MAX3073EESD+ [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, 0.150 INCH, MS-012AB, SOIC-14;
MAX3073EESD+
型号: MAX3073EESD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, 0.150 INCH, MS-012AB, SOIC-14

文件: 总25页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2668; Rev 1; 1/03  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
General Description  
Features  
The MAX3070E–MAX3079E 3.3V, ±±15V EꢀSD-proeꢁoeꢂ,  
RꢀD481/RꢀD422 opansꢁeiveps feaoupe rne ꢂpivep anꢂ rne  
peꢁeivep. These ꢂeviꢁes inꢁluꢂe failDsafe ꢁipꢁuiopy, guapD  
anoeeing a lrgiꢁDhigh peꢁeivep ruo-uo when peꢁeivep  
in-uos ape r-en rp shrpoeꢂ. The peꢁeivep ruo-uos a lrgiꢁ  
high if all opansmiooeps rn a oepminaoeꢂ bus ape ꢂisableꢂ  
(high im-eꢂanꢁe). The MAX3070E–MAX3079E inꢁluꢂe a  
hroDswa- ꢁa-abilioy or eliminaoe false opansioirns rn ohe  
bus ꢂuping -rwepDu- rp hro insepoirn.  
3.3V Operation  
Electrostatic Discharge (ESD) Protection for  
RS-485 I/O Pins  
±±5ꢀV ꢁHuan ꢂoꢃd ꢄoꢃel  
TrHe Fail-Safe Receiver While ꢄaintaining  
EIA/TIA-485 Coupatibilitd  
ꢁot-Swap InpHt StrHctHre on DE anꢃ RE  
The MAX3070E/MAX307±E/MAX3072E feaoupe peꢂuꢁeꢂ  
slewDpaoe ꢂpiveps ohao minimize EMI anꢂ peꢂuꢁe pefleꢁD  
oirns ꢁauseꢂ by im-pr-eply oepminaoeꢂ ꢁables, allrwing  
epprpDfpee ꢂaoa opansmissirn u- or 2105b-s. The  
MAX3073E/MAX3074E/MAX3071E alsr feaoupe slewD  
paoeDlimioeꢂ ꢂpiveps buo allrw opansmio s-eeꢂs u- or  
1005b-s. The MAX3076E/MAX3077E/MAX3078E ꢂpivep  
slew paoes ape nro limioeꢂ, ma5ing opansmio s-eeꢂs u- or  
±6Mb-s -rssible. The MAX3079E slew paoe is -in  
seleꢁoable frp 2105b-s, 1005b-s, anꢂ ±6Mb-s.  
Enhanceꢃ Slew-Rate Liuiting Facilitates Error-  
Free Data Transuission  
(ꢄAX3070E–ꢄAX3075E/ꢄAX3079E)  
Low-CHrrent ShHtꢃown ꢄoꢃe (Except  
ꢄAX307±E/ꢄAX3074E/ꢄAX3077E)  
Pin-Selectable FHll-/ꢁalf-DHplex Operation  
(ꢄAX3079E)  
Phase Controls to Correct for Twisteꢃ-Pair  
Reversal (ꢄAX3079E)  
The MAX3072E/MAX3071E/MAX3078E ape inoenꢂeꢂ frp  
halfDꢂu-lex ꢁrmmuniꢁaoirns, anꢂ ohe MAX3070E/  
MAX307±E/MAX3073E/MAX3074E/MAX3076E/MAX307  
7E ape inoenꢂeꢂ frp fullDꢂu-lex ꢁrmmuniꢁaoirns. The  
MAX3079E is seleꢁoable frp halfDꢂu-lex rp fullDꢂu-lex  
r-epaoirn. Io alsr feaoupes inꢂe-enꢂenoly -prgpammable  
peꢁeivep anꢂ opansmiooep ruo-uo -hase ohprugh  
se-apaoe -ins.  
Allow Up to 256 Transceivers on the ꢂHs  
Available in InꢃHstrd-Stanꢃarꢃ 8-Pin SO Pacꢀage  
Ordering Information  
The MAX3070E–MAX3079E opansꢁeiveps ꢂpaw 800µA  
rf su--ly ꢁuppeno when unlraꢂeꢂ rp when fully lraꢂeꢂ  
wioh ohe ꢂpiveps ꢂisableꢂ. All ꢂeviꢁes have a ±/8Dunio  
lraꢂ peꢁeivep in-uo im-eꢂanꢁe, allrwing u- or 216  
opansꢁeiveps rn ohe bus.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
MAX3070EEPD  
MAX3070EESD  
MAX3070EAPD  
MAX3070EASD  
MAX3071EEPA  
MAX3071EESA  
MAX3071EAPA  
MAX3071EASA  
-40°C to +125°C 14 Plastic DIP  
-40°C to +125°C 14 SO  
Applications  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
Lighoing ꢀysoems  
Inꢂusopial Crnoprl  
Teleꢁrm  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
ꢀeꢁupioy ꢀysoems  
Insopumenoaoirn  
Ordering Information continued at end of data sheet.  
Selector Guide, Pin Configurations, and Typical Operating  
Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND)  
Continuous Power Dissipation (ꢁ = +70°C)  
A
Supply Voltage (V ).............................................................+6V  
Control Input Voltage (RE% DE% SLR%  
H/F% ꢁXP% RXP)......................................................-0.3V to +6V  
Driver Input Voltage (DI)...........................................-0.3V to +6V  
Driver Output Voltage (Z% Y% A% B) .............................-8V to +13V  
Receiver Input Voltage (A% B)....................................-8V to +13V  
Receiver Input Voltage  
8-Pin SO (derate 5.88ꢂW/°C above +70°C) .................471ꢂW  
8-Pin Plastic DIP (derate 9.09ꢂW/°C above +70°C) .....727ꢂW  
14-Pin SO (derate 8.33ꢂW/°C above +70°C) ...............667ꢂW  
14-Pin Plastic DIP (derate 10.0ꢂW/°C above +70°C) ...800ꢂW  
Operating ꢁeꢂperature Ranges  
MAX307_EE_ _ ................................................-40°C to +85°C  
MAX307_EA_ _ ..............................................-40°C to +125°C  
Junction ꢁeꢂperature......................................................+150°C  
Storage ꢁeꢂperature Range.............................-65°C to +150°C  
Lead ꢁeꢂperature (soldering% 10s) .................................+300°C  
CC  
Full Duplex (A% B) ..................................................-8V to +13V  
Receiver Output Voltage (RO)....................-0.3V to (V  
+ 0.3V)  
CC  
Driver Output Current ..................................................... 250ꢂA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V 10ꢀ% ꢁ =ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
R = 100(RS422)% Figure 1  
2
V
V
V
L
CC  
CC  
CC  
Differential Driver Output  
V
V
R = 54(RS485)% Figure 1  
1.5  
OD  
L
No load  
Change in Magnitude of  
Differential Output Voltage  
V  
R = 100or 54% Figure 1 (Note 2)  
0.2  
3
V
V
V
OD  
L
Driver Coꢂꢂon-Mode Output  
Voltage  
V
R = 100or 54% Figure 1  
L
V
/ 2  
CC  
OC  
Change in Magnitude of  
Coꢂꢂon-Mode Voltage  
V  
R = 100or 54% Figure 1 (Note 2)  
L
0.2  
OC  
Input High Voltage  
Input Low Voltage  
V
DE% DI% RE% ꢁXP% RXP% H/F  
DE% DI% RE% ꢁXP% RXP% H/F  
DE% DI% RE% ꢁXP% RXP% H/F  
DE% DI% RE  
2
V
V
IH  
V
0.8  
IL  
Input Hysteresis  
V
100  
ꢂV  
µA  
kΩ  
µA  
V
HYS  
IN1  
Input Current  
I
1
10  
40  
Input Iꢂpedance First ꢁransition  
Input Current  
DE  
1
I
ꢁXP% RXP% H/F internal pulldown  
10  
IN2  
SRL Input High Voltage  
SRL Input Middle Voltage  
SRL Input Low Voltage  
V
- 0.4  
CC  
V
x 0.4  
V
CC  
x 0.6  
0.4  
V
CC  
V
SRL = V  
75  
CC  
SRL Input Current  
µA  
µA  
SRL = GND  
-75  
V
V
= +12V  
= -7V  
125  
IN  
IN  
Output Leakage (Y and Z)  
Full Duplex  
DE = GND%  
I
O
V
= GND or 3.6V  
CC  
-100  
2
_______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V 10ꢀ% ꢁ =ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
12V (Note 3)  
MIN  
40  
TYP  
MAX  
250  
-40  
UNITS  
0 V  
OUꢁ  
Driver Short-Circuit Output  
Current  
I
ꢂA  
OSD  
-7V V  
V  
(Note 3)  
-250  
20  
OUꢁ  
CC  
(V  
CC  
- 1V) V  
12V (Note 3)  
OUꢁ  
Driver Short-Circuit Foldback  
Output Current  
I
ꢂA  
OSDF  
-7V V  
1V (Note 3)  
-20  
OUꢁ  
ꢁherꢂal-Shutdown ꢁhreshold  
ꢁherꢂal-Shutdown Hysteresis  
175  
15  
°C  
°C  
ꢁS  
ꢁSH  
V
V
= +12V  
= -7V  
125  
DE = GND%  
= GND or 3.6  
IN  
IN  
Input Current (A and B)  
I
µA  
A% B  
V
CC  
-100  
-200  
RECEIVER  
Receiver Differential ꢁhreshold  
Voltage  
V
-7V V  
12V  
CM  
-125  
15  
-50  
ꢂV  
ꢁH  
Receiver Input Hysteresis  
RO Output High Voltage  
RO Output Low Voltage  
V  
V
+ V = 0V  
A B  
ꢂV  
V
ꢁH  
V
I
I
= -1ꢂA  
= 1ꢂA  
O
V
- 0.6  
CC  
OH  
O
V
0.4  
1
V
OL  
ꢁhree-State Output Current at  
Receiver  
I
0 V V  
µA  
kΩ  
ꢂA  
OZR  
O
CC  
Receiver Input Resistance  
R
-7V V  
12V  
96  
IN  
CM  
Receiver Output Short-Circuit  
Current  
I
0V V  
V  
CC  
80  
OSR  
RO  
SUPPLY CURRENT  
No load% RE = 0% DE = V  
0.8  
0.8  
0.8  
1.5  
1.5  
1.5  
CC  
Supply Current  
I
ꢂA  
µA  
kV  
No load% RE = V % DE = V  
CC  
CC  
CC  
No load% RE = 0% DE = 0  
Supply Current in Shutdown  
Mode  
I
RE = V % DE = GND  
0.05  
10  
SHDN  
CC  
ESD PROTECTION  
ESD Protection for Y% Z% A% and B  
Huꢂan Body Model  
15  
Note 1: All currents into the device are positive. All currents out of the device are negative. All voltages are referred to device  
ground% unless otherwise noted.  
Note 2: V  
and V  
are the changes in V  
and V % respectively% when the DI input changes state.  
OD  
OC  
OD OC  
Note 3: ꢁhe short-circuit output current applies to peak current just prior to foldback current liꢂiting. ꢁhe short-circuit foldback out-  
put current applies during current liꢂiting to allow a recovery froꢂ bus contention.  
_______________________________________________________________________________________  
3
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
DRIVER SWITCHING CHARACTERISTICS  
MAX3070E/MAX3071E/MAX3072E/MAX3079E with SRL = UNCONNECTED (250kbps)  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V = 3.3V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 50pF% R = 54% Figures 2 and 3  
MIN  
250  
250  
TYP  
MAX  
1500  
1500  
UNITS  
t
t
DPLH  
DPHL  
Driver Propagation Delay  
ns  
L
L
Driver Differential Output Rise or  
Fall ꢁiꢂe  
t
t
C = 50pF% R = 54% Figures 2 and 3  
350  
1600  
200  
ns  
ns  
DR % DF  
L
L
Differential Driver Output Skew  
t
C = 50pF% R = 54% Figures 2 and 3  
DSKEW  
L
L
|t  
- t  
|
DPLH DPHL  
Maxiꢂuꢂ Data Rate  
250  
kbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable ꢁiꢂe froꢂ Low  
Driver Disable ꢁiꢂe froꢂ High  
t
Figure 4  
Figure 5  
Figure 5  
Figure 4  
2500  
2500  
100  
DZH  
t
t
ns  
DZL  
DLZ  
DHZ  
ns  
t
100  
ns  
Driver Enable froꢂ Shutdown to  
Output High  
t
Figure 4  
Figure 5  
5500  
ns  
DZH(SHDN)  
Driver Enable froꢂ Shutdown to  
Output Low  
t
5500  
600  
ns  
ns  
DZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
200  
SHDN  
RECEIVER SWITCHING CHARACTERISTICS  
MAX3070E/MAX3071E/MAX3072E/MAX3079E with SRL = UNCONNECTED (250kbps)  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V = 3.3V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 15pF% Figures 6 and 7  
MIN  
TYP  
MAX  
200  
UNITS  
t
t
RPLH  
RPHL  
Receiver Propagation Delay  
ns  
L
200  
Receiver Output Skew  
t
C = 15pF% Figures 6 and 7  
L
30  
ns  
RSKEW  
|t  
- t  
|
RPLH RPHL  
Maxiꢂuꢂ Data Rate  
250  
kbps  
ns  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable ꢁiꢂe froꢂ Low  
Receiver Disable ꢁiꢂe froꢂ High  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
50  
50  
50  
50  
RZL  
t
ns  
RZH  
t
ns  
RLZ  
t
ns  
RHZ  
Receiver Enable froꢂ Shutdown  
to Output High  
t
Figure 8  
Figure 8  
4000  
ns  
RZH(SHDN)  
Receiver Enable froꢂ Shutdown  
to Output Low  
t
4000  
600  
ns  
ns  
RZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
200  
SHDN  
4
_______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
DRIVER SWITCHING CHARACTERISTICS  
MAX3073E/MAX3074E/MAX3075E/MAX3079E with SRL = V  
(500kbps)  
CC  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.)  
CC  
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 50pF% R = 54% Figures 2 and 3  
MIN  
180  
180  
TYP  
MAX  
800  
UNITS  
t
t
DPLH  
DPHL  
Driver Propagation Delay  
ns  
L
L
800  
Driver Differential Output Rise or  
Fall ꢁiꢂe  
t
t
C = 50pF% R = 54% Figures 2 and 3  
200  
800  
100  
ns  
ns  
DR % DF  
L
L
Differential Driver Output Skew  
t
C = 50pF% R = 54% Figures 2 and 3  
DSKEW  
L
L
|t  
- t  
|
DPLH DPHL  
Maxiꢂuꢂ Data Rate  
500  
kbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable ꢁiꢂe froꢂ Low  
Driver Disable ꢁiꢂe froꢂ High  
t
Figure 4  
Figure 5  
Figure 5  
Figure 4  
2500  
2500  
100  
DZH  
t
t
ns  
DZL  
DLZ  
DHZ  
ns  
t
100  
ns  
Driver Enable froꢂ Shutdown to  
Output High  
t
Figure 4  
Figure 5  
4500  
ns  
DZH(SHDN)  
Driver Enable froꢂ Shutdown to  
Output Low  
t
4500  
600  
ns  
ns  
DZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
200  
SHDN  
RECEIVER SWITCHING CHARACTERISTICS  
MAX3073E/MAX3074E/MAX3075E/MAX3079E with SRL = V  
(500kbps)  
CC  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= 3.3V and ꢁ = +25°C.)  
CC  
MIN  
MAX  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 15pF% Figures 6 and 7  
MIN  
TYP  
MAX  
200  
UNITS  
t
t
RPLH  
RPHL  
Receiver Propagation Delay  
ns  
L
200  
Receiver Output Skew  
t
C = 15pF% Figures 6 and 7  
L
30  
ns  
RSKEW  
|t  
- t  
|
RPLH RPHL  
Maxiꢂuꢂ Data Rate  
500  
kbps  
ns  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable ꢁiꢂe froꢂ Low  
Receiver Disable ꢁiꢂe froꢂ High  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
50  
50  
50  
50  
RZL  
t
ns  
RZH  
t
ns  
RLZ  
t
ns  
RHZ  
Receiver Enable froꢂ Shutdown  
to Output High  
t
Figure 8  
Figure 8  
4000  
ns  
RZH(SHDN)  
Receiver Enable froꢂ Shutdown  
to Output Low  
t
4000  
600  
ns  
ns  
RZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
200  
SHDN  
_______________________________________________________________________________________  
5
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
DRIVER SWITCHING CHARACTERISTICS  
MAX3076E/MAX3077E/MAX3078E/MAX3079E with SRL = GND (16Mbps)  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V = 3.3V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 50pF% R = 54% Figures 2 and 3  
MIN  
TYP  
MAX  
50  
UNITS  
t
t
DPLH  
DPHL  
Driver Propagation Delay  
ns  
L
L
50  
Driver Differential Output Rise or  
Fall ꢁiꢂe  
t
t
C = 50pF% R = 54% Figures 2 and 3  
15  
8
ns  
ns  
DR % DF  
L
L
Differential Driver Output Skew  
t
C = 50pF% R = 54% Figures 2 and 3  
DSKEW  
L
L
|t  
- t  
|
DPLH DPHL  
Maxiꢂuꢂ Data Rate  
16  
Mbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable ꢁiꢂe froꢂ Low  
Driver Disable ꢁiꢂe froꢂ High  
t
Figure 4  
Figure 5  
Figure 5  
Figure 4  
150  
150  
100  
100  
DZH  
t
t
ns  
DZL  
DLZ  
DHZ  
ns  
t
ns  
Driver Enable froꢂ Shutdown to  
Output High  
t
Figure 4  
Figure 5  
1250  
1800  
ns  
DZH(SHDN)  
Driver Enable froꢂ Shutdown to  
Output Low  
t
1250  
200  
1800  
600  
ns  
ns  
DZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
SHDN  
RECEIVER SWITCHING CHARACTERISTICS  
MAX3076E/MAX3077E/MAX3078E/MAX3079E with SRL = GND (16Mbps)  
(V  
= 3.3V 10ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V = 3.3V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
C = 15pF% Figures 6 and 7  
MIN  
TYP  
40  
MAX  
75  
UNITS  
t
t
RPLH  
RPHL  
Receiver Propagation Delay  
ns  
L
40  
75  
Receiver Output Skew  
t
C = 15pF% Figures 6 and 7  
L
8
ns  
RSKEW  
|t  
- t  
|
RPLH RPHL  
Maxiꢂuꢂ Data Rate  
16  
Mbps  
ns  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable ꢁiꢂe froꢂ Low  
Receiver Disable ꢁiꢂe froꢂ High  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
50  
50  
50  
50  
RZL  
t
ns  
RZH  
t
ns  
RLZ  
RHZ  
t
ns  
Receiver Enable froꢂ Shutdown  
to Output High  
t
Figure 8  
Figure 8  
1800  
ns  
RZH(SHDN)  
Receiver Enable froꢂ Shutdown  
to Output Low  
t
1800  
600  
ns  
ns  
RZL(SHDN)  
ꢁiꢂe to Shutdown  
t
50  
200  
SHDN  
6
_______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Typical Operating Characteristics  
(V  
= 3.3V% ꢁ = +25°C% unless otherwise noted.)  
CC  
A
OUTPUT CURRENT  
vs. RECEIVER OUTPUT HIGH VOLTAGE  
OUTPUT CURRENT  
vs. RECEIVER OUTPUT LOW VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
1.0  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0.9  
0.8  
0.7  
0.6  
0.5  
DE = V  
CC  
DE = 0  
0
0
-50 -25  
0
25  
50  
75 100 125  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT HIGH VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
I
= -1mA  
O
I
= -1mA  
O
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT  
vs. TRANSMITTER OUTPUT HIGH VOLTAGE  
OUTPUT CURRENT  
vs. TRANSMITTER OUTPUT LOW VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
2.60  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
R = 54Ω  
L
60  
60  
40  
40  
20  
20  
0
0
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
0
2
4
6
8
10  
12  
-50 -25  
0
25  
50  
75 100 125  
OUTPUT HIGH VOLTAGE (V)  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= 3.3V% ꢁ = +25°C% unless otherwise noted.)  
CC  
A
DRIVER PROPAGATION DELAY  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE (500kbps)  
vs. TEMPERATURE (250kbps)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
1000  
900  
800  
700  
600  
500  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
t
DPLH  
t
DPLH  
t
t
DPHL  
DPHL  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE (16Mbps)  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE (250kbps AND 500kbps)  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE (16Mbps)  
30  
25  
20  
15  
10  
5
150  
120  
90  
60  
30  
0
70  
60  
50  
40  
30  
20  
10  
0
t
DPLH  
t
DPLH  
t
DPLH  
t
DPHL  
t
DPHL  
t
DPHL  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER PROPAGATION DELAY  
(250kbps AND 500kbps)  
DRIVER PROPAGATION DELAY (250kbps)  
MAX3070E toc17  
MAX3070E toc16  
V
- V  
B
A
DI  
2V/div  
1V/div  
V
- V  
Z
RO  
2V/div  
Y
2V/div  
200ns/div  
1µs/div  
8
_______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= 3.3V% ꢁ = +25°C% unless otherwise noted.)  
A
CC  
DRIVER PROPAGATION DELAY (500kbps)  
DRIVER PROPAGATION DELAY (16Mbps)  
RECEIVER PROPAGATION DELAY (16Mbps)  
MAX3070E toc20  
MAX3070E toc18  
MAX3070E toc19  
V
A
1V/div  
DI  
2V/div  
DI  
2V/div  
V
B
1V/div  
V
Z
1V/div  
V
- V  
Z
Y
2V/div  
RO  
2V/div  
V
Y
1V/div  
400ns/div  
10ns/div  
20ns/div  
Test Circuits and Waveforms  
3V  
DE  
Y
R /2  
L
Y
V
OD  
DI  
R
C
L
V
L
OD  
V
R /2  
L
OC  
Z
Z
Figure 1. Driver DC Test Load  
Figure 2. Driver Timing Test Circuit  
V
CC  
DI  
V
/2  
CC  
O
0
t
t
DPHL  
1/2 V  
DPLH  
O
Z
V
Y
1/2 V  
O
V
= V (Y) - V (Z)  
DIFF  
V
0
O
90%  
90%  
V
DIFF  
10%  
10%  
-V  
O
t
t
DF  
DR  
t
= | t  
- t  
|
SKEW  
DPLH DPHL  
Figure 3. Driver Propagation Delays  
_______________________________________________________________________________________  
9
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Test Circuits and Waveforms (continued)  
S1  
0 OR 3V  
D
OUT  
R = 500  
L
C
L
50pF  
GENERATOR  
50Ω  
V
0
V
CC  
DE  
V
/ 2  
CC  
t
, t  
DZH DZH(SHDN)  
0.25V  
OH  
OUT  
V
= (0 + V ) / 2  
OH  
OM  
0
t
DHZ  
Figure 4. Driver Enable and Disable Times (t  
, t  
, t  
)
DHZ DZH DZH(SHDN)  
V
CC  
R = 500Ω  
L
S1  
0 OR 3V  
D
OUT  
C
L
50pF  
GENERATOR  
50Ω  
V
0
CC  
DE  
V
CC  
/ 2  
t
, t  
DZL DZL(SHDN)  
t
DLZ  
V
CC  
V
= (V + V ) / 2  
OL CC  
OM  
OUT  
0.25V  
V
OL  
Figure 5. Driver Enable and Disable Times (t  
, t  
, t  
)
DZL DLZ DLZ(SHDN)  
10 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Test Circuits and Waveforms (continued)  
A
+1V  
-1V  
B
RECEIVER  
OUTPUT  
B
A
t
RPLH  
V
R
ATE  
ID  
V
OH  
t
RPHL  
1.5V  
V
OL  
RO  
THE RISE TIME AND FALL TIME OF INPUTS A AND B < 4ns  
Figure 6. Receiver Propagation Delay Test Circuit  
Figure 7. Receiver Propagation Delays  
S1  
+1.5V  
-1.5V  
S3  
V
CC  
1k  
V
ID  
C
L
15pF  
S2  
GENERATOR  
50Ω  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
3V  
3V  
0
1.5V  
RE  
RE  
0
t
, t  
RZH RZH(SHDN)  
t
, t  
RZL RZL(SHDN)  
V
V
CC  
OH  
RO  
V
/ 2  
OH  
(V + V ) / 2  
OL  
CC  
RO  
V
0
OL  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
3V  
3V  
0
1.5V  
1.5V  
RE  
RE  
0
t
RHZ  
t
RLZ  
V
CC  
V
0
OH  
0.25V  
RO  
RO  
0.25V  
V
OL  
Figure 8. Receiver Enable and Disable Times  
______________________________________________________________________________________ 11  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-in Description  
PIN  
MAX3070E MAX3071E MAX3072E  
MAX3073E MAX3074E MAX3075E  
MAX3076E MAX3077E MAX3078E  
MAX3079E  
NAME  
FUNCTION  
HALF-  
FULL-DUPLEX  
DUPLEX  
FULL-  
DUPLEX DUPLEX  
MODE  
HALF-  
DEVICES  
DEVICES  
MODE  
Half-/Full-Duplex Select Pin. Connect H/F to V  
for half-  
CC  
duplex ꢂode; connect to GND or leave unconnected for  
full-duplex ꢂode.  
1
1
H/F  
Receiver Output. When RE is low and if (A - B) -50ꢂV%  
RO is high; if (A - B) -200ꢂV% RO is low.  
2
2
1
2
3
2
3
RO  
Receiver Output Enable. Drive RE low to enable RO; RO is  
high iꢂpedance when RE is high. Drive RE high and DE  
low to enter low-power shutdown ꢂode. RE is a hot-swap  
input (see the Hot-Swap Capability section for details).  
3
4
2
3
RE  
Driver Output Enable. Drive DE high to enable driver  
outputs. ꢁhese outputs are high iꢂpedance when DE is  
low. Drive RE high and DE low to enter low-power  
shutdown ꢂode. DE is a hot-swap input (see the Hot-  
Swap Capability section for details).  
4
4
DE  
Driver Input. With DE high% a low on DI forces noninverting  
output low and inverting output high. Siꢂilarly% a high on DI  
forces noninverting output high and inverting output low.  
5
3
4
5
6
5
6
DI  
Slew-Rate Liꢂit Selector Pin. Connect SRL to ground for  
16Mbps coꢂꢂunication rate; connect to V  
for 500kbps  
CC  
SRL  
coꢂꢂunication rate. Leave unconnected for 250kbps  
coꢂꢂunication rate.  
6% 7  
4
5
7
8
7
8
GND Ground  
ꢁransꢂitter Phase. Connect ꢁXP to ground or leave  
floating for norꢂal transꢂitter phase/polarity. Connect to  
to invert the transꢂitter phase/polarity.  
ꢁXP  
V
CC  
9
5
9
Y
Noninverting Driver Output  
Noninverting Driver Output and Noninverting Receiver  
Input*  
9
Y
10  
11  
6
7
10  
11  
10  
11  
Z
Z
B
B
B
Inverting Driver Output  
7
Inverting Driver Output and Inverting Receiver Input*  
Inverting Receiver Input  
Receiver Input Resistors*  
Inverting Receiver Input and Inverting Driver Output  
12 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-in Description (continued)  
PIN  
MAX3070E MAX3071E MAX3072E  
MAX3073E MAX3074E MAX3075E  
MAX3076E MAX3077E MAX3078E  
MAX3079E  
NAME  
FUNCTION  
HALF-  
FULL-DUPLEX  
DUPLEX  
FULL-  
DUPLEX DUPLEX  
MODE  
HALF-  
DEVICES  
DEVICES  
MODE  
12  
8
12  
A
A
Noninverting Receiver Input  
12  
Receiver Input Resistors*  
Noninverting Receiver Input and Noninverting Driver  
Output  
6
A
Receiver Phase. Connect RXP to GND or leave  
unconnected for norꢂal transꢂitter phase/polarity.  
13  
13  
RXP  
Connect to V to invert receiver phase/polarity.  
CC  
Positive Supply V = 3.3V 10ꢀ. Bypass V  
CC  
with a 0.1µF capacitor.  
to GND  
CC  
14  
1
8
14  
14  
V
CC  
No Connect. Not internally connected. Can be connected  
to GND.  
1% 8% 13  
N.C.  
*MAX3079E only. In half-duplex mode, the driver outputs serve as receiver inputs. The full-duplex receiver inputs (A and B) still have a  
1/8-unit load, but are not connected to the receiver.  
Function Tables  
MAX3070E/MAX3073E/MAX3076E  
MAX3071E/MAX3074E/MAX30767E  
TRANSMITTING  
TRANSMITTING  
INPUT  
OUTPUTS  
INPUTS  
OUTPUTS  
DI  
1
Z
0
1
Y
1
0
RE  
X
DE  
1
DI  
1
Z
Y
0
1
1
0
0
X
1
0
0
0
X
X
High-Z  
High-Z  
RECEIVING  
1
0
Shutdown  
INPUTS  
A% B  
OUTPUT  
RO  
1
RECEIVING  
-50ꢂV  
INPUTS  
OUTPUT  
-200ꢂV  
Open/shorted  
0
RE  
0
DE  
X
A% B  
RO  
1
1
-50ꢂV  
-200ꢂV  
0
X
0
Open/  
shorted  
0
X
1
1
1
1
0
X
X
High-Z  
Shutdown  
______________________________________________________________________________________ 13  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Function Tables (continued)  
MAX3072E/MAX3075E/MAX3078E  
RECEIVING  
TRANSMITTING  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
RE  
0
DE  
X
A-B  
RO  
1
RE  
X
DE  
1
DI  
1
B/Z  
A/Y  
-50ꢂV  
-200ꢂV  
0
1
1
0
0
X
0
X
1
0
Open/  
shorted  
0
0
X
X
High-Z  
High-Z  
0
X
1
1
0
Shutdown  
1
1
1
0
X
X
High-Z  
Shutdown  
MAX3079E  
TRANSMITTING  
INPUTS  
OUTPUTS  
ꢁXP  
0
RE  
DE  
DI  
Z
Y
X
X
X
X
0
1
1
1
1
1
0
0
1
0
1
0
X
X
0
1
0
1
0
1
1
0
0
1
1
X
High-Z  
High-Z  
X
Shutdown  
RECEIVING  
INPUTS  
OUTPUTS  
H/F  
0
RXP  
0
RE  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
DE  
X
X
X
X
0
A% B  
Y% Z  
RO  
> -50ꢂV  
X
1
0
0
< -200ꢂV  
X
0
0
1
> -50ꢂV  
X
X
0
0
1
< -200ꢂV  
1
1
0
X
X
X
X
> -50ꢂV  
1
1
0
0
< -200ꢂV  
0
1
1
0
> -50ꢂV  
0
1
1
0
< -200ꢂV  
1
0
0
X
0
Open/shorted  
X
1
1
0
X
Open/shorted  
1
0
1
X
0
Open/shorted  
X
0
0
1
1
X
X
X
Open/shorted  
X
X
X
X
1
X
X
High-Z  
Shutdown  
0
X = Dont care; shutdown mode, driver and receiver outputs are high impedance.  
14 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
than or equal to -200ꢂV% RO is logic low. In the case of  
Detailed Description  
a terꢂinated bus with all transꢂitters disabled% the  
ꢁhe MAX3070EMAX3079E high-speed transceivers for  
receivers differential input voltage is pulled to 0V by  
the terꢂination. With the receiver thresholds of the  
MAX3070E faꢂily% this results in a logic high with a  
50ꢂV ꢂiniꢂuꢂ noise ꢂargin. Unlike previous fail-safe  
devices% the -50ꢂV to -200ꢂV threshold coꢂplies with  
the 200ꢂV EIA/ꢁIA-485 standard.  
RS-485/RS-422 coꢂꢂunication contain one driver and  
one receiver. ꢁhese devices feature fail-safe circuitry%  
which guarantees a logic-high receiver output when the  
receiver inputs are open or shorted% or when they are  
connected to a terꢂinated transꢂission line with all dri-  
vers disabled (see the Fail-Safe section). ꢁhe  
MAX3070E/MAX3072E/MAX3073E/MAX3075E/  
MAX3076E/MAX3078E/MAX3079E also feature a hot-  
swap capability allowing line insertion without erro-  
neous data transfer (see the Hot Swap Capability  
section). ꢁhe MAX3070E/MAX3071E/MAX3072E feature  
reduced slew-rate drivers that ꢂiniꢂize EMI and  
reduce reflections caused by iꢂproperly terꢂinated  
cables% allowing error-free data transꢂission up to  
250kbps. ꢁhe MAX3073E/MAX3074E/MAX3075E also  
offer slew-rate liꢂits allowing transꢂit speeds up to  
500kbps. ꢁhe MAX3076E/MAX3077E/MAX3078Esdri-  
ver slew rates are not liꢂited% ꢂaking transꢂit speeds  
up to 16Mbps possible. ꢁhe MAX3079Es slew rate is  
selectable between 250kbps% 500kbps% and 16Mbps  
by driving a selector pin with a three-state driver.  
Hotꢁꢀwap Capability  
(Except MAX307±E/MAX3074E/MAX3077E)  
Hot-Swap Inputs  
When circuit boards are inserted into a hot% or pow-  
ered% backplane% differential disturbances to the data  
bus can lead to data errors. Upon initial circuit board  
insertion% the data coꢂꢂunication processor under-  
goes its own power-up sequence. During this period%  
the processors logic-output drivers are high iꢂped-  
ance and are unable to drive the DE and RE inputs of  
these devices to a defined logic level. Leakage cur-  
rents up to 10µA froꢂ the high-iꢂpedance state of the  
processors logic drivers could cause standard CMOS  
enable inputs of a transceiver to drift to an incorrect  
logic level. Additionally% parasitic circuit board capaci-  
ꢁhe MAX3072E/MAX3075E/MAX3078E are half-duplex  
transceivers% while the MAX3070E/MAX3071E/  
MAX3073E/MAX3074E/MAX3076E/MAX3077E are full-  
duplex transceivers. ꢁhe MAX3079E is selectable  
between half- and full-duplex coꢂꢂunication by driving  
a selector pin (SRL) high or low% respectively.  
tance could cause coupling of V  
or GND to the  
CC  
enable inputs. Without the hot-swap capability% these  
factors could iꢂproperly enable the transceivers driver  
or receiver.  
When V  
rises% an internal pulldown circuit holds DE  
CC  
low and RE high. After the initial power-up sequence%  
the pulldown circuit becoꢂes transparent% resetting the  
hot-swap tolerable input.  
All devices operate froꢂ a single 3.3V supply. Drivers are  
output short-circuit current liꢂited. ꢁherꢂal-shutdown cir-  
cuitry protects drivers against excessive power dissipa-  
tion. When activated% the therꢂal-shutdown circuitry  
places the driver outputs into a high-iꢂpedance state.  
Hot-Swap Input Circuitry  
ꢁhe enable inputs feature hot-swap capability. At the  
input there are two NMOS devices% M1 and M2  
Receiver Input Filtering  
ꢁhe receivers of the MAX3070EMAX3075E% and the  
MAX3079E when operating in 250kbps or 500kbps  
ꢂode% incorporate input filtering in addition to input  
hysteresis. ꢁhis filtering enhances noise iꢂꢂunity with  
differential signals that have very slow rise and fall  
tiꢂes. Receiver propagation delay increases by 25ꢀ  
due to this filtering.  
(Figure 9). When V  
raꢂps froꢂ zero% an internal 10µs  
CC  
tiꢂer turns on M2 and sets the SR latch% which also  
turns on M1. ꢁransistors M2% a 500µA current sink% and  
M1% a 100µA current sink% pull DE to GND through a  
5kresistor. M2 is designed to pull DE to the disabled  
state against an external parasitic capacitance up to  
100pF that can drive DE high. After 10µs% the tiꢂer  
deactivates M2 while M1 reꢂains on% holding DE low  
against three-state leakages that can drive DE high. M1  
reꢂains on until an external source overcoꢂes the  
required input current. At this tiꢂe% the SR latch resets  
and M1 turns off. When M1 turns off% DE reverts to a  
Failꢁꢀafe  
ꢁhe MAX3070E faꢂily guarantees a logic-high receiver  
output when the receiver inputs are shorted or open% or  
when they are connected to a terꢂinated transꢂission  
line with all drivers disabled. ꢁhis is done by setting the  
receiver input threshold between -50ꢂV and -200ꢂV. If  
the differential receiver input voltage (A - B) is greater  
than or equal to -50ꢂV% RO is logic high. If A - B is less  
standard% high-iꢂpedance CMOS input. Whenever V  
drops below 1V% the hot-swap input is reset.  
CC  
For RE there is a coꢂpleꢂentary circuit eꢂploying two  
PMOS devices pulling RE to V  
.
CC  
______________________________________________________________________________________ 15  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
operation. Drive H/F high for half-duplex operation. In  
full-duplex ꢂode% the pin configuration of the driver and  
receiver is the saꢂe as that of a MAX3070E. In half-  
duplex ꢂode% the receiver inputs are switched to the  
driver outputs% connecting outputs Y and Z to inputs A  
and B% respectively. In half-duplex ꢂode% the internal  
full-duplex receiver input resistors are still connected to  
pins 11 and 12.  
V
CC  
10µs  
TIMER  
SR LATCH  
TIMER  
±±15V EꢀD -rotection  
As with all Maxiꢂ devices% ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
asseꢂbly. ꢁhe driver outputs and receiver inputs of the  
MAX3070E faꢂily of devices have extra protection  
against static electricity. Maxiꢂs engineers have devel-  
oped state-of-the-art structures to protect these pins  
against ESD of 15kV without daꢂage. ꢁhe ESD struc-  
tures withstand high ESD in all states: norꢂal operation%  
shutdown% and powered down. After an ESD event% the  
MAX3070EMAX3079E keep working without latchup or  
daꢂage.  
5kΩ  
DE  
DE  
(HOT SWAP)  
100µA  
500µA  
M1  
M2  
ESD protection can be tested in various ways. ꢁhe  
transꢂitter outputs and receiver inputs of the  
MAX3070EMAX3079E are characterized for protection  
to the following liꢂits:  
Figure 9. Simplified Structure of the Driver Enable Pin (DE)  
15kV using the Huꢂan Body Model  
MAX3079E -rogramming  
ꢁhe MAX3079E has several prograꢂꢂable operating  
ꢂodes. ꢁransꢂitter rise and fall tiꢂes are prograꢂꢂa-  
ble% resulting in ꢂaxiꢂuꢂ data rates of 250kbps%  
500kbps% and 16Mbps. ꢁo select the desired data rate%  
drive SRL to one of three possible states by using a  
6kV using the Contact Discharge ꢂethod specified  
in IEC 1000-4-2  
ESD Test Conditions  
ESD perforꢂance depends on a variety of conditions.  
Contact Maxiꢂ for a reliability report that docuꢂents  
test setup% test ꢂethodology% and test results.  
three-state driver: V % GND% or unconnected. For  
CC  
250kbps operation% set the three-state device in high-  
iꢂpedance ꢂode or leave SRL unconnected. For  
Human Body Model  
Figure 10a shows the Huꢂan Body Model% and Figure  
10b shows the current waveforꢂ it generates when dis-  
charged into a low iꢂpedance. ꢁhis ꢂodel consists of a  
100pF capacitor charged to the ESD voltage of interest%  
which is then discharged into the test device through a  
1.5kresistor.  
500kbps operation% drive SRL high or connect it to V  
.
CC  
For 16Mbps operation% drive SRL low or connect it to  
GND. SRL can be changed during operation without  
interrupting data coꢂꢂunications.  
Occasionally% twisted-pair lines are connected backward  
froꢂ norꢂal orientation. ꢁhe MAX3079E has two pins that  
invert the phase of the driver and the receiver to correct  
this probleꢂ. For norꢂal operation% drive ꢁXP and RXP  
low% connect theꢂ to ground% or leave theꢂ unconnect-  
ed (internal pulldown). ꢁo invert the driver phase% drive  
IEC 1000-4-2  
ꢁhe IEC 1000-4-2 standard covers ESD testing and  
perforꢂance of finished equipꢂent. However% it does  
not specifically refer to integrated circuits. ꢁhe  
MAX3070E faꢂily of devices helps you design equip-  
ꢂent to ꢂeet IEC 1000-4-2% without the need for addi-  
tional ESD-protection coꢂponents.  
ꢁXP high or connect it to V . ꢁo invert the receiver  
CC  
phase% drive RXP high or connect it to V . Note that the  
CC  
receiver threshold is positive when RXP is high.  
ꢁhe MAX3079E can operate in full- or half-duplex  
ꢂode. Drive the H/F pin low% leave it unconnected  
(internal pulldown)% or connect it to GND for full-duplex  
ꢁhe ꢂajor difference between tests done using the  
Huꢂan Body Model and IEC 1000-4-2 is higher peak  
16 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
R
R
D
1500Ω  
C
1MΩ  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I 100%  
P
I
r
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPS  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
STORAGE  
CAPACITOR  
s
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 10a. Human Body ESD Test Model  
Figure 10b. Human Body Current Waveform  
I
R
R
C
D
50MTO 100MΩ  
330Ω  
100%  
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t = 0.7ns TO 1ns  
r
t
30ns  
60ns  
Figure 10c. IEC 1000-4-2 ESD Test Model  
Figure 10d. IEC 1000-4-2 ESD Generator Current Waveform  
current in IEC 1000-4-2% because series resistance is  
lower in the IEC 1000-4-2 ꢂodel. Hence% the ESD with-  
stand voltage ꢂeasured to IEC 1000-4-2 is generally  
lower than that ꢂeasured using the Huꢂan Body Model.  
Figure 10c shows the IEC 1000-4-2 ꢂodel% and Figure  
10d shows the current waveforꢂ for IEC 1000-4-2 ESD  
Contact Discharge test.  
Applications Information  
216 Transceivers on the Bus  
ꢁhe standard RS-485 receiver input iꢂpedance is 12kΩ  
(1-unit load)% and the standard driver can drive up to 32-  
unit loads. ꢁhe MAX3070E faꢂily of transceivers has a  
1/8-unit load receiver input iꢂpedance (96k)% allowing  
up to 256 transceivers to be connected in parallel on one  
coꢂꢂunication line. Any coꢂbination of these devices  
as well as other RS-485 transceivers with a total of 32-  
unit loads or fewer can be connected to the line.  
ꢁhe air-gap test involves approaching the device with a  
charged probe. ꢁhe contact-discharge ꢂethod connects  
the probe to the device before the probe is energized.  
Machine Model  
ꢁhe ꢂachine ꢂodel for ESD tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. ꢁhe objective is to eꢂulate the stress caused  
when I/O pins are contacted by handling equipꢂent  
during test and asseꢂbly. Of course% all pins require  
this protection% not just RS-485 inputs and outputs.  
Reduced EMI and Reflections  
ꢁhe MAX3070E/MAX3071E/MAX3072E feature reduced  
slew-rate drivers that ꢂiniꢂize EMI and reduce reflec-  
tions caused by iꢂproperly terꢂinated cables% allowing  
error-free data transꢂission up to 250kbps. ꢁhe  
MAX3073E/MAX3074E/MAX3075E offer higher driver  
output slew-rate liꢂits% allowing transꢂit speeds up to  
500kbps. ꢁhe MAX3079E with SRL = V  
or uncon-  
CC  
nected% are slew-rate liꢂited. With SRL unconnected%  
the MAX3079E error-free data transꢂission is up to  
250kbps; with SRL connected to V  
speeds up to 500kbps.  
the data transꢂit  
CC  
______________________________________________________________________________________ 17  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Lowꢁ-ower ꢀhutdown Mode (Except  
MAX307±E/MAX3074E/MAX3077E)  
Driver Output -rotection  
ꢁwo ꢂechanisꢂs prevent excessive output current and  
power dissipation caused by faults or by bus contention.  
ꢁhe first% a foldback current liꢂit on the output stage%  
provides iꢂꢂediate protection against short circuits over  
the whole coꢂꢂon-ꢂode voltage range (see the Typical  
Operating Characteristics). ꢁhe second% a therꢂal-shut-  
down circuit% forces the driver outputs into a high-iꢂped-  
ance state if the die teꢂperature becoꢂes excessive.  
Low-power shutdown ꢂode is initiated by bringing both  
RE high and DE low. In shutdown% the devices typically  
draw only 50nA of supply current.  
RE and DE can be driven siꢂultaneously; the parts are  
guaranteed not to enter shutdown if RE is high and DE  
is low for less than 50ns. If the inputs are in this state  
for at least 600ns% the parts are guaranteed to enter  
shutdown.  
Line Length  
ꢁhe RS-485/RS-422 standard covers line lengths up to  
4000ft. For line lengths greater than 4000ft% use the  
repeater application shown in Figure 11.  
Enable tiꢂes t  
and t  
(see the Switching  
ZL  
ZH  
Characteristics section) assuꢂe the part was not in a  
low-power shutdown state. Enable tiꢂes t and  
ZH(SHDN)  
t
assuꢂe the parts were shut down. It takes  
ZL(SHDN)  
Typical Applications  
ꢁhe MAX3072E/MAX3075E/MAX3078E/MAX3079E  
transceivers are designed for bidirectional data coꢂꢂu-  
nications on ꢂultipoint bus transꢂission lines. Figures  
12 and 13 show typical network applications circuits.  
drivers and receivers longer to becoꢂe enabled froꢂ  
low-power shutdown ꢂode (t  
% t  
) than  
ZH(SHDN) ZL(SHDN)  
froꢂ driver/receiver-disable ꢂode (t % t ).  
ZH ZL  
ꢁo ꢂiniꢂize reflections% terꢂinate the line at both ends  
in its characteristic iꢂpedance% and keep stub lengths  
off the ꢂain line as short as possible. ꢁhe slew-rate-liꢂ-  
ited MAX3072E/MAX3075E and the two ꢂodes of the  
MAX3079E are ꢂore tolerant of iꢂperfect terꢂination.  
MAX3070E/MAX3071E/MAX3073E/  
MAX3074E/MAX3076E/MAX3077E/  
MAX3079E (FULL-DUPLEX)  
A
RO  
RE  
DATA IN  
R
B
120Ω  
DE  
Chip Information  
ꢁRANSISꢁOR COUNꢁ: 1228  
Z
DI  
DATA OUT  
D
Y 120Ω  
PROCESS: BiCMOS  
Figure 11. Line Repeater for MAX3070E/MAX3071E/MAX3073E/  
MAX3074E/MAX3076E/MAX3077E/MAX3079E in Full-Duplex  
Mode  
120Ω  
120Ω  
DE  
B
B
DI  
D
D
DI  
DE  
A
B
A
B
A
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX3072E  
MAX3075E  
MAX3078E  
DE  
DI  
DI  
RO  
DE RO  
RE  
RE  
MAX3079E (HALF-DUPLEX)  
Figure 12. Typical Half-Duplex RS-485 Network  
18 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
A
B
Y
120Ω  
120Ω  
R
RO  
RE  
DE  
D
DI  
Z
DE  
RE  
RO  
Z
B
120Ω  
120Ω  
D
DI  
R
Y
A
Y
Z
B
A
Y
Z
B
A
MAX3070E  
MAX3071E  
MAX3073E  
MAX3074E  
MAX3076E  
MAX3077E  
R
R
D
D
DI  
DI  
DE  
DE  
RE RO  
RE RO  
MAX3079E (FULL-DUPLEX)  
NOTE: RE AND DE ON MAX3070E/MAX3073E/MAX3076E/MAX3079E ONLY.  
Figure 13. Typical Full-Duplex RS-485 Network  
ꢀelector Guide  
RECEIVER/  
DRIVER  
ENABLE  
HALF/FULL  
DUPLEX  
DATA RATE  
(Mbps)  
SLEW-RATE LOW-POWER  
TRANSCEIVERS  
PINS  
PART  
LIMITED  
SHUTDOWN  
ON BUS  
MAX3070E  
MAX3071E  
MAX3072E  
MAX3073E  
MAX3074E  
MAX3075E  
MAX3076E  
MAX3077E  
MAX3078E  
MAX3079E  
Full  
Full  
0.250  
0.250  
0.250  
0.5  
Yes  
Yes  
Yes  
No  
Yes  
No  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
14  
8
Half  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
8
Full  
Yes  
14  
8
Full  
0.5  
Yes  
Half  
0.5  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
8
Full  
16  
No  
14  
8
Full  
16  
No  
Half  
16  
No  
Yes  
Yes  
Yes  
Yes  
8
Selectable  
Selectable  
Selectable  
14  
______________________________________________________________________________________ 19  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-in Configurations and Typical Operating Circuits  
V
CC  
MAX3070E  
MAX3073E  
MAX3076E  
DE  
V
CC RE  
0.1µF  
14  
4
N.C.  
RO  
V
CC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Y
9
5
Rt  
D
RO  
DI  
DI  
R
N.C.  
A
R
10  
12  
Z
RE  
A
DE  
B
2
Rt  
D
RO  
R
11  
DI  
Z
B
D
1, 8, 13  
Y
N.C.  
GND  
GND  
GND  
3
6, 7  
N.C.  
8
GND DE  
RE  
TYPICAL FULL-DUPLEX OPERATING CIRCUIT  
DIP/SO  
0.1µF  
MAX3071E  
MAX3074E  
MAX3077E  
V
CC  
V
CC  
1
V
A
B
Z
Y
CC  
1
2
3
4
8
7
6
5
Y
5
6
8
R
3
2
Rt  
RO  
DI  
D
RO  
DI  
R
Z
D
A
GND  
Rt  
DI  
D
RO  
R
7
B
DIP/SO  
GND  
4
GND  
TYPICAL FULL-DUPLEX OPERATING CIRCUIT  
MAX3072E  
MAX3075E  
MAX3078E  
0.1µF  
DE  
1
8
DI  
V
CC  
RO  
RE  
DE  
DI  
RO  
RE  
DE  
DI  
V
1
2
3
4
8
7
6
5
R
R
D
CC  
2
3
4
7
A
B
A
B
B
A
Rt  
Rt  
6
5
RO  
D
D
R
GND  
GND  
RE  
DIP/SO  
TYPICAL HALF-DUPLEX OPERATING CIRCUIT  
NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORMS DIAGRAMS.  
REFER TO PINS A AND B WHEN DE IS HIGH.  
20 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-in Configurations and Typical Operating Circuits (continued)  
V
RE  
CC  
MAX3079E  
A
B
RO  
TOP VIEW  
H/F  
RO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
CC  
RXP  
RXP  
A
RE  
DE  
B
MAX3079E  
H/F  
Z
DI  
Z
TXP  
SRL  
GND  
Y
TXP  
8
Y
DIP/SO  
DI  
NOTE: SWITCH POSITIONS  
INDICATED FOR H/F = GND.  
GND DE SRL  
______________________________________________________________________________________ 21  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
Ordering Information (continued)  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX3076EEPD  
MAX3076EESD  
MAX3076EAPD  
MAX3076EASD  
MAX3077EEPA  
MAX3077EESA  
MAX3077EAPA  
MAX3077EASA  
MAX3078EEPA  
MAX3078EESA  
MAX3078EAPA  
MAX3078EASA  
MAX3079EEPD  
MAX3079EESD  
MAX3079EAPD  
MAX3079EASD  
MAX3072EEPA  
MAX3072EESA  
MAX3072EAPA  
MAX3072EASA  
MAX3073EEPD  
MAX3073EESD  
MAX3073EAPD  
MAX3073EASD  
MAX3074EEPA  
MAX3074EESA  
MAX3074EAPA  
MAX3074EASA  
MAX3075EEPA  
MAX3075EESA  
MAX3075EAPA  
MAX3075EASA  
-40°C to +125°C 14 Plastic DIP  
-40°C to +125°C 14 SO  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
-40°C to +85°C  
-40°C to +85°C  
14 Plastic DIP  
14 SO  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
-40°C to +125°C 14 Plastic DIP  
-40°C to +125°C 14 SO  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
-40°C to +85°C  
-40°C to +85°C  
14 Plastic DIP  
14 SO  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
-40°C to +125°C 14 Plastic DIP  
-40°C to +125°C 14 SO  
-40°C to +125°C 8 Plastic DIP  
-40°C to +125°C 8 SO  
22 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-ac5age Information  
(ꢁhe package drawing(s) in this data sheet ꢂay not reflect the ꢂost current specifications. For the latest package outline inforꢂation%  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 23  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-ac5age Information (continued)  
(ꢁhe package drawing(s) in this data sheet ꢂay not reflect the ꢂost current specifications. For the latest package outline inforꢂation%  
go to www.maxim-ic.com/packages.)  
24 ______________________________________________________________________________________  
+3.3V, ±±15V EꢀDꢁ-rotected, Failꢁꢀafe,  
Hotꢁꢀwap, Rꢀꢁ481/Rꢀꢁ422 Transceivers  
-ac5age Information (continued)  
(ꢁhe package drawing(s) in this data sheet ꢂay not reflect the ꢂost current specifications. For the latest package outline inforꢂation%  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0 -8  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408ꢁ737ꢁ7600 ____________________ 25  
© 2003 Maxiꢂ Integrated Products  
Printed USA  
is a registered tradeꢂark of Maxiꢂ Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY