MAX32651GWE+ [MAXIM]

Microcontroller,;
MAX32651GWE+
型号: MAX32651GWE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Microcontroller,

微控制器
文件: 总59页 (文件大小:1181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with  
3MB Flash and 1MB SRAM  
General Description  
Benefits and Features  
DARWIN is a new breed of low-power microcontrollers  
built to thrive in the rapidly evolving Internet of Things  
(IoT). They are smart, with the biggest memories in their  
class and a massively scalable memory architecture. They  
run forever, thanks to wearable-grade power technology.  
They are also tough enough to withstand the most ad-  
vanced cyberattacks. DARWIN microcontrollers are de-  
signed to run any application you can imagine—in places  
where you wouldn’t dream of sending other microcon-  
trollers.  
● Ultra-Efficient Microcontroller for Battery-Powered  
Applications  
• 120MHz Arm Cortex-M4 Processor with FPU  
• SmartDMA Provides Background Memory  
Transfers with Programmable Data Processing  
• 120MHz High-Speed and 50MHz Low-Power  
Oscillators  
• 7.3728MHz Low-Power Oscillators  
• 32.768kHz and RTC Clock (Requires External  
Crystal)  
• 8kHz Always-On Ultra-Low Power Oscillator  
• 3MB Internal Flash, 1MB Internal SRAM  
• 104μW/MHz Executing from Cache at 1.1V  
• Five Low Power Modes: Active, Sleep, Background,  
Deep Sleep, and Backup  
Generation UP microcontrollers are designed to handle  
the increasingly complex applications demanded by to-  
day’s advanced battery-powered devices and wireless  
sensors. The MAX32650–MAX32652 are ultra-low-power  
memory-scalable microcontrollers designed specifically  
for high-performance, battery-powered applications. Thay  
are based on an Arm® Cortex®-M4 with FPU CPU with  
3MB flash and 1MB SRAM. Memory scalability is sup-  
ported with multiple memory-expansion interfaces, includ-  
ing a HyperBus™/XCCELA™ DDR interface and two SPI  
execute in place (SPIX) interfaces. A secure digital inter-  
face supports external high-speed memory cards, includ-  
ing SD, SDIO, MMC, SDHC, and microSD®.  
• 1.8V and 3.3V I/O with No Level Translators  
● Scalable Cached External Memory Interfaces:  
• 120MB/s HyperBus/XCCELA DDR Interface  
• SPIXF/SPIXR for External Flash/RAM Expansion  
• 240Mbps SDHC/eMMC/SDIO/microSD Interface  
● Optimal Peripheral Mix Provides Platform Scalability  
• 16-Channel DMA  
• Three SPI Master (60MHz)/Slave (48MHz)  
• One QuadSPI Master (60MHz)/Slave (48MHz)  
• Up to Three 4Mbaud UARTs with Flow Control  
Power management features provide five low power  
modes for clock, peripheral, and voltage control. Individual  
SRAM banks of 32KB, 96KB, or 1024KB (full retention)  
can be retained with reduced power consumption. A  
SmartDMA performs complex background processing  
while the CPU is off to dramatically reduces overall power  
consumption.  
2
• Two 1MHz I C Master/Slave  
2
• I S Slave  
• Four-Channel 7.8ksps 10-Bit Delta-Sigma ADC  
• USB 2.0 Hi-Speed Device Interface with PHY  
• 16 Pulse Train Generators  
• Six 32-Bit Timers with 8mA High Drive  
• 1-Wire Master  
The MAX32651 is a secure version with a trust protection  
unit (TPU) providing a modular arithmetic accelerator  
(MAA) for fast ECDSA, an AES Engine, TRNG, SHA-256  
hash, and secure bootloader. A memory decryption in-  
tegrity unit (MDIU) provides on-the-fly data decryption  
(plain or executable) stored in external flash.  
● Trust Protection Unit (TPU) for IP/Data Security  
• Modular Arithmetic Accelerator (MAA), True  
Random Number Generator (TRNG)  
• Secure Nonvolatile Key Storage, SHA-256,  
AES-128/192/256  
The MAX32652 is  
a high-density, 0.35mm pitch,  
• Memory Decryption Integrity Unit, Secure Boot  
ROM  
140-bump WLP package targeted for tiny form factor prod-  
ucts that require high I/O counts.  
Ordering Information appears at end of data sheet.  
Applications  
● Sports Watches, Fitness Monitors  
● Wearable Medical Patches, Portable Medical Devices  
● Industrial Sensors, IoT  
19-100220; Rev 6; 3/20  
 
 
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Simplified Block Diagram  
MAX32650/MAX32651/MAX32652  
SECURE DIGITAL INTERFACE  
120MHz  
50MHz  
HOST  
ARM CORTEXTM. M4 WITH  
FPU CPU  
7.3728MHz  
32.768kHz  
8kHz  
8 BYTE TX/  
RX FIFOS  
2 x I2C MASTER/  
SLAVE  
NVIC  
32 BYTE  
TX/RX  
FIFOS  
3 x 4-WIRE UART  
TCK / SWCLK  
JTAG SWD (SERIAL  
WIRE DEBUG)  
TMS / SWDIO  
SHARED PAD  
FUNCTIONS  
TDO  
TDI  
MEMORY  
32 BYTE  
TX/RX  
FIFOS  
3 x SPI MASTER/  
SLAVE (4 CS)  
FLASH  
3MB  
TIMERS/PWM  
CAPTURE/  
COMPARE  
SDHC  
32 BYTE  
TX/RX  
FIFOS  
QSPI MASTER/  
SLAVE (4 CS)  
POR,  
BROWNOUT  
MONITOR,  
RSTN  
SRAM  
1MB  
TM  
HYPERBUS  
SUPPLY VOLTAGE  
MONITORS  
TM  
GPIO  
XCCELA BUS  
16KB  
CACHE  
QSPI FLASH XIP  
MASTER  
/SPECIAL  
FUNCTION  
UP TO 105  
I2S  
SPI  
QSPI  
QSPI XIP  
I2C  
16KB CACHE  
32 BYTE  
TX/RX  
FIFOS  
I2S SLAVE  
V
DDIOH  
V
DDIO  
UART  
V
CORE  
VOLTAGE  
REGULATION &  
POWER CONTROL  
STANDARD DMA  
SMART DMA  
1-WIRE  
LCD CONTROLLER  
1-WIRE MASTER  
V
DDA  
V
RTC  
6 x 32-BIT TIMERS  
16 × PULSE TRAIN ENGINES  
24-BIT LCD CONTROLLER  
EXTERNAL  
INTERRUPTS  
V
SS  
V
SSA  
32KOUT  
32KIN  
RTC  
QSPI SRAM XIP  
MASTER  
16KB  
2 × WATCHDOG TIMER  
CRC 16/32  
UNIQUE ID  
CACHE  
TM  
HYPERBUS  
DP  
TM  
HYP_CLKN  
/XCCELA BUS  
USB 2.0 Hi SPEED  
CONTROLLER  
DM  
HYP_CLK  
V
DDB  
AIN0  
AIN1  
AIN2  
AIN3  
TRUST PROTECTION UNIT (TPU)  
(MAX32651 ONLY)  
÷5  
÷5  
MODULAR ARITHMETIC ACCELERATOR (MAA)  
TRUE RANDOM NUMBER GENERATOR (TRNG)  
10-BIT  
ΣΔ ADC  
V
V
V
V
V
V
DDB  
÷4  
÷2  
DDA  
SECURE NV KEY  
SHA-256  
CORE  
RTC  
÷4  
DDIO  
DDIOH  
AES-128, -192, -256  
÷4  
SECURE BOOT ROM  
MEMORY DECRYPTION INTEGRITY UNIT (MDIU)  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 2  
 
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
140 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
96 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
144 TQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics—SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2
Electrical Characteristics—I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2
Electrical Characteristics—I S Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics—SD/SDIO/SDHC/MMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electrical Characteristics—HyperBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Electrical Characteristics—1-Wire Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
140 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
96 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
144 TQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Arm Cortex-M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Internal Flash Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Internal SRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Secure Digital Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Spansion HyperBus/XCCELA Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
General-Purpose I/O and Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Standard DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SmartDMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power Management Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Active Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Background Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 3  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
TABLE OF CONTENTS (CONTINUED)  
Deep-Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Backup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Real-Time Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
CRC Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Programmable Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
32-Bit Timer/Counter/PWM (TMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Pulse Train Engine (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Serial Peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Serial Peripheral Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2
I S Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
USB Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Serial Peripheral Interface Execute in Place (SPIX) Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
1-Wire Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
24-Bit Color TFT Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Debug and Development Interface (SWD/JTAG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Trust Protection Unit (MAX32651 Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
True Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
MAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SHA-256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Memory Decryption Integrity Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Secure Bootloader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Additional Documentation and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
GPIO and Alternate Function Matrix, 140 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
GPIO and Alternate Function Matrix, 96 WLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
GPIO and Alternate Function Matrix, 144 TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Pulse Oximeter and Heart Rate Monitor with BLE and GPS Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 4  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
LIST OF FIGURES  
Figure 1. SPI Master Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 2. SPI Slave Mode Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
Figure 3. I C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
Figure 4. I S Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5. SD/SDIO/SDHC/MMC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 6. HyperBus/XCCELA Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 7. One-Wire Master Data Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 8. Clocking Scheme Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 9. 32-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 5  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
LIST OF TABLES  
Table 1. SPI Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 2. UART Configuration Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 3. GPIO and Alternate Function Matrix, 140 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 4. GPIO and Alternate Function Matrix, 96 WLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 5. GPIO and Alternate Function Matrix, 144 TQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 6  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Absolute Maximum Ratings  
(All voltages with respect to V , unless otherwise noted.) ........  
HYP_CLK, HYP_CLKN, P1.[21:18], P1.[16:11], P3.0 ..... -0.3V to  
+0.3 not to exceed 1.98V  
SS  
V
V
V
V
V
................................................................... -0.3V to 1.21V  
..................................................................... -0.3V to 1.98V  
V
DDIO  
CORE  
V
V
V
V
pins (sink) ...............................................................100mA  
DDA  
DDIO  
.................................................................... -0.3V to 1.98V  
pins (sink).............................................................100mA  
DDIO  
DDIOH  
DDIOH  
.................................................................... -0.3V to 3.6V  
..................................................................................100mA  
....................................................................................100mA  
SSA  
...................................................................... -0.3V to 1.98V  
RTC  
SS  
RSTN, GPIO (V  
).................................-0.3V to V  
+0.5V  
+0.5V  
+ 0.2V  
Output Current (sink) by Any GPIO Pin ...............................25mA  
Output Current (source) by Any GPIO Pin......................... -25mA  
Continuous Package Power Dissipation TQFP (multilayer board)  
DDIO  
DDIO  
GPIO (V  
) ........................................-0.3V to V  
DDIOH  
DDIOH  
32KIN, 32KOUT ......................................... -0.3V to V  
RTC  
AIN[1:0] ................................................................... -0.3V to 5.5V  
T = +70°C (derate 45.5mW/°C above +70°C) .........2857.10mW  
A
AIN[3:2] ...................................................... -0.3V to V + 0.2V  
Operating Temperature Range...........................-40°C to +105°C  
Storage Temperature Range ..............................-65°C to +150°C  
Soldering Temperature .....................................................+260°C  
DDA  
V
DDB  
....................................................................... -0.3V to 3.6V  
DM, DP.................................................................... -0.3V to 3.6V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the  
device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Package Information  
140 WLP  
Package Code  
W1404A4+1  
Outline Number  
21-100219  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Refer to Application Note 1891  
Junction to Ambient (θ  
)
35.13 °C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
96 WLP  
Package Code  
Outline Number  
W964A4+1  
21-100240  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
Refer to Application Note 1891  
)
33.61 °C/W  
N/A  
JA  
Junction to Case (θ  
)
JC  
144 TQFP  
Package Code  
Outline Number  
C144+1  
21-0087  
90-0144  
Land Pattern Number  
Thermal Resistance, Four-Layer Board:  
Junction to Ambient (θ  
)
28 °C/W  
8 °C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal  
considerations, refer to www.maximintegrated.com/thermal-tutorial.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 7  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER (Refer to the MAX32650 User Guide for sequencing requirements)  
Supply Voltage, Core  
Supply Voltage, Analog  
Supply Voltage, RTC  
Supply Voltage, GPIO  
V
f
= 120MHz  
0.99  
1.71  
1.71  
1.71  
1.1  
1.8  
1.8  
1.8  
1.21  
1.89  
1.89  
1.89  
V
V
V
V
CORE  
SYS_CLK  
V
DDA  
V
RTC  
V
DDIO  
Supply Voltage, GPIO  
(High)  
V
1.71  
1.8  
3.6  
V
DDIOH  
Monitors V  
Monitors V  
Monitors V  
Monitors V  
0.835  
1.67  
1.67  
1.67  
CORE  
DDA  
Power-Fail Reset  
Voltage  
V
RST  
V
RTC  
DDIO  
Power Fail Reset  
Voltage  
V
V
Monitors V  
Monitors V  
2.95  
1.67  
V
V
RST  
DDB  
Power-Fail Reset  
Voltage  
RST  
DDIOH  
Monitors V  
Monitors V  
Monitors V  
0.594  
1.52  
1.17  
CORE  
DDA  
Power-On Reset  
Voltage  
V
POR  
V
DRV  
V
V
RTC  
RAM Data Retention  
Voltage  
0.81  
Total current into V  
pins, f  
SYS_CLK  
CORE  
= 120MHz, V  
mode, executing from cache, inputs tied  
= 1.1V, CPU in Active  
CORE  
V
Dynamic  
CORE  
I
95  
μA/MHz  
CORE_DACT  
Current, Active Mode  
to V , V , or V , outputs  
SS DDIO  
DDIOH  
source/sink 0mA  
120MHz oscillator enabled, total current  
into V pins, CPU in Active mode  
CORE  
0MHz execution, inputs tied to V  
1500  
790  
SS,  
V
DDIO  
, or V  
, outputs source/sink  
DDIOH  
0mA  
7.3728MHz oscillator enabled, total  
current into V pins, CPU in Active  
V
Fixed Current,  
CORE  
I
μA  
CORE_FACT  
Active Mode  
CORE  
mode 0MHz execution, inputs tied to  
V
, V , or V , outputs source/  
SS DDIO  
DDIOH  
sink 0mA  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 8  
 
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
120MHz oscillator enabled, total current  
into V  
pins, CPU in Active mode  
DDA  
0MHz execution, inputs tied to V  
,
SS  
348  
V
DDIO  
, or V  
, outputs source/sink  
DDIOH  
0mA, V  
and V  
voltage monitors  
DDA  
CORE  
enabled  
7.3728MHz oscillator enabled, total  
current into V pins, CPU in Active  
V
Fixed Current,  
DDA  
I
μA  
DDA_FACT  
Active Mode  
DDA  
mode 0MHz execution, inputs tied to  
39  
V , V  
SS DDIO  
, or V  
, outputs source/  
DDIOH  
sink 0mA, V  
and V  
voltage  
DDA  
CORE  
monitors enabled  
Total current into V  
Sleep mode, standard DMA with two  
channels active  
pins, CPU in  
CORE  
V
Dynamic  
CORE  
I
114  
1020  
356  
348  
49  
μA/MHz  
CORE_DSLP  
Current, Sleep Mode  
f
V
= 120MHz, total current into  
pins, CPU in Sleep mode,  
SYS_CLK  
CORE  
standard DMA with two channels active  
V
Fixed Current,  
CORE  
I
μA  
CORE_FSLP  
Sleep Mode  
f
= 7.3728MHz, total current into  
pins, CPU in Sleep mode,  
SYS_CLK  
V
CORE  
standard DMA with two channels active  
f
= 120MHz, total current into  
pins, CPU in Sleep mode,  
SYS_CLK  
V
DDA  
Standard DMA with two channels active  
V
DDA  
Fixed Current,  
I
μA  
DDA_FSLP  
Sleep Mode  
f
= 7.3728MHz, total current into  
pins, CPU in Sleep mode, standard  
SYS_CLK  
V
DDA  
DMA with two channels active  
V
Dynamic  
f
V
= 7.3728MHz, total current into  
pins, CPU in Deep-sleep mode,  
CORE  
CORE  
SYS_CLK  
Current, Background  
Mode  
I
66  
μA/MHz  
CORE_DBKG  
SmartDMA active  
7.3728MHz oscillator enabled, total  
V
Fixed Current,  
CORE  
I
current into V  
pins, CPU in Deep-  
330  
70  
μA  
μA  
nA  
CORE_FBKG  
CORE  
Background Mode  
sleep mode, SmartDMA active  
V
Fixed Current,  
CORE  
I
Standby state with full data retention  
Standby state with full data retention,  
CORE_FDSL  
Deep-Sleep Mode  
V
DDA  
Fixed Current,  
I
V
CORE  
and V voltage monitors  
132  
DDA_FDSL  
DDA  
Deep-Sleep Mode  
enabled  
Standby state with full data retention,  
V = 1.8V, RTC enabled  
RTC  
V
RTC  
Fixed Current,  
I
540  
30  
nA  
μA  
nA  
DDRTC_FDSL  
Deep-Sleep Mode  
V
CORE  
Fixed Current,  
I
No SRAM retention (0KB)  
CORE_FBKU  
Backup Mode  
V
DDA  
Fixed Current,  
I
V
DDA  
voltage monitor enabled  
19-100220  
132  
DDA_FBKU  
Backup Mode  
www.maximintegrated.com  
Maxim Integrated | 9  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RTC enabled, retention regulator off  
540  
V
Fixed Current,  
RTC enabled, 32KB SRAM retained,  
retention regulator on  
RTC  
I
720  
156  
575  
nA  
DDRTC_FBKU  
Backup Mode  
RTC disabled, retention regulator off  
Sleep Mode Resume  
Time  
t
ns  
μs  
SLP_ON  
DSL_ON  
BKU_ON  
Wake to f  
Wake to f  
9
DeepSleep Mode  
Resume Time  
LPCLK  
HSCLK  
t
18  
Backup Mode Resume  
Time  
t
5
ms  
USB  
USB Supply Voltage  
D+, D- Pin Capacitance  
V
3.0  
2.0  
3.3  
8
3.6  
V
DDB  
C
Pin to V  
pF  
IN_USB  
SS  
Driver Output  
Resistance  
45 ±  
10%  
R
Steady state drive  
Ω
DRV  
USB / FULL SPEED  
Single-Ended Input High  
Voltage (DP, DM)  
V
V
V
IH_USB  
Single-Ended Input Low  
Voltage (DP, DM)  
V
0.6  
IL_USB  
Output High Voltage  
(DP, DM)  
R = 1.5 kΩ from DP and DM to V , I  
= -4mA  
V
DDB  
0.4  
-
L
SS OH  
V
V
DDB  
V
OH_USB  
Output Low Voltage  
(DP, DM)  
V
R = 1.5 kΩ from DP to V  
L
, I = 4mA  
DDB OL  
V
SS  
0.4  
V
OL_USB  
Differential Input  
Sensitivity  
V
|DP to DM|  
0.2  
0.8  
4
V
DI  
Common Mode Voltage  
Range  
V
Includes V range  
2.5  
20  
V
CM  
RF  
DI  
Transition Time (Rise/  
Fall) D+, D- (Note 11)  
t
C = 50pF  
L
ns  
kΩ  
Pullup Resistor on  
Upstream Ports  
R
PU  
1.05  
1.5  
1.95  
USB / HI-SPEED  
Hi-Speed Data Signaling  
Common-Mode Voltage  
Range  
V
-50  
+500  
+10  
mV  
HSCM  
Squelch detected  
100  
200  
Hi-Speed Squelch  
Detection Threshold  
V
mV  
mV  
HSSQ  
No squelch detected  
Hi-Speed Idle Level  
Output Voltage  
V
-10  
HSOI  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 10  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Hi-Speed Low Level  
Output Voltage  
V
HSOL  
-10  
+10  
mV  
Hi-Speed High Level  
Output Voltage  
V
400 ± 40  
mV  
mV  
mV  
HSOH  
Chirp-J Output Voltage  
(Differential)  
900  
±200  
V
CHIRPJ  
CHIRPK  
Chirp-K Output Voltage  
(Differential)  
-700  
±200  
V
CLOCKS  
System Clock  
Frequency  
f
t
0.256  
120,000  
kHz  
ns  
SYS_CLK  
SYS_CLK  
1/  
System Clock Period  
f
SYS_CL  
K
High-Speed Oscillator  
Frequency  
f
f
Measured at +25ºC, 120MHz  
120 ±1  
50  
MHz  
MHz  
MHz  
KHz  
kHz  
HSCLK  
Low-Power Oscillator  
Frequency  
f
LPCLK  
7MHz Oscillator  
Frequency  
7.3728  
8
7MCLK  
Nano-Ring Oscillator  
Frequency  
f
NANO  
32kHz watch crystal, C = 6pF, ESR <  
L
70kΩ  
RTC Input Frequency  
f
32.768  
32KIN  
RTC Operating Current  
RTC Power Up Time  
I
Sleep or Active mode  
0.39  
250  
μA  
ms  
RTC_ACTSLP  
t
RTC_ ON  
GENERAL-PURPOSE I/O  
Input Low Voltage for All  
GPIO  
0.3 ×  
V
V
V
selected as I/O supply  
V
V
IL_VDDIO  
DDIO  
V
DDIO  
Input Low Voltage for All  
GPIO except P1.[21:18],  
P1.[16:11], P3.0  
0.3 ×  
V
selected as I/O supply  
IL_VDDIOH  
DDIOH  
V
DDIOH  
Input Low Voltage for  
RSTN  
0.3 x  
V
V
V
IL_RSTN  
V
DDIO  
Input High Voltage for  
All GPIO  
0.75 ×  
V
V selected as I/O supply  
DDIO  
IH_VDDIO  
V
DDIO  
Input High Voltage for  
All GPIO except  
P1.[21:18], P1.[16:11],  
P3.0  
0.75 ×  
V
V
selected as I/O supply  
V
V
IH_VDDIOH  
DDIOH  
V
DDIOH  
Input High Voltage for  
RSTN  
0.75 x  
V
IH_RSTN  
V
DDIO  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 11  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
selected as I/O supply, V  
=
=
=
=
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
0.2  
0.4  
1.71V, DS[1:0] = 00, I = 1mA  
OL  
V
DDIO  
selected as I/O supply, V  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
1.71V, DS[1:0] = 01, I = 2mA  
Output Low Voltage for  
All GPIO  
OL  
V
V
OL_VDDIO  
V
DDIO  
selected as I/O supply, V  
1.71V, DS[1:0] = 10, I = 4mA  
OL  
V
DDIO  
selected as I/O supply, V  
1.71V, DS[1:0] = 11, I = 8mA  
OL  
V
selected as I/O supply, V  
DDIOH  
DDIOH  
DDIOH  
DDIOH  
DDIOH  
= 1.71V, DS[1:0] = 00, I = 1mA  
OL  
V
selected as I/O supply, V  
Output Low Voltage for  
All GPIO except  
P1.[21:18], P1.[16:11],  
P3.0  
DDIOH  
= 1.71V, DS[1:0] = 01, I = 2mA  
OL  
V
V
mA  
V
OL_VDDIOH  
V
selected as I/O supply, V  
DDIOH  
= 1.71V, DS[1:0] = 10, I = 4mA  
OL  
V
selected as I/O supply, V  
DDIOH  
0.4  
48  
= 1.71V, DS[1:0] = 11, I = 8mA  
OL  
Combined I , All GPIO  
OL  
I
OL_TOTAL  
V
selected as I/O supply, V  
=
=
=
=
V
V
V
V
V
V
V
V
-
-
-
-
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
0.4  
1.71V, DS[1:0] = 00, I = -1mA  
OL  
V
DDIO  
selected as I/O supply, V  
DDIO  
0.4  
1.71V, DS[1:0] = 01, I = -2mA  
Output High Voltage for  
All GPIO  
OL  
V
OH_VDDIO  
V
DDIO  
selected as I/O supply, V  
DDIO  
0.4  
1.71V, DS[1:0] = 10, I = -4mA  
OL  
V
DDIO  
selected as I/O supply, V  
DDIO  
0.4  
1.71V, DS[1:0] = 00, I = -8mA  
OL  
V
selected as I/O supply, V  
DDIOH  
DDIOH  
DDIOH  
- 0.4  
= 1.71V, DS[1:0] = 00, I = -1mA  
OL  
V
selected as I/O supply, V  
DDIOH  
Output High Voltage for  
All GPIO except  
P1.[21:18], P1.[16:11],  
P3.0  
DDIOH  
DDIOH  
- 0.4  
= 1.71V, DS[1:0] = 01, I = -2mA  
OL  
V
V
OH_VDDIOH  
V
selected as I/O supply, V  
DDIOH  
DDIOH  
DDIOH  
- 0.4  
= 1.71V, DS[1:0] = 10, I = -8mA  
OL  
V
selected as I/O supply, V  
DDIOH  
DDIOH  
DDIOH  
- 0.4  
= 1.71V, DS[1:0] = 11, I = -8mA  
OL  
Combined I , All GPIO  
OH  
I
-48  
mA  
mV  
OH_TOTAL  
Input Hysteresis  
(Schmitt)  
V
IHYS  
300  
V
= 1.89V, V  
= 3.6V, V  
DDIOH DDIOH  
DDIO  
Input Leakage Current  
Low  
I
selected as I/O supply, V = 0V, internal  
pullup disabled  
-1000  
+1000  
nA  
IL  
IN  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 12  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.89V, V = 3.6V, V  
DDIOH  
MIN  
TYP  
MAX  
UNITS  
V
DDIO  
DDIOH  
I
selected as I/O supply, V = 3.6V,  
-1000  
+1000  
nA  
IH  
IN  
internal pulldown disabled  
Input Leakage Current  
High  
V
= 0V, V  
= 0V, V  
DDIOH DDIO  
DDIO  
I
-1  
-2  
+1  
+2  
OFF  
selected as I/O supply, V < 1.89V  
IN  
μA  
V
DDIO  
= V  
= 1.71V, V  
DDIOH DDIO  
I
IH3V  
selected as I/O supply, V = 3.6V  
IN  
Input Pullup Resistor  
TMS, TCK, TDI  
R
25  
25  
kΩ  
kΩ  
PU_T  
PU_R  
Input Pullup Resistor  
RSTN  
R
R
Normal resistance  
Highest resistance  
25  
1
kΩ  
Input Pullup/Pulldown  
Resistor for All GPIO  
PU1  
PU2  
R
MΩ  
FLASH MEMORY  
t
Mass erase  
Page erase  
30  
30  
M_ERASE  
Flash Erase Time  
ms  
μs  
t
P_ERASE  
Flash Programming  
Time Per Word  
t
60  
PROG  
Flash Endurance  
Data Retention  
10  
10  
kcycles  
years  
t
T = +85°C  
A
RET  
ADC (DELTA-SIGMA)  
Resolution  
10  
Bits  
MHz  
μs  
ADC Clock Rate  
ADC Clock Period  
f
0.1  
8
ACLK  
ACLK  
t
1/f  
ACLK  
AIN[3:0], ADC_CHSEL = 0-3,  
ADC_REFSEL = 1  
V
0.05  
+
SSA  
V
BG  
/2  
AIN[3:0], ADC_CHSEL = 0-3,  
ADC_REFSEL = 0  
V
+
+
SSA  
0.05  
Input Voltage Range  
Input Impedance  
V
V
V
AIN  
BG  
AIN[1:0], ADC_CHSEL = 4-5,  
ADC_REFSEL = 0  
V
SSA  
5.5  
0.05  
AIN[3:0], ADC_CHSEL=0-3, ADC active  
AIN[1:0], ADC_CHSEL=4-5, ADC active  
250  
40  
R
C
kΩ  
AIN  
AIN  
Fixed capacitance to V  
1
pF  
fF  
Analog Input  
Capacitance  
SSA  
Dynamically switched capacitance  
250  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
-2  
-1  
+2  
+2  
LSb  
LSb  
LSb  
LSb  
DNL  
V
OS  
±1  
±2  
Gain Error  
GE  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 13  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +105°C. Limits over the operating temperature range and relevant supply voltage  
A
A
range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.  
Specifications to the minimum operating temperature are guaranteed by design and are not production tested. General Purpose I/O  
are only tested at T = +105°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADC active, reference buffer enabled,  
input buffer disabled  
ADC Active Current  
I
210  
µA  
ADC  
Any powerup of: ADC clock or ADC bias  
to CpuAdcStart  
ADC Setup Time  
t
10  
µs  
ADC_SU  
tADC  
ADC Output Latency  
ADC Sample Rate  
1025  
t
ACLK  
f
7.8  
ksps  
ADC  
AIN0 or AIN1, ADC inactive or channel  
not selected  
0.01  
0.01  
ADC Input Leakage  
I
ADC_LEAK  
nA  
AIN2 or AIN3, ADC inactive or channel  
not selected  
AIN0/AIN1 Resistor  
Divider Error  
ADC_CHSEL = 4 or 5, not including ADC  
offset/gain error.  
±2  
1.2  
15  
LSb  
V
Full Scale Voltage  
V
ADC code = 0x3FF  
FS  
Bandgap Temperature  
Coefficient  
V
From +25ºC to +105ºC  
ppm  
TEMPCO  
Electrical Characteristics—SPI  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MASTER MODE  
SPI Master Operating  
Frequency  
f
t
f
= f /2  
SYS_CLK  
60  
MHz  
ns  
MCK  
MCK(MAX)  
SPI Master SCK Period  
1/f  
MCK  
MCK  
SCK Output Pulse-  
Width High/Low  
t
, t  
t
t
t
/2  
ns  
MCH MCL  
MCK  
MCK  
MCK  
MOSI Output Hold Time  
After SCK Sample Edge  
t
/2  
/2  
ns  
ns  
MOH  
MOSI Output Valid to  
Sample Edge  
t
MOV  
MISO Input Valid to  
SCK Sample Edge  
Setup  
t
5
ns  
ns  
MIS  
MISO Input to SCK  
Sample Edge Hold  
t
t
/2  
MIH  
MCK  
SLAVE MODE  
SPI Slave Operating  
Frequency  
f
t
48  
MHz  
ns  
SCK  
SCK  
SPI Slave SCK Period  
1/f  
SCK  
SCK Input Pulse-Width  
High/Low  
t
, t  
t
/2  
SCK  
SCH SCL  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 14  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics—SPI (continued)  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SSx Active to First Shift  
Edge  
t
10  
ns  
SSE  
MOSI Input to SCK  
Sample Edge Rise/Fall  
Setup  
t
5
1
ns  
ns  
ns  
SIS  
MOSI Input from SCK  
Sample Edge Transition  
Hold  
t
SIH  
MISO Output Valid After  
SCLK Shift Edge  
Transition  
t
5
SOV  
SCK Inactive to SSx  
Inactive  
t
t
10  
ns  
μs  
SSD  
SSH  
SSx Inactive Time  
1/f  
SCK  
2
Electrical Characteristics—I C  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STANDARD MODE  
Standard mode, from V  
to  
IH(MIN)  
Output Fall Time  
t
150  
ns  
OF  
V
IL(MAX)  
SCL Clock Frequency  
Low Period SCL Clock  
High Time SCL Clock  
f
0
100  
kHz  
μs  
SCL  
t
4.7  
4.0  
LOW  
t
μs  
HIGH  
Setup Time for  
Repeated Start  
Condition  
t
4.7  
4.0  
μs  
μs  
SU;STA  
Hold Time for Repeated  
Start Condition  
t
t
HD;STA  
Data Setup Time  
Data Hold Time  
300  
10  
ns  
ns  
SU;DAT  
HD;DAT  
t
Rise Time for SDA and  
SCL  
t
800  
200  
ns  
ns  
μs  
R
Fall Time for SDA and  
SCL  
t
F
Setup Time for a Stop  
Condition  
t
t
4.0  
4.7  
SU;STO  
Bus Free Time Between  
a Stop and Start  
Condition  
t
μs  
BUS  
Data Valid Time  
3.45  
3.45  
μs  
μs  
VD;DAT  
VD;ACK  
Data Valid Acknowledge  
Time  
t
19-100220  
www.maximintegrated.com  
Maxim Integrated | 15  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
2
Electrical Characteristics—I C (continued)  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
FAST MODE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Fall Time  
t
From V  
to V  
IL(MAX)  
150  
75  
ns  
ns  
OF  
IH(MIN)  
Pulse Width Suppressed  
by Input Filter  
t
SP  
SCL Clock Frequency  
Low Period SCL Clock  
High Time SCL Clock  
f
0
400  
kHz  
μs  
SCL  
t
1.3  
0.6  
LOW  
t
μs  
HIGH  
Setup Time for  
Repeated Start  
Condition  
t
0.6  
0.6  
μs  
μs  
SU;STA  
Hold Time for Repeated  
Start Condition  
t
t
HD;STA  
Data Setup Time  
Data Hold Time  
125  
10  
ns  
ns  
SU;DAT  
HD;DAT  
t
Rise Time for SDA and  
SCL  
t
30  
30  
ns  
ns  
μs  
R
Fall Time for SDA and  
SCL  
t
F
Setup Time for a Stop  
Condition  
t
t
0.6  
1.3  
SU;STO  
Bus Free Time Between  
a Stop and Start  
Condition  
t
μs  
BUS  
Data Valid Time  
0.9  
0.9  
μs  
μs  
VD;DAT  
VD;ACK  
Data Valid Acknowledge  
Time  
t
FAST MODE PLUS  
Output Fall Time  
t
From V  
to V  
IL(MAX)  
80  
75  
ns  
ns  
OF  
IH(MIN)  
Pulse Width Suppressed  
by Input Filter  
t
SP  
SCL Clock Frequency  
Low Period SCL Clock  
High Time SCL clock  
f
0
1000  
kHz  
μs  
SCL  
t
0.5  
LOW  
t
0.26  
μs  
HIGH  
Setup Time for  
Repeated Start  
Condition  
t
0.26  
0.26  
μs  
μs  
SU;STA  
Hold Time for Repeated  
Start Condition  
t
t
HD;STA  
Data Setup Time  
Data Hold Time  
50  
10  
ns  
ns  
SU;DAT  
HD;DAT  
t
Rise Time for SDA and  
SCL  
t
R
50  
ns  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 16  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
2
Electrical Characteristics—I C (continued)  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Fall Time for SDA and  
SCL  
t
30  
ns  
F
Setup Time for a Stop  
Condition  
t
0.26  
0.5  
μs  
μs  
SU;STO  
Bus Free Time Between  
a Stop and Start  
Condition  
t
BUS  
Data Valid Time  
t
0.45  
0.45  
μs  
μs  
VD;DAT  
VD;ACK  
Data Valid Acknowledge  
Time  
t
2
Electrical Characteristics—I S Slave  
(Timing specifications are guaranteed by design and not production tested., T = -40°C to +105°C)  
A
PARAMETER  
Bit Clock Frequency  
BCLK High Time  
BCLK Low Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
96kHz LRCLK frequency  
3.072  
MHz  
BCLK  
t
0.5  
0.5  
25  
1/f  
1/f  
WBCLKH  
BCLK  
BCLK  
ns  
LRCLK Setup Time  
t
LRCLK_BLCK  
Delay Time, BCLK to  
SD (Output) Valid  
t
12  
ns  
BCLK_SDO  
Setup Time for SD  
(Input)  
t
6
3
ns  
ns  
SU_SDI  
t
HD_SDI  
Hold Time SD (Input)  
Electrical Characteristics—SD/SDIO/SDHC/MMC  
(T = -40°C to +105°C)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clock Frequency in Data  
Transfer Mode  
f
0
f
/2  
HSCLK  
MHz  
SDHC_CLK  
1/  
Clock Period  
t
f
ns  
ns  
CLK  
SDHC_C  
LK  
Clock Low Time  
Clock High Time  
Input Setup Time  
Input Hold Time  
Output Valid Time  
Output Hold Time  
t
7
7
5
1
5
6
WCL  
t
WCH  
t
ns  
ns  
ns  
ns  
ISU  
t
IHLD  
t
OVLD  
t
OHLD  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 17  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics—HyperBus  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HYP_CLK, HYP_CLKN  
Frequency  
f
t
60  
MHz  
HYP_CLK  
HYP_CLK  
1/  
HYP_CLK, HYP_CLKN  
Period  
f
ns  
HYP_CL  
K
HYP_CLK, HYP_CLKN  
High Time  
t
7
7
ns  
ns  
WHCKH  
HYP_CLK, HYP_CLKN  
Low Time  
t
WHCKL  
CS Setup to RWDS  
RWDS Setup to CK  
Dx Output Setup  
Dx Output Hold  
t
6
10  
5
ns  
ns  
ns  
ns  
CSSU  
t
RWDS_CK  
t
t
OSU  
t
3
OH  
CS Hold After CK  
Falling Edge  
5
ns  
ns  
CSH  
CS High Between  
Transactions  
t
15  
CHSI  
Dx Input Setup to  
RWDS  
t
4
2
ns  
ns  
ISU  
Dx Input Hold  
t
IHD  
Electrical Characteristics—1-Wire Master  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
60  
8
MAX  
UNITS  
Standard  
Overdrive  
Standard  
Write 0 Low Time  
t
μs  
W0L  
6
Write 1 Low Time  
t
Standard, long line mode  
Overdrive  
8
μs  
μs  
μs  
W1L  
1
Standard  
70  
85  
9
Presence Detect  
Sample  
t
Standard, Long Line mode  
Overdrive  
MSP  
Standard  
15  
24  
3
Read Data Value  
t
Standard, Long Line mode  
Overdrive  
MSR  
Standard  
10  
20  
4
Recovery Time  
t
Standard, Long Line mode  
Overdrive  
μs  
μs  
REC0  
Standard  
480  
58  
Reset Time High  
t
RSTH  
Overdrive  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 18  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Electrical Characteristics—1-Wire Master (continued)  
(Timing specifications are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
600  
70  
MAX  
UNITS  
Standard  
Overdrive  
Standard  
Overdrive  
Reset Time Low  
t
μs  
RSTL  
70  
Time Slot  
t
μs  
SLOT  
12  
SHIFT SAMPLE SHIFT SAMPLE  
SSx  
(SHOWN ACTIVE LOW)  
t
MCK  
SCK  
CKPOL/CKPHA  
0/1 OR 1/0  
t
MCH  
t
MCL  
SCK  
CKPOL/CKPHA  
0/0 OR 1/1  
t
MOH  
t
MOV  
t
MLH  
MOSI/SDIOx  
(OUTPUT)  
MSB  
MSB-1  
LSB  
t
MIS  
t
MIH  
MISO/SDIOx  
(INPUT)  
MSB  
MSB-1  
LSB  
Figure 1. SPI Master Mode Timing Diagram  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 19  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
SHIFT SAMPLE SHIFT SAMPLE  
t
SSE  
SSx  
t
SSH  
(SHOWN ACTIVE LOW)  
t
SSD  
t
SCK  
SCK  
CKPOL/CKPHA  
0/1 OR 1/0  
t
t
SCH  
SCL  
SCK  
CKPOL/CKPHA  
0/0 OR 1/1  
t
SIS  
t
SIH  
MOSI/SDIOx  
(INPUT)  
MSB  
MSB-1  
LSB  
t
SOV  
t
SLH  
MISO/SDIOx  
(OUTPUT)  
MSB  
MSB-1  
LSB  
Figure 2. SPI Slave Mode Timing Diagram  
STOP  
START  
START  
REPEAT  
START  
t
BUS  
SDA  
t
OF  
t
R
t
SU;STO  
t
SP  
t
t
HIGH  
SU;STA  
t
SU;DAT  
SCL  
t
HD;STA  
t
t
HD;DAT  
t
LOW  
t
VD;ACK  
VD;DAT  
2
Figure 3. I C Timing Diagram  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 20  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
t
BLK  
t
t
WBCLKH WBCLKL  
BCLK  
t
LRCLK_BCLK  
LRCLK  
t
BCLK_SDO  
SD  
(OUTPUT)  
LSB  
LSB  
MSB  
MSB  
LSB  
LSB  
MSB  
t
HD_SDI  
t
SU_SDI  
SD  
(INPUT)  
MSB  
WORD N-1 RIGHT CHANNEL  
WORD N LEFT CHANNEL  
WORD N RIGHT CHANNEL  
CONDITIONS: I2S_LJ = 0; I2S_MONO = 0;  
CPOL = 0; CPHA = 0  
2
Figure 4. I S Timing Diagram  
t
CLK  
t
t
WCL  
WCH  
SDHC_CLK  
t
OVLD  
t
OHLD  
SDHC_DATx,  
SDHC_CMD  
(output)  
NOT  
VALID  
NOT  
VALID  
tIHLD  
t
ISU  
SDHC_DATx,  
SDHC_CMD  
(input)  
NOT  
VALID  
NOT  
VALID  
Figure 5. SD/SDIO/SDHC/MMC Timing Diagram  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 21  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
tCHSI  
CSx  
t
CSSU  
t
CSH  
t
t
WHCKL WHCKH  
HYP_CLK,  
HYP_CLKN  
tRWDS_CK  
t
CK  
t
OH  
Hi-Z  
t
OSU  
t
RWDS  
OH  
t
OSU  
Dx  
(output)  
VALID VALID VALID VALID VALID VALID  
VALID VALID VALID VALID  
HOST DRIVES Dx AND RWDS  
COMMAND-ADDRESS  
t
IHD  
HOST DRIVES Dx AND MEMORY DRIVES RWDS  
Dx  
(input)  
VALID VALID VALID VALID  
MEMORY DRIVES Dx AND RWDS  
t
ISU  
Figure 6. HyperBus/XCCELA Bus Timing Diagram  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 22  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
INITIALIZATION RESET AND PRESENCE-DETECT CYCLE  
t
RSTH  
t
MSP  
OWM_IO  
t
RSTL  
WRITE TIME SLOTS  
WRITE 1 SLOT  
WRITE 0 SLOT  
t
SLOT  
t
SLOT  
t
W0L  
t
REC0  
t
LOW1  
OWM_IO  
READ TIME SLOTS  
READ 0 SLOT  
READ 1 SLOT  
t
SLOT  
t
SLOT  
t
W1L  
t
REC0  
t
W1L  
OWM_IO  
t
MSR  
t
MSR  
LEGEND  
BOTH MASTER  
ONE WIRE  
MASTER ACTIVE  
LOW  
AND SLAVE  
DEVICE ACTIVE  
LOW  
SLAVE DEVICE  
ACTIVE LOW  
RESISTOR  
PULLUP  
Figure 7. One-Wire Master Data Timing Diagram  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 23  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Configurations  
140 WLP  
TOP VIEW (BUMP SIDE DOWN)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
+
HYP_CLKN  
P1.14  
P0.24  
P3.0  
P1.5  
HYP_CLK  
A
B
VSS  
VDDIOH  
VDDIO  
VSS  
P1.18  
P1.19  
P2.22  
P1.21  
P1.20  
P1.30  
DP  
DM  
VDDB  
P0.19  
P0.21  
P0.25  
P0.20  
P0.18  
P1.4  
P1.6  
P1.11  
P1.13  
P1.16  
VSS  
P0.16  
P0.17  
P0.15  
P1.1  
P1.0  
P1.3  
P1.2  
P1.10  
P1.9  
P1.12  
P2.19  
P1.15  
P2.23  
C
D
VSS  
VSS  
VCORE  
P1.17  
P1.23  
P1.31  
P0.30  
P3.6  
P3.5  
P3.9  
P3.8  
P0.23  
P0.13  
P0.11  
P0.14  
P0.12  
P1.7  
P0.0  
P1.8  
P2.20  
P2.18  
P2.21  
P0.31  
E
F
VDDIO  
P2.31  
VDDIO  
VSS  
P1.25  
P1.24  
P0.29  
P0.27  
P3.4  
P3.7  
P0.10  
P0.8  
P0.9  
P0.7  
VDDIOH  
VCORE  
P2.16  
P2.29  
P2.15  
P2.30  
P2.27  
P2.17  
P2.24  
P2.0  
P2.1  
G
H
VDDIOH  
VDDA  
VCORE  
VSSA  
P1.27  
P1.28  
P1.29  
VSS  
P0.26  
P0.28  
RSTN  
P1.26  
P0.22  
P0.5  
P0.1  
P3.3  
AIN2  
AIN1  
AIN0  
VRTC  
ANI3  
P0.4  
P0.2  
P3.2  
P3.1  
P2.13  
P2.28  
P2.10  
P2.11  
P2.26  
P2.25  
P2.9  
P2.8  
P2.7  
P2.6  
VDDIO  
P2.5  
P2.4  
P2.3  
P2.2  
J
K
L
VSS  
P0.6  
P0.3  
32KOUT  
32KIN  
P2.14  
P2.12  
VSS  
M
VDDIOH  
140 WLP  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 24  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
96 WLP  
TOP VIEW (BUMP SIDE DOWN)  
1
2
3
4
5
6
7
8
9
10  
+
D.N.C  
D.N.C  
P0.20  
P1.8  
P1.10  
VDDIO  
P2.23  
P1.14  
A
B
DP  
VDDIOH  
VDDB  
VDDIO  
VSS  
P1.0  
P0.21  
P0.18  
P1.6  
P1.18  
P1.21  
P1.9  
DM  
VSS  
P1.4  
P1.5  
P1.15  
P1.16  
P1.19  
P1.25  
P1.23  
P1.30  
VCORE  
VSS  
C
D
P1.2  
P1.1  
VSS  
P3.6  
P0.14  
P3.9  
P3.8  
P3.7  
P3.5  
P3.4  
P0.13  
P0.11  
P2.17  
P0.17  
P0.16  
P1.3  
P1.12  
P1.11  
P1.20  
P0.29  
P1.24  
P0.26  
P1.31  
P0.27  
E
F
VDDIOH  
P0.19  
VCORE  
VDDA  
P2.16  
P2.12  
VSS  
P2.13  
P2.5  
P0.15  
P2.4  
P0.22  
P2.18  
P0.28  
P1.29  
P0.30  
P1.27  
AIN3  
VSSA  
G
H
P2.15  
VRTC  
AIN2  
32KOUT  
P2.14  
J
AIN1  
ANI0  
32KIN  
P2.9  
P2.6  
P2.3  
P2.0  
P2.2  
P1.28  
P1.26  
RSTN  
K
P1.13  
P2.11  
VDDIO  
VSS  
VDDIOH  
96 WLP  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 25  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
144 TQFP  
TOP VIEW  
+
P2.16  
1
2
3
4
5
6
7
8
9
108  
107  
106  
N.C.  
32KIN  
P0.1  
P0.2  
32KOUT  
105 N.C.  
P0.3  
VCORE  
P0.4  
104  
AIN1  
103 P0.26  
AIN2  
AIN3  
P0.27  
VDDA  
VSSA  
P3.4  
102  
101  
100  
99  
P0.5  
P0.6  
VDDIOH  
P0.22 10  
VSS 11  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
P0.7 12  
13  
P3.7  
P3.5  
P3.8  
P1.31  
P1.24  
P3.6  
P3.9  
P0.8  
VCORE 14  
15  
P0.9  
16  
17  
P2.30  
P0.10  
MAX32650/MAX32651  
VDDIOH 18  
19  
20  
P2.17  
P2.18  
VSS  
VDDIO 21  
VCORE  
D.N.C  
D.N.C  
VSS  
P0.11  
P0.12  
22  
23  
P0.23 24  
N.C.  
DM  
25  
26  
27  
P0.13  
P0.14  
VSS  
N.C.  
VSS  
P0.15 28  
VSS 29  
VSS  
P0.16 30  
N.C.  
DP  
31  
32  
P0.17  
P0.18  
N.C.  
VDDB  
P1.22  
N.C.  
N.C.  
VDDIO 33  
P0.19 34  
35  
P0.20  
P0.21 36  
144 TQFP  
Pin Description  
PIN  
NAME  
FUNCTION  
140 WLP  
POWER  
96 WLP  
144 TQFP  
Core Supply Voltage. This pin must be bypassed to V with a  
SS  
1.0μF capacitor as close as possible to the package.  
H1, H4, D12  
G1, C8  
5, 14, 88  
V
CORE  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 26  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
1.8V Analog Supply Voltage. This pin must be bypassed to V  
with 1.0μF and 0.01μF capacitors as close as possible to the  
package.  
SSA  
H11  
G10  
99  
V
V
DDA  
USB Transceiver Supply Voltage. This pin must be bypassed to  
with a 1.0μF capacitor as close as possible to the package.  
B11  
A7  
B9  
A5  
76  
21  
DDB  
V
SS  
GPIO Supply Voltage. This pin must be bypassed to V with  
SS  
1.0μF and 0.01μF capacitors as close as possible to the package.  
GPIO Supply Voltage. This pin must be bypassed to V with a  
SS  
E4, F1  
M7  
B1, K5  
33, 55  
126  
V
DDIO  
1.0μF and a 0.01μF capacitor as close as possible to the  
package.  
GPIO Supply Voltage. This pin must be bypassed to V with  
SS  
1.0μF and 0.01μF capacitors as close as possible to the package.  
GPIO Supply Voltage, High. V  
≥ V  
. This pin must be  
DDIO  
DDIOH  
A6  
B5  
9
bypassed to V with 1.0μF and 0.01μF capacitors as close as  
SS  
possible to the package.  
GPIO Supply Voltage, High. V  
≥ V  
≥ V  
. This pin must be  
. This pin must be  
DDIOH  
DDIOH  
DDIO  
DDIO  
G1  
F1  
18  
V
DDIOH  
bypassed to V  
SS  
GPIO Supply Voltage, High. V  
G4, M6  
M11  
K4  
54, 128  
111  
bypassed to V with 1.0μF and 0.01μF capacitors as close as  
possible to the package.  
SS  
RTC Supply Voltage. This pin must be bypassed to V with a  
SS  
1.0μF capacitor as close as possible to the package.  
H8  
V
RTC  
11, 27, 29,  
47, 60, 80,  
81, 85, 89,  
119, 136  
A4, A8, C11,  
D1, D11, F4,  
J1, M4, M9  
B6, C1, C9,  
D8, K7, J2  
V
Digital Ground  
SS  
H12  
G9  
98  
V
Analog Ground  
SSA  
RESET  
Hardware Power Reset (Active-Low) Input. The device remains in  
reset while this pin is in its active state. When the pin transitions to  
its inactive state, the device performs a POR reset (resetting all  
logic on all supplies except for real-time clock circuitry) and begins  
L10  
K8  
114  
RSTN  
execution. This pin has an internal pullup to the V  
supply.  
DDIO  
CLOCK  
L12  
32kHz Crystal Oscillator Input. Connect a 32kHz crystal between  
32KIN and 32KOUT for RTC operation. Optionally, an external  
clock source can be driven on 32KIN if the 32KOUT pin is left  
unconnected.  
J10  
107  
106  
32KIN  
K12  
H10  
32KOUT  
32kHz Crystal Oscillator Output  
GPIO AND ALTERNATE FUNCTIONS  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
F5  
P0.0  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 27  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
L2  
2
P0.1  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K3  
L1  
E2  
E1  
D1  
G4  
3
P0.2  
P0.3  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
4
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
J3  
6
P0.4  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K2  
K1  
H3  
H2  
G3  
G2  
F2  
F3  
E2  
E3  
D2  
7
P0.5  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
8
P0.6  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
12  
13  
15  
17  
22  
23  
25  
26  
28  
P0.7  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
P0.8  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
P0.9  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 28  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
C1  
F3  
30  
P0.16  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
C2  
D3  
E3  
D2  
F4  
A2  
C2  
G5  
31  
32  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
B1  
34  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
C3  
35  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
B2  
36  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
J2  
10  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
E1  
24  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
A2  
40  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
B3  
41  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
J10  
H10  
K10  
G10  
F10  
F7  
F8  
G6  
F6  
G7  
103  
100  
113  
110  
112  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 29  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 0. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
F8  
61  
P0.31  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
D4  
C4  
D5  
C5  
B4  
A5  
B5  
E5  
E6  
D6  
C6  
B2  
D3  
C3  
E4  
C4  
D4  
B4  
37  
39  
42  
43  
45  
51  
49  
38  
46  
48  
50  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
P1.8  
P1.9  
P1.10  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
A3  
B3  
A4  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
Table 4 and Table 5 GPIO and Alternate Function Matrix tables  
for details.  
only. See Table 3,  
DDIO  
B6  
C7  
F5  
E5  
52  
53  
P1.11  
P1.12  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
only. See Table 3, Table  
DDIO  
details.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 30  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
only. See Table 3, Table  
DDIO  
B7  
K2  
56  
P1.13  
details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
A11  
C8  
A9  
C5  
68  
58  
P1.14  
P1.15  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
B8  
E9  
B9  
D5  
59  
69  
63  
P1.16  
P1.17  
P1.18  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
B7  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
C9  
C6  
E6  
B8  
62  
66  
67  
P1.19  
P1.20  
P1.21  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
details.  
only. See Table 3, Table  
DDIO  
C10  
B10  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
only. See Table 3, Table  
DDIO  
details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
F9  
H9  
G9  
C7  
E7  
D6  
75  
70  
92  
72  
P1.22  
P1.23  
P1.24  
P1.25  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 31  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
M10  
J8  
115  
P1.26  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
J9  
K9  
L9  
H7  
J7  
H6  
D7  
E8  
J6  
116  
117  
118  
71  
P1.27  
P1.28  
P1.29  
P1.30  
P1.31  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
D10  
E10  
G8  
H8  
M8  
L8  
General-Purpose I/O, Port 1. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
93  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
120  
121  
122  
123  
124  
125  
127  
129  
130  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K6  
J5  
H4  
H3  
J4  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K8  
J8  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
L7  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K7  
J7  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 32  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
L6  
J3  
131  
P2.9  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
L5  
M5  
L4  
K3  
H2  
G3  
J1  
134  
132  
137  
140  
143  
144  
1
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
P2.16  
P2.17  
P2.18  
P2.19  
P2.20  
P2.21  
P2.22  
P2.23  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
J5  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K4  
H5  
J4  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
H1  
G2  
F2  
H5  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
G7  
F7  
D7  
E7  
E8  
D9  
D8  
19  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
20  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
A6  
57  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 33  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
H7  
P2.24  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
K6  
J6  
133  
135  
P2.25  
P2.26  
P2.27  
P2.28  
P2.29  
P2.30  
P2.31  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
H6  
K5  
G5  
G6  
F6  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
139  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
16  
General-Purpose I/O, Port 2. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. This pin is connected to V  
4 and Table 5 GPIO and Alternate Function Matrix tables for  
only. See Table 3, Table  
DDIO  
A3  
44  
P3.0  
details.  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
M3  
L3  
138  
141  
142  
97  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
M2  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
G11  
F11  
E11  
F9  
E9  
D9  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
95  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
91  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 34  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
140 WLP  
96 WLP  
144 TQFP  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
G12  
F10  
96  
P3.7  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
F12  
E12  
E10  
D10  
94  
90  
P3.8  
P3.9  
General-Purpose I/O, Port 3. Most port pins have multiple special  
functions. See Table 3, Table 4 and Table 5 GPIO and Alternate  
Function Matrix tables for details.  
ANALOG INPUT PINS  
L11  
K11  
J11  
J12  
K9  
109  
104  
102  
101  
AIN0  
AIN1  
AIN2  
AIN3  
ADC Input 0. 5V-tolerant input.  
ADC Input 1. 5V-tolerant input.  
ADC Input 2  
J9  
H9  
G8  
ADC Input 3  
HYPERBUS CLOCKS  
A10  
A9  
65  
64  
HYP_CLK  
HyperBus Positive Clock  
HYP_CLKN HyperBus Negative Clock  
USB  
USB DM Signal. This bidirectional pin carries the negative  
C12  
B12  
C10  
B10  
83  
78  
DM  
DP  
differential data or single-ended data. This pin is weakly pulled  
high internally when the USB is disabled.  
USB DP Signal. This bidirectional pin carries the positive  
differential data or single-ended data. This pin is weakly pulled  
high internally when the USB is disabled.  
NO CONNECT  
Do Not Connect. Internally connected. Do not make any electrical  
connection to this pin, including power supply grounds.  
A7, A8  
86, 87  
D.N.C.  
N.C.  
73, 74, 77,  
79, 82, 84,  
105, 108  
No Connection. Not internally connected.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 35  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Detailed Description  
The MAX32650–MAX32652 are low-power, mixed signal microcontrollers based on the Arm Cortex-M4 with FPU CPU,  
operating at a maximum frequency of 120MHz. The devices feature five powerful and flexible power modes. A SmartDMA  
performs complex background processing on data being transferred, from simple arithmetic to multiply/accumulate, while  
the CPU is off. This function dramatically reduces overall power consumption compared to conventional solutions. This  
allows, for example, an external display to be refreshed while most of the chip is powered off. Built-in dynamic clock  
gating and firmware-controlled power gating allows the user to optimize power for the specific application.  
Application code executes from an onboard 3MB program flash memory, with 1MB SRAM available for general  
application use. A 16KB cache improves execution throughput. Additionally, a SPI execute in place (XIP) external  
memory interface allows application code and data (up to 128MB) to be accessed from an external SPI flash and/or  
SRAM memory device.  
A 10-bit delta-sigma ADC is provided with a multiplexer front end for four external input channels (two of which are  
5V tolerant) and six internal power supply monitoring channels. Dedicated divided supply input channels allow direct  
monitoring of internal power supply voltages by the ADC. Built-in limit monitors allow converted input samples to be  
compared against user-configurable high and low limits, with an option to trigger an interrupt and wake the CPU from a  
low power mode if attention is required.  
A wide variety of communications and interface peripherals are provided, including a Hi-Speed USB 2.0 device interface,  
three master/slave SPI interfaces, one QuadSPI master/slave interface, three UART interfaces with flow control support,  
2
2
two master/slave I C interfaces, I S bidirectional slave interface. A Cypress Spansion HyperBus interface and a XCCELA  
bus interface provides support for HyperFLASH, HyperRAM and XCCELA PSRAM operating up to 120MB/s throughput  
with access up to 512MB. A SD/SDIO/MMC interface running up to 60MB/s supporting media file storage. A 24-bit TFT  
LCD controller provides color and monochrome display support.  
The MAX32651 is a secure version of the MAX32650. It provides a trust protection unit (TPU) with encryption and  
advanced security features. These features include a modular arithmetic accelerator (MAA) for fast ECDSA and  
RSA-4096 computation. A hardware AES engine uses 128/192/256-bit keys. A memory decryption integrity unit (MDIU)  
provides on-the-fly code or data decryption stored in external flash. A hardware TRNG and a hardware SHA-256 HASH  
function are also provided. A secure bootloader authenticates applications before they are allowed to execute and update  
firmware with confidentiality.  
The MAX32652 is a high-density, 0.35mm pitch, 140-bump WLP targeted for tiny form factor products that require high I/  
O counts.  
Arm Cortex-M4 with FPU  
The Arm Cortex-M4 with FPU combines high-efficiency signal processing functionality with flexible low-power operating  
modes. The features of this implementation of the familiar Arm Cortex-M4 architecture include:  
● Floating point unit (FPU)  
● Memory protection unit  
● Multilayer, 32-bit AHB matrix  
● Full debug support level  
• Debug access port (DAP)  
• Breakpoints  
• Flash patch  
• Halting debug  
• Development and debug interface  
● NVIC support  
• Programmable IRQ generation for each interrupt source  
• Unique vectors for each interrupt channel  
• 8 programmable priority levels support nesting and preemption  
• External GPIO interrupts grouped by GPIO port  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 36  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
● DSP supports single instruction multiple data (SIMD) path DSP extensions, providing:  
• 4 parallel 8-bit add/sub  
• 2 parallel 16-bit add/sub  
• 2 parallel MACs  
• 32- or 64-bit accumulate  
• Signed, unsigned, data with or without saturation  
Memory  
Internal Flash Memory  
3MB of internal flash memory provides nonvolatile storage of program and data memory.  
Flash can be expanded through the SPIXF flash serial interface backed by 16KB of cache. The SPIXF flash interface can  
address an additional 128MB.  
Internal SRAM  
The internal 1MB SRAM provides low-power retention of application information in all power modes except shutdown.  
The SRAM can be divided into granular banks that create a flexible SRAM retention architecture. This data retention  
feature is optional and configurable. This granularity allows the application to minimize its power consumption by only  
retaining the most essential data.  
SRAM can be expanded through the SPIXR SRAM serial interface backed by 16KB of cache. The SPIXR SRAM interface  
can address an additional 512MB.  
Secure Digital Interface  
The secure digital interface (SDI) provides high-speed, high-density data storage capability for media files and large long-  
term data logs. This interface supports eMMC, SD, SDHC, and SDXC memory devices at transfer rates up to 60MB/s.  
The 7-pin interface (4 data, 1 clock, 1 command, 1 write-protect) supports the following specifications:  
• SD Host Controller Standard Specification Version 3.00  
• SDIO Card Specification Version 3.0  
• SD Memory Card Specification Version 3.01  
• SD Memory Card Security Specification Version 1.01  
• MMC Specification Version 4.51  
Spansion HyperBus/XCCELA Bus  
The Spansion HyperBus/Xccela bus interface provides access to external Cypress Spansion HyperBus and XCCELA bus  
memory products both SRAM and/or flash. This interface provides a means of high-speed execution from external SRAM  
or flash allowing system expansion when internal memory resources are insufficient. Up to 512MB SRAM or 512MB flash  
at a speed of up to 60MHz or 120MB/s is supported. It is a high-speed low-pin count interface that is memory-mapped into  
the CPU memory space making access to this external memory as easy as accessing on-chip RAM. Data is transferred  
over a high-speed, 8-bit bus. Slave memory devices are selected with two chip selects. HyperBus transfers are clocked  
using a differential clock while XCCELA bus transfers use a single-ended clock. This interface supports 1.8V operation  
only.  
Features of the HyperBus/XCCELA bus interface include:  
● Master/slave system  
● 120MB/s maximum data transfer rate  
● Double data rate (DDR): two data transfers per clock cycle  
● Transparent bus operation to the processor  
● 16KB write-through cache  
● Two chip selects for two memory ports  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 37  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
• Each port supports memories up to 512MB  
● Addresses two external memories, one at a time  
● Interfaces to HyperFlash, HyperRAM, and XCCELA PSRAM  
● Zero wait state burst mode operation  
● Low-power half sleep mode  
• Puts the external memory device into low power mode while retaining memory contents  
● Configurable timing parameters  
Clocking Scheme  
The high-frequency oscillator operates at a maximum frequency of 120MHz.  
Optionally, 4 other oscillators can be selected depending upon power needs:  
● 50MHz low-power oscillator  
● 8kHz nano-ring oscillator  
● 32.768kHz oscillator (external crystal required)  
● 7.3728MHz oscillator  
This clock is the primary clock source for the digital logic and peripherals. Select the 7.3728MHz internal oscillator to  
optimize active power consumption. Using the 7.3727MHz oscillator allows UART communications to meet a ±2% baud  
rate tolerance.  
Wakeup is possible from either the 7.3728MHz internal oscillator or the high-frequency oscillator. The device exits power-  
on reset using the the 50MHz oscillator.  
An external 32.768kHz timebase is required when using the RTC.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 38  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
RTC  
CALIBRATION  
OUTPUT  
32KCAL  
ALWAYS-ON DOMAIN  
XTAL DRIVER OR  
EXTERNAL CLOCK  
32KIN  
32KIN BYPASS  
4kHz  
DIGITAL  
INTERFACE  
32.768kHz  
32kHz  
CRYSTAL  
32K  
OSC  
REAL-TIME CLOCK  
NANO-RING  
~8kHz  
32KOUT  
POWER SEQUENCER  
120MHz  
GCR_CLK_CTRL.sysosc_sel  
GCR_CLK_CTRL.sysclk_prescale  
HIGH-SPEED  
OSCILLATOR  
50MHz  
120MHz  
50MHz  
PRESCALER  
CPU  
LOW-POWER  
OSCILLATOR  
TPU  
7.3728MHz  
TRUST PROTECTION  
UNIT CIRCUITRY  
OSCILLATOR BAUD  
RATE CLOCK  
÷2  
APB CLK  
AHB CLK  
GCR_PCLK_DIV.sdhcfrq  
ADC  
CLOCK  
SCALER  
÷4  
÷2, 4  
< 8MHz  
CTRL  
PHY  
SMART  
DMA  
SD/SDIO/  
MMC  
UART  
ADC  
HI-SPEED USB 2.0  
Figure 8. Clocking Scheme Diagram  
General-Purpose I/O and Special Function Pins  
Most general-purpose I/O (GPIO) pins share both a firmware-controlled I/O function and one or more special function  
signals associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use.  
Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Though this multiplexing  
between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of  
a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the  
electrical characteristics tables.  
In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 39  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same  
interrupt vector. Some packages do not have all of the GPIOs available.  
When configured as GPIO, the following features are provided. The features can be independently enabled or disabled  
on a per-pin basis.  
● Configurable as input, output, bidirectional, or high impedance  
● Optional internal pullup resistor or internal pulldown resistor when configured as input  
● Exit from low-power modes on rising or falling edge  
● Selectable standard- or high-drive modes  
The MAX32650–MAX32652 provides up to 105 GPIO (140 WLP), 97 GPIO (144 TQFP), and 67 GPIO (96 WLP).  
GPIOs, which have any HyperBus alternate functionality (P1.[21:18], P1.[16:11], P3.0), can only be used with the V  
supply, whether used as a GPIO or any alternate function.  
DDIO  
Standard DMA Controller  
The Standard DMA (direct memory access) controller provides a means to off-load the CPU for memory/peripheral data  
transfer leading to a more power-efficient system. It allows automatic one-way data transfer between two entities. These  
entities can be either memories or peripherals. The transfers are done without using CPU resources.  
The following transfer modes are supported:  
● 16 channel  
● Peripheral to data memory  
● Data memory to peripheral  
● Data memory to data memory  
● Event support  
All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from  
the FIFO.  
SmartDMA Controller  
The SmartDMA controller provides low-power memory/peripheral access control that can run data collection tasks  
and perform complex background processing on data being transferred, from simple arithmetic to multiply/accumulate,  
while the CPU is off, significantly reducing power consumption (Background mode). The SmartDMA controller allows  
peripherals on the AHB to access main system memory (SRAM) independent of the CPU. It is configured through the  
APB and can configure itself through the AHB-to-APB bridge. The SmartDMA engine runs code from system SRAM. If  
desired, custom SmartDMA algorithms supporting data post-processing can be developed by the user.  
Key features:  
● Dedicated 32-bit controller with general-purpose timer  
● APB read access to the SmartDMA registers  
● Configurable start IP address  
● Selects 32 interrupts from peripherals from a total of 80 available interrupts to initiate DMA operations  
● Global enable (SDMA_EN) keeps SmartDMA in reset except APB interface  
● Synchronous interrupt output to CPU  
Analog-to-Digital Converter  
The 10-bit delta-sigma ADC provides an integrated reference generator and a single-ended input multiplexer. The  
multiplexer selects an input channel from either the external analog input signals (AIN0, AIN1, AIN2, and AIN3) or the  
internal power supply inputs. AIN0 and AIN1 are 5V tolerant, making them suitable for monitoring batteries. An internal  
1.22V bandgap or the V  
analog supply can be chosen as the ADC reference.  
DDA  
An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high  
and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger  
an interrupt (and potentially wake the CPU from a low-power sleep mode) when a captured sample goes outside the  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 40  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed  
even while the main CPU is suspended in a low power mode.  
The ADC measures:  
● AIN[3:2] (up to 3.3V)  
● AIN[1:0] (up to 5.5V)  
● V  
● V  
● V  
● V  
● V  
● V  
CORE  
DD18  
DDB  
RTC  
DDIO  
DDIOH  
Power Management  
Power Management Unit  
The power management unit (PMU) provides high-performance operation while minimizing power consumption. It  
exercises intelligent, precise control of power distribution to the CPU and peripheral circuitry.  
The PMU provides the following features:  
● User-configurable system clock  
● Automatic enabling and disabling of crystal oscillators based on power mode  
● Multiple clock domains  
● Fast wakeup of powered-down peripherals when activity detected  
Active Mode  
In this mode, the CPU is executing application code and all digital and analog peripherals are available on demand.  
Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power  
consumption.  
Sleep Mode  
This mode allows for low-power consumption, but a faster wakeup because the clocks can optionally be enabled. The  
CPU is asleep, peripherals are on, and the standard and SmartDMA blocks are available for optional use. The GPIO or  
any active peripheral interrupt can be configured to interrupt and cause transition to the Active mode.  
Background Mode  
This mode is suitable for running the SmartDMA engine to collect and move data from enabled peripherals. The CPU  
2
is in its Deep-sleep mode. Memory retention is configurable. The SmartDMA engine can access the SPI, UARTS, I C,  
1-Wire, timers, pulse train engines, and the secure digital interface as well as SRAM. The transition from Background  
to Active mode is faster than the transition from Backup mode because system initialization is not required. There are  
four sources from which Background mode can be exited to return to Active mode: RTC interrupt, GPIO interrupt, USB  
interrupt, or RSTN assertion.  
Deep-Sleep Mode  
This mode corresponds to the Arm Cortex-M4 with FPU Deep-sleep mode. In this mode, the register settings and all  
volatile memory is preserved. The GPIO pins retain their state in this mode. The transition from Deep-sleep to Active  
mode is faster than the transition from Backup mode because system initialization is not required.  
The high-speed oscillator that generates the 120MHz system clock can be shut down to provide additional power savings  
over Sleep or Background modes.  
There are four sources from which Background mode can be exited to return to Active mode: RTC interrupt, GPIO  
interrupt, USB interrupt, or RSTN assertion.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 41  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Backup Mode  
This mode places the CPU in a static, low-power state that supports a fast wake-up to Active mode feature. In Backup  
mode, all of the SRAM can be retained with restrictions depending upon which supply is used to support this mode. Data  
retention in this mode can be maintained using only the V  
or V  
supplies. Optionally, the V  
voltage input  
CORE  
RTC  
CORE  
can be turned off at its source and an internal retention regulator can be enabled to power the state so that the V  
voltage input is all that is required for mode operation including the RTC.  
RTC  
If the V  
supply is used, then either 32KB or 96KB of SRAM can be retained and all GPIO can be retained. If the  
RTC  
V
CORE  
supply is subsequently turned on then the power mode will wake to the Active state.  
If the V  
supply is used, then either 32KB, 96KB, or 1024KB of SRAM can be retained and all GPIO can be retained.  
CORE  
There are four sources from which Background mode can be exited to return to Active mode: RTC interrupt, GPIO  
interrupt, USB interrupt, or RSTN assertion.  
Real-Time Clock  
A real-time clock (RTC) keeps the time of day in absolute seconds. The 32-bit seconds register can count up to  
approximately 136 years and be translated to calendar format by application software.  
The RTC provides a time-of-day alarm that can be programmed to any future value between 1 second and 12 days.  
When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to  
remain in an extremely low-power mode but still awaken periodically to perform assigned tasks. A second independent  
32-bit 1/4096 subsecond alarm can be programmed between 244μs and 1s. Both can be configured as recurring alarms.  
When enabled, either alarm can cause an interrupt or wake the device from most low power modes.  
The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing  
requirements in the Electrical Characteristics table.  
The RTC calibration feature provides the ability for user-software to compensate for minor variations in the RTC oscillator,  
crystal, temperature, and board layout. Enabling the 32KCAL alternate function outputs a timing signal derived from the  
RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with 1ppm  
resolution. Under most circumstances, the oscillator does not require any calibration.  
CRC Module  
A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application  
software. The CRC module supports the following polynomials:  
● CRC-16-CCITT  
32  
26  
23  
22  
16  
12  
11  
10  
8
7
5
4
2
● CRC-32 (X + X + X + X + X + X + X + X + X + X + X + X + X + X + 1)  
Programmable Timers  
32-Bit Timer/Counter/PWM (TMR)  
General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals  
with minimal software interaction. Each of the 32-bit timers can also be split into two 16-bit timers.  
The timer provides the following features:  
● 32-bit up/down autoreload  
● Programmable prescaler  
● PWM output generation  
● Capture, compare, and capture/compare capability  
● External pin multiplexed with GPIO for timer input, clock gating or capture  
● Timer output pin  
● Configurable as 2 × 16-bit general-purpose timers  
● Timer interrupt  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 42  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
32-BIT TIMER BLOCK  
APB  
BUS  
TIMER CONTROL  
REGISTER  
TIME INTERRUPT  
REGISTER  
32-BIT COMPARE  
REGISTER  
TIMER  
INTERRUPT  
COMPARE  
APB  
CLOCK  
INTERRUPT  
PWM AND TIMER  
OUTPUT  
32-BIT TIMER  
(WITH PRESCALER)  
CONTROL  
TIMER  
OUTPUT  
COMPARE  
32-BIT  
PWM/COMPARE  
TIMER  
INPUT  
Figure 9. 32-Bit Timer  
The MAX32650–MAX32652 provides six instances of the general-purpose 32-bit timer (TMR0–TMR5).  
Pulse Train Engine (PT)  
Multiple, independent pulse train generators can provide either a square wave or a repeating pattern from 2 to 32 bits  
in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit  
level allowing for multibit patterns. Each pulse train generator is independently configurable.  
The pulse train generators provide the following features:  
● Independently enabled  
● Safe enable and disable for pulse trains without bit banding  
● Multiple pin configurations allow for flexible layout  
● Pulse trains can be started/synchronized independently or as a group  
● Frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide  
by 4, divide by 8, and so on) of the input pulse train module clock  
● Multiple repetition options  
• Single shot (nonrepeating pattern of 2 to 32 bits)  
• Pattern repeats user-configurable number of times or indefinitely  
• Termination of one pulse train loop count can restart one or more other pulse trains  
The pulse train engine feature is an alternate function associated with a GPIO pin. In most cases, enabling the pulse train  
engine function supersedes the GPIO function.  
The MAX32650–MAX32652 provide up to 16 instances of the pulse train engine peripheral (PT[15:0]).  
Serial Peripherals  
Serial Peripheral Interface  
The serial peripheral interface (SPI) is a highly configurable, flexible, and efficient synchronous interface between multiple  
SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, and one or more slave  
select lines to address only the intended target device. The SPI operates independently and requires minimal processor  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 43  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
overhead.  
The provided SPI peripherals can operate in either slave or master mode and provide the following features:  
● SPI modes 0, 1, 2, 3 for single-bit communication  
● 3- or 4-wire mode for single-bit slave device communication  
● Full-duplex operation in single-bit, 4-wire mode  
● Dual and quad data modes supported  
● Multiple slave select lines on some instances  
● Multimaster mode fault detection  
● Programmable interface timing  
● Programmable SCK frequency and duty cycle  
● 32-byte transmit and receive FIFOs  
● Slave select assertion and deassertion timing with respect to leading/trailing SCK edge  
The MAX32650–MAX32652 provide four instances of the SPI peripheral (SPI0, SPI1 and SPI2, SPI3) in accordance with  
the specifications shown in Table 1:  
Table 1. SPI Configuration Options  
SLAVE SELECT  
LINES  
MAXIMUM FREQUENCY  
(MASTER MODE) (MHz)  
MAXIMUM FREQUENCY  
(SLAVE MODE) (MHz)  
INSTANCE  
DATA  
144  
140  
96  
TQFP WLP WLP  
SPI0  
SPI1  
SPI2  
3-wire, 4-wire  
3-wire, 4-wire  
3-wire, 4-wire  
1
4
4
1
4
4
0
4
3
60  
60  
60  
48  
48  
48  
3-wire, 4-wire, dual, or  
quad data support  
SPI3  
4
4
4
60  
48  
2
I S Interface  
2
The I S interface is a bidirectional, three-wire serial bus that provides serial communications for codecs and audio  
2
amplifiers compliant with the I S Bus Specification, June 5, 1996. It provides the following features:  
● Slave mode operation  
● Normal and left-justified data alignment  
● 16-bit audio transfer  
● Wakeup on FIFO status (full/empty/threshold)  
● Interrupts generated for FIFO status  
● Receiver FIFO depth of 32 bytes  
● Transmitter FIFO depth of 32 bytes  
2
The MAX32650–MAX32652 provide one instance of the I S peripheral that is multiplexed with the SPI2 peripheral.  
USB Controller  
The integrated USB device controller is compliant with the Hi-Speed (480Mbps) USB 2.0 specification. The integrated  
USB physical interface (PHY) reduces board space and system cost. An integrated voltage regulator enables smart  
switching between the main supply and V  
when connected to a USB host controller.  
DDB  
● Supports DMA for the endpoint buffers. A total of 12 endpoint buffers are supported with configurable selection of IN  
or OUT in addition to endpoint 0.  
● Isochronous, bulk, interrupt, and control transfers  
● Automatic packet splitting and combining  
● FIFOs up to 4096 bytes deep  
● Double packet buffering  
● USB 2.0 test mode support  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 44  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
2
I C Interface  
2
The I C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can  
2
operate as a one-to-one, one-to-many or many-to-many communications medium. Two I C master/slave interface to a  
2
2
wide variety of I C-compatible peripherals. These engines support standard mode, fast mode, and fast mode plus I C  
speeds. It provides the following features:  
● Master or slave mode operation  
● Supports standard 7-bit addressing or 10-bit addressing  
● RESTART condition  
● Interactive Receive mode  
● Tx FIFO Preloading  
● Support for clock stretching to allow slower slave devices to operate on higher speed busses  
● Multiple transfer rates  
• Standard mode: 100kbps  
• Fast mode: 400kbps  
• Fast mode plus: 1000kbps  
● Internal filter to reject noise spikes  
● Receiver FIFO depth of 8 bytes  
● Transmitter FIFO depth of 8 bytes  
2
The MAX32650–MAX32652 provide two instances of the I C peripheral (I2C0 and I2C1).  
UART  
The universal asynchronous receiver-transmitter (UART) interface supports full-duplex asynchronous communication  
with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port,  
the system uses two extra pins to implement the industry standard request to send (RTS) and clear to send (CTS) flow  
control signaling. Each UART is individually programmable.  
● 2-wire interface or 4-wire interface with flow control  
● 32-byte send/receive FIFO  
● Full-duplex operation for asynchronous data transfers  
● Interrupts available for frame error, parity error, CTS, RX FIFO overrun and FIFO full/partially full conditions  
● Automatic parity and frame error detection  
● Independent baud-rate generator  
● Programmable 9th bit parity support  
● Multidrop support  
● Start/stop bit support  
● Hardware flow control using RTS/CTS  
● Baud rate generation with ±2% optionally utilizing the 7.3727MHz oscillator baud rate clock  
● Maximum baud rate 4000kB  
● Two DMA channels can be connected (read and write FIFOs)  
● Programmable word size (5 bits to 8 bits)  
The MAX32650–MAX32652 provide three instances of the UART peripheral (UART0, UART1 and UART2) according to  
the specifications in Table 2:  
Table 2. UART Configuration Options  
FLOW CONTROL  
INSTANCE  
MAXIMUM BAUD RATE (kb)  
144 TQFP  
Yes  
140 WLP  
Yes  
96 WLP  
No  
UART0  
UART1  
UART2  
4000  
4000  
4000  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 45  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Serial Peripheral Interface Execute in Place (SPIX) Master  
There are two SPI execute-in-place master interfaces. One for SRAM (SPIXR) and one for flash (SPIXF) with dedicated  
slave selects. This feature allows the CPU to transparently execute instructions stored in an external SPI memory device.  
Instructions fetched through the SPI master are cached just like instructions fetched from internal program memory. The  
SPI SRAM master provides write-back capability. These two SPI execute in place master interfaces can also be used to  
access large amounts of external static data that would otherwise reside in internal data memory.  
1-Wire Master  
Maxim's 1-wire bus consists of a single line to provide both power and data communications and a ground return. The bus  
supports a serial, multidrop communication protocol between a master and one or more slave devices with the minimum  
amount of interconnection.  
Maxim's 1-wire bus consists of one signal that carries data and also supplies power to the slave devices, and a ground  
return. The bus master communicates serially with one or more slave devices through the bidirectional, multidrop 1-Wire  
bus. The single contact serial interface is ideal for communication networks requiring minimal interconnection.  
The provided 1-Wire master supports the following features:  
● Single contact for control and operation  
● Unique factory identifier for any 1-Wire device  
● Multiple device capability on a single line  
The MAX32650–MAX32652 1-Wire master supports both the standard (15.6 kbps) and overdrive (110 kbps) speeds.  
24-Bit Color TFT Controller  
The 24-bit color TFT controller is controlled by the CPU through the APB and fed graphic data through the AHB. The  
controller supports the following display types:  
● Active matrix TFT panels with up to 24-bit bus interface  
● Single/dual-panel monochrome STN panels (4-bit and 8-bit bus interfaces)  
● Single/dual-panel color STN panels, 8-bit bus interface  
● TFT panels up to 24 bpp, direct 8:8:8 RG  
● Color STN panels up to 16 bpp, direct 5:5:5 with one bit not being used  
● Mono STN panels up to 4 bpp, pelletized, 16 gray scales selected from 16  
The controller can be programmed to operate a wide range of panel resolutions (including but not limited to the following  
settings):  
● 320 x 200, 320 x 240  
● 640 x 200, 640 x 240, 640 x 480  
● 800 x 600  
● 1024 x 768  
● 2048 x 2048  
● 4096 x 4096  
Debug and Development Interface (SWD/JTAG)  
Special versions of the device are available with a serial wire debug or JTAG interface that is used only during application  
development and debugging. The interface is used for code loading, ICE debug activities, and control of boundary scan  
activities.  
Trust Protection Unit (MAX32651 Only)  
True Random Number Generator  
Random numbers are a vital part of a secure application, providing random numbers that can be used for cryptographic  
seeds or strong encryption keys to ensure data privacy.  
Software can use random numbers to trigger asynchronous events that result in nondeterministic behavior. This is helpful  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 46  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
in thwarting replay attacks or key search approaches. An effective true random number generator (TRNG) must be  
continuously updated by a high-entropy source.  
The provided TRNG is continuously driven by a physically-unpredictable entropy source. It generates a 128-bit true  
random number in 128 system clock cycles.  
The TRNG can support the system-level validation of many security standards such as FIPS 140-2, PCI-PED, and  
Common Criteria. Contact Maxim for details of compliance with specific standards.  
MAA  
The provided high-speed, hardware-based modulo arithmetic accelerator (MAA) performs mathematical computations  
that support strong cryptographic algorithms. These include:  
● 2048-bit DSA  
● 4096-bit RSA  
● Elliptic curve public key infrastructure  
AES  
The dedicated hardware-based AES engine supports the following algorithms:  
● AES-128  
● AES-192  
● AES-256  
The AES keys are automatically generated by the engine and stored in dedicated flash to protect against tampering. Key  
generation and storage is transparent to the user.  
SHA-256  
SHA-256 is a cryptographic hash function part of the SHA-2 family of algorithms. It authenticates user data and verifies  
its integrity. It is used for digital signatures.  
The device provides a hardware SHA-256 engine for fast computation of 256-bit digests.  
Memory Decryption Integrity Unit  
The external SPI flash can optionally be encrypted for additional security. Data can be transparently encrypted when it is  
loaded and decrypted on-the-fly. Encryption keys are stored in the always-on domain and preserved as as long as V  
is present.  
RTC  
Secure Bootloader  
The secure bootloader provides a secure, authenticated communication channel with a system host. The secure  
communication protocol (SCP) allows the programming of internal and external memory.  
The secure bootloader provides the following features:  
● Life cycle management  
● Authentications using ECDSA P-256, with 256-bit ECC key pairs and SHA-256 secure hash function  
● Preprogrammed Maxim manufacturer root key (MRK)  
● Programmable customer root key (CRK)  
● Support for 2048- or 4096-bit RSA digital signature  
Additional Documentation and Technical Support  
Designers must have the following documents to use all the features of this device.  
● This data sheet, which contains electrical/timing specifications, package information, and pin descriptions.  
● The corresponding revision-specific errata sheet.  
● The corresponding user guide, which contains detailed information and programming guidelines for core features and  
peripherals.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 47  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Applications Information  
GPIO and Alternate Function Matrix, 140 WLP  
Table 3. GPIO and Alternate Function Matrix, 140 WLP  
GPIO  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
P0.0  
PT3  
SPIXF_SDIO2**  
P0.1  
SPIXR_SDIO0**  
SPIXR_SDIO2**  
SPIXR_SCK**  
SPIXR_SDIO3**  
SPIXR_SDIO1**  
SPIXR_SS0**  
SPIXF_SS0**  
SPIXF_SCK**  
SPIXF_SDIO1**  
SPIXF_SDIO0**  
SPIXF_SDIO2**  
SPIXF_SDIO3**  
SPI3_SS1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
P0.16  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31  
P1.0  
CLCD_G0  
CLCD_G1  
CLCD_G2  
CLCD_G3  
CLCD_G4  
CLCD_G5  
CLCD_G6  
CLCD_G7  
SPI3_SS2  
SPI3_SDIO3  
SPI3_SCK  
SPI3_SDIO2  
SPI3_SS3  
SPI3_SS0  
SPI3_SDIO1  
SPI3_SDIO0  
SPI0_SS0  
CLCD_VDEN  
CLCD_CLK  
CLCD_HSYNC  
CLCD_B0  
TDI  
PT15  
RXEV  
TXEV  
TDI  
TDO  
TDO  
TMS (SWDIO)††  
TCK (SWDCLK)††  
TMS (SWDIO)††  
TCK (SWDCLK)††  
CLCD_B0  
SDHC_CDN  
SPIXF_SDIO3**  
SPIXF_SDIO1**  
SPIXF_SS0**  
CLCD_CLK  
32KCAL  
SDHC_CMD  
SDHC_DAT2  
SDHC_WP  
SDHC_DAT3  
P1.1  
P1.2  
P1.3  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 48  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 3. GPIO and Alternate Function Matrix, 140 WLP (continued)  
GPIO  
ALTERNATE FUNCTION 1  
SDHC_DAT0  
SDHC_CLK  
SDHC_DAT1  
UART2_CTS  
UART2_RTS  
UART2_RX  
UART2_TX  
HYP_CS0N  
HYP_D0  
ALTERNATE FUNCTION 2  
SPIXF_SDIO0**  
SPIXF_SCK**  
PT0  
P1.4  
P1.5  
P1.6  
P1.7  
PT1  
P1.8  
PT2  
P1.9  
PT3  
P1.10  
P1.11  
P1.12  
P1.13  
P1.14  
P1.15  
P1.16  
P1.17  
P1.18  
P1.19  
P1.20  
P1.21  
P1.22*  
P1.23  
P1.24  
P1.25  
P1.26  
P1.27  
P1.28  
P1.29  
P1.30  
P1.31  
P2.0  
PT4  
SPIXR_SDIO0**  
SPIXR_SDIO1**  
SPIXR_SS0**  
PT5  
HYP_D4  
HYP_RWDS  
HYP_D1  
SPIXR_SDIO2**  
SPIXR_SCK**  
HYP_D5  
PT9  
HYP_D6  
PT6  
HYP_D2  
PT7  
HYP_D3  
CLCD_HSYNC  
PT8  
HYP_D7  
SPI1_SS0  
CLCD_B1  
CLCD_B2  
CLCD_B3  
CLCD_B4  
CLCD_B5  
CLCD_B6  
CLCD_B7  
CLCD_R0  
CLCD_R1  
PT9  
SPI1_SS2  
SPI1_SS1  
SPI1_SCK  
SPI1_SS3  
SPI1_MISO  
SPI1_MOSI  
OWM_PUPEN  
OWM_IO  
SPI2_SS2  
P2.1  
SPI2_SS1  
PT10  
P2.2  
SPI2_SCK (I2S_BCLK)†  
SPI2_MISO (I2S_SDI)†  
SPI2_MOSI (I2S_SDO)†  
SPI2_SS0 (I2S_LRCLK)†  
SPI2_SS3  
CLCD_LEND  
CLCD_PWREN  
P2.3  
P2.4  
P2.5  
PT11  
P2.6  
CLCD_VSYNC  
P2.7  
I2C0_SDA  
P2.8  
I2C0_SCL  
P2.9  
UART0_CTS  
UART0_RTS  
UART0_RX  
PT12  
P2.10  
P2.11  
PT14  
PT13  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 49  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 3. GPIO and Alternate Function Matrix, 140 WLP (continued)  
GPIO  
P2.12  
P2.13  
P2.14  
P2.15  
P2.16  
P2.17  
P2.18  
P2.19  
P2.20  
P2.21  
P2.22  
P2.23  
P2.24  
P2.25  
P2.26  
P2.27  
P2.28  
P2.29  
P2.30  
P2.31  
P3.0  
ALTERNATE FUNCTION 1  
UART0_TX  
UART1_CTS  
UART1_RX  
UART1_RTS  
UART1_TX  
I2C1_SDA  
I2C1_SCL  
PT4  
ALTERNATE FUNCTION 2  
PT15  
CLCD_R2  
CLCD_R3  
CLCD_R4  
CLCD_R5  
CLCD_R6  
CLCD_R7  
PT5  
PT7  
PT8  
PT6  
SPIXR_SDIO3**  
PT10  
PT11  
PT12  
PT13  
PT14  
PT0  
PT1  
PT2  
PDOWN†††  
SPI0_MISO  
SPI0_MOSI  
SPI0_SCK  
TMR0  
HYP_CS1N  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
TMR2  
P3.6  
TMR4  
P3.7  
TMR1  
P3.8  
TMR3  
P3.9  
TMR5  
*GPIO not pinned out.  
**This signal can be mapped to more than one GPIO, but there is only one instance of this peripheral.  
I2S_BCLK, I2S_LRCLK, I2S_SDI, and I2S_SDO when enabled.  
††Single-wire debug when enabled.  
†††PDOWN is not operative during or immediately after reset since this function appears as an Alternate Function 1.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 50  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
GPIO and Alternate Function Matrix, 96 WLP  
Table 4. GPIO and Alternate Function Matrix, 96 WLP  
GPIO  
P0.0*  
P0.1*  
P0.2*  
P0.3*  
P0.4*  
P0.5*  
P0.6*  
P0.7*  
P0.8*  
P0.9*  
P0.10*  
P0.11  
P0.12*  
P0.13  
P0.14  
P0.15  
P0.16  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23*  
P0.24*  
P0.25*  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31*  
P1.0  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
SPIXF_SDIO2**  
P0.11  
SPI3_SS1  
SPI3_SS2  
SPI3_SDIO3  
SPI3_SCK  
SPI3_SDIO2  
SPI3_SS3  
SPI3_SS0  
SPI3_SDIO1  
SPI3_SDIO0  
CLCD_G0  
CLCD_G1  
CLCD_G2  
CLCD_G3  
CLCD_G4  
CLCD_G5  
CLCD_G6  
CLCD_G7  
CLCD_VDEN  
TDI  
TDO  
TMS (SWDIO)††  
TCK (SWDCLK)††  
CLCD_B0  
SDHC_CMD  
SDHC_DAT2  
SDHC_WP  
SDHC_DAT3  
SDHC_DAT0  
SDHC_CLK  
SDHC_DAT1  
SPIXF_SDIO3**  
SPIXF_SDIO1**  
SPIXF_SS0**  
CLCD_CLK  
SPIXF_SDIO0**  
SPIXF_SCK**  
PT0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 51  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 4. GPIO and Alternate Function Matrix, 96 WLP (continued)  
GPIO  
P1.7*  
P1.8  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
PT2  
UART2_RTS  
P1.9  
UART2_RX  
PT3  
P1.10  
P1.11  
P1.12  
P1.13  
P1.14  
P1.15  
P1.16  
P1.17*  
P1.18  
P1.19  
P1.20  
P1.21  
P1.22*  
P1.23  
P1.24  
P1.25  
P1.26  
P1.27  
P1.28  
P1.29  
P1.30  
P1.31  
P2.0  
UART2_TX  
PT4  
SPIXR_SDIO0**  
SPIXR_SDIO1**  
SPIXR_SS0**  
PT5  
SPIXR_SDIO2**  
SPIXR_SCK**  
PT6  
PT7  
CLCD_HSYNC  
PT8  
SPI1_SS0  
SPI1_SS2  
SPI1_SS1  
SPI1_SCK  
SPI1_SS3  
SPI1_MISO  
SPI1_MOSI  
OWM_PUPEN  
OWM_IO  
CLCD_B1  
CLCD_B2  
CLCD_B3  
CLCD_B4  
CLCD_B5  
CLCD_B6  
CLCD_B7  
CLCD_R0  
CLCD_R1  
PT9  
SPI2_SS2  
P2.1*  
P2.2  
SPI2_SCK (I2S-BCLK)†  
SPI2_MISO (I2S-SDI)†  
SPI2_MOSI (I2S-SDO)†  
SPI2_SS0 (I2S_LRCLK)†  
SPI2_SS3  
CLCD_LEND  
CLCD_PWREN  
P2.3  
P2.4  
P2.5  
PT11  
P2.6  
CLCD_VSYNC  
P2.7*  
P2.8*  
P2.9  
UART0_CTS  
PT12  
P2.10*  
P2.11  
P2.12  
P2.13  
P2.14  
UART0_RX  
UART0_TX  
UART1_CTS  
UART1_RX  
PT13  
PT15  
CLCD_R2  
CLCD_R3  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 52  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 4. GPIO and Alternate Function Matrix, 96 WLP (continued)  
GPIO  
P2.15  
P2.16  
P2.17  
P2.18  
P2.19*  
P2.20*  
P2.21*  
P2.22*  
P2.23  
P2.24*  
P2.25*  
P2.26*  
P2.27*  
P2.28*  
P2.29*  
P2.30*  
P2.31*  
P3.0*  
P3.1*  
P3.2*  
P3.3*  
P3.4  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
UART1_RTS  
CLCD_R4  
UART1_TX  
CLCD_R5  
I2C1_SDA  
I2C1_SCL  
CLCD_R6  
CLCD_R7  
PT6  
SPIXR_SDIO3**  
TMR0  
TMR2  
TMR4  
TMR1  
TMR3  
TMR5  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
*GPIO not pinned out.  
**This signal can be mapped to more than one GPIO, but there is only one instance of this peripheral.  
I2S_BCLK, I2S_LRCLK, I2S_SDI, I2S_SDO when enabled.  
††Single-wire debug when enabled.  
GPIO and Alternate Function Matrix, 144 TQFP  
Table 5. GPIO and Alternate Function Matrix, 144 TQFP  
GPIO  
P0.0*  
P0.1  
P0.2  
P0.3  
P0.4  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
SPIXR_SDIO0**  
SPIXR_SDIO2**  
SPIXR_SCK**  
SPIXR_SDIO3**  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 53  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 5. GPIO and Alternate Function Matrix, 144 TQFP (continued)  
GPIO  
ALTERNATE FUNCTION 1  
SPIXR_SDIO1**  
SPIXR_SS0**  
SPIXF_SS0**  
SPIXF_SCK**  
SPIXF_SDIO1**  
SPIXF_SDIO0**  
SPIXF_SDIO2**  
SPIXF_SDIO3**  
SPI3_SS1  
ALTERNATE FUNCTION 2  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
P0.16  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31  
P1.0  
CLCD_G0  
CLCD_G1  
CLCD_G2  
CLCD_G3  
CLCD_G4  
CLCD_G5  
CLCD_G6  
CLCD_G7  
SPI3_SS2  
SPI3_SDIO3  
SPI3_SCK  
SPI3_SDIO2  
SPI3_SS3  
SPI3_SS0  
SPI3_SDIO1  
SPI3_SDIO0  
SPI0_SS0  
CLCD_VDEN  
CLCD_CLK  
CLCD_HSYNC  
CLCD_B0  
PT15  
RXEV  
TXEV  
TDI  
TDO  
TMS (SWDIO)†††  
TCK (SWDCLK)†††  
CLCD_B0  
SDHC_CDN  
SPIXF_SDIO3**  
SPIXF_SDIO1**  
SPIXF_SS0**  
CLCD_CLK  
SPIXF_SDIO0**  
SPIXF_SCK**  
PT0  
32KCAL  
SDHC_CMD  
SDHC_DAT2  
SDHC_WP  
SDHC_DAT3  
SDHC_DAT0  
SDHC_CLK  
SDHC_DAT1  
UART2_CTS  
UART2_RTS  
UART2_RX  
UART2_TX  
HYP_CS0N  
HYP_D0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
PT1  
P1.8  
PT2  
P1.9  
PT3  
P1.10  
P1.11  
P1.12  
PT4  
SPIXR_SDIO0**  
SPIXR_SDIO1**  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 54  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 5. GPIO and Alternate Function Matrix, 144 TQFP (continued)  
GPIO  
P1.13  
P1.14  
P1.15  
P1.16  
P1.17  
P1.18  
P1.19  
P1.20  
P1.21  
P1.22  
P1.23  
P1.24  
P1.25  
P1.26  
P1.27  
P1.28  
P1.29  
P1.30  
P1.31  
P2.0  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
SPIXR_SS0**  
PT5  
HYP_D4  
HYP_RWDS  
HYP_D1  
SPIXR_SDIO2**  
SPIXR_SCK**  
-
HYP_D5  
PT9  
HYP_D6  
PT6  
HYP_D2  
PT7  
HYP_D3  
CLCD_HSYNC  
PT8  
HYP_D7  
SPI1_SS0  
CLCD_B1  
CLCD_B2  
CLCD_B3  
CLCD_B4  
CLCD_B5  
CLCD_B6  
CLCD_B7  
CLCD_R0  
CLCD_R1  
PT9  
SPI1_SS2  
SPI1_SS1  
SPI1_SCK  
SPI1_SS3  
SPI1_MISO  
SPI1_MOSI  
OWM_PUPEN  
OWM_IO  
SPI2_SS2  
P2.1  
SPI2_SS1  
PT10  
P2.2  
SPI2_SCK (I2S-BCLK)†  
SPI2_MISO (I2S-SDI)†  
SPI2_MOSI (I2S-SDO)†  
SPI2_SS0 (I2S_LRCLK)†  
SPI2_SS3  
CLCD_LEND  
CLCD_PWREN  
P2.3  
P2.4  
P2.5  
PT11  
P2.6  
CLCD_VSYNC  
P2.7  
I2C0_SDA  
P2.8  
I2C0_SCL  
P2.9  
UART0_CTS  
UART0_RTS  
UART0_RX  
UART0_TX  
UART1_CTS  
UART1_RX  
UART1_RTS  
UART1_TX  
I2C1_SDA  
PT12  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
P2.16  
P2.17  
P2.18  
P2.19*  
P2.20*  
PT14  
PT13  
PT15  
CLCD_R2  
CLCD_R3  
CLCD_R4  
CLCD_R5  
CLCD_R6  
CLCD_R7  
I2C1_SCL  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 55  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Table 5. GPIO and Alternate Function Matrix, 144 TQFP (continued)  
GPIO  
P2.21*  
P2.22*  
P2.23  
P2.24*  
P2.25  
P2.26  
P2.27*  
P2.28  
P2.29*  
P2.30  
P2.31*  
P3.0  
ALTERNATE FUNCTION 1  
ALTERNATE FUNCTION 2  
PT6  
SPIXR_SDIO3**  
PT11  
PT12  
PT14  
PT1  
PDOWN††  
SPI0_MISO  
SPI0_MOSI  
SPI0_SCK  
TMR0  
TMR2  
TMR4  
TMR1  
TMR3  
TMR5  
HYP_CS1N  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
*GPIO not pinned out.  
**This signal can be mapped to more than one GPIO, but there is only one instance of this peripheral.  
I2S_BCLK, I2S_LRCLK, I2S_SDI, I2S_SDO when enabled.  
††PDOWN does not operate during or immediately after reset since this function appears as an Alternate Function 1.  
†††Single-wire debug when enabled.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 56  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Typical Application Circuits  
Pulse Oximeter and Heart Rate Monitor with BLE and GPS Location  
V
V
DD  
DD  
V
V
V
V
DD  
DD  
DD  
DD  
V
V
DD  
DD  
ACCELEROMETER  
SDA SCL  
GPS  
R
R
R
R
PU_SDA1  
PU_SCL0  
PU_SDA0  
PU_SCL1  
SDA SCL  
SDA1 SCL1  
GPIO1  
POWER  
MANAGEMENT  
V
V
BAT  
V
DD  
BAT  
SDA  
SCL  
SDA0 SCL0  
RTC  
SCL  
SDA  
V
V
DD  
LED+  
BAT  
Li+  
2.7 TO  
5.5V  
MAX30101  
HIGH-SENSITIVITY PULSE  
OXIMETER AND HEART RATE  
SENSOR FOR WEARABLE  
HEALTH  
INT  
GND  
RSTN  
RST  
MAX32650  
DRIVEP  
MAX32651  
MAX32652  
VDD  
V
DD  
VIBRATION  
MOTOR  
M
1.8V  
1.8V BUCK  
1.1V BUCK  
1.8V LDO  
V
DDIO  
DRIVEN  
HV  
1.1V  
1.8V  
V
V
CORE  
SPI  
BLUETOOTH™ LOW ENERGY  
RTC  
TFT  
CONTROLLER  
24-BIT COLOR TFT DISPLAY  
V
DD  
3.3V  
3.3V LDO  
V
DDB  
LED0  
LED1  
DP  
DM  
SECURE DIGITAL HIGH  
CAPACITY STORAGE  
USB 2.0 HI-SPEED  
SDHC  
CONTROLLER  
PIEZO  
BUZZER  
The Bluetooth word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks  
by Maxim is under license.  
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
HyperBus is a trademark of Cypress Semiconductor Corporation.  
XCCELA is a trademark of Micron Technology, Inc.  
microSD is a registered trademark of SD-3C.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 57  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Ordering Information  
TRUST PROTECTION UNIT  
PART  
WITH SECURE  
BOOTLOADER  
PIN-PACKAGE  
MAX32650GWQ+  
MAX32650GWQ+T  
MAX32650GCE+  
MAX32651GWQ+  
MAX32651GWQ+T  
MAX32651GCE+  
MAX32651GWE+  
MAX32651GWE+T  
MAX32652GWE+  
MAX32652GWE+T  
NO  
NO  
96 WLP (0.4mm pitch)  
96 WLP (0.4mm pitch)  
144 TQFP  
NO  
YES  
YES  
YES  
YES  
YES  
NO  
96 WLP (0.4mm pitch)  
96 WLP (0.4mm pitch)  
144 TQFP  
140 WLP (0.35mm pitch)  
140 WLP (0.35mm pitch)  
140 WLP (0.35mm pitch)  
140 WLP (0.35mm pitch)  
NO  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
19-100220  
www.maximintegrated.com  
Maxim Integrated | 58  
MAX32650–MAX32652  
Ultra-Low-Power Arm Cortex-M4 Processor  
with FPU-Based Microcontroller (MCU) with 3MB  
Flash and 1MB SRAM  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
12/17  
3/18  
0
1
Initial release  
Updated General Description and Benefits and Features sections  
1
Updated title, Absolute Maximum Ratings, Debug and Development Interface (SWD/  
JTAG), and Ordering Information sections  
2
3
10/18  
12/18  
1, 2, 39, 46  
Updated Debug and Development Interface (SWD/JTAG) section and Ordering  
Information  
39, 46  
Updated General Description, Benefits and Features, Simplified Block Diagram,  
Absolute Maximum Ratings, Package Information, Electrical Characteristics, Figure  
1, Figure 2, Pin Description, Secure Digital Interface, Spansion HyperBus/XCCELA  
Bus, Clocking Scheme, Figure 8, Standard DMA Controller, Background Mode,  
Deep-Sleep Mode, Real-Time Clock, UART, 24-Bit Color TFT Controller, Additional  
Documentation and Technical Support, Table 3, Table 4, Table 5, Pulse Oximeter  
and Heart Rate Monitor with BLE and GPS Location, and Ordering Information  
1, 2, 7–11, 13,  
19, 25, 33,  
35–41, 43, 44,  
48, 49, 56  
4
8/19  
5
6
2/20  
3/20  
Updated Ordering Information  
Updated Ordering Information  
58  
58  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
© 2020 Maxim Integrated Products, Inc.  

相关型号:

MAX32651GWE+T

Microcontroller,
MAXIM

MAX32652

MAX32650 Evaluation Kit
MAXIM

MAX32652GWE+

RISC Microcontroller,
MAXIM

MAX3265C/D

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3265CUB

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3265CUB+

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3265CUB+T

暂无描述
MAXIM

MAX3265CUB-T

Telecom Circuit, 1-Func, Bipolar, PDSO10, EXPOSED PAD, MO-187C-BA, MICRO MAX, PACKAGE-10
MAXIM

MAX3265CUE

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3265CUE+

Telecom Circuit, 1-Func, Bipolar, PDSO16, 4.40 MM, LEAD FREE, EXPOSED PAD, MO-153ABT, TSSOP-16
MAXIM

MAX3265EUE

3.0V to 5.5V, 1.25Gbps/2.5Gbps Limiting Amplifiers
MAXIM

MAX3265EUE+

Telecom Circuit, 1-Func, Bipolar, PDSO16, 4.40 MM, LEAD FREE, EXPOSED PAD, MO-153ABT, TSSOP-16
MAXIM