MAX366C/D [MAXIM]

Signal-Line Circuit Protectors; 信号线电路保护器
MAX366C/D
型号: MAX366C/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Signal-Line Circuit Protectors
信号线电路保护器

电路保护
文件: 总12页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0326; Rev 0; 12/94  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX366 and MAX367 are multiple, two-terminal circuit  
protectors. Placed in series with signal lines, each two-ter-  
minal device guards sensitive circuit components against  
voltages near and beyond the normal supply voltages.  
These devices are used at interfaces where sensitive cir-  
cuits are connected to the external world and could  
encounter damaging voltages (up to 35V beyond the sup-  
ply rails) during power-up, power-down, or fault conditions.  
±40V Overvoltage Protection  
Open Signal Paths with Power Off  
100Signal Paths with Power On  
1nA Max Path Leakage at +25°C  
44V Maximum Supply Voltage Rating  
Automatic Protection; No Programming or  
The MAX366 contains three independent protectors and  
the MAX367 contains eight. They can protect analog sig-  
nals using either unipolar (4.5V to 36V) or bipolar (±2.25V  
to ±18V) power supplies. Each protector is symmetrical.  
Input and output terminals may be freely interchanged.  
Controls  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX366CPA  
MAX366CSA  
MAX366C/D  
MAX366EPA  
MAX366ESA  
MAX366MJA  
MAX367CPN  
MAX367CWN  
MAX367C/D  
MAX367EPN  
MAX367EWN  
MAX367MJN  
These devices are voltage-sensitive MOSFET transistor  
arrays that are normally on when power is applied and  
normally open circuit when power is off. With ±10V sup-  
plies, on-resistance is 100max and leakage is less than  
1nA at +25°C.  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic DIP  
8 SO  
When signal voltages exceed or are within approximately  
1.5V of either power-supply voltage (including when  
power is off), the two-terminal resistance increases dra-  
matically, limiting fault current as well as output voltage to  
sensitive circuits. The protected side of the switch main-  
tains the correct polarity and clamps approximately 1.5V  
below the supply rail. There are no glitches” or polarity  
reversals going into or coming out of a fault condition.  
8 CERDIP**  
18 Plastic DIP  
18 Wide SO  
Dice*  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
18 Plastic DIP  
18 Wide SO  
18 CERDIP**  
________________________Ap p lic a t io n s  
MAX367 available after January 1, 1995.  
* Dice are tested at T = +25°C only.  
A
* Contact factory for availability.  
Process Control Systems  
Hot-Insertion Boards/Systems ATE Equipment  
Data-Acquisition Systems Sensitive Instruments  
Redundant/Backup Systems  
Pin Configurations appear at end of data sheet.  
___________________________________________________Typ ic a l Op e ra t in g Circ u it  
ELECTRONICS  
PROTECTOR  
FAULT!  
REMOTE SENSOR  
8
MAX366  
+28V  
+12V  
V+  
+10V REG.  
1
IN1  
OUT1  
7
6
5
(SHORT)  
SENSITIVE  
AMPLIFIER  
2
IN2  
IN3  
V-  
OUT2  
OUT3  
3
4
(OPEN)  
FAULT!  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
ABSOLUTE MAXIMUM RATINGS  
V+ to V-......................................................................-0.3V, +44V  
IN_, OUT_ ..................................................(V- + 44V), (V+ - 44V)  
Continuous Current into Any Terminal..............................±30mA  
Peak Current into Any Terminal  
18-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ...889mW  
18-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW  
Operating Temperature Ranges  
(pulsed at 1ms, 10% duty cycle)...................................±70mA  
MAX36_C_ _ ........................................................0°C to +70°C  
MAX36_E_ _......................................................-40°C to +85°C  
MAX36_M_ _...................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C).........640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = +15V, V- = -15V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
TEMP.  
RANGE  
PARAMETER  
SYMBOL  
, V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
/MAX367  
Analog Signal Range  
V
(Note 1)  
V+ = 15V, V- = -15V (Note 2)  
V = V+ or V-,  
IN  
All  
All  
(V+ - 40)  
-11  
(V- + 40)  
11  
V
V
IN OUT  
Fault-Free Analog Signal Range  
V , V  
IN OUT  
Analog-Signal Output  
Range (Fault)  
V
OUT  
All  
(V- + 3)  
(V+ - 1.5)  
V
100k< R  
< 1000M(Note 1)  
OUT  
+25°C  
C, E  
62  
62  
85  
100  
125  
100  
125  
150  
350  
400  
7
V+ = 15V, V- = -15V, V = ±10V,  
IN  
I
= 1mA  
OUT  
M
+25°C  
C, E  
Analog-Signal-Path Resistance  
Signal-Path Resistance Match  
R
(IN-OUT)  
V+ = 10V, V- = -10V, V = ±5V,  
IN  
I
= 1mA  
OUT  
M
+25°C  
C, E, M  
+25°C  
C, E, M  
+25°C  
C, E, M  
+25°C  
C, E, M  
+25°C  
C, E, M  
+25°C  
C, E, M  
140  
V+ = 5V, V- = -5V, V = ±2V,  
IN  
I
= 1mA  
OUT  
R  
V
IN  
= ±10V, I = 1mA  
OUT  
(IN-OUT)  
10  
-10  
-1000  
-1  
10  
Signal-Path Leakage  
(Power Off)  
V+ = V- = 0V, V = ±35V,  
IN  
I
nA  
nA  
nA  
nA  
IN(OFF)  
V
OUT  
= open circuit  
1000  
1
Signal-Path Leakage  
(without Fault Condition)  
I
V
IN  
= V  
= ±10V  
OUT(ON)  
OUT  
-100  
-10  
100  
10  
Signal-Path Leakage  
(with Fault Condition)  
I
V
IN  
= ±25V, V  
= open circuit  
IN(ON)  
OUT  
-1000  
-10  
1000  
10  
Signal-Path Leakage  
(with Overvoltage)  
V+ = V- = 0V, V  
= 0V,  
OUT  
I
IN(OFF)  
V
IN  
= ±35V  
-1000  
1000  
POWER SUPPLY  
+25°C,  
C, E, M  
Power-Supply Range  
V+, V-  
V+, V-  
I+, I-  
0
±18  
±18  
V
V
Power-Supply Range  
(without Fault Condition)  
+25°C,  
C, E, M  
R
< 1000(Note 2)  
±2.25  
(IN-OUT)  
+25°C  
-1  
1
Power-Supply Current  
µA  
C, E, M  
-10  
10  
Note 1: Guaranteed, but not tested.  
Note 2: See Typical Operating Characteristics curves for fault-free analog signal range at various supply voltages.  
2
_______________________________________________________________________________________  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = +15V, V- = -15V, T = +25°C, unless otherwise noted.)  
A
TRANSFER CHARACTERISTICS  
(BIPOLAR SUPPLIES)  
TRANSFER CHARACTERISTICS  
(SINGLE SUPPLY)  
15  
25  
20  
15  
V+ = +15V, V- = -15V  
OUTPUT LOAD = 1M  
V+ = +10V, V- = -10V  
10  
V+ = 25V  
V- = 0V  
V+ = +3V,  
V- = -3V  
5
V+ = 15V  
V+ = 10V  
0
10  
5
V+ = +5V,  
-5  
V- = -5V  
-10  
-15  
V+ = +10V, V- = -10V  
V+ = +15V, V- = -15V  
OUTPUT  
V+ = 5V  
30  
LOAD = 1MΩ  
0
-35 -25 -15  
-5  
0
5
15  
25  
35  
0
5
10  
INPUT VOLTAGE (V)  
> (V+ - 35V)  
15 20  
25  
35  
INPUT VOLTAGE (V)  
V
IN  
PATH RESISTANCE vs. INPUT VOLTAGE  
(BIPOLAR SUPPLIES)  
PATH RESISTANCE vs. INPUT VOLTAGE  
(BIPOLAR SUPPLIES)  
500  
1E+08  
1E+07  
1E+06  
1E+05  
1E+04  
1E+03  
1E+02  
1E+01  
V± = ±3V  
V± = ±3V  
450  
400  
350  
300  
250  
V± = ±15V  
V± = ±15V  
V± = ±10V  
V± = ±10V  
200  
150  
V± = ±5V  
V± = ±5V  
100  
50  
0
Circuit of Fig. 6  
Circuit of Fig. 6  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
3
S ig n a l-Lin e Circ u it P ro t e c t o rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = +15V, V- = -15V, T = +25°C, unless otherwise noted.)  
A
PATH RESISTANCE vs. INPUT VOLTAGE  
(SINGLE SUPPLY)  
PATH RESISTANCE vs. INPUT VOLTAGE  
(SINGLE SUPPLY)  
500  
450  
400  
350  
300  
250  
1G  
V+ = 25V  
V+ = 10V  
V+ = 15V  
100M  
10M  
V+ = 10V  
1M  
V+ = 25V  
V+ = 35V  
100k  
V+ = 5V  
V+ = 15V  
10k  
200  
150  
V+ = 35V  
/MAX367  
1k  
100  
50  
0
100  
V+ = 5V  
Circuit of Fig. 6  
V- = 0V  
V- = 0V  
100  
Circuit of Fig. 6  
10  
1
10  
INPUT VOLTAGE (V)  
1
10  
100  
INPUT VOLTAGE (V)  
OVERVOLTAGE RAMP  
MAX366 FREQUENCY RESPONSE  
0
-2  
-4  
-6  
SOURCE = 50Ω  
LOAD = 50Ω  
V+ = 5V  
V- = -5V  
-8  
-10  
-12  
100  
10  
1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
V+ = 5V, V- = -5V  
CHAN 1: INPUT OVERVOLTAGE RAMP ±7V, 2V/div  
CHAN 2: OUTPUT; OUTPUT LOAD = 1000, 2V/div  
4
_______________________________________________________________________________________  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME*  
FUNCTION  
MAX366  
MAX367  
1, 2, 3  
4–8  
1, 2, 3  
IN1, IN2, IN3  
IN4–IN8  
Signal Inputs 1, 2, 3  
4
Signal Inputs 4–8  
9
V-  
Negative Supply Voltage Input  
Signal Outputs 4–8  
10–14  
OUT8–OUT4  
OUT3, OUT2,  
OUT1  
5, 6, 7  
8
15, 16, 17  
18  
Signal Outputs 1, 2, 3  
V+  
Positive Supply Voltage Input  
* Inputs and outputs are names for convenience only; inputs and outputs are identical and interchangeable.  
___________Ba c k g ro u n d In fo rm a t io n  
_______________De t a ile d De s c rip t io n  
When a voltage outside the supply range is applied to  
most integrated circuits, there is a strong possibility they  
will be damaged or latch up” (that is, fail to operate prop-  
erly even after the offending voltage is removed). If an  
ICs input or output pin is supplied with a voltage when the  
ICs power is off, and power is subsequently applied, the  
device may act as an SCR and destroy itself and/or other  
circuitry. Such faults” are commonly encountered in  
modular control systems where power and signals to inter-  
connected modules may be interrupted and re-estab-  
lished at random. They can happen during production  
testing, maintenance, start-up, or a power brownout.”  
In t e rn a l Co n s t ru c t io n  
Figure 1 shows the simplified internal construction of  
each protector inside the MAX366/MAX367. Each circuit  
consists of two N-channel FETs and one P-channel FET.  
All the FETs are enhancement types; that is, the N chan-  
nels must have approximately 1.3V of positive gate volt-  
age in order to conduct, and the P channel must have  
approximately 2V of negative gate voltage in order to  
conduct.  
During normal operation, V+ is connected to a positive  
potential and V- is connected to a negative potential.  
Since their gates are tied to V+, transistors Q1 and Q3  
conduct as long as their sources are at least 1.3V below  
V+ (the N-channel gate threshold.) Transistor Q2s gate  
is tied to V-, so it conducts as long as its source is 2V or  
more above V- (the P-channel gate threshold.)  
The MAX366/MAX367 are designed to protect delicate  
input and output circuitry from overvoltage faults up to  
±40V (with or without power applied), in devices such as  
op amps, analog-to-digital/digital-to-analog converters,  
and voltage references. These circuit protectors automati-  
cally limit signal voltages and currents to safe levels with-  
out degrading normal signal performance, even in very  
high-impedance circuits. They are powered by the power  
supply of the protected circuit and inserted into the signal  
lines. There are no control lines, programming pins, or  
adjustments.  
V-  
P
IN  
OUT  
Unlike shunt diode networks, these devices are low-  
impedance FETs that become high impedance during a  
fault condition, so fault current and power dissipation are  
extremely low. Equally important, leakage current during  
normal and fault conditions is extremely low. In addition,  
unlike most discrete networks, these parts protect circuits  
both when power is off and during power transitions.  
Q2  
N
N
Q1  
Q3  
V+  
Figure 1. Simplified Internal Structure  
_______________________________________________________________________________________  
5
S ig n a l-Lin e Circ u it P ro t e c t o rs  
As long as the signal is within these limits, all three tran-  
Power Off  
sistors conduct and a low-resistance path is maintained  
from the IN to OUT pin. (Note that, since the device is  
symmetrical, IN and OUT pins can be interchanged.)  
When the signal is beyond the gate threshold of either  
Q2 or Q1/Q3, the path resistance rises dramatically.  
When power is off, none of the transistors have gate  
bias, so the circuit from IN to OUT is open.  
When power is off (i.e., V+ = V- = 0V), the protector is a  
virtual open circuit, and all voltages on each side are  
isolated from each other up to ±40V. With ±40V applied  
to the input pin, the output pin will be 0V, regardless of  
its resistance to ground.  
Fault Conditions  
A fault condition exists when the voltage on either sig-  
na l p in is within a b out 1.5V of e ithe r s up p ly ra il or  
exceeds either supply rail. This definition is valid when  
power is applied and when it is off, as well as during all  
the states as power ramps up or down.  
No rm a l Op e ra t io n  
In normal operation, the protector is placed in series  
with the signal line and the power supplies are con-  
nected to V+ and V- (see Figure 2). V- is ground when  
operating with a single supply. When power is applied,  
each protector acts as a resistor in the signal path.  
Any voltage source on the input” side of the switch will  
be conducted through the protector to the output. (Note  
that, since the protector is symmetrical, IN and OUT  
pins can be interchanged.)  
During a fault, the protector acts as a variable resistor,  
conducting only enough to sustain the other side of the  
switch within about 1.5V of the supply rail. This voltage  
is known as the “fault knee voltage,” and is not symmet-  
rical. It is approximately 1.3V down from the positive  
supply (V+ pin) or approximately 2.0V up from the neg-  
ative supply (V- pin). Each fault knee voltage varies  
slightly with supply voltage, with output current, and  
from device to device.  
/MAX367  
If the output load is resistive, it will draw current, and a  
voltage divider will be formed with the internal resistance  
so the output voltage will be lower than the input voltage.  
Since the internal resistance is typically less than 100,  
high-impedance loads will be relatively unaffected by the  
presence of the protector. The protectors path resis-  
tance is a function of the supply voltage and the signal  
voltage (see Typical Operating Characteristics).  
During a fault condition, all the fault current flows  
from one signal pin through the protector and out  
the other signal pin. No fault current flows through  
either supply pin. (There will be a few pico-amps of  
leakage current from each signal pin to each supply  
pin, but this is independent of fault current.)  
During the fault condition, enough current will flow to  
maintain the output voltage at the fault knee voltage, so  
the fault current is a function of the output resistance  
and the supply voltage. The output voltage and cur-  
rent have the same polarity as the fault.  
The maximum input fault voltage is 40V from the “oppo-  
site-polarity supply rail.” This means the input can go  
to ±35V with ±5V supplies or to ±25V with ±15V sup-  
plies. The fault voltage is highest (±40V) when the sup-  
plies are off (V+ = V- = 0V).  
MAX366  
4
1
8
7
V-  
V-  
V+  
V+  
V
IN  
V
OUT  
IN1  
OUT1  
Using the circuit of Figure 2, the approximate fault cur-  
rents are as follows:  
R
OUT  
1) For positive faults:  
I
(F)  
(V+ - 1.3V - V ) ÷ R  
LOW OUT  
V
LOW  
2) For negative faults:  
(V- + 2V + V  
I
(F)  
) ÷ R  
LOW OUT  
where V  
is the terminating voltage at the far end of  
LOW  
R
. V  
= 0V when R  
is grounded.  
OUT  
LOW  
OUT  
Figure 2. Application Circuit  
6
_______________________________________________________________________________________  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
The current through each protector should never exceed  
30mA. Always calculate the power dissipated by all the  
protectors in worst-case conditions (maximum voltage  
and current through each protector) to ensure the pack-  
age dissipation limit is not reached.  
5
4
3
2
1
0
V+ = +5V  
V- = -5V  
R
OUT  
= 100MΩ  
With single-supply operation, grounded loads will have  
zero voltage (and current) whenever the input voltage is  
below approximately 2V. In effect, both the IN and OUT  
pins are in fault condition.  
-1  
-2  
-3  
-4  
A special case arises when power is off: The part is in a  
p e rp e tua l fa ult c ond ition b ut no fa ult c urre nt flows  
because all the internal FETs are off.  
S in g le -S u p p ly Ou t p u t Op e ra t io n  
Single-supply operation is a special case. Signals can-  
not go to ground, since from 0V to approximately +2V is  
a fault condition.  
-30  
-20  
-10  
0
10  
20  
30  
INPUT VOLTAGE (V)  
Ex t re m e ly Lo w -Cu rre n t Op e ra t io n  
Figure 3 shows the typical high-impedance transfer  
characteristics with a 100Mload. Compared to the  
transfer characteristic at 1M(see Typical Operating  
Characteristics), the two knees are closer to the supply  
voltages and the slopes of the flat portions of the curve  
(fault conditions) are steeper. As the load resistance is  
increased even further, the positive and negative knees  
increase, and the slopes in fault conditions increase  
even more. Eventually, at some extremely high output  
resistance (e.g., Tera ohms), the output voltage can  
exceed the supply voltage during fault conditions. This  
is due to extremely low leakage currents from the input  
to output.  
Figure 3. High-Impedance Transfer Characteristic  
reserved for use when ultra-low leakage (pA) is needed.  
The MAX366/MAX367 have nano-amperes of leakage,  
which would negate the low leakage of the unprotected  
amplifier.  
Lo w -Vo lt a g e Op e ra t io n  
The MAX366/MAX367 operatewith supply voltages  
all the way down to 0V, but what they do to the signal is  
not obvious. With a total supply voltage of 3.5V, the  
protector is in a fault condition with nearly any input that  
is not close to 2.0V. Below 3.5V (including power off),  
the protector is perpetually in a fault condition (i.e., high  
impedance).  
When the protectors output side is connected to very  
high-resistance, very low-current loads (such as op-  
amp inputs), a small leakage current flows from the  
input to the output during fault conditions. This current  
When the supply voltage(s) ramps up (and/or down)  
from zero, the signal path is initially in a fault condition  
(open), until the supply voltage passes the input volt-  
age. The output starts at zero and is delayed from  
reaching the input voltage as the part comes out of the  
fault condition. If the supply voltage exceeds about  
3.5V, but never exceeds the input voltage, the output  
will follow the supply, always remaining about 1.3V  
below the positive supply voltage or 2V above the neg-  
ative supply voltage. If the input voltage subsequently  
comes out of the fault condition, the output returns to  
the inp ut va lue . This s e t of c ond itions is e xa c tly  
reversed when power ramps down to zero.  
-9  
is typically below a nano-ampere (<10 A) but, if the  
output resistance is high enough, it can cause the out-  
put voltage to exceed the supply voltages during fault  
conditions.  
This condition can be self-correcting, however, if the  
high-resistance load has protection diodes to the sup-  
ply rails (either external or internal to the op amp).  
These diodes conduct the leakage current to the supply  
rails and safely limit the output voltage. An alternative is  
to add a high-value resistor to ground in parallel with  
the load. This resistor may be as low as 1000M; its  
value must be determined experimentally at the highest  
anticipated operational temperature.  
Since the input and output pins are identical and inter-  
changeable, predicting whether or not the part is in a  
fault condition is easy: If either IN or OUT exceeds V+  
or V-, a fault condition exists and the current that flows  
will be just enough to cause the other signal pin (OUT  
or IN) to approach the appropriate supply rail.  
The fault protectors will not normally be used with high-  
impedance FET-input amplifiers that lack input protection  
diodes. Such amplifiers are fragile and are normally  
_______________________________________________________________________________________  
7
S ig n a l-Lin e Circ u it P ro t e c t o rs  
Bip o la r Fa u lt s  
The MAX366/MAX367 V+ and V- pins are normally con-  
nected to a circuit’s most positive and most negative  
power supplies. When a circuit has multiple power  
supplies (such as ±5V and ±12V) and the MAX366/  
MAX367 V+ and V- pins are connected to the lower  
supply, it is possible to have fault conditions on both  
sides of the signal path at once, if both sides of the  
+5V  
8
7
6
5
MAX366  
V+  
10µF  
100k  
1
2
IN1  
OUT1  
switch have paths to higher voltages. If the polarity of  
these faults is the same, the signal path will be open  
and there is no conflict.  
IN2  
IN3  
V-  
OUT2  
OUT3  
If the IN and OUT pins are driven in opposite polarities  
from low-imp e d a nc e s ourc e s , the lowe r of the two  
impedances will overcome the higher impedance, just  
as if the protector were not present. (Make sure the  
current does not exceed the 30mA absolute maximum  
rating.) As the lower impedance source approaches  
and exceeds the fault knee voltage, the protector will  
conduct enough current to maintain the other signal pin  
near the fault knee voltage. This means when the fault  
knee voltage is reached, the current through the pro-  
tector shifts from the higher current capability of the  
lower impedance source to the lower current capability  
of the higher impedance source.  
OP AMP  
3
4
/MAX367  
100k  
10µF  
-5V  
Figure 4. Turn-On Delay  
This circuit can be tailored to nearly any rate of turn-  
on by selecting the RC time constants in the V+ and  
V- p ins , without a ffe c ting the time c ons ta nt of the  
measuring circuit.  
_______________Typ ic a l Ap p lic a t io n s  
Drive n S w it c h e s  
The MAX366/MAX367 ha ve low s up p ly c urre nts  
(<1µA), whic h a llows the s up p ly p ins to b e d rive n  
directly by other active circuitry, instead of connected  
directly to the power sources. In this configuration,  
the p a rts c a n b e us e d a s d rive n fa ult-p rote c te d  
switches with V+ or V- pins used as the control pins.  
For example, if the V- pin is grounded, you can turn  
the V+ pin on and off by driving it with the output of a  
CMOS gate. This effectively connects and discon-  
nects three or eight separate signal lines at once. (If  
bipolar signals or signals that go to ground are being  
switched, the V- pin must be driven simultaneously to  
a negative potential.) Always ensure that the driving  
source(s) does not drive the V+ pin more negative  
than the V- pin.  
P ro t e c t o rs a s Circ u it Ele m e n t s  
Any of the individual protectors in a MAX366 or MAX367  
may be used as a switched resistor, independent of the  
functions of other elements in the same package. For  
example, Figure 5 shows a MAX366 with two of the pro-  
tectors used to protect the input of an op amp, and the  
third e le me nt us e d to s e q ue nc e a p owe r s up p ly.  
Combining the circuits of Figures 4 and 5 produces a  
delayed action on the switched +5V, as well as smooth  
application of signals to the amplifier input.  
_________Te s t in g Circ u it P ro t e c t o rs  
Me a s u rin g P a t h Re s is t a n c e  
Measuring path resistance requires special techniques,  
since path resistance varies dramatically with the IN  
a nd OUT volta g e s re la tive to the s up p ly volta g e s .  
Conventional ohmmeters should not be used, for two  
reasons: 1) the applied voltage and currents are usual-  
ly not predictable, and 2) the true resistance is a func-  
tion of the applied voltage, which is dramatically altered  
by the ohmmeter itself. Autoranging ohmmeters are  
particularly unreliable.  
Fig ure 4 s hows a s imp le turn-on d e la y tha t ta ke s  
advantage of the MAX366s low power consumption.  
The two RC networks cause gradual application of  
power to the MAX366, which in turn applies the input  
s ig na ls s moothly a fte r the a mp lifie r ha s s ta b ilize d .  
The two diodes discharge the two capacitors rapidly  
when power is turned off.  
8
_______________________________________________________________________________________  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
SWITCHED +5V  
P
100mV  
+5V  
A
8
7
6
5
MAX366  
MAX366  
V+  
100k  
V
IN_  
V-  
OUT_  
V+  
V
OUT  
IN  
1
2
IN1  
OUT1  
IN2  
IN3  
V-  
OUT2  
OUT3  
V-  
4
OP AMP  
8
3
4
V+  
ADJUSTABLE ANALOG VOLTAGE  
PATH RESISTANCE = 100mV/A  
-5V  
Figure 6. Path-Resistance Measuring Circuit  
Figure 5. Power-Supply Sequencing  
Figure 6 shows a circuit that can give reliable results.  
This circuit uses a 100mV voltage source and a low-  
voltage-drop ammeter as the measuring circuit, and an  
adjustable supply to sweep the analog voltage across  
its whole range. The ammeter must have a voltage  
drop of less than one millivolt (at any current) for accu-  
rate results. (A Keithley Model 617 Electrometer has a  
suitable ammeter circuit, appropriate ranges, and a  
built-in voltage source designed for this type of mea-  
surement.) Measurements are made by setting the  
analog voltage, measuring the current, and calculating  
the path resistance. The procedure is repeated at  
each analog voltage and supply voltage.  
Hig h -Fre q u e n c y P e rfo rm a n c e  
In 50systems, signal response is reasonably flat up  
to s e ve ra l me g a he rtz (s e e Typ ic a l Op e ra ting  
Characteristics). Above 5MHz, the response has sev-  
eral minor peaks, which are highly layout dependent.  
Because the path resistance is dependent on the sup-  
ply voltage and signal amplitude, the impedance is not  
controlled. Adjacent channel attenuation up to 5MHz is  
about 3dB above that of a bare IC socket, and is due  
entirely to capacitive coupling.  
Pulse response is reasonable, but because the imped-  
ance changes rapidly, fast rise times may induce ringing  
as the signal approaches the fault voltage. At very high  
amplitudes (such as noise spikes), the capacitive cou-  
pling across the signal pins will transfer considerable  
energy, despite the fact that the DC path is a virtual open  
circuit.  
It is important to use a voltage source of 100mV or less.  
As shown in Figure 4, this voltage is added to the V  
IN  
voltage to form the V  
voltage. Using a higher volt-  
OUT  
age could cause the OUT pin to go into a fault condi-  
tion prematurely.  
_______________________________________________________________________________________  
9
S ig n a l-Lin e Circ u it P ro t e c t o rs  
__Hig h -Vo lt a g e S u rg e S u p p re s s io n  
These devices are not high-voltage arresters, nor are they  
substitutes for surge suppressers. In systems that use  
these forms of protection, however, the MAX366/MAX367  
can fill a vital gap. Figure 7 shows a typical circuit.  
Although the surge suppressers are extremely fast shunt  
elements, they have very soft current knees. Their clamp  
voltage must be chosen well above the normal signal  
levels, because they have excessive leakage currents as  
the knee is approached. This current can interfere with  
normal operation when signal levels are low or imped-  
ances are high. If the clamp voltage is too high, however,  
the input can be damaged.  
+5V  
8
7
6
5
MAX366  
V+  
1
2
IN1  
OUT1  
IN2  
IN3  
V-  
OUT2  
OUT3  
OP AMP  
3
4
Using a MAX366/MAX367 after the surge suppresser  
allows the surge-suppresser voltage to be set above  
the supply voltage (but within the overvoltage limits),  
dramatically reducing the effects of leakage (Figure 7).  
During a surge, the surge suppresser clamps the input  
/MAX367  
-5V  
SURGE SUPPRESSERS  
(+10V)  
volta g e to roug hly ± 10V.  
This p rote c ts the  
MAX366/MAX367, but the MAX366/MAX367 still dis-  
connect the signal from the op amp well within the ±5V  
supply.  
Figure 7. Surge-Suppression Circuit  
_________________P in Co n fig u ra t io n s  
___________________Ch ip To p o g ra p h y  
IN1  
TOP VIEW  
IN1  
V+  
V+  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
IN2  
IN3  
IN4  
IN5  
IN1  
OUT1  
V+  
1
2
3
4
8
7
6
5
IN2  
OUT1  
OUT2  
OUT3  
IN2  
0. 112"  
(2. 84mm)  
IN3  
V-  
IN6  
IN7  
IN8  
MAX366  
OUT2  
IN3  
DIP/SO  
V-  
MAX367  
OUT3  
V-  
DIP/SO  
0. 085"  
(2. 16mm)  
TRANSISTOR COUNT: 21  
SUBSTRATE CONNECTED TO V+  
10 ______________________________________________________________________________________  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
/MAX367  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
DIM  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
PINS  
MIN  
MAX MIN  
MAX  
8
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
SO  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
SMALL OUTLINE  
PACKAGE  
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
______________________________________________________________________________________ 11  
S ig n a l-Lin e Circ u it P ro t e c t o rs  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.093  
MAX  
0.104  
0.012  
0.019  
0.013  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
7.60  
D
A
A1 0.004  
0°- 8°  
B
C
E
e
0.014  
0.009  
0.291  
A
0.101mm  
0.004in.  
1.27  
0.050  
e
B
A1  
H
L
0.394  
0.016  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
C
L
/MAX367  
INCHES  
MILLIMETERS  
MAX  
PINS  
DIM  
MIN MAX MIN  
E
H
Wide SO  
SMALL OUTLINE  
PACKAGE  
0.398 0.413 10.10 10.50  
0.447 0.463 11.35 11.75  
0.496 0.512 12.60 13.00  
0.598 0.614 15.20 15.60  
0.697 0.713 17.70 18.10  
21-0042A  
D
D
D
D
D
16  
18  
20  
24  
28  
(0.300 in.)  
INCHES  
MIN  
MILLIMETERS  
DIM  
MAX  
0.200  
0.023  
0.065  
0.015  
0.310  
0.320  
MIN  
MAX  
5.08  
0.58  
1.65  
0.38  
7.87  
8.13  
E1  
E
A
B
0.014  
0.36  
0.97  
0.20  
5.59  
7.37  
D
B1 0.038  
A
C
E
0.008  
0.220  
E1 0.290  
e
L
0.100  
2.54  
0.125  
0.150  
0.015  
0.200  
3.18  
3.81  
0.38  
5.08  
0°-15°  
C
Q
L1  
Q
S
L
L1  
0.070  
0.098  
1.78  
2.49  
e
B1  
S1 0.005  
0.13  
B
S1  
S
INCHES  
MILLIMETERS  
DIM PINS  
MIN  
MAX MIN MAX  
CERDIP  
D
D
D
D
D
D
8
0.405  
0.785  
0.840  
0.960  
1.060  
1.280  
10.29  
19.94  
21.34  
24.38  
26.92  
32.51  
CERAMIC DUAL-IN-LINE  
PACKAGE  
14  
16  
18  
20  
24  
(0.300 in.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX366CPA

Signal-Line Circuit Protectors
MAXIM

MAX366CPA+

SPST, 3 Func, 1 Channel, CMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MAXIM

MAX366CSA

Signal-Line Circuit Protectors
MAXIM

MAX366CSA+T

SPST, 3 Func, 1 Channel, CMOS, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX366EPA

Signal-Line Circuit Protectors
MAXIM

MAX366ESA

Signal-Line Circuit Protectors
MAXIM

MAX366ESA+

SPST, 3 Func, 1 Channel, CMOS, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX366ESA+T

SPST, 3 Func, 1 Channel, CMOS, PDSO8, 0.150 INCH, SO-8
MAXIM

MAX366ESA-T

暂无描述
MAXIM

MAX366MJA

Signal-Line Circuit Protectors
MAXIM

MAX367

Signal Line Circuit Protector with Three Independent Protectors
MAXIM

MAX3670

Low-Jitter 155MHz/622MHz Clock Generator
MAXIM