MAX3532 [MAXIM]

Upstream CATV Driver Amplifier; CATV上行驱动放大器
MAX3532
型号: MAX3532
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Upstream CATV Driver Amplifier
CATV上行驱动放大器

放大器 有线电视 驱动
文件: 总8页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1331; Rev 1; 6/98  
Up s t re a m CATV Drive r Am p lifie r  
MAX532  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX3532 is a programmable power amplifier for  
use in upstream cable applications. The device outputs  
up to 62dBmV (continuous wave) through a 1:2 (voltage  
ratio) transformer when driven with 36dBmV at its input.  
It features variable gain, which is controlled via a 3-wire  
digital serial bus and available in 1dB steps. The operat-  
ing frequency ranges from 5MHz to 42MHz.  
Single +5V Supply  
Output Level Ranges from Less than 8dBmV  
to 62dBmV, in 1dB Steps  
Gain Programmable in 1dB Steps  
350mW Typical Power Dissipation  
Transmit-Disable Mode  
The MAX3532 offers three operating modes: high power,  
low nois e , a nd tra ns mit d is a b le . Hig h-p owe r mod e  
achieves the highest output levels, while low-noise mode  
achieves the lowest output noise when driving lower out-  
put levels. Transmit disable mode places the device in a  
high-isolation state with minimum output noise, for use  
between bursts in TDMA systems.  
Two Shutdown Modes  
_______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX3532EAX  
-40°C to +85°C  
36 SSOP  
Two power-down modes are also available. Software shut-  
down mode permits power-down of all analog circuitry while  
maintaining the programmed gain setting. Shutdown mode  
disables all circuitry and reduces current consumption  
below 10µA.  
___________________P in Co n fig u ra t io n  
The MAX3532 comes in a 36-pin SSOP package screened  
for the extended-industrial temperature range (-40°C to  
+85°C).  
TOP VIEW  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
1
2
3
4
5
6
7
8
9
36 SHDN  
35 TXEN  
34 VOUT-  
33 VOUT+  
32 GND  
________________________Ap p lic a t io n s  
Cable Modems  
Telephony over Cable  
CATV Set-Top Box  
__________Typ ic a l Op e ra t in g Circ u it  
MAX3532  
31 V 2  
EE  
8.0  
1:2  
36  
34  
30  
29  
V 2  
CC  
VOUT-  
SHDN  
OUTPUT  
CONTROL  
LOGIC  
V
CC  
35  
28 VIN+  
27 VIN-  
TXEN  
GND  
8.0Ω  
33  
31  
VOUT+  
1–10, 12, 13, 15–17,  
21–25, 32  
GND 10  
V 1 11  
EE  
26 V  
EE  
GND 12  
GND 13  
25 GND  
24 GND  
23 GND  
22 GND  
21 GND  
20 SCLK  
19 SDA  
V 2  
EE  
MAX3532  
0.1µF  
0.001µF  
30  
29  
28  
VIN+  
VIN-  
V
2
V
CC  
INPUT  
CC  
V 1 14  
CC  
27  
V
CC  
V
CC  
GND 15  
GND 16  
GND 17  
CS 18  
0.001µF  
0.1µF  
26  
20  
19  
V
EE  
SCLK  
SDA  
14  
V
1
V
CC  
CC  
CONTROL  
LOGIC  
0.1µF  
11  
V 1  
EE  
18  
CS  
SSOP  
Protected under U.S. Patent 5,748,027  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Up s t re a m CATV Drive r Am p lifie r  
ABSOLUTE MAXIMUM RATINGS  
V
........................................................................-0.5V to +7.0V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
Input Voltage Levels (all inputs).................-0.3V to (V + 0.3V)  
Continuous RMS Input Voltage (VIN+, VIN-)..................60dBmV  
Continuous Current (VOUT+, VOUT-)...............................100mA  
CC  
Continuous Power Dissipation (T = +70°C)  
A
36-Pin SSOP (denote at 11mW/°C above +70°C) ........900mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX532  
DC ELECTRICAL CHARACTERISTICS  
(V = +4.75V to +5.25V, no RF applied, T = -40°C to +85°C, unless otherwise noted.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
95  
UNITS  
Supply Voltage  
V
CC  
4.75  
V
mA RMS  
mA  
µA  
Supply Current  
I
CC  
75  
1.5  
0.1  
TXEN = 1, SHDN = 1, D7 and D6 = 1X or 01  
TXEN = X, SHDN = 1, D7 and D6 = 00  
TXEN = X, SHDN = 0, D7 and D6 = XX  
CS, SDA, SCLK, TXEN, SHDN  
Software Shutdown Current  
Shutdown Current  
I
CC  
2
I
CC  
10  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input High Current  
Digital Input Low Current  
V
IH  
2.4  
V
V
IL  
0.8  
V
CS, SDA, SCLK, TXEN, SHDN  
I
IH  
100  
µA  
CS, SDA, SCLK, TXEN, SHDN  
I
IL  
-100  
µA  
CS, SDA, SCLK, TXEN, SHDN  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = 36dBmV, SHDN = TXEN = 1, f = 20MHz, Z = 75through a 1:2 transformer with two precision 8.0back-  
CC  
IN  
IN  
LOAD  
termination resistors, T = -40°C to +85°C, unless otherwise noted. Typical values are measured at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.6  
26  
MAX  
UNITS  
Output Signal Swing  
V
TXOUT  
Vp-p  
High power, D7–D0 = 11111101  
Low noise, D7–D0 = 1001000  
24  
Voltage Gain  
A
V
dB  
-32  
1
-28  
Output Step Size  
dB  
dB  
Isolation in Standby Mode  
TXEN = 0, f = 42MHz, V  
= 58dBmV  
36  
IN  
OUT  
Two-Tone Third-Order  
Distortion (Note 1)  
Two input tones at 40MHz and 40.25MHz, both at  
30dBmV; V = 52dBmV per tone  
IMR3  
HD2  
HD3  
-43  
-37.5  
dBc  
dBc  
dBc  
OUT  
f
= 20MHz, V  
= 52dBmV  
= 58dBmV  
= 52dBmV  
= 58dBmV  
-59  
-46  
-67  
-57  
0.1  
1
-55  
-40  
-58  
-48  
IN  
OUT  
Second Harmonic Distortion  
(Note 1)  
f
IN  
= 20MHz, V  
OUT  
f
IN  
= 14MHz, V  
OUT  
Third Harmonic Distortion  
(Note 1)  
f
IN  
= 14MHz, V  
OUT  
AM to AM  
AM to PM  
AMAM  
AMPM  
V
IN  
= 36dBmV to 40dBmV, A = 22dB  
V
dB  
V
IN  
= 36dBmV to 40dBmV, A = 22dB  
V
degrees  
Output Noise  
(High-Power Mode) (Note 1)  
D7 and D6 = 11, BW = 160kHz,  
= 46dBmV to 62dBmV, f = 5MHz to 42MHz  
-80  
-79  
dBc  
V
OUT  
2
_______________________________________________________________________________________  
Up s t re a m CATV Drive r Am p lifie r  
MAX532  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V, V = 36dBmV, SHDN = TXEN = 1, f = 20MHz, Z = 75through a 1:2 transformer with two precision 8.0back-  
CC  
IN  
IN  
LOAD  
termination resistors, T = -40°C to +85°C, unless otherwise noted. Typical values are measured at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
D7 and D6 = 10, V > 27dBmV,  
MIN  
TYP  
MAX  
UNITS  
OUT  
-75  
-73  
dBc  
Output Noise  
BW = 160kHz, f = 5MHz to 42MHz  
(Low-Power Mode)  
D7 and D6 = 10, V 27dBmV,  
OUT  
(Note 1)  
-47  
-47  
-45  
-45  
dBmV  
dBmV  
BW = 160kHz, f = 5MHz to 42MHz  
Output Noise  
(Standby Mode) (Note 1)  
TXEN = 0, BW = 160kHz,  
f = 5MHz to 42MHz  
Output Return Loss (Note 1)  
TXEN Transient Duration  
TXEN Transient Step Size  
f
= 5MHz to 42MHz  
12  
1
dB  
µs  
IN  
TXEN rise/fall time < 100ns, T = +25°C (Note 1)  
3
7
A
T
= +25°C, A = 22dB (Note 1)  
V
25  
100  
mV  
A
Power-Enable Transient  
Duration (Note 1)  
T
= +25°C  
2.5  
5
µs  
A
SERIAL INTERFACE  
t
(Note 1)  
(Note 1)  
20  
20  
ns  
ns  
CS to SCLK Setup Time  
CSS  
t
CS to SCLK Hold Time  
CSH  
SDA to SCLK Setup Time  
SDA to SCLK Hold Time  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
20  
20  
50  
50  
ns  
ns  
ns  
ns  
SDAS  
t
SDAH  
t
SCLKH  
t
SCLKL  
Note 1: Guaranteed by design and characterization.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5.0V, V = 36dBmV, f = 20MHz, SHDN = TXEN = 1, Z = 75through a 1:2 transformer with two precision 8.0back-  
CC  
IN  
IN  
LOAD  
termination resistors, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. OUTPUT LEVEL  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
85  
80  
75  
70  
65  
60  
V
CC  
= 5.25V  
T = +85°C  
A
T = +25°C  
A
T = 0°C  
A
T = -40°C  
A
V
= 5.0V  
CC  
V
CC  
= 4.75V  
4.75  
5
5.25  
-40  
-20  
0
25  
50  
85  
12 16 21 26 31 36 41 45 50 55 59 64  
OUTPUT LEVEL (dBmV)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Up s t re a m CATV Drive r Am p lifie r  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = 36dBmV, SHDN = TXEN = 1, f = 20MHz, Z = 75through a 1:2 transformer with two precision 8.0back-  
CC  
IN  
IN  
LOAD  
termination resistors, T = -40°C to +85°C, unless otherwise noted. Typical values are measured at T = +25°C.)  
A
A
GAIN vs. FREQUENCY  
OUTPUT NOISE vs. GAIN STATE  
OUTPUT LEVEL vs. GAIN STATE  
40  
30  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
57  
GAIN STATE 60  
HIGH-POWER MODE  
20  
54  
48  
60  
54  
48  
MAX532  
10  
0
HIGH-POWER MODE  
LOW-NOISE MODE  
42  
36  
30  
-10  
-20  
-30  
-40  
LOW-NOISE MODE  
24  
18  
HIGH-POWER MODE  
LOW-NOISE MODE  
-10  
0
20 40 60 80 100 120 140  
FREQUENCY (MHz)  
5
10 15 20 25 30 35 40 45 50 55 60  
GAIN STATE  
0
5
10 15 20 25 30 35 40 45 50 55 60  
GAIN STATE  
REAL AND IMAGINARY INPUT  
IMPEDANCE vs. FREQUENCY  
REAL AND IMAGINARY OUTPUT  
IMPEDANCE vs. FREQUENCY  
12,000  
10,000  
8000  
6000  
4000  
2000  
0
120  
100  
80  
REAL  
60  
REAL  
40  
-2000  
-4000  
-6000  
IMAGINARY  
20  
IMAGINARY  
0
5
10  
20  
30  
40  
50  
75 100  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
THIRD HARMONIC DISTORTION vs.  
INPUT FREQUENCY  
SECOND HARMONIC DISTORTION vs.  
INPUT FREQUENCY  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
V
OUT  
= 55dBmV  
V
OUT  
= 55dBmV  
V
= 52dBmV  
= 25dBmV  
OUT  
V
OUT  
= 40dBmV  
V
OUT  
= 25dBmV  
V
OUT  
V
OUT  
= 40dBmV  
10 15 20 25 30 35 40 45 50  
INPUT FREQUENCY (MHz)  
10 15 20 25 30 35 40 45 50  
INPUT FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
Up s t re a m CATV Drive r Am p lifie r  
MAX532  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1–10, 12, 13,  
15, 16, 17,  
21–25, 32  
GND  
Ground Pins  
Serial Data Interface Ground. As with all grounds, maintain the shortest possible  
(low-inductance) connections to the ground plane.  
11  
14  
V 1  
EE  
Serial Data Interface +5V Supply. Bypass this pin with a 0.1µF decoupling capacitor as close to the  
part as possible.  
V
1
CC  
18  
19  
20  
Serial-Interface Enable. TTL-compatible input. See Serial Interface section.  
Serial-Interface Data. TTL-compatible input. See Serial Interface section.  
Serial-Interface Clock. TTL-compatible input. See Serial Interface section.  
CS  
SDA  
SCLK  
Programmable Gain Amplifier (PGA) Ground. As with all grounds, maintain the shortest possible  
(low-inductance) connection to the ground plane.  
26  
27  
V
EE  
Negative Input. When not used, this port must be AC coupled to ground. Along with VIN+, this port  
forms a high-impedance differential input to the PGA. Driving this port differentially will increase the  
rejection of second-order distortion.  
VIN-  
Positive Input. Along with VIN-, this port forms a high-impedance differential input to the PGA. Driving  
this port differentially will increase the rejection of second-order distortion. AC couple to this pin.  
28  
29  
30  
VIN+  
V
CC  
PGA +5V Supply. Bypass this pin with a decoupling capacitor as close to the part as possible.  
Power Amplifier +5V Supply. Bypass this pin with a decoupling capacitor as close to the part as  
possible.  
V
CC  
2
Power Amplifier Ground. As with all grounds, connections maintain the shortest possible (low-induc-  
tance) length to the ground plane.  
31  
33  
34  
V 2  
EE  
Positive Output. Along with VOUT-, this pin forms a low-impedance output. Typically this port drives  
a 1:2 transformer through 8series resistors.  
VOUT+  
Negative Output. Along with VOUT+, this pin forms a low-impedance output. Typically this port  
drives a 1:2 transformer through 8series resistors.  
VOUT-  
TXEN  
Transmit Amplifier Enable. Setting this pin low places the transmitter in a high-isolation state (transmit  
disable mode). In this mode, however, significant common-mode voltage swings exist. It is, there-  
fore, important to maintain good balance of the differential output through to the transformer primary.  
35  
36  
Shutdown. When this pin is set low, all functions (including the serial interface) are disabled, leaving  
only leakage currents to flow.  
SHDN  
_______________________________________________________________________________________  
5
Up s t re a m CATV Drive r Am p lifie r  
S h u t d o w n Mo d e  
In normal operation the shutdown pin (SHDN) is driven  
high. When SHDN is asserted low, all circuits within the  
IC a re disa ble d . Only le a ka ge c urre nts flow in this  
state. Data stored within the serial-data interface latch-  
es will be lost upon shutting down the part.  
SHDN  
BIAS  
VOUT-  
MAX3532  
PGA  
VIN+  
VIN-  
TXEN  
Tra n s m it -Dis a b le Mo d e  
When the TXEN pin is asserted high, the device is in  
transmit mode. When TXEN is driven low, the transmit  
amplifier switches to common-mode operation and the  
output signal appears at the output pins VOUT+ and  
VOUT- with the same phase. These identical signals  
cancel within the output transformer core, providing  
high isolation from input to output. Optimum isolation is  
achieved in low-noise mode with a low gain setting.  
VOUT+  
MAX532  
SERIAL-DATA INTERFACE  
CS  
SDA SCLK  
Figure 1. Functional Diagram  
S e ria l In t e rfa c e  
The serial interface has an active-low enable (CS) to  
bracket the data, with data clocked in MSB first on the  
rising edge of SCLK. Data is stored in the storage latch  
on the rising edge of CS. The serial interface controls  
the state of the PGA and output amplifier. The register  
format is shown in Tables 1 and 2. Serial-interface tim-  
ing is shown in Figure 2.  
_______________De t a ile d De s c rip t io n  
The following sections describe the blocks shown in the  
Functional Diagram (Figure 1).  
P ro g ra m m a b le -Ga in Am p lifie r  
The MAX3532s processing path is made up of the pro-  
g ra mma b le -g a in a mp lifie r (PGA) a nd the tra ns mit  
power amplifier, which together provide better than  
64dB of output level control in 1dB steps.  
Transmit Modes  
The hardware TXEN line is ANDed with software bit D7,  
so both TXEN and D7 must be high to transmit. Bit D6  
governs whether the device is set to high-gain mode (D6  
= 1) or to low-noise mode (D6 = 0). High-power mode  
should be used for output levels above 45dBmV. This  
transition point optimizes the MAX3532s distortion perfor-  
mance, but either mode may be used throughout the full  
complement of programmed gain states. Bits D5–D0  
define 64 PGA gain states, nominally 1dB each.  
The PGA is implemented as a programmable Gilbert  
cell attenuator. It uses a differential architecture to  
achieve maximum linearity. When it is driven single  
ended, specified performance is achieved given that  
the unused input is decoupled to ground. The gain of  
the PGA is determined by the serial-data interface. See  
Table 2.  
Tra n s m it P o w e r Am p lifie r  
The transmit power amp is capable of driving +8dBmV  
to +62dBmV differentially when driven with +36dBmV. To  
achieve the necessary swing from a single +5V supply,  
an external 1:2 transformer must be used. The output of  
the transmit power amplifier is a very low-impedance  
emitter follower, which requires two 8series termination  
resistors to achieve adequate output return loss.  
Table 1. Serial-Interface Control Words  
BIT  
MNEMONIC  
DESCRIPTION  
Chip-State Control MSB  
Chip-State Control LSB  
Gain Control, Bit 5  
Gain Control, Bit 4  
Gain Control, Bit 3  
Gain Control, Bit 2  
Gain Control, Bit 1  
Gain Control, Bit 0  
MSB 7  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
6
The power amplifiers gain is set via the serial-data  
interface. The transmit power amplifier has a switchable  
+16dB or +0dB gain to achieve high linearity or low  
noise, respectively. High-gain mode sets the power  
amps gain to +16dB, allowing for the highest output  
signal swings. Low-noise mode sets the gain to 0dB,  
which achieves the lowest output noise.  
5
4
3
2
1
LSB 0  
6
_______________________________________________________________________________________  
Up s t re a m CATV Drive r Am p lifie r  
MAX532  
Table 2. Chip-State Control Bits  
TXEN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
STATE  
1
1
1
1
0
X
0
1
1
1
1
1
1
0
X
X
X
X
X
X
X
X
X
X
X
X
High-power transmit  
Low-noise transmit; subtract 16dB from V  
OUT  
X
0*  
X
1
1
X
X
X
X
X
X
Transmit disabled  
X
0
X
0
X
0
X
1
X
1
X
0
X
1
All analog circuitry off  
0
V
= +8dBmV  
= +9dBmV  
OUT  
1
0
0
0
1
1
1
0
V
OUT  
1
1
1
1
0
1
0
1
V
= +56dBmV  
= +57dBmV  
OUT  
1
1
1
1
0
1
1
0
V
OUT  
*Except state 000XXXXXX, which is software shutdown.  
Transformer  
To achieve the rated output levels, a 1:2 (voltage ratio)  
transformer is required. This transformer must have  
adequate bandwidth to cover the intended application.  
Note that most RF transformers specify a bandwidth  
with a 50load on the primary and a matching resis-  
ta nc e on the s e c ond a ry wind ing . The muc h lowe r  
(approximately 16due to the back-termination resis-  
tors) impedance of the MAX3532s output will tend to  
shift the low-frequency edge of the bandwidth specifi-  
cation down by a factor of three or more due to primary  
inductance. Keep this in mind when specifying a trans-  
former.  
A
B
C
D
E
F
D7  
D6  
D5  
D4  
C: t  
D3  
D2  
D1  
D0  
A: t  
B: t  
E: t  
F: t  
CSS  
SDAS  
SDAH  
SCKH  
CSH  
D: t  
SCKL  
Figure 2. Serial-Interface Timing Diagram  
RF transformer cores are inherently nonlinear devices,  
which must be operated in their linear region if distor-  
tion is a critical consideration. In general, the size of the  
transformer core used and the number of turns will gov-  
ern the distortion performance of the transformer for a  
given output level. Therefore a transformer of adequate  
size must be used to minimize its contribution to the  
overall distortion budget.  
Software Shutdown Mode  
Software-shutdown mode is enabled when both D7 and  
D6 are low (D7, D6 = 00). This mode minimizes current  
consumption while maintaining the programmed gain  
state stored in the serial data-interfaces latch. All ana-  
log functions are disabled in this mode.  
__________Ap p lic a t io n s In fo rm a t io n  
Back-Termination Resistors  
The value of the back-termination resistors depends on  
two parameters: the ultimate output impedance (as  
referred through the output transformer), and the quali-  
ty of the output match desired. The output impedance  
depends on the value of the termination resistors by the  
following formula:  
Ou t p u t Ma t c h  
The MAX3532s output circuit is a differential emitter fol-  
lower that has a near-zero impedance over the operat-  
ing frequency range. In order to match to a single-  
ended impedance, a transformer and back-termination  
resistors are required. Furthermore, operation from a  
single +5V supply requires that the output signal swing  
b e s te p p e d up to a c hie ve the ra te d outp ut le ve ls .  
These are described in the next two sections.  
Z
= 4 x [ 2 x (R + R )]  
term P  
OUT  
where R  
is the value of one termination resistor and  
term  
R is parasitic resistance.  
P
_______________________________________________________________________________________  
7
Up s t re a m CATV Drive r Am p lifie r  
Some allowance must be made for parasitic inductance  
in the tra ns forme r a s we ll a s on the p rinte d c irc uit  
board. Therefore, choose a resistance value lower than  
a perfect match. Two 8.0resistors will provide a near-  
optimum match.  
Since the MAX3532 has a low-impedance output, the  
output traces must also be kept as short as possible,  
as small amounts of inductance can have an impact at  
hig he r fre q ue nc ie s . The b a c k-te rmina tion re s is tors  
should be kept as close to the device as possible.  
If the output match is less than critical, the back-termina-  
tion resistors can be set to a lower value. This will extend  
the upper limit of the output level range (by dropping less  
voltage across the resistors and more across the load),  
and may improve distortion performance for a given out-  
put level.  
Power-Supply Layout  
For minimal coupling between different sections of the  
IC, the ideal power-supply layout is a star configuration.  
This c onfig ura tion ha s a la rg e va lue d d e c oup ling  
MAX532  
capacitor at the central V  
node. The V  
traces  
CC  
CC  
branch out from this node, each going to a separate  
node in the MAX3532 circuit. At the end of each of  
V
CC  
La yo u t Is s u e s  
A well designed printed circuit board is an essential  
part of an RF circuit. For best performance pay atten-  
tion to power-supply layout issues, as well the output  
circuit layout.  
these traces is a decoupling capacitor that provides a  
very low impedance at the frequency of interest. This  
arrangement provides local V  
decoupling at each  
CC  
V
CC  
pin.  
The traces leading from the supply to V (pin 29) and  
CC  
Output Circuit Layout  
The differential implementation of the MAX3532s out-  
put has the benefit of significantly reducing even-order  
distortion, the most significant of which is second-har-  
monic distortion. The degree of distortion cancellation  
depends on the amplitude and phase balance of the  
overall circuit. It is critical that the traces leading from  
the output pins be exactly the same length.  
V
CC  
2 (pin 30) must be made as thick as practical to  
keep resistance well below 1Ω.  
Ground inductance degrades distortion performance.  
Therefore, ground plane connections to V (pin 26)  
EE  
and V  
(pin 31) should be made with multiple vias if  
EE2  
possible.  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1100  
________________________________________________________P a c k a g e In fo rm a t io n  
8
_______________________________________________________________________________________  

相关型号:

MAX3532*

Low-Voltage Silicon RF Power-Amplifier Predriver[MAX2430/MAX2430EVKIT-SO/MAX2430ISE/MAX2430ISE-T ]
MAXIM

MAX3532EAX

Upstream CATV Driver Amplifier
MAXIM

MAX3532EAX-T

Telecom Circuit, 1-Func, PDSO36, SSOP-36
MAXIM

MAX3532EVKIT

10µ.A.Low-Dropout.Precision Voltage Reference[MAX872/MAX874/MAX872/MAX874/MAX872/MAX874/MAX872C/D/MAX872CPA/MAX872CSA/MAX872CSA-T/MAX872EPA/MAX872ESA/MAX872ESA-T/MAX874C/D/MAX874CPA/MAX874CSA/MAX874CSA-T/MAX874EPA/MAX874ESA/MAX874ESA-T ]
MAXIM

MAX3535E

+3V to +5V, 2500VRMS Isolated RS-485/RS-422 Transceivers with 【15kV ESD Protection
MAXIM

MAX3535ECWI

+3V to +5V, 2500VRMS Isolated RS-485/RS-422 Transceivers with 【15kV ESD Protection
MAXIM

MAX3535ECWI+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MAX3535EEVKIT

Center-Tapped, Full-Wave Rectifier Output
MAXIM

MAX3535EEVKIT+

Center-Tapped, Full-Wave Rectifier Output
MAXIM

MAX3535EEWI

+3V to +5V, 2500VRMS Isolated RS-485/RS-422 Transceivers with 【15kV ESD Protection
MAXIM

MAX3535EEWI+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MAX3535EEWI+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM