MAX3042BCUE-T [MAXIM]

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, ULTRA SMALL, TSSOP-16;
MAX3042BCUE-T
型号: MAX3042BCUE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, ULTRA SMALL, TSSOP-16

驱动 光电二极管 接口集成电路 驱动器
文件: 总15页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2143; Rev 1; 12/01  
±±0ꢀk ꢁEDꢂ-rotected, Quad 5k REꢂ485/REꢂ422  
Transmitters  
General Description  
Features  
The MAX3040–MAX3045 is a family of 5V quad RS-  
485/RS-422 transmitters designed for digital data trans-  
mission over twisted-pair balanced lines. All transmitter  
outputs are protected to ±±0ꢀV using the ꢁuman ꢂody  
Model. In addition the MAX3040–MAX3045 withstand  
±4ꢀV per IꢃE ±000-4-4 ꢃlectrical ꢄast Transient/ꢂurst  
Stressing. The MAX3040/MAX3043 (250ꢀbps) and the  
MAX304±/MAX3044 (2.5Mbps) are slew-rate limited  
transmitters that minimize ꢃMI and reduce reflections  
caused by improperly terminated cables, thus allowing  
error-free transmission.  
ESD Protection: ±±10kV—Humn ꢀoꢁd ꢂoꢁeꢃ  
Singꢃe +5k Opermtion  
GHmrmnteeꢁ Device-to-Device S0ew  
(ꢂAX3141/ꢂAX314±/ꢂAX3143/ꢂAX3144)  
Pin-Coupmtibꢃe with ‘SN75±74, ‘26LS3±C mnꢁ  
LTC487  
—ot-Swmppmbꢃe for Teꢃecou Appꢃicmtions  
Up to 21ꢂbps Dmtm Rmte (ꢂAX3142ꢀ/ꢂAX3145ꢀ)  
Sꢃew-Rmte Liuiteꢁ (Dmtm Rmtes mt 2.5ꢂbps mnꢁ  
2510bps)  
The MAX3040–MAX3045 feature a hot-swap capability  
that eliminates false transitions on the data cable during  
power-up or hot insertion. The MAX3042ꢂ/MAX3045ꢂ  
are optimized for data transfer rates up to 20Mbps, the  
MAX304±/MAX3044 for data rates up to 2.5Mbps, and  
the MAX3040/MAX3043 for data rates up to 250ꢀbps.  
The MAX3040–MAX3045 offer optimum performance  
when used with the MAX3093ꢃ or MAX3095 5V quad  
differential line receivers or MAX3094ꢃ/MAX3096 3V  
quad differential line receivers.  
2nA Low-Power ShHtꢁown ꢂoꢁe  
±uA Opermting SHppꢃd CHrrent  
±40k EꢄT ꢄmst Trmnsient ꢀHrst ꢅuuHnitd per ꢅEC  
±111-4-4  
Leveꢃ 2 SHrge ꢅuuHnitd per ꢅEC ±111-4-5,  
Unshieꢃꢁeꢁ Cmbꢃe ꢂoꢁeꢃ  
Uꢃtrm-Sumꢃꢃ ±6-Pin TSSOP, ±6-Pin Nmrrow SO, mnꢁ  
Wiꢁe ±6-Pin SO  
The MAX3040–MAX3045 are ꢃSD-protected pin-compat-  
ible, low-power upgrades to the industry-standard  
‘SN75±74 and ‘DS26LS3±E. They are available in space-  
saving TSSOP, narrow SO, and wide SO pacꢀages.  
Ordering Information  
DATA  
PART  
TEꢂP RANGE PꢅN-PACKAGE  
RATE  
ꢂAX3141EUꢃ  
MAX3040ESꢃ  
MAX3040EWꢃ  
0°E to +70°E ±6 TSSOP  
0°E to +70°E ±6 Narrow SO  
0°E to +70°E ±6 Wide SO  
250ꢀbps  
250ꢀbps  
250ꢀbps  
250ꢀbps  
250ꢀbps  
250ꢀbps  
Applications  
Telecommunications ꢃquipment  
Industrial Motor Eontrol  
MAX3040ꢃUꢃ -40°E to +85°E ±6 TSSOP  
MAX3040ꢃSꢃ -40°E to +85°E ±6 Narrow SO  
MAX3040ꢃWꢃ -40°E to +85°E ±6 Wide SO  
Transmitter for ꢃSD-Sensitive Applications  
ꢁand-ꢁeld ꢃquipment  
Ordering Information continued at end of data sheet.  
Industrial PLEs  
Networꢀing  
-in Configurations  
Eelector Guide  
DATA RATE  
(bps)  
ꢅNDUSTRY STANDARD  
PꢅNOUT  
TOP VIEW  
PART  
T1IN  
Y1  
1
2
3
4
5
6
7
8
16 V  
CC  
MAX3040  
MAX304±  
MAX3042ꢂ  
MAX3043  
MAX3044  
MAX3045ꢂ  
250ꢀ  
2.5M  
20M  
250ꢀ  
2.5M  
20M  
75±74, 34E87, LTE487  
75±74, 34E87, LTE487  
75±74, 34E87, LTE487  
26LS3±  
15 T4IN  
14 Y4  
13 Z4  
Z1  
EN12  
Z2  
MAX3040  
MAX3041  
MAX3042B  
12 EN34  
11 Z3  
26LS3±  
Y2  
26LS3±  
T2IN  
GND  
10 Y3  
9
T3IN  
±6 TSSOP/SO  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
ABSOLUTE MAXIMUM RATINGS  
All voltages referenced to ground (GND).  
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ..696mW  
16-Pin Wide SO (derate 9.52mW/°C above +70°C) .....762mW  
Operating ꢁemperature Range  
MAX304_C_E.......................................................0°C to +70°C  
MAX304_E_E ....................................................-40°C to +85°C  
Maximum Junction ꢁemperature .....................................+150°C  
Storage ꢁemperature Range.............................-65°C to +150°C  
Lead ꢁemperature (soldering% 10s) .................................+300°C  
Supply Voltage (V ).............................................................+7V  
CC  
Control Input Voltage (EN% EN% EN_) .........-0.3V to (V  
Driver Input Voltage (ꢁ_IN).........................-0.3V to (V  
Driver Output Voltage (Y_% Z_)  
(Driver Disabled) .............................................-7.5V to +12.5V  
Driver Output Voltage (Y_% Z_)  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
(Driver Enabled) .................................................-7.5V to +10V  
Continuous Power Dissipation (ꢁ = +70°C)  
A
16-Pin ꢁSSOP (derate 9.4mW/°C above +70°C) ..........755mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V 5ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= +5V and ꢁ = +25°C.) (Note 1)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
Figure 1% R = 50  
2.0  
1.5  
Driver Differential Output  
V
V
V
V
V
OD  
Figure 1% R = 27Ω  
Change in Magnitude of  
Differential Output Voltage  
V  
Figure 1% R = 50or 27(Note 2)  
0.2  
3
OD  
Driver Common-Mode Output  
Voltage  
V
Figure 1% R = 50or 27Ω  
V
/ 2  
CC  
OC  
Change In Magnitude of  
Common-Mode Voltage  
V  
Figure 1% R = 50or 27(Note 2)  
0.2  
OC  
Input High Voltage  
Input Low Voltage  
V
ꢁ_IN% EN_% EN% EN  
ꢁ_IN% EN_% EN% EN  
2.0  
V
V
IH  
V
0.8  
200  
1
IL  
I
HOꢁ  
Hot-Swap Driver Input Current  
EN_% EN% EN (Note 3)  
ꢁ_IN% EN_% EN% EN  
µA  
µA  
SWAP  
Driver Input Current  
I
IN  
Driver Short-Circuit Output  
Current  
I
-7V < V  
< +10V (Note 4)  
25  
250  
mA  
SC  
OUꢁ  
MAX3040/MAX3041/MAX3042B  
EN_ = GND  
Output Leakage (Y_% Z_)  
when Disabled  
1
µA  
MAX3043/MAX3044/MAX3045B  
EN = GND% EN = V  
CC  
ESD Protection (Y_% Z_)  
Human Body Model  
IEC 1000-4-4  
10  
kV  
kV  
Electrical Fast ꢁransient/Burst  
Immunity  
4
SUPPLY CURRENT  
Supply Current  
I
No load  
1
2
mA  
µA  
CC  
MAX3040/MAX3041/MAX3042B  
EN_ = GND% ꢁ = +25°C  
A
Supply Current in Shutdown  
Mode  
I
0.002  
10  
SHDN  
MAX3043/MAX3044/MAX3045B  
EN = GND% EN = V % ꢁ = +25°C  
CC  
A
2
_______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
SWITCHING CHARACTERISTICSMAX3040/MAX3043  
(V  
= +5V 5ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= +5V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Data Rate  
f
250  
kbps  
MAX  
t
0.7  
0.7  
1.5  
1.5  
PLH  
PHL  
Figures 2 and 3%  
= 54% C  
Driver Propagation Delay  
µs  
µs  
R
= 50pF  
= 50pF  
DIFF  
DIFF  
t
t
0.48  
0.48  
0.75  
0.75  
1.33  
1.33  
F
Driver Differential Output  
Rise-ꢁime/Fall-ꢁime  
Figures 2 and 3%  
= 54% C  
R
DIFF  
DIFF  
t
R
t
t
Different chips  
Same chip  
Figures 2 and 3%  
350  
100  
DSKEW  
SSKEW  
Skew Driver to Driver  
R
DIFF  
= 54%  
ns  
C
DIFF  
= 50pF  
Driver Differential Output Skew  
| t - t  
Figures 2 and 3%  
= 54% C  
t
100  
2.0  
ns  
µs  
µs  
µs  
µs  
ns  
ns  
SKEW  
|
R
= 50pF  
DIFF  
PLH PHL  
DIFF  
MAX3040% Figures 4 and 5% S2 closed%  
R = 500% C = 100pF  
Driver Enable to Output High  
t
ZH  
L
L
Driver Enable from Shutdown to  
Output High  
Figures 4 and 5% S2 closed%  
R = 500% C = 100pF  
t
2.0  
ZH(SHDN)  
L
L
MAX3040% Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
Driver Enable to Output Low  
t
2.0  
ZL  
L
L
Driver Enable from Shutdown to  
Output Low  
Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
t
2.0  
ZL(SHDN)  
L
L
Figures 4 and 5% S1 closed%  
R = 500% C = 15pF  
Driver Disable ꢁime from Low  
Driver Disable ꢁime from High  
t
500  
500  
LZ  
L
L
Figures 4 and 5% S2 closed%  
R = 500% C = 15pF  
t
HZ  
L
L
SWITCHING CHARACTERISTICSMAX3041/MAX3044  
(V  
= +5V 5ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= +5V and ꢁ = +25°C.)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Data Rate  
f
2.5  
Mbps  
MAX  
t
70  
70  
70  
70  
150  
150  
133  
133  
PLH  
PHL  
Figures 2 and 3%  
= 54% C  
DIFF  
Driver Propagation Delay  
ns  
ns  
R
= 50pF  
= 50pF  
t
DIFF  
t
33  
33  
Driver Differential Output  
Rise-ꢁime/Fall-ꢁime  
F
Figures 2 and 3%  
= 54% C  
DIFF  
R
t
DIFF  
R
t
t
Different chips  
Same chip  
Figures 2 and 3%  
52  
15  
DSKEW  
SSKEW  
Skew Driver to Driver  
R
DIFF  
= 54%  
ns  
C
DIFF  
= 50pF  
Driver Differential Output Skew  
| t - t  
Figures 2 and 3%  
= 54% C  
t
15  
ns  
ns  
SKEW  
|
R
DIFF  
= 50pF  
DIFF  
PLH PHL  
Driver Enable to Output High  
MAX3041% Figures 4 and 5% S2 closed%  
R = 500% C = 100pF  
t
400  
ZH  
L
L
_______________________________________________________________________________________  
3
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
SWITCHING CHARACTERISTICSMAX3041/MAX3044 (continued)  
(V  
CC  
= +5V 5ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= +5V and ꢁ = +25°C.)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Driver Enable from Shutdown to  
Output High  
Figures 4 and 5% S2 closed%  
t
400  
ns  
ZH(SHDN)  
R = 500% C = 100pF  
L
L
MAX3041% Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
Driver Enable to Output Low  
t
400  
400  
500  
500  
ns  
ns  
ns  
ns  
ZL  
L
L
Driver Enable from Shutdown to  
Output Low  
Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
t
ZL(SHDN)  
L
L
Figures 4 and 5% S1 closed%  
R = 500% C = 15pF  
Driver Disable ꢁime from Low  
Driver Disable ꢁime from High  
t
LZ  
L
L
Figures 4 and 5% S2 closed%  
R = 500% C = 15pF  
t
HZ  
L
L
SWITCHING CHARACTERISTICSMAX3042B/MAX3045B  
(V  
CC  
= +5V 5ꢀ% ꢁ = ꢁ  
A
to ꢁ  
% unless otherwise noted. ꢁypical values are at V  
= +5V and ꢁ = +25°C.)  
CC A  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Data Rate  
f
20  
Mbps  
MAX  
t
23  
23  
40  
40  
17  
17  
PLH  
PHL  
Figures 2 and 3%  
= 54% C  
DIFF  
Driver Propagation Delay  
ns  
ns  
R
= 50pF  
= 50pF  
t
DIFF  
t
t
Driver Differential Output  
Rise-ꢁime/Fall-ꢁime  
F
Figures 2 and 3%  
= 54% C  
R
DIFF  
DIFF  
R
Figures 2 and 3%  
t
Different chips  
Same chip  
8
DSKEW  
Skew Driver to Driver  
R
DIFF  
C
DIFF  
= 54%  
= 50pF  
ns  
t
8
8
SSKEW  
Differential Driver Output Skew  
| t - t  
Figures 2 and 3%  
= 54% C = 50pF  
DIFF  
t
ns  
ns  
ns  
SKEW  
|
R
DIFF  
PLH PHL  
MAX3042B% Figures 4 and 5% S2 closed%  
R = 500% C = 100pF  
Driver Enable to Output High  
t
300  
ZH  
L
L
Driver Enable from Shutdown to  
Output High  
Figures 4 and 5% S2 closed%  
R = 500% C = 100pF  
t
300  
300  
300  
400  
400  
ZH(SHDN)  
L
L
MAX3042B% Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
Driver Enable to Output Low  
t
ns  
ns  
ns  
ns  
ZL  
L
L
Driver Enable from Shutdown to  
Output Low  
Figures 4 and 5% S1 closed%  
R = 500% C = 100pF  
t
ZL(SHDN)  
L
L
Figures 4 and 5% S1 closed%  
R = 500% C = 15pF  
Driver Disable ꢁime from Low  
Driver Disable ꢁime from High  
t
t
LZ  
L
L
Figures 4 and 5% S2 closed%  
R = 500% C = 15pF  
HZ  
L
L
Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device  
ground unless otherwise noted.  
Note 2: V  
and V  
are the changes in V  
and V % respectively% when the transmitter input changes state.  
OD OC  
OD  
OC  
Note 3: ꢁhis input current level is for the hot-swap enable (EN_% EN% EN) inputs and is present until the first transition only. After the  
first transition the input reverts to a standard high-impedance CMOS input with input current I . For the first 20µs the input  
IN  
current may be as high as 1mA. During this period the input is disabled.  
Note 4: Maximum current level applies to peak current just prior to foldback-current limiting. Minimum current level applies during  
current limiting.  
4
_______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
TypicalVOpePatingVChaPactePistics  
(V  
CC  
= +5V% ꢁ = +25°C% unless otherwise noted.)  
A
MAX3040/MAX3043  
SUPPLY CURRENT vs. DATA RATE  
MAX3042B/MAX3045B  
SUPPLY CURRENT vs. DATA RATE  
MAX3041/MAX3044  
SUPPLY CURRENT vs. DATA RATE  
45  
40  
60  
50  
NO LOAD  
NO LOAD  
NO LOAD  
ALL FOUR TRANSMITTERS  
SWITCHING  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
ALL FOUR TRANSMITTERS  
SWITCHING  
ALL FOUR TRANSMITTERS  
SWITCHING  
40  
30  
20  
10  
0
0
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
10,000  
0.1  
1
10  
100 1000 10,000 100,000  
DATA RATE (kbps)  
DATA RATE (kbps)  
DATA RATE (kbps)  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT HIGH VOLTAGE  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT LOW VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5.25V  
CC  
V
= 5V  
CC  
V
= 4.75V  
CC  
NO LOAD  
NO SWITCHING  
0
10  
20  
30  
40  
50  
60  
70  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
0
2
4
6
8
10  
TEMPERATURE (°C)  
OUTPUT LOW VOLTAGE (V)  
OUTPUT LOW VOLTAGE (V)  
OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
TRANSMITTER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
R
= 54Ω  
DIFF  
0
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
60  
70  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
-inVSescPiption  
PIN  
NAME  
FUNCTION  
MAX3040/MAX3041/  
MAX3042B  
MAX3043/MAX3044/  
MAX3045B  
1
2
3
1
2
3
ꢁ1IN  
Y1  
ꢁransmitter 1 Input  
Noninverting ꢁransmitter 1 Output  
Inverting ꢁransmitter 1 Output  
Z1  
ꢁransmitter Enable High Input. Drive EN high to enable all four  
transmitters. When EN is low and EN is high% all transmitters are  
disabled and the part enters a low-power shutdown state. ꢁhe  
transmitter outputs are high impedance when disabled.  
4
EN  
ꢁransmitter Enable Input to Control ꢁransmitters 1 and 2. Drive EN12  
high to enable transmitters 1 and 2. Drive EN12 low to disable  
transmitters 1 and 2. ꢁhe transmitter outputs are high impedance  
when disabled. ꢁhe part enters a low-power shutdown state when  
both EN12 and EN34 are low.  
4
EN12  
5
6
5
6
Z2  
Y2  
Inverting ꢁransmitter 2 Output  
Noninverting ꢁransmitter 2 Output  
ꢁransmitter 2 Input  
7
7
ꢁ2IN  
GND  
ꢁ3IN  
Y3  
8
8
Ground  
9
9
ꢁransmitter 3 Input  
10  
11  
10  
11  
Noninverting ꢁransmitter 3 Output  
Inverting ꢁransmitter 3 Output  
Z3  
ꢁransmitter Enable Low Input. Drive EN low to enable all four  
transmitters. When EN is low and EN is high% all transmitters are  
disabled and the part enters a low-power shutdown state. ꢁhe  
transmitter outputs are high impedance when disabled.  
12  
EN  
ꢁransmitter Enable Input to Control ꢁransmitters 3 and 4. Drive EN34  
high to enable transmitters 3 and 4. Drive EN34 low to disable  
transmitters 3 and 4. ꢁhe transmitter outputs are high impedance  
when disabled. ꢁhe part enters a low-power shutdown state when  
both EN12 and EN34 are low.  
12  
EN34  
13  
14  
15  
16  
13  
14  
15  
16  
Z4  
Y4  
Inverting ꢁransmitter 4 Output  
Noninverting ꢁransmitter 4 Output  
ꢁransmitter 4 Input  
ꢁ4IN  
V
CC  
Positive Supply. Bypass with a 0.1µF capacitor to GND.  
6
_______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
ESD Test Conditions  
SetailedVSescPiption  
ESD performance depends on a number of conditions.  
ꢁhe MAX3040MAX3045 are quad RS-485/RS-422 trans-  
Contact Maxim for a reliability report that documents  
test setup% methodology% and results.  
mitters. ꢁhey operate from a single +5V power supply  
and are designed to give optimum performance when  
used with the MAX3093E/MAX3095 5V quad RS-485/  
RS-422 receivers or MAX3094E/MAX3096 3V quad  
RS-485/RS-422 receivers. ꢁhe MAX3040MAX3045 only  
need 1mA of operating supply current and consume 2nA  
when they enter a low-power shutdown mode. ꢁhe  
MAX3040MAX3045 also feature a hot-swap capability  
allowing line insertion without erroneous data transfer.  
ꢁhe MAX3042B/MAX3045B are capable of transferring  
data up to 20Mbps% the MAX3041/MAX3044 for data  
rates up to 2.5Mbps% and the MAX3040/MAX3043 for  
data rates up to 250kbps. All transmitter outputs are pro-  
tected to 10kV using the Human Body Model.  
Human Body Model  
Figure 6a shows the Human Body Model% and Figure  
6b shows the current waveform it generates when dis-  
charged into low impedance. ꢁhis model consists of a  
100pF capacitor charged to the ESD voltage of interest%  
which is then discharged into the device through a  
1.5kresistor.  
3V  
DI  
1.5V  
1.5V  
0
t
t
PHL  
PLH  
1/2 V  
O
±±0ꢀkV ESV-Potection  
As with all Maxim devices% ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges (ESD) encountered during handling  
and assembly. ꢁhe MAX3040MAX3045 transmitter  
outputs have extra protection against electrostatic dis-  
charges found in normal operation. Maxims engineers  
have developed state-of-the-art structures to protect  
these pins against the application of 10kV ESD  
(Human Body Model)% without damage.  
Z
V
O
Y
1/2 V  
O
V
= V (Y) - V (Z)  
DIFF  
V
O
0
O
V
DIFF  
90%  
90%  
10%  
10%  
-V  
t
R
t
F
t
t
- t  
SKEW = | PLH PHL |  
Figure 3. Driver Propagation Delays  
Y
V
CC  
S1  
S2  
R
L
R
OUTPUT  
UNDER TEST  
V
OD  
C
L
V
OC  
R
Z
Figure 4. Driver Enable/Disable Timing Test Load  
Figure 1. Driver DC Test Circuit  
3V  
DE  
1.5V  
1.5V  
0
5V  
DE  
t
t
, t  
LZ  
ZL(SHDN) ZL  
Y, Z  
Y
2.5V  
V
V
+0.5V  
-0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
DI  
V
OL  
R
C
DIFF  
DIFF  
V
OD  
Z
Y, Z  
2.5V  
OH  
0
t
, t  
t
HZ  
ZH(SHDN) ZH  
Figure 5. Driver Enable and Disable Times  
_______________________________________________________________________________________  
Figure 2. Driver Timing Test Circuit  
7
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
Machine Model  
R
R
D
C
ꢁhe Machine Model for ESD testing uses a 200pF stor-  
age capacitor and zero-discharge resistance. It mimics  
the stress caused by handling during manufacturing  
and assembly. Of course% all pins (not just RS-485  
inputs) require this protection during manufacturing.  
ꢁherefore% the Machine Model is less relevant to the I/O  
ports than are the Human Body Model.  
1.5kΩ  
1MΩ  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
100pF  
SOURCE  
±±4k Electꢀical ꢁast TꢀansientꢂBuꢀst Testinꢃ  
(IEC 1000-±-±)  
IEC 1000-4-4 Electrical Fast ꢁransient/Burst (EFꢁ/B) is  
an immunity test for the evaluation of electrical and  
electronic systems during operating conditions. ꢁhe  
test was adapted for evaluation of integrated circuits  
with power applied. Repetitive fast transients with  
severe pulsed EMI were applied to signal and control  
ports. Over 15%000 distinct discharges per minute are  
sent to each interface port of the IC or equipment under  
test (EUꢁ) simultaneously with a minimum test duration  
time of one minute. ꢁhis simulates stress due to dis-  
placement current from electrical transients on AC  
mains% or other telecommunication lines in close prox-  
imity. Short rise times and very specific repetition rates  
are essential to the validity of the test.  
Figure 6a. Human Body ESD Test Model  
I
P
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
AMPERES  
36.8%  
10%  
0
TIME  
0
t
RL  
t
DL  
Stress placed on the EUꢁ is severe. In addition to the  
controlled individual discharges placed on the EUꢁ%  
extraneous noise and ringing on the transmission line  
can multiply the number of discharges as well as  
increase the magnitude of each discharge. All cabling  
was left unterminated to simulate worst-case reflections.  
CURRENT WAVEFORM  
Figure 6b. Human Body Model Current Waveform  
ꢁhe MAX3040MAX3045 were setup as specified in  
IEC 1000-4-4 and the Typical Operating Circuit of this  
data sheet. ꢁhe amplitude% pulse rise time% pulse dura-  
tion% pulse repetition period% burst duration% and burst  
period (Figure 8) of the burst generator were all verified  
with a digital oscilloscope according to the specifica-  
tions in IEC 1000-4-4 sections 6.1.1 and 6.1.2. A simpli-  
fied diagram of the EFꢁ/B generator is shown in Figure  
7. ꢁhe burst stresses were applied to Y1Y4 and Z1Z4  
simultaneously.  
Table 1. Test Severity Levels for  
Communication Lines  
ON I/O,  
SIGNAL, DATA  
EFT  
INDUSTRIAL  
ELECTRO-  
MAGNETIC  
AND CONTROL  
LEVEL  
PORTS  
ENVIROMENT  
PEAK  
VOLTAGE  
REPETITION  
RATE (kHz)  
IEC 1000-4-4 provides several levels of test severity  
(see ꢁable 1). ꢁhe MAX3040MAX3045 pass the 4000V  
stress% a special category Xbeyond the highest level  
for severe (transient) industrial environments for  
telecommunication lines.  
1
2
3
4
X
250  
500  
5
5
5
5
5
Well protected  
Protected  
ꢁypical  
1000  
2000  
4000  
Severe  
MAX3040MAX3045  
8
_______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
I CV±000D4D4VBuPst/ lectPicalVFast  
TPansientVTestVLevelsV  
(FoPVCommunicationVLines)  
SPARK GAP  
COAXIAL  
R
R
C
D
C
M
OUTPUT  
ꢁhe stresses are applied while the MAX3040MAX3045  
are powered up. ꢁest results are reported as:  
50Ω  
1) Normal performance within the specification limits.  
U
R
S
C
E
2) ꢁemporary degradation or loss of function or perfor-  
mance which is self-recoverable.  
3) ꢁemporary degradation% loss of function or perfor-  
mance requiring operator intervention% such as sys-  
tem reset.  
U = HIGH-VOLTAGE SOURCE  
= CHARGING RESISTOR  
R
C
C = ENERGY STORAGE CAPACITOR  
E
S
M
D
4) Degradation or loss of function not recoverable due  
to damage.  
R
R
= PULSE DURATION SHAPING RESISTOR  
= IMPEDANCE MATCHING RESISTOR  
= DC BLOCKING CAPACITOR  
C
ꢁhe MAX3040MAX3045 meets classification 2 listed  
above. Additionally% the MAX3040MAX3045 will not  
latchup during the IEC burst stress events.  
Figure 7. Simplified Circuit Diagram of a Fast Transient/Burst  
Generator  
HotDEwapVCapability  
Hot-Swap Inputs  
When circuit boards are plugged into a hotback-  
plane% there can be disturbances to the differential sig-  
nal levels that could be detected by receivers  
connected to the transmission line. ꢁhis erroneous data  
could cause data errors to an RS-485/RS-422 system.  
ꢁo avoid this% the MAX3040MAX3045 have hot-swap  
capable inputs.  
PULSE  
REPETITION PERIOD (DEPENDS ON THE TEST VOLTAGE LEVER,  
IN CONFORMITY WITH THE VALUES INDICATED IN 6.1.2).  
When a circuit board is plugged into a hotbackplane  
there is an interval during which the processor is going  
through its power-up sequence. During this time% the  
processors output drivers are high impedance and will  
be unable to drive the enable inputs of the  
MAX3040MAX3045 (EN% EN% EN_) to defined logic lev-  
els. Leakage currents from these high impedance dri-  
vers% of as much as 10µA% could cause the enable  
inputs of the MAX3040MAX3045 to drift high or low.  
Additionally% parasitic capacitance of the circuit board  
could cause capacitive coupling of the enable inputs to  
BURST  
15ms  
BURST DURATION  
BURST PERIOD 300ms  
Figure 8. General Graph of a Fast Transient Burst  
either GND or V . ꢁhese factors could cause the  
CC  
enable inputs of the MAX3040MAX3045 to drift to lev-  
els that may enable the transmitter outputs (Y_ and Z_).  
ꢁo avoid this problem% the hot-swap input provides a  
method of holding the enable inputs of the  
devices% Q1 and Q2 (Figure 9). When V  
is ramping  
CC  
up from 0% an internal 10µs timer turns on Q2 and sets  
the SR latch% which also turns on Q1. ꢁransistors Q2% a  
700µA current sink% and Q1% an 85µA current sink% pull  
EN to GND through a 5.6kresistor. Q2 is designed to  
pull the EN input to the disabled state against an exter-  
nal parasitic capacitance of up to 100pF that is trying to  
enable the EN input. After 10µs% the timer turns Q2 off  
and Q1 remains on% holding the EN input low against  
three-state output leakages that might enable EN. Q1  
remains on until an external source overcomes the  
MAX3040MAX3045 in the disabled state as V  
CC  
ramps up. ꢁhis hot-swap input is able to overcome the  
leakage currents and parasitic capacitances that may  
pull the enable inputs to the enabled state.  
Hot-Swap Input Ciꢀcuitꢀy  
In the MAX3040MAX3045 the enable inputs feature  
hot-swap capability. At the input there are two NMOS  
_______________________________________________________________________________________  
9
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
V
CC  
10µs  
TIMER  
TIMER  
5.6kΩ  
EN  
EN  
(HOT SWAP)  
700µA  
85µA  
Q1  
Q2  
Figure 9. Simplified Structure of the Driver Enable Pin (EN)  
required input current. At this time the SR latch resets  
and Q1 turns off. When Q1 turns off% EN reverts to a  
OpePationVofV nableV-ins  
ꢁhe MAX3040MAX3045 family has two enable-func-  
standard% high-impedance CMOS input. Whenever V  
CC  
tional versions:  
drops below 1V% the hot-swap input is reset.  
ꢁhe MAX3040/MAX3041/MAX3042B have two transmit-  
ter enable inputs EN12 and EN34. EN12 controls the  
transmitters 1 and 2% and EN34 controls transmitters 3  
and 4. EN12 and EN34 are active-high and the part will  
enter the low-power shutdown mode when both are  
pulled low. ꢁhe transmitter outputs are high impedance  
when disabled (ꢁable 2).  
ꢁhe EN12 and EN34 input structures are identical to the  
EN input. For the EN input% there is a complimentary cir-  
cuit employing two PMOS devices pulling the EN input  
to V  
.
CC  
Hot-Swap Line Tꢀansient  
ꢁhe circuit of Figure 10 shows a typical offset termina-  
tion used to guarantee a greater than 200mV offset  
when a line is not driven. ꢁhe 50pF represents the mini-  
mum parasitic capacitance which would exist in a typi-  
cal application. In most cases% more capacitance exists  
in the system and will reduce the magnitude of the  
glitch. During a hot-swapevent when the driver is  
connected to the line and is powered up% the driver  
must not cause the differential signal to drop below  
200mV. Figures 11 and 12 show the results of the  
MAX3040MAX3045 during power-up for two different  
ꢁhe MAX3043/MAX3044/MAX3045B have two transmit-  
ter enable inputs EN and EN% which are active-high and  
active-low% respectively. When EN is logic high or EN is  
logic low all transmitters are active. When EN is pulled  
low and EN is driven high% all transmitters are disabled  
and the part enters the low-power shutdown mode. ꢁhe  
transmitter outputs are high impedance when disabled  
(ꢁable 3).  
ApplicationsVInfoPmation  
V
ramp rates (0.1V/µs and 1V/µs). ꢁhe photos show  
TypicalVApplications  
ꢁhe MAX3040MAX3045 offer optimum performance  
when used with the MAX3093E/MAX3095 5V quad  
receivers or MAX3094E/MAX3096 3V quad differential  
line receivers. Figure 13 shows a typical RS-485 con-  
nection for transmitting and receiving data and Figure  
14 shows a typical multi-point connection.  
CC  
the V  
ramp% the single-ended signal on each side of  
CC  
the 100termination% the differential signal across the  
termination% and shows the hot-swap line transient  
stays above the 200mV RS-485 specification.  
10 ______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
Table 2. Function Table for MAX3040/  
MAX3041/MAX3042B  
Table 3. Function Table for MAX3043/  
MAX3044/MAX3045B  
(Each Pair of Transmitters)  
(All Transmitters)  
OUTPUTS  
OUTPUTS  
INPUT  
EN  
EN  
INPUT  
EN_  
Y
Z
Y_  
H
Z_  
L
H
L
H
H
X
X
L
X
X
L
H
L
H
L
H
H
L
L
H
L
L
H
H
L
H
L
L
H
X
High-Z  
High-Z  
X
H
High-Z  
High-Z  
H = Logic High  
L = Logic Low  
X = Dont Care  
High-Z = High Impedance  
H = Logic High  
L = Logic Low  
X = Dont Care  
High-Z = High Impedance  
V
5V  
CC  
1kΩ  
Y
Z
V
CC  
2V/div  
T
Y
IN  
0.1kΩ  
1kΩ  
50pF  
(V OR GND)  
200mV/div  
Z
CC  
200mV/div  
Y-Z  
(20mV/div)  
238mV  
Figure 10. Differential Power-Up Glitch (Hot Swap)  
Figure 11. Differential Power-Up Glitch (0.1V/µs)  
V
CC  
2V/div  
Y
50mV/div  
Z
50mV/div  
Y-Z  
(5mV/div)  
238mV  
1µs/div  
Figure 12. Differential Power-Up Glitch (1V/µs)  
______________________________________________________________________________________ 11  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
MAX3043–MAX3045  
D1  
MAX3095  
R1  
R1OUT  
R2OUT  
T1IN  
T2IN  
RT  
RT  
D2  
R2  
R3OUT  
R4OUT  
T3IN  
T4IN  
RT  
RT  
D3  
D4  
R3  
R4  
EN  
EN  
G
G
GND  
GND  
V
CC  
V
CC  
Figure 13. Typical Connection of a Quad Transmitter and a Quad Receiver as a Pair  
impedance of the cable% reflections will occur as the  
signal is traveling down the cable. Although some  
reflections are inevitable due to the cable and resistor  
tolerances% large mismatches can cause significant  
reflections resulting in errors in the data. With this in  
mind% it is very important to match the terminating resis-  
tance and the characteristic impedance as closely as  
possible. As a general rule in a multi-drop system% termi-  
nation resistors should always be placed at both ends of  
the cable.  
TypicalVMultipleD-ointVConnection  
Figure 14 shows a typical multiple-point connection for  
the MAX3040MAX3045 with the MAX3095. Because of  
the high frequencies and the distances involved% high  
attention must be paid to transmission-line effects while  
using termination resistors. A terminating resistor (Rꢁ)  
is simply a resistor that should be placed at the  
extreme ends of the cable to match the characteristic  
impedance of the cable. When the termination resis-  
tance is not the same value as the characteristic  
12 ______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
1/4 MAX3040MAX3045  
1/4 MAX3040MAX3045  
RT  
RT  
1/4 MAX3095  
1/4 MAX3095  
UP TO 32 RS-485  
UNIT LOADS  
1/4 MAX3040MAX3045  
1/4 MAX3040MAX3045  
1/4 MAX3095  
1/4 MAX3095  
Figure 12. Typical Connection for Multiple-Point RS-485 Bus  
OPdePingVInfoPmationV(continued)  
DATA  
RATE  
DATA  
PART  
TEMP RANGE PIN-PACKAGE  
PART  
TEMP RANGE PIN-PACKAGE  
RATE  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
MAX3045BCUE 0°C to +70°C 16 ꢁSSOP  
MAX3045BCSE 0°C to +70°C 16 Narrow SO  
MAX3041CUE  
MAX3041CSE  
MAX3041CWE  
0°C to +70°C 16 ꢁSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
250kbps  
250kbps  
250kbps  
250kbps  
250kbps  
250kbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
MAX3045BCWE 0°C to +70°C 16 Wide SO  
MAX3045BEUE -40°C to +85°C 16 ꢁSSOP  
MAX3045BESE -40°C to +85°C 16 Narrow SO  
MAX3045BEWE -40°C to +85°C 16 Wide SO  
MAX3041EUE -40°C to +85°C 16 ꢁSSOP  
MAX3041ESE -40°C to +85°C 16 Narrow SO  
MAX3041EWE -40°C to +85°C 16 Wide SO  
MAX3042BCUE 0°C to +70°C 16 ꢁSSOP  
-inVConfiguPationsV(continued)  
MAX3042BCSE  
0°C to +70°C 16 Narrow SO  
MAX3042BCWE 0°C to +70°C 16 Wide SO  
MAX3042BEUE -40°C to +85°C 16 ꢁSSOP  
MAX3042BESE -40°C to +85°C 16 Narrow SO  
MAX3042BEWE -40°C to +85°C 16 Wide SO  
TOP VIEW  
T1IN  
Y1  
1
2
3
4
5
6
7
8
16 V  
CC  
15 T4IN  
14 Y4  
13 Z4  
12 EN  
11 Z3  
10 Y3  
Z1  
MAX3043CUE  
MAX3043CSE  
MAX3043EWE  
0°C to +70°C 16 ꢁSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
EN  
MAX3043  
MAX3044  
MAX3045B  
Z2  
MAX3043EUE -40°C to +85°C 16 ꢁSSOP  
MAX3043ESE -40°C to +85°C 16 Narrow SO  
MAX3043EWE -40°C to +85°C 16 Wide SO  
Y2  
T2IN  
GND  
9
T3IN  
MAX3044CUE  
MAX3044CSE  
MAX3044CWE  
0°C to +70°C 16 ꢁSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
16 TSSOP/SO  
ChipVInfoPmation  
MAX3044EUE -40°C to +85°C 16 ꢁSSOP  
MAX3044ESE -40°C to +85°C 16 Narrow SO  
MAX3044EWE -40°C to +85°C 16 Wide SO  
ꢁRANSISꢁOR COUNꢁ: 545  
PROCESS: CMOS  
______________________________________________________________________________________ 13  
±1 0 k V ES D-P ro t e c t e d , Qu a d 5 V RS -4 8 5 /4 2 2  
Tra n s m it t e rs  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
TEMP.  
RANGE  
DATA  
RATE  
TEMP.  
RANGE  
DATA  
RATE  
PART  
PIN-PACKAGE  
PART  
PIN-PACKAGE  
MAX3044CUE  
MAX3044CSE  
MAX3044CWE  
0°C to +70°C 16 TSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
MAX3041CUE  
MAX3041CSE  
MAX3041CWE  
0°C to +70°C 16 TSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
2.5Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
20Mbps  
250kbps  
250kbps  
250kbps  
250kbps  
250kbps  
250kbps  
MAX3044EUE -40°C to +85°C 16 TSSOP  
MAX3044ESE -40°C to +85°C 16 Narrow SO  
MAX3044EWE -40°C to +85°C 16 Wide SO  
MAX3045BCUE 0°C to +70°C 16 TSSOP  
MAX3045BCSE 0°C to +70°C 16 Narrow SO  
MAX3045BCWE 0°C to +70°C 16 Wide SO  
MAX3045BEUE -40°C to +85°C 16 TSSOP  
MAX3045BESE -40°C to +85°C 16 Narrow SO  
MAX3045BEWE -40°C to +85°C 16 Wide SO  
MAX3041EUE -40°C to +85°C 16 TSSOP  
MAX3041ESE -40°C to +85°C 16 Narrow SO  
MAX3041EWE -40°C to +85°C 16 Wide SO  
MAX3042BCUE 0°C to +70°C 16 TSSOP  
MAX3042BCSE  
0°C to +70°C 16 Narrow SO  
MAX3042BCWE 0°C to +70°C 16 Wide SO  
MAX3042BEUE -40°C to +85°C 16 TSSOP  
MAX3042BESE -40°C to +85°C 16 Narrow SO  
MAX3042BEWE -40°C to +85°C 16 Wide SO  
MAX3043CUE  
MAX3043CSE  
MAX3043EWE  
0°C to +70°C 16 TSSOP  
0°C to +70°C 16 Narrow SO  
0°C to +70°C 16 Wide SO  
MAX3043EUE -40°C to +85°C 16 TSSOP  
MAX3043ESE -40°C to +85°C 16 Narrow SO  
MAX3043EWE -40°C to +85°C 16 Wide SO  
P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
T1IN  
Y1  
1
2
3
4
5
6
7
8
16 V  
CC  
15 T4IN  
14 Y4  
13 Z4  
12 EN  
11 Z3  
10 Y3  
Z1  
EN  
MAX3043  
MAX3044  
MAX3045B  
Z2  
Y2  
T2IN  
GND  
9
T3IN  
16 TSSOP/SO  
14 ______________________________________________________________________________________  
±±0ꢀkV ESD-Potected,VQuadV5kVRED485/RED422  
TPansmittePs  
-acꢀageVInfoPmationV(continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
MaximVIntegPatedV-Poducts,V±20VEanVGabPielVSPive,VEunnyvale,VCAVV94086V408D737D7600V ____________________ 15  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX3042BCWE

【10kV ESD-Protected, Quad 5V RS-485/RS-422 Transmitters
MAXIM

MAX3042BCWE+

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, SO-16
MAXIM

MAX3042BCWE+T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, SO-16
MAXIM

MAX3042BCWE+TG126

&#177;10KV ESD-PROTECTED, QUAD 5V RS-485/RS-422 TRANSMITTERS
MAXIM

MAX3042BCWE-T

暂无描述
MAXIM

MAX3042BESE

【10kV ESD-Protected, Quad 5V RS-485/RS-422 Transmitters
MAXIM

MAX3042BESE+

暂无描述
MAXIM

MAX3042BESE+T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX3042BESE-T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, 0.300 INCH, SOIC-16
MAXIM

MAX3042BEUE

【10kV ESD-Protected, Quad 5V RS-485/RS-422 Transmitters
MAXIM

MAX3042BEUE+

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, ULTRA SMALL, TSSOP-16
MAXIM

MAX3042BEUE+T

Line Driver, 4 Func, 4 Driver, CMOS, PDSO16, ULTRA SMALL, TSSOP-16
MAXIM