________  
3
MAX3740 Evaluation Kit  
1) To enable the outputs, connect TX_DISABLE to  
GND by placing a shunt on JU9.  
V
PWRMON  
I
=
MD  
2 × R  
9 × V  
PWRSET  
2) Connect a common-cathode VCSEL as shown in  
Figure 2. Keep the leads short to reduce reflection.  
BIASMON  
350Ω  
I
=
BIAS  
3) Apply a differential input signal (250mV  
to  
P-P  
Note: If the voltage at TP16 exceeds V  
typ) or TP17 exceeds V  
signal is asserted and latched.  
(0.8V  
2200mV ) between SMA connectors J9 and J10  
PMTH  
P-P  
(0.8V typ), the FAULT  
(IN+ and IN-).  
BMTH  
4) Attach the VCSEL fiber connector to an optical/elec-  
trical converter.  
8) Adjust the R resistor using the DS1858 until  
MODSET  
the desired optical amplitude is achieved. Optical  
amplitude can be observed on an oscilloscope con-  
nected to an optical/electrical converter. Refer to  
the DS1858 data sheet for control instructions.  
5) Connect a +3.3V supply between TP22 (VCCT) and  
TP23 (GND). Adjust the power supply until the volt-  
age between TP13 and ground is +3.3V.  
6) Adjust the R  
resistor using the DS1858 until  
PWRSET  
9) If needed, change the value of R  
(R32) to  
PEAKSET  
desired average optical power is achieved. Refer to  
the DS1858 data sheet for control instructions.  
improve the falling edge of the VCSEL.  
7) The MD and BIAS currents can be monitored  
through the DS1858 (refer to DS1858 data sheet),  
or at TP16 (V  
) and TP17 (V  
) using  
BIASMON  
PWRMON  
the following equations:  
Adjustment and Control Descriptions (see Quick Start)  
COMPONENT  
D2  
NAME  
FUNCTION  
The LED is illuminated when a fault condition has occurred (refer to the Detailed  
Description section of the MAX3740 data sheet).  
Fault Indicator  
JU1  
COMP  
PHOTODIODE  
TX_DISABLE  
IPD  
Enables/disables the APC circuit. Remove the shunt to enable the APC circuit.  
Installing a shunt connects the photodiode of the VCSEL to the MD pin. Used when a  
VCSEL is installed.  
JU2  
JU3, JU9  
JU4  
Enable/disable the output currents. Install a shunt to enable output currents.  
Determines the gain of the photodiode emulator. When JU4 is open, the gain is 0.02A/A.  
When JU4 is shunted, the gain is 0.12A/A.  
JU5  
JU6  
JU7  
JU8  
JU10  
R1  
APCOPEN  
FAULT  
Installing a shunt connects the electrical output of the part to the emulation circuit.  
Installing a shunt enables the external fault-indicator circuit.  
Installing a shunt enables the squelch function.  
SQUELCH  
POWER  
Installing a shunt enables power to the part.  
VCCEXT  
Installing a shunt provides power to the emulation and fault-indicator circuits.  
Adjusts transmit optical power to be maintained by the APC loop.  
Adjusts the laser modulation current.  
R
PWRSET  
MODSET  
PEAKSET  
R2  
R
R14  
R
Adjusts the peaking for the falling edge of the VCSEL.  
In a closed-loop configuration, adjusts the maximum bias current available to the APC. In  
an open-loop configuration, adjusts the bias level of the output.  
R15  
R
BIASSET  
R16  
TP14  
TP15  
R
Adjusts the temperature compensation of the modulation current.  
TC  
MOD-DEF2  
MOD-DEF1  
Part of the two-wire interface for the DS1858. Refer to the DS1858 data sheet.  
Part of the two-wire interface for the DS1858. Refer to the DS1858 data sheet.  
4
_______________________________________________________________________________________  
MAX3740 Evaluation Kit  
A P C O P E N  
5
J U  
P E O N  
R 3  
6
P E O N  
R 3  
4
P E A K S E T  
R 1 4 2 0  
k  
B I A S S E T  
R 1 5 5 0  
k  
P E O N  
R 2  
7
M O D S E T  
R 2 1 0 k  
P E A K S E T  
M O D S E T  
B I A S M O N  
V C C  
C O M P  
C O M P  
J U  
1
D
G N  
F µ 7 0 . 0 4  
C 3  
M D  
R E F  
T C 2  
T C 1  
V C C  
P W R M O N  
Figure 1. MAX3740 EV Kit Electrical Schematic  
_______________________________________________________________________________________  
5
MAX3740 Evaluation Kit  
G N D  
L 1  
L 0  
H 1  
M O N 1  
M O N 2  
P M O N +  
B M O N +  
S D A  
O U T 2  
P E A K S E T  
M O D S E T  
B I A S M O N  
V C C  
C O M P  
M D  
D
G N  
T C 2  
T C 1  
V C C  
R E F  
P W R M O N  
Figure 2. MAX3740 EV Kit Optical Schematic with DS1858  
6
_______________________________________________________________________________________  
MAX3740 Evaluation Kit  
1.0"  
1.0"  
Figure 4. MAX3740 EV Kit PC Board Layout—Component Side  
Figure 3. MAX3740 EV Kit Component Placement Guide—  
Component Side  
_______________________________________________________________________________________  
7
MAX3740 Evaluation Kit  
1.0"  
1.0"  
Figure 5. MAX3740 EV Kit PC Board Layout—Ground Plane  
Figure 6. MAX3740 EV Kit PC Board Layout—Power Plane  
8
_______________________________________________________________________________________  
MAX3740 Evaluation Kit  
1.0"  
Figure 7. MAX3740 EV Kit PC Board Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 9  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3741

3.2Gbps Compact SFP VCSEL Driver
MAXIM

MAX3741ETE

3.2Gbps Compact SFP VCSEL Driver
MAXIM

MAX3741ETE-T

Interface Circuit, BIPolar, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16
MAXIM

MAX3741EVKIT

Evaluation Kit for the MAX3741
MAXIM

MAX3741HETE

SPECIALTY INTERFACE CIRCUIT, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WEED-2, TQFN-16
ROCHESTER

MAX3741HETE#G16

SPECIALTY INTERFACE CIRCUIT, QCC16, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WEED-2, TQFN-16
ROCHESTER

MAX3744

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744D

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744E

2.7Gbps SFP Transimpedance Amplifiers with RSSI
MAXIM

MAX3744E/D

Telecom Circuit, 1-Func, Bipolar, 0.030 X 0.050 INCH, DIE-10
MAXIM

MAX3744EVKIT

Evaluation Kit
MAXIM

MAX3744EVKIT|MAX3745EVKIT

Evaluation Kit for the MAX3744/MAX3745
MAXIM