MAX338CSE-T [MAXIM]

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, SOIC-16;
MAX338CSE-T
型号: MAX338CSE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, SOIC-16

文件: 总12页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1437; Rev 1; 10/99  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
________________General Description  
____________________________Features  
The MAX3385E is a 3V-powered EIA/TIA-232 and  
V.28/V.24 communications interface with low power  
requirements, high data-rate capabilities, and en-  
hanced electrostatic discharge (ESD) protection. All  
transmitter outputs and receiver inputs are protected to  
±±5ꢀV using IEꢁ ±111-4-2 Air-ꢂap Discharge, ±8ꢀV  
using IEꢁ ±111-4-2 ꢁontact Discharge, and ±±5ꢀV  
using the Human Body Model.  
ESD Protection for RS-232 I/O Pins  
±±15kV—Humn ꢀoꢁd ꢂoꢁeꢃ  
±ꢄ5kVIEꢅ ±ꢆꢆꢆ-ꢇ-2ꢈ ꢅontmct Discꢉmrꢊe  
±±15kVIEꢅ ±ꢆꢆꢆ-ꢇ-2ꢈ ꢋir-ꢌma Discꢉmrꢊe  
LmtcꢉHa Free  
3ꢆꢆµꢋ SHaaꢃd ꢅHrrent  
±µꢋ Low-Power SꢉHtꢁown witꢉ Receivers ꢋctive  
21ꢆ5bas ꢌHmrmnteeꢁ Dmtm Rmte  
21ꢆµs Tiue to Exit SꢉHtꢁown witꢉ 35Lomꢁ on k+  
6k/µs ꢌHmrmnteeꢁ Sꢃew Rmte  
The transceiver has a proprietary low-dropout transmit-  
ter output stage, delivering true RS-232 performance  
from a +3.1V to +5.5V supply with a dual charge pump.  
The charge pump requires only four small 1.±µF capac-  
itors for operation from a +3.3V supply. Each device is  
guaranteed to run at data rates of 251ꢀbps while main-  
taining RS-232 output levels.  
ꢂeets EIꢋ/TIꢋ-232 Saecificmtions Down to 3.ꢆk  
Ordering Information  
The MAX3385E has two receivers and two drivers. It  
features a ±µA shutdown mode that reduces power con-  
sumption and extends battery life in portable systems.  
Its receivers can remain active in shutdown mode,  
allowing external devices such as modems to be moni-  
tored using only ±µA supply current.  
PART  
TEMP. RANGE  
1°ꢁ to +71°ꢁ  
1°ꢁ to +71°ꢁ  
-41°ꢁ to +85°ꢁ  
PIN-PACKAGE  
21 SSOP  
MAX3385EꢁAP  
MAX3385EꢁWN  
MAX3385EEAP  
±8 SO  
21 SSOP  
The MAX3385E is available in a space-saving SSOP  
pacꢀage in either the commercial (1°ꢁ to +71°ꢁ) or  
extended-industrial (-41°ꢁ to +85°ꢁ) temperature range.  
Typical Operating Circuit  
+3.3V  
________________________Applications  
C
BYPASS  
V
CC  
Hand-Held Equipment  
Peripherals  
Battery-Powered  
Equipment  
C1+  
V+  
C1  
0.1µF  
C3*  
0.1µF  
C1-  
C2+  
Printers  
MAX3385E  
V-  
C2  
0.1µF  
C4  
-in Configurations  
0.1µF  
C2-  
T1OUT  
T1IN  
TOP VIEW  
N.C.  
C1+  
V+  
1
2
SHDN  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TTL/CMOS  
INPUTS  
RS-232  
OUTPUTS  
V
CC  
T2IN  
T2OUT  
R1IN  
GND  
3
T1OUT  
R1IN  
C1-  
4
R1OUT  
R2OUT  
MAX3385E  
C2+  
C2-  
5
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
5k  
R1OUT  
T1IN  
6
R2IN  
V-  
7
T2OUT  
5k  
T2IN  
8
R2OUT  
N.C.  
R2IN  
N.C.  
9
SHDN  
GND  
10  
SSOP  
* C3 CAN BE RETURNED TO EITHER V OR GROUND.  
CC  
Pin Configurations continued at end of data sheet.  
NOTE: SEE TABLE 2 FOR CAPACITOR SELECTION  
Covered by U.S. Patent numbers 4,636,930; 4,679,134; 4,777,577; 4,797,899; 4,809,152; 4,897,774; 4,999,761; and other patents pending.  
________________________________________________________________ Maxim Integrated Products  
±
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
ABSOLUTE MAXIMUM RATINGS  
ꢁꢁ  
V
to ꢂND..............................................................-1.3V to +6V  
ꢁontinuous Power Dissipation (T = +71°ꢁ)  
A
V+ to ꢂND (Note ±)..................................................-1.3V to +7V  
V- to ꢂND (Note ±) ...................................................+1.3V to -7V  
V+ + |V-| (Note ±).................................................................+±3V  
Input Voltages  
T_IN, SHDN to ꢂND ..............................................-1.3V to +6V  
R_IN to ꢂND .....................................................................±25V  
Output Voltages  
21-Pin SSOP (derate 8.11mW/°ꢁ above +71°ꢁ) ..........641mW  
±8-Pin SO (derate 9.52mW/°ꢁ above +71°ꢁ)...............762mW  
Operating Temperature Ranges  
MAX3385EꢁAP....................................................1°ꢁ to +71°ꢁ  
MAX3385EꢁWN...................................................1°ꢁ to +71°ꢁ  
MAX3385EEAP .................................................-41°ꢁ to +85°ꢁ  
Storage Temperature Range.............................-65°ꢁ to +±51°ꢁ  
Lead Temperature (soldering, ±1sec) .............................+311°ꢁ  
T_OUT to ꢂND...............................................................±±3.2V  
R_OUT.....................................................-1.3V to (V  
+ 1.3V)  
ꢁꢁ  
Short-ꢁircuit Duration, T_OUT to ꢂND.......................ꢁontinuous  
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed ±3V.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
ꢁꢁ  
(V  
= +3V to +5.5V, ꢁ±–ꢁ4 = 1.±µF, tested at 3.3V ±±10% ꢁ± = 1.147µF, ꢁ2–ꢁ4 = 1.33µF, tested at 5.1V ±±10% T = T  
to T  
,
MAX  
A
MIN  
unless otherwise noted. Typical values are at T = +25°ꢁ.)  
A
PARAMETER  
DC CHARACTERISTICS (V  
Supply ꢁurrent  
CONDITIONS  
= +3.3V or +5V, T = +25°ꢁ)  
MIN  
TYP  
MAX  
UNITS  
ꢁꢁ  
A
1.3  
±
±
mA  
µA  
SHDN = V , no load  
ꢁꢁ  
Shutdown Supply ꢁurrent  
LOGIC INPUTS  
±1  
SHDN = ꢂND  
Input Logic Threshold Low  
1.8  
V
V
T_IN, SHDN  
T_IN, SHDN  
V
V
= 3.3V  
= 5.1V  
2.1  
2.4  
ꢁꢁ  
Input Logic Threshold High  
ꢁꢁ  
Transmitter Input Hysteresis  
Input Leaꢀage ꢁurrent  
RECEIVER OUTPUTS  
Output Leaꢀage ꢁurrent  
Output Voltage Low  
1.5  
V
±1.1±  
±±  
µA  
T_IN, SHDN  
R_OUT, receivers disabled  
±1.15  
±±1  
1.4  
µA  
V
I
= ±.6mA  
OUT  
V
1.6  
-
V
1.±  
-
ꢁꢁ  
ꢁꢁ  
Output Voltage High  
I
= -±.1mA  
V
OUT  
RECEIVER INPUTS  
Input Voltage Range  
-25  
1.6  
1.8  
+25  
V
V
V
ꢁꢁ  
V
ꢁꢁ  
V
ꢁꢁ  
V
ꢁꢁ  
= 3.3V  
= 5.1V  
= 3.3V  
= 5.1V  
±.2  
±.5  
±.5  
±.8  
1.5  
5
Input Threshold Low  
Input Threshold High  
T = +25°ꢁ  
A
2.4  
2.4  
T = +25°ꢁ  
A
V
Input Hysteresis  
Input Resistance  
V
T = +25°ꢁ  
A
3
7
 
2
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
ELECTRICAL CHARACTERISTICS (continued)  
ꢁꢁ  
(V  
= +3V to +5.5V, ꢁ±–ꢁ4 = 1.±µF, tested at 3.3V ±±10% ꢁ± = 1.147µF, ꢁ2–ꢁ4 = 1.33µF, tested at 5.1V ±±10% T = T  
to T  
,
MAX  
A
MIN  
unless otherwise noted. Typical values are at T = +25°ꢁ.)  
A
PARAMETER  
TRANSMITTER OUTPUTS  
Output Voltage Swing  
Output Resistance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
All transmitter outputs loaded with 3ꢀto ground  
±5  
±5.4  
±1M  
V
V
V
= V+ = V- = 1, transmitter output = ±2V  
311  
ꢁꢁ  
Output Short-ꢁircuit ꢁurrent  
Output Leaꢀage ꢁurrent  
ESD PROTECTION  
±61  
±25  
mA  
µA  
= 1 or 3V to 5.5V, V  
= ±±2V, transmitters disabled  
ꢁꢁ  
OUT  
Human Body Model  
IEꢁ±111-4-2 Air Discharge  
IEꢁ±111-4-2 ꢁontact Discharge  
±±5  
±±5  
±8  
R_IN, T_OUT  
ꢀV  
TIMING CHARACTERISTICS  
ꢁꢁ  
(V  
= +3V to +5.5V, ꢁ±–ꢁ4 = 1.±µF, tested at 3.3V ±±10% ꢁ± = 1.147µF, ꢁ2–ꢁ4 = 1.33µF, tested at 5.1V ±±10% T = T  
to T  
,
MAX  
A
MIN  
unless otherwise noted. Typical values are at T = +25°ꢁ.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 3ꢀ, ꢁ = ±111pF,  
L
L
Maximum Data Rate  
251  
ꢀbps  
one transmitter switching  
t
t
1.±5  
1.±5  
251  
±11  
51  
PHL  
Receiver input to receiver output,  
ꢁ = ±51pF  
L
Receiver Propagation Delay  
µs  
PLH  
Time to Exit Shutdown  
Transmitter Sꢀew  
Receiver Sꢀew  
V
OUT  
+3.7V, R  
at V+ = 3ꢀΩ  
µs  
ns  
ns  
LOAD  
t  
t  
- t  
(Note 2)  
PHL PLH  
- t  
PHL PLH  
V
= 3.3V,  
= +25°ꢁ,  
ꢁꢁ  
ꢁ = ±51pF to  
L
±111pF  
6
4
31  
31  
T
A
Transition-Region Slew Rate  
R = 3ꢀto 7ꢀ,  
measured from +3V  
to -3V or -3V to +3V  
V/µs  
L
ꢁ = ±51pF to  
L
2511pF  
Note 2: Transmitter sꢀew is measured at the transmitter zero cross points.  
_______________________________________________________________________________________  
3
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
__________________________________________Typical Operating Characteristics  
(V  
= +3.3V, 251ꢀbps data rate, 1.±µF capacitors, all transmitters loaded with 3ꢀand ꢁ , T = +25°ꢁ, unless otherwise noted.)  
ꢁꢁ  
L
A
TRANSMITTER OUTPUT VOLTAGE  
vs. LOAD CAPACITANCE  
OPERATING SUPPLY CURRENT  
vs. LOAD CAPACITANCE  
SLEW RATE vs. LOAD CAPACITANCE  
6
5
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
V
OUT+  
4
-SLEW  
+SLEW  
3
250kbps  
120kbps  
T1 TRANSMITTING AT 250kbps  
T2 TRANSMITTING AT 15.6kbps  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
6
20kbps  
15  
10  
5
4
V
2
OUT-  
FOR DATA RATES UP TO 250kbps  
0
0
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
______________________________________________________________ -in Description  
PIN  
NAME  
FUNCTION  
No ꢁonnection. Not internally connected.  
SO  
±
SSOP  
±, ±1, ±±  
N.ꢁ.  
ꢁ±+  
V+  
2
2
3
4
5
6
Positive terminal of the voltage-doubler charge-pump capacitor.  
+5.5V generated by the charge pump.  
3
4
ꢁ±-  
ꢁ2+  
ꢁ2-  
Negative terminal of the voltage-doubler charge-pump capacitor.  
Positive terminal of inverting charge-pump capacitor.  
Negative terminal of inverting charge-pump capacitor.  
5
6
7
7
V-  
-5.5V generated by the charge pump.  
RS-232 Transmitter Outputs  
RS-232 Receiver Inputs  
8, ±5  
9, ±4  
8, ±7  
9, ±6  
T_OUT  
R_IN  
±1, ±3  
±±, ±2  
±6  
±2, ±5  
±3, ±4  
±8  
R_OUT  
T_IN  
TTL/ꢁMOS Receiver Outputs  
TTL/ꢁMOS Transmitter Inputs  
ꢂND  
ꢂround  
±7  
±9  
V
ꢁꢁ  
+3.1V to +5.5V Supply Voltage  
±8  
21  
Active-Low Shutdown-ꢁontrol Input. Drive low to shut down transmitters and charge  
SHDN  
4
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
V
V
CC  
CC  
0.1µF  
0.1µF  
V
V
CC  
CC  
C1+  
C1+  
V+  
V-  
V+  
V-  
C1  
C2  
C1  
C2  
3k  
3k  
C3  
C3  
C1-  
C2+  
C1-  
C2+  
MAX3385E  
MAX3385E  
C4  
C4  
C2-  
C2-  
T_ OUT  
R_ IN  
T_ OUT  
R_ IN  
T_ IN  
T_ IN  
R_ OUT  
SHDN  
R_ OUT  
SHDN  
5k  
5k  
V
V
CC  
CC  
2500pF  
150pF  
3k  
7k  
GND  
GND  
MINIMUM SLEW-RATE TEST CIRCUIT  
Figure 1. Slew-Rate Test Circuits  
MAXIMUM SLEW-RATE TEST CIRCUIT  
The MAX3385E’s transmitters are disabled and the out-  
puts are forced into a high-impedance state when the  
device is in shutdown (SHDN = ꢂND). The MAX3385E  
permits the outputs to be driven up to ±±2V in shut-  
down.  
_______________Detailed Description  
Dual Chargeꢂ-ump koltage Converter  
The MAX3385E’s internal power supply consists of a  
regulated dual charge pump that provides output volt-  
ages of +5.5V (doubling charge pump) and -5.5V  
The transmitter inputs do not have pull-up resistors.  
(inverting charge pump), over the 3.1V to 5.5V V  
ꢁꢁ  
ꢁonnect unused inputs to ꢂND or V  
.
ꢁꢁ  
range. The charge pump operates in discontinuous  
mode% if the output voltages are less than 5.5V, the  
charge pump is enabled, and if the output voltages  
exceed 5.5V, the charge pump is disabled. Each  
charge pump requires a flying capacitor (ꢁ±, ꢁ2) and a  
reservoir capacitor (ꢁ3, ꢁ4) to generate the V+ and V-  
supplies (Figure ±).  
Rꢁꢂ232 Receivers  
The receivers convert RS-232 signals to ꢁMOS-logic  
output levels (Table ±).  
ꢁhutdown Mode  
Supply current falls to less than ±µA in shutdown mode  
(SHDN = low). When shut down, the device’s charge  
pumps are shut off, V+ is pulled down to V , V- is  
ꢁꢁ  
pulled to ground, and the transmitter outputs are dis-  
abled (high impedance). The time required to exit shut-  
Rꢁꢂ232 Transmitters  
The transmitters are inverting level translators that con-  
vert ꢁMOS-logic levels to ±5.1V EIA/TIA-232 levels.  
The MAX3385E transmitters guarantee a 251ꢀbps data  
rate with worst-case loads of 3ꢀin parallel with ±111pF,  
providing compatibility with Pꢁ-to-Pꢁ communication  
software (such as LapLinꢀ™). Transmitters can be paral-  
leled to drive multiple receivers or mice.  
Table 1. Shutdown Truth Table  
T_OUT  
High-Z  
Active  
R_OUT  
Active  
Active  
SHDN  
1
±
Laplink is a trademark of Traveling Software.  
_______________________________________________________________________________________  
5
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
charged into a low impedance. This model consists of a  
±11pF capacitor charged to the ESD voltage of interest,  
5V/div  
0
SHDN  
which is then discharged into the test device through a  
T2OUT  
±.5ꢀresistor.  
IEC 1000-4-2  
The IEꢁ ±111-4-2 standard covers ESD testing and per-  
formance of finished equipment% it does not specifically  
refer to integrated circuits. The MAX3385E helps you  
design equipment that meets Level 4 (the highest level) of  
IEꢁ ±111-4-2, without the need for additional ESD-pro-  
tection components.  
2V/div  
0
T1OUT  
V
= 3.3V  
CC  
C1–C4 = 0.1µF  
The major difference between tests done using the  
Human Body Model and IEꢁ ±111-4-2 is higher peaꢀ  
current in IEꢁ ±111-4-2, because series resistance is  
lower in the IEꢁ ±111-4-2 model. Hence, the ESD with-  
stand voltage measured to IEꢁ ±111-4-2 is generally  
lower than that measured using the Human Body  
Model. Figure 4a shows the IEꢁ ±111-4-2 model, and  
Figure 4b shows the current waveform for the 8ꢀV IEꢁ  
±111-4-2 Level 4 ESD contact-discharge test.  
40µs/div  
Figure 2. Transmitter Outputs Exiting Shutdown or  
Powering Up  
down is typically ±11µs, as shown in Figure 2. ꢁonnect  
SHDN to V if the shutdown mode is not used.  
ꢁꢁ  
±±5ꢀk EꢁD -rotection  
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method con-  
nects the probe to the device before the probe is ener-  
gized.  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs of the  
MAX3385E have extra protection against static electric-  
ity. Maxim’s engineers have developed state-of-the-art  
structures to protect these pins against ESD of ±±5ꢀV  
without damage. The ESD structures withstand high  
ESD in all states: normal operation, shutdown, and  
powered down. After an ESD event, Maxim’s “E” ver-  
sions ꢀeep worꢀing without latchup, whereas compet-  
ing RS-232 products can latch and must be powered  
down to remove latchup.  
Machine Model  
The Machine Model for ESD tests all pins using a  
211pF storage capacitor and zero discharge resis-  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. Of course, all pins require this protec-  
tion during manufacturing, not just RS-232 inputs and  
outputs. Therefore, after Pꢁ board assembly, the  
Machine Model is less relevant to I/O ports.  
ESD protection can be tested in various ways% the  
transmitter outputs and receiver inputs of this product  
family are characterized for protection to the following  
limits:  
Applications Information  
Capacitor ꢁelection  
The capacitor type used for ꢁ±–ꢁ4 is not critical for  
proper operation% polarized or nonpolarized capacitors  
can be used. The charge pump requires 1.±µF capaci-  
tors for 3.3V operation. For other supply voltages, refer  
to Table 2 for required capacitor values. Do not use val-  
±) ±±5ꢀV using the Human Body Model  
2) ±8ꢀV using the contact-discharge method specified  
in IEꢁ ±111-4-2  
3) ±±5ꢀV using IEꢁ ±111-4-2’s air-gap method.  
Table 2. Required Minimum Capacitance  
Values  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
ꢁontact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
V
CC  
C1, C  
C2, C3, C4  
(µF)  
BYPASS  
(V)  
(µF)  
Human Body Model  
Figure 3a shows the Human Body Model, and Figure  
3b shows the current waveform it generates when dis-  
3.1 to 3.6  
4.5 to 5.5  
3.1 to 5.5  
1.±  
1.147  
1.±  
1.±  
1.33  
1.47  
6
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
R
R
C
1M  
D
1500  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
36.8%  
100pF  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 3a. Human Body ESD Test Model  
Figure 3b. Human Body Model Current Waveform  
I
100%  
90%  
R
R
D
330Ω  
C
50M to 100M  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t
t = 0.7ns to 1ns  
r
30ns  
60ns  
Figure 4b. IEC 10000-4-2 ESD Generator Current Waveform  
Figure 4a. IEC 1000-4-2 ESD Test Model  
ues smaller than those listed in Table 2. Increasing the  
capacitor values (e.g., by a factor of 2) reduces ripple  
on the transmitter outputs and slightly reduces power  
consumption. ꢁ2, ꢁ3, and ꢁ4 can be increased without  
changing ꢁ±’s value. However, do not increase C1  
without also increasing the values of C2, C3, C4,  
-owerꢂꢁupply Decoupling  
In most circumstances, a 1.±µF V  
bypass capacitor  
ꢁꢁ  
is adequate. In applications that are sensitive to power-  
supply noise, use a capacitor of the same value as  
charge-pump capacitor ꢁ±. ꢁonnect bypass capaci-  
tors as close to the Iꢁ as possible.  
and C  
to maintain the proper ratios (C1 to  
BYPASS  
the other capacitors).  
Operation Down to 2.7k  
Transmitter outputs will meet EIA/TIA-562 levels of  
±3.7V with supply voltages as low as 2.7V.  
When using the minimum required capacitor values,  
maꢀe sure the capacitor value does not degrade  
excessively with temperature. If in doubt, use capaci-  
tors with a larger nominal value. The capacitor’s equiva-  
lent series resistance (ESR), which usually rises at low  
temperatures, influences the amount of ripple on V+  
and V-.  
Transmitter Outputs when  
Exiting ꢁhutdown  
Figure 2 shows two transmitter outputs when exiting  
shutdown mode. As they become active, the two trans-  
mitter outputs are shown going to opposite RS-232 lev-  
_______________________________________________________________________________________  
7
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
els (one transmitter input is high, the other is low). Each  
transmitter is loaded with 3ꢀin parallel with 2511pF.  
The transmitter outputs display no ringing or undesir-  
able transients as they come out of shutdown. Note that  
the transmitters are enabled only when the magnitude  
of V- exceeds approximately -3V.  
Figure 8 shows the same test at 251ꢀbps. For Figure 7,  
all transmitters were driven simultaneously at ±21ꢀbps  
into RS-232 loads in parallel with ±111pF. For Figure 8,  
a single transmitter was driven at 251ꢀbps, and all  
transmitters were loaded with an RS-232 receiver in  
parallel with ±111pF.  
High Data Rates  
The MAX3385E maintains the RS-232 ±5.1V minimum  
transmitter output voltage even at high data rates.  
Figure 6 shows a transmitter loopbacꢀ test circuit.  
Figure 7 shows a loopbacꢀ test result at ±21ꢀbps, and  
Interconnection with 3k and 5k Logic  
The MAX3385E can directly interface with various 5V  
logic families, including AꢁT and HꢁT ꢁMOS. See  
Table 3 for more information on possible combinations  
of interconnections.  
V
CC  
0.1µF  
5V/div  
5V/div  
5V/div  
T1IN  
V
CC  
C1+  
V+  
V-  
C3  
C4  
C1  
C1-  
C2+  
T1OUT  
R1OUT  
MAX3385E  
C2  
C2-  
V
= 3.3V  
CC  
C1C4 = 0.1µF  
T_ OUT  
T_ IN  
2µs/div  
R_ IN  
5k  
R_ OUT  
SHDN  
Figure 7. MAX3385E Loopback Test Result at 120kbps  
1000pF  
V
CC  
GND  
5V/div  
T1IN  
T1OUT  
R1OUT  
Figure 6. Loopback Test Circuit  
5V/div  
5V/div  
V
= 3.3V  
CC  
C1C4 = 0.1µF  
2µs/div  
Figure 8. MAX3385E Loopback Test Result at 250kbps  
8
_______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
-in Configurations (continued)  
Table 3. Logic-Family Compatibility with  
Various Supply Voltages  
TOP VIEW  
SYSTEM  
V
SUPPLY  
VOLTAGE  
(V)  
CC  
POWER-SUPPLY  
VOLTAGE  
(V)  
COMPATIBILITY  
18  
17  
16  
N.C.  
C1+  
V+  
1
2
3
4
5
6
7
8
9
SHDN  
V
CC  
ꢁompatible with all  
ꢁMOS families  
GND  
3.3  
5
3.3  
5
15 T1OUT  
14 R1IN  
C1-  
ꢁompatible with all TTL  
and ꢁMOS families  
MAX3385E  
C2+  
C2-  
13  
12  
11  
R1OUT  
T1IN  
ꢁompatible with AꢁT  
and HꢁT ꢁMOS, and  
with Aꢁ, Hꢁ, or  
V-  
5
3.3  
T2OUT  
T2IN  
ꢁD4111 ꢁMOS  
10 R2OUT  
R2IN  
SO  
___________________Chip Information  
TRANSISTOR ꢁOUNT: ±±29  
_______________________________________________________________________________________  
9
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
________________________________________________________-acꢀage Information  
10 ______________________________________________________________________________________  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
-acꢀage Information (continued)  
______________________________________________________________________________________ 11  
±±5ꢀk EꢁDꢂ-rotected, 3.0k to 5.5k, Lowꢂ-ower,  
up to 250ꢀbps, True Rꢁꢂ232 Transceiver  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated -roducts, ±20 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 408ꢂ737ꢂ7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX338EEE

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers
MAXIM

MAX338EEE+

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers
MAXIM

MAX338EJE

8-Channel Analog Multiplexer
MAXIM

MAX338EPE

ANALOG MUX|SINGLE|8-CHANNEL|CMOS|DIP|16PIN|PLASTIC
MAXIM

MAX338EPE+

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDIP16, 0.300 INCH, ROHS COMPLIANT, PLASTIC, DIP-16
MAXIM

MAX338ESE

8-Channel Analog Multiplexer
MAXIM

MAX338ESE+T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, ROHS COMPLIANT, SOIC-16
MAXIM

MAX338ESE-T

Single-Ended Multiplexer, 1 Func, 8 Channel, CMOS, PDSO16, 0.150 INCH, SOIC-16
MAXIM

MAX338ETE

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers
MAXIM

MAX338ETE+

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers
MAXIM

MAX338MJE

ANALOG MUX|SINGLE|8-CHANNEL|CMOS|DIP|16PIN|CERAMIC
MAXIM

MAX338_V4

8-Channel/Dual 4-Channel, Low-Leakage, CMOS Analog Multiplexers
MAXIM