MAX253C/D [MAXIM]

Transformer Driver for Isolated RS-485 Interface; 用于隔离型RS - 485接口的变压器驱动器
MAX253C/D
型号: MAX253C/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Transformer Driver for Isolated RS-485 Interface
用于隔离型RS - 485接口的变压器驱动器

变压器 驱动器
文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0226; Rev 0; 1/94  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX253 is a monolithic oscillator/power-driver,  
specifically designed to provide isolated power for an  
is ola te d RS-485 or RS-232 d a ta inte rfa c e . It  
drives a center-tapped transformer primary from a 5V  
or 3.3V DC p owe r s up p ly. The s e c ond a ry c a n b e  
wound to provide any isolated voltage needed at power  
levels up to 1W.  
Power-Supply Transformer Driver for Isolated  
RS-485/RS-232 Data-Interface Applications  
Single +5V or +3.3V Supply  
Low-Current Shutdown Mode: 0.4µA  
Pin-Selectable Frequency: 350kHz or 200kHz  
8-Pin DIP, SO, and µMAX Packages  
The MAX253 consists of a CMOS oscillator driving a  
pair of N-channel power switches. The oscillator runs  
at double the output frequency, driving a toggle flip-flop  
to e ns ure 50% d uty c yc le to e a c h of the s witc he s .  
Internal delays are arranged to ensure break-before-  
make action between the two switches.  
The SD pin puts the entire device into a low-power  
shutdown state, disabling both the power switches and  
oscillator.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
MAX253CPA  
MAX253CSA  
MAX253CUA  
MAX253C/D  
MAX253EPA  
MAX253ESA  
MAX253EUA  
MAX253MJA  
0°C to +70°C  
Isolated RS-485/RS-232 Power-Supply  
Transformer Driver  
0°C to +70°C  
8 µMAX  
High Noise-Immunity Communications Interface  
Isolated and/or High-Voltage Power Supplies  
Bridge Ground Differentials  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
8 µMAX  
Medical Equipment  
8 CERDIP**  
Process Control  
* Contact factory for dice specifications.  
**Contact factory for availability and processing to MIL-STD-883.  
__________________P in Co n fig u ra t io n  
__________Typ ic a l Op e ra t in g Circ u it  
V
IN  
5V  
TOP VIEW  
ON / OFF  
C1  
4
6
OUTPUT  
SD  
V
CC  
5V @ 200mA  
1
8
D1  
D1  
GND1  
FS  
1
2
3
4
8
7
6
5
D2  
C3  
C2  
GND2  
MAX253  
MAX253  
V
CC  
3
SD  
N.C.  
FS  
D2  
FREQUENCY  
SWITCH  
GND1  
GND2  
7
DIP/SO/µMAX  
2
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ) ...............................................-0.3V to +7V  
Operating Temperature Ranges  
CC  
Control Input Voltages (SD, FS) .................-0.3V to (V + 0.3V)  
MAX253C_ _ ........................................................0°C to +70°C  
MAX253E_ _ .....................................................-40°C to +85°C  
MAX253MJA ...................................................-55°C to +125°C  
Junction Temperatures  
CC  
Output Switch Voltage (D1, D2).............................................12V  
Peak Output Switch Current (D1, D2)......................................1A  
Average Output Switch Current (D1, D2) .........................200mA  
Continuous Power Dissipation (T = +70°C)  
MAX253C_ _/E_ _..........................................................+150°C  
MAX253MJA .................................................................+175°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
A
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
µMAX (derate 4.10mW/°C above +70°C) .....................330mW  
CERDIP (derate 8.00mW/°C above +70°C)..................640mW  
MAX253  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±10%, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
CC  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.5  
MAX  
4.0  
UNITS  
Switch On Resistance  
D1, D2; 100mA  
FS = V or open  
CC  
250  
150  
350  
200  
0.45  
0.4  
500  
300  
5.0  
Switch Frequency  
kHz  
FS = 0V  
Operating Supply Current (Note 1)  
Shutdown Supply Current (Note 2)  
No load, SD = 0V, FS low  
mA  
µA  
V
SD = V  
CC  
High  
Low  
2.4  
2.4  
Shutdown Input Threshold  
Shutdown Input Leakage Current  
FS Input Threshold  
0.8  
µA  
pA  
10  
High  
V
Low  
0.8  
50  
FS = 0V  
µA  
pA  
V
FS Input Leakage Current  
Start-Up Voltage  
FS = V  
10  
CC  
2.5  
2.2  
Note 1: Operating supply current is the current used by the MAX253 only, not including load current.  
Note 2: Shutdown supply current includes output switch-leakage currents.  
2
_______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Circuit of Figure 6, V = 5V ±10%, T = +25°C, unless otherwise noted.)  
IN  
A
OUTPUT RESISTANCE vs. TEMPERATURE  
(FS = LOW)  
OUTPUT RESISTANCE vs. TEMPERATURE  
(FS = HIGH)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
10.5  
15  
12  
9
1.0  
0.8  
0.6  
MEASURED AT TP1  
MEASURED AT TP1  
INCLUDES SWITCH LEAKAGE CURRENTS  
10.0  
9.5  
9.0  
8.5  
V
= 4.5V  
IN  
V
= 4.5V  
IN  
8.0  
7.5  
7.0  
6.5  
6.0  
V
IN  
= 5.0V  
0.4  
0.2  
0
V
IN  
= 5.0V  
6
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
D1, D2 FREQUENCY vs. TEMPERATURE  
(FS = LOW)  
D1, D2 FREQUENCY vs. TEMPERATURE  
(FS = HIGH)  
SUPPLY CURRENT vs. TEMPERATURE  
(FS = LOW)  
260  
240  
220  
480  
440  
400  
600  
550  
V
IN  
= 6.0V  
V
= 6.0V  
V = 6.0V  
IN  
IN  
500  
450  
400  
350  
300  
250  
V
= 5.5V  
IN  
V
IN  
= 5.5V  
V
IN  
= 5.5V  
V
= 5.0V  
IN  
200  
180  
160  
360  
320  
280  
V = 5.0V  
IN  
V
IN  
= 5.0V  
V = 4.5V  
IN  
V
IN  
= 4.5V  
V
IN  
= 4.5V  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EFFICIENCY vs. LOAD CURRENT  
(FS = LOW)  
SUPPLY CURRENT vs. TEMPERATURE  
(FS = HIGH)  
100  
850  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
750  
700  
650  
V
= 6.0V  
= 5.5V  
= 5.0V  
IN  
V
IN  
= 5.5V  
V
IN  
= 4.5V  
V
IN  
600  
550  
500  
450  
400  
V
IN  
V
IN  
= 4.5V  
0
20 40 6080 100 120 140160 180 200  
LOAD CURRENT (mA)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 6, V = 5V ±10%, T = +25°C, unless otherwise noted.)  
IN  
A
EFFICIENCY vs. LOAD CURRENT  
(FS = HIGH)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(FS = LOW)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(FS = HIGH)  
100  
10  
10  
CIRCUIT OF FIGURE 7  
CIRCUIT OF FIGURE 7  
V = 3.3V  
IN  
TURNS RATIO = 1:2.1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
V
IN  
= 3.3V  
5
V
= 5.5V  
TURNS RATIO = 1:2.1  
IN  
CIRCUIT OF FIGURE 6  
= 5.0V  
CIRCUIT OF FIGURE 6  
= 5.0V  
TURNS RATIO = 1:1.3  
V
IN  
= 4.5V  
V
IN  
V
IN  
TURNS RATIO = 1:1.3  
CIRCUIT OF FIGURE 6  
CIRCUIT OF FIGURE 6  
V = 5.0V  
IN  
TURNS RATIO = 1:1  
V
= 5.0V  
IN  
TURNS RATIO = 1:1  
MEASURED AT TP1  
MEASURED AT TP1  
0
20 40 6080 100 120 140160 180 200  
LOAD CURRENT (mA)  
0
20 40 60 80 100 120 140 160 180 200 220  
LOAD CURRENT (mA)  
0
20 40 60 80 100 120 140 160 180 200 220  
LOAD CURRENT (mA)  
SWITCHING WAVEFORMS  
(BREAK BEFORE MAKE)  
SWITCHING WAVEFORMS  
(TWO CYCLES)  
D1  
D2  
D1  
D2  
CIRCUIT OF FIGURE 1  
CIRCUIT OF FIGURE 1  
TIME FROM SHUTDOWN TO POWER-UP  
SD  
TP1 (OUTPUT VOLTAGE)  
CIRCUIT OF FIGURE 6  
4
_______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
_____________________P in De s c rip t io n  
V
IN  
PIN  
NAME  
FUNCTION  
5V  
C1  
0.1µF  
R1  
50  
6
1
D1  
Open drain of N-channel transfomer drive 1.  
V
CC  
Ground. Connect both GND1 and GND2  
to ground.  
2
3
4
GND1  
FS  
1
4
SD  
FS  
D1  
D2  
ON / OFF  
Frequency switch. If FS = V or open,  
CC  
switch frequency = 350kHz; if FS = 0V,  
switch frequency = 200kHz.  
R2  
50Ω  
MAX253  
Shutdown. Ground for normal operation,  
tie high for shutdown.  
3
8
SD  
FREQUENCY  
SWITCH  
5
6
N.C.  
Not internally connected.  
+5V supply voltage.  
GND1  
GND2  
2
7
V
CC  
Ground. Connect both GND1 and GND2  
to ground.  
7
8
GND2  
D2  
Open drain of N-channel transformer drive 2.  
Figure 1. Test Circuit  
V
IN  
5V  
C1  
5V @ 200mA  
ISO OUTPUT  
V
CC  
D1  
N
F / F  
Q
Q
MAX253  
OSC  
C3  
C2  
T
FS  
D2  
N
FREQUENCY  
SWITCH  
ISO  
GND  
400kHz/  
700kHz  
SD  
GND2  
GND1  
ON / OFF  
Figure 2. Block Diagram  
quency (see Figure 2). These two signals drive the  
ground-referenced output switches. Internal delays  
e ns ure b re a k-b e fore -ma ke a c tion b e twe e n the two  
switches.  
_______________De t a ile d De s c rip t io n  
The MAX253 is an isolated power-supply transformer  
driver specifically designed to form the heart of a fully  
isolated RS-485 data interface. Completely isolated  
c ommunic a tions a re ob ta ine d b y c omb ining the  
MAX253 with a linear regulator, a center-tapped trans-  
former, optocouplers, and the appropriate Maxim inter-  
face product (as described in the Isolated RS-485/RS-  
232 Data Interface section).  
Ground SD for normal operation. When high, SD dis-  
ables all internal circuitry, including the oscillator and  
both power switches.  
Pulling FS low reduces the oscillator frequency and low-  
e rs the s up p ly c urre nt (s e e Sup p ly Curre nt vs .  
Temperature in the Typical Operating Characteristics).  
FS includes a weak pull-up, so it will float to the high-fre-  
quency state if not connected.  
The MAX253 consists of an RC oscillator followed by a  
toggle flip-flop, which generates two 50% duty-cycle  
square waves, out-of-phase at half the oscillator fre -  
_______________________________________________________________________________________  
5
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
ISOLATION  
BARRIER  
V
IN  
5V  
C1  
MAX253  
0.1µF  
6
V
CC  
1N5817  
1N5817  
ICT:1.3CT**  
ISO 5V  
C4  
1
8
2
D1  
IN  
OUT  
C3  
C2  
0.1µF  
22µF  
22µF  
4
MAX667  
MAX253  
ON / OFF  
SD  
8
3
D2  
FS  
SET  
GND SHDN  
GND1 GND2  
6
4
5
2
7
3.3kΩ  
PC410 / 417  
6
5
*74HC04  
*74HC04  
390Ω  
1
1
DI  
3.3kΩ  
8
3
4
3
PC357T  
4
V
CC  
DI  
390Ω  
3.3kΩ  
6
4
A
B
DE  
MAX481  
MAX483  
MAX485  
MAX487  
3
1
485  
I/O  
DE  
RO  
2
PC410 / 417  
6
5
*74HC04  
7
390Ω  
1
RO  
RE  
GND  
2
5
4
3
*74HC04 OR EQUIVALENT  
** SEE TABLE 2  
Figure 3. Typical RS-485 Application Circuit, 5V Configuration  
6
_______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
ISOLATION  
BARRIER  
V
IN  
3.3V  
C1  
0.1µF  
1N5817  
ICT:2.1CT**  
ISO 5V  
1
8
5
8
2
D1  
IN  
OUT  
N.C.  
SD  
C3  
0.1µF  
C2  
22µF  
C4  
22µF  
4
6
MAX667  
MAX253  
ON / OFF  
V
CC  
D2  
FS  
3
1N5817  
SET  
GND SHDN  
GND1 GND2  
6
4
5
2
7
1N5817  
1N5817  
C5  
0.1µF  
PC410 / 417  
3.3kΩ  
6
5
*74HC04  
*74HC04  
390Ω  
1
1
DI  
3.3kΩ  
8
3
4
PC357T  
4
V
CC  
DI  
390Ω  
3.3kΩ  
6
4
A
B
DE  
MAX481  
MAX483  
MAX485  
MAX487  
3
1
485  
I/O  
DE  
RO  
2
3
PC410 / 417  
6
5
*74HC04  
7
390Ω  
1
RO  
RE  
GND  
2
5
*74HC04 OR EQUIVALENT  
** SEE TABLE 2  
4
3
Figure 4. Typical RS-485 Application Circuit, 3.3V Configuration  
_______________________________________________________________________________________  
7
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
V
IN  
ISOLATION  
BARRIER  
1N5817  
6
5V  
C1  
0.1µF  
V
ICT:1.3CT**  
CC  
ISO 5V  
1
5
4
8
2
D1  
IN  
OUT  
N.C.  
SD  
C3  
0.1µF  
C2  
22µF  
C4  
22µF  
MAX667  
MAX253  
ON / OFF  
8
D2  
FS  
SET GND SHDN  
3
1N5817  
6
4
5
MAX253  
GND1 GND2  
2
7
5 x 3.3kΩ  
10 x PC417  
*74HC04  
V
GND  
CC  
6
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
1
2
8
7
3
T1  
T1  
OUT  
IN  
5
4
T1  
IN  
74HC04  
4
T2  
T2  
OUT  
IN  
T2  
IN  
74HC04  
15  
16  
22  
2
T3  
T3  
OUT  
IN  
T3  
IN  
74HC04  
1
T4  
T4  
OUT  
IN  
T4  
IN  
74HC04  
19  
T5  
T5  
OUT  
IN  
T5  
IN  
5 X 3.3kΩ  
MAX205  
74HC04  
6
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
9
6
10  
5
1
2
R1  
R1  
IN  
OUT  
5
4
R1  
OUT  
74HC04  
R2  
OUT  
R2  
IN  
R2  
OUT  
74HC04  
23  
17  
14  
24  
18  
13  
R3  
OUT  
R3  
IN  
R3  
OUT  
74HC04  
R4  
OUT  
R4  
IN  
R4  
OUT  
74HC04  
R5  
OUT  
R5  
IN  
R5  
OUT  
SD  
EN  
20  
*74HC04 OR EQUIVALENT  
** SEE TABLE 2  
21  
4N25 LOWER SPEED, LOWER COST ALTERNATE OPTOCOUPLER CONFIGURATIONS (FOR DATA RATES BELOW 9.6kbps)  
V
CC  
V
CC  
1N5711  
4N25  
6
1N5711  
6
4N25  
3.3kΩ  
74HCO4  
3.3kΩ  
390Ω  
ISO  
R
OUT  
1
1
R
OUT  
T
IN  
ISO  
5
5
4
T
390Ω  
ISO  
IN  
*74HC04  
2
2
ISO  
4
GND  
GND  
Figure 5. Typical RS-232 Application Circuit  
_______________________________________________________________________________________  
8
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
appropriate Maxim interface device for data-transfer  
rates up to 2.5Mbps.  
__________Ap p lic a t io n s In fo rm a t io n  
Figures 3–5 are typical isolated RS-485/RS-232 data-inter-  
Refer to the MAX1480 data sheet for a complete isolat-  
ed RS-485 solution in one package.  
face circuits. These circuits withstand 1800V  
(1sec)  
RMS  
and are intended for industrial communications and control  
applications where very high voltage transients, differential  
ground potentials, or high noise may be encountered.  
Is o la t e d RS -2 3 2 Da t a In t e rfa c e  
The MAX253 is ideal for isolated RS-232 data-interface  
applications requiring more than four transceivers. The  
1W power output capability of the MAX253 enables it to  
drive more than 10 transceivers simultaneously. Figure 5  
shows the typical application circuit for a complete  
120kbps isolated RS-232 data interface. The figure  
also shows how the Sharp PC417 optocouplers can be  
replaced by the lower-cost 4N25 devices to achieve  
data-transfer rates up to 9.6kbps.  
Table 2 lists transformer characteristics for the applica-  
tions of Figures 3–10. Some suggested manufacturers  
of transformers, transformer cores, and optocouplers  
are listed in Table 3, along with their respective phone  
and fax numbers.  
Important layout considerations include:  
For maximum isolation, the “isolation barriershould not  
be breached. Connections and components from one  
side should not be located near those of the other side.  
For 3.3V operation, substitute the primary portion of  
Figure 5 with the circuit of Figure 7.  
Since the optocoupler outputs are relatively high-  
impedance nodes, they should be located as close  
as possible to the Maxim interface IC. This mini-  
mizes stray capacitance and maximizes data rate.  
For applications requiring two transceivers or fewer,  
refer to the MAX250/MAX251 or MAX252 data sheet.  
Is o la t e d P o w e r S u p p lie s  
The MAX253 is a versatile isolated power driver, capa-  
ble of driving a center-tapped transformer primary from  
a 5V or a 3.3V DC power supply (see Figures 6 and 7).  
The secondary can be wound to provide any isolated  
voltage needed at power levels up to 1W with a 5V sup-  
ply, or 600mW with a 3.3V supply. Figure 6 shows a  
typical 5V to isolated 5V application circuit that delivers  
up to 200mA of isolated 5V power.  
Refer to the µMAX package information for pin spacing  
and physical dimensions.  
Is o la t e d RS -4 8 5 Da t a In t e rfa c e  
The MAX253 p owe r-s up p ly tra ns forme r d rive r is  
designed specifically for isolated RS-485 data-interface  
applications. The application circuits of Figures 3 and 4  
combine the MAX253 with a low-dropout linear regulator,  
a transformer, several high-speed optocouplers, and a  
Maxim RS-485 interface device. With a few modifica-  
tions to these circuits, full-duplex communications can  
be implemented by substituting the MAX481/MAX485  
with the MAX490/MAX491 (for data rates up to 2.5Mbps)  
or s ub s tituting the MAX483/MAX487 with the  
MAX488/MAX489 (for data rates up to 250kbps).  
In Figure 7, the MAX253 is configured to operate from a  
3.3V supply, deriving a “boost” V for the MAX253 by  
CC  
connecting diodes to both ends of the transformer pri-  
mary. This produces nearly double the input supply,  
and may be useful for other applications, as shown in  
Figure 4. The average current in each MAX253 switch  
must still be limited to less than 200mA, so the total  
power available is approximately 600mW.  
The data transfer rates of the application circuits in  
Figures 3 and 4 are critically limited by the optocou-  
plers. Table 1 lists suggested optocouplers and the  
Table 1. Optocouplers and RS-485 Interface ICs for Various Data Rates  
FULL DUPLEX  
RS-485 IC  
HALF DUPLEX  
RS-485 IC  
OPTOCOUPLER  
FOR DI / RO  
OPTOCOUPLER  
FOR DE  
DATA RATE  
250kbps  
2.5Mbps  
MAX488/MAX489  
MAX490/MAX491  
MAX483/MAX487  
MAX481/MAX485  
PC417*  
PC410*  
PC357T*  
PC357T  
* PC-Series Optocouplers, Sharp Electronics  
USA Phone: (206) 834-2500  
FAX: (206) 834-8903  
Sharp Electronics, Europe GmbH  
Germany Phone: (040) 2376-0  
FAX: (040) 230764  
_______________________________________________________________________________________  
9
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
V
IN  
5V  
C1  
6
0.1µF  
5V @ 200mA  
ISO OUTPUT  
V
CC  
1N5817  
1N5817  
TP1  
MAX253  
ICT:1.3CT*  
1
8
4
3
D1  
D2  
SD  
FS  
ON / OFF  
C3  
0.1µF  
C2  
22µF  
MAX253  
FREQUENCY  
SWITCH  
OPTIONAL 21kHz LOWPASS OUTPUT FILTER  
GND1  
GND2  
L2  
25µH  
FILTER  
OUTPUT  
2
7
OUTPUT  
C7  
2.2µF  
*SEE TABLE 2  
Figure 6. 5V to Isolated 5V Application Circuit  
V
IN  
3.3V  
C1  
0.1µF  
5V @ 100mA  
ISO OUTPUT  
1N5817  
1N5817  
TP1  
ICT:2.1CT*  
1
8
4
3
D1  
SD  
FS  
ON / OFF  
C3  
0.1µF  
C2  
22µF  
MAX253  
D2  
FREQUENCY  
SWITCH  
OPTIONAL 21kHz LOWPASS OUTPUT FILTER  
V
CC  
GND1 GND2  
L2  
25µH  
FILTER  
OUTPUT  
2
7
6
1N5817  
1N5817  
OUTPUT  
C7  
2.2µF  
C4  
0.1µF  
*SEE TABLE 2  
Figure 7. 3.3V to Isolated 5V Application Circuit  
10 ______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
V
IN  
ISOLATION  
BARRIER  
6
5V  
24V UNREGULATED  
10µF  
V
1CT:5CT*  
CC  
1
8
D1  
D2  
1N5817  
1N5817  
MAX253  
4
SD  
78L05  
GND1  
GND2  
7
2
R
L
1
2
3
5V  
IL300  
0kto 1kΩ  
3
2
7
0.1V to 0.5V  
6
MAX480  
4
6
5
ISO  
5V  
3
2
4
6
7
49.9kΩ  
2N3904  
49.9kΩ  
MAX480  
4
2N3904  
*SEE TABLE 2  
10kΩ  
24.9Ω  
Figure 8. Typical 4mA to 20mA Application Circuit  
Output-Ripple Filtering  
A simple lowpass pi-filter (Figures 6 and 7) can be added  
to the output to reduce output ripple noise to about  
10mVp-p. The cutoff frequency shown is 21kHz. Since the  
filter inductor is in series with the circuit output, minimize its  
resistance so the voltage drop across it is not excessive.  
plersthe LED efficiency variation. The IL300 is really  
two optocouplers in the same package sharing the same  
LED; one detector is across the isolation barrier, the  
other is on the same side as the LED (Figure 8). The lat-  
ter detector is used to generate a feedback signal identi-  
cal to the signal on the isolated side of the barrier. The  
current signal transferred across the barrier is converted  
back to a voltage that matches the input in the 100mV to  
500mV range. This voltage is then transformed to the  
final 4mA to 20mA current signal range by the second  
MAX480, Darlington stage, and the 20resistor.  
Is o la t e d 4 m A t o 2 0 m A An a lo g In t e rfa c e  
The 4mA to 20mA current loop is a standard analog  
signal range that is widely used in the process-control  
industry for transducer and actuator control signals.  
The s e s ig na ls a re c ommonly re fe rre d to a d is ta nt  
ground that may be at a considerably higher voltage  
with respect to the local ground.  
Is o la t e d ADC  
Almost any serial-interface device is a candidate for  
operation across an isolation barrier; Figure 10 illus-  
trates one example. The MAX176 analog-to-digital  
converter (ADC) operates from +5V and -12V supplies,  
provided by the multiple-tapped secondary and linear  
regulators. If some additional isolated power is needed  
for signal conditioning, multiplexing, or possibly for a  
An analog signal in the range of 0.1V to 0.5V is applied  
to the first MAX480 to generate a signal current in the  
range of 20µA to 100µA. This low-level signal is trans-  
ferred across the barrier by the Siemens IL300 linear  
optocoupler. This device is unique in that it corrects  
the dominant nonlinearity present in most optocou-  
______________________________________________________________________________________ 11  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
V
IN  
INPUT  
6
V
1N5817  
CC  
1CT:1CT*  
1
8
+V  
OUT  
OUTPUT  
D1  
2V  
IN  
+
R
L
MAX253  
MAX253  
+
R
R -  
L
D2  
L
GND1  
GND2  
2
7
R -  
L
-V  
OUT  
OUTPUT  
-2V  
IN  
*SEE TABLE 2  
1N5817  
Figure 9a. Half-Wave Rectifier—Bipolar  
V
IN  
INPUT  
6
V
4 x 1N5817  
CC  
1CT:1CT*  
1
8
D1  
D2  
V
OUT  
+V  
IN  
MAX253  
OUTPUT  
GND1  
GND2  
2
7
V
-V  
IN  
OUT  
*SEE TABLE 2  
OUTPUT  
Figure 9b. Full-Wave Rectifier—Bipolar  
V
IN  
INPUT  
6
4 x 1N5817  
1CT:1CT*  
V
1
8
CC  
D1  
D2  
V
OUT  
2 x V  
IN  
MAX253  
OUTPUT  
GND1  
GND2  
2
7
*SEE TABLE 2  
Figure 9c. Full-Wave Rectifier—Unipolar  
12 ______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
V
IN  
5V  
ISOLATION  
BARRIER  
1CT : 1.5CT : 3CT*  
1
D1  
78L05  
4 x 1N5817  
10µF  
6
8
ISO  
5V  
MAX253  
V
CC  
4
ON/OFF  
D2  
SD  
79 L12  
ISO  
-12V  
GND1  
GND2  
10µF  
2
7
+5V  
74HC04  
START  
6N136  
INPUT CLOCK  
8
7
6
5
1
2
3
4
200  
7
QH  
3k  
14  
11  
12  
10  
6
QG  
SER  
5
74HC595 QF  
10µF  
4
3
QE  
QD  
QC  
QB  
QA  
SCK  
RCK  
SCLR  
MAX176  
D11(MSB)  
D10  
0.1µF  
1
2
8
6N136  
6N136  
2
V
V
SS  
DD  
8
7
6
5
1
2
3
4
1
D9  
7
6
5
200Ω  
ANALOG  
INPUT  
AIN  
CONVST  
CLOCK  
DATA  
15  
16  
+5V  
D8  
3k  
3
4
+5V  
VREF  
GND  
0.1µF  
13  
8
470Ω  
74HC04  
0.1µF  
1
8
7
6
5
10µF  
0.1µF 10µF  
2
3
4
8
QH′  
8.2k  
7
6
D7  
D6  
QH  
QG  
14  
11  
12  
10  
SER  
SIGNAL  
GROUND  
5
D5  
74HC595 QF  
4
D4  
QE  
QD  
QC  
QB  
QA  
SCK  
RCK  
SCLR  
3
D3  
2
D2  
1
D1  
15  
16  
+5V  
D0(LSB)  
+5V  
0.1µF  
13  
8
*SEE TABLE 2  
Figure 10. Typical Isolated ADC Application  
______________________________________________________________________________________ 13  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
sensor, an extra several hundred milliwatts could easily  
be supplied by the circuit, as shown. A +12V supply  
could be generated by adding two more diodes to the  
ends of the secondary, and a -5V supply could be gen-  
erated by connecting additional diodes to the 1/4 and  
3/4 tap points on the secondary. For +5V only applica-  
tions, the MAX187 is recommended.  
for half the primary is simply the product of the maxi-  
mum supply voltage and half the maximum period.  
With FS tied high, the guaranteed minimum frequency  
is 250kHz, giving a maximum period of 4µs.  
The s e c ond a ry wind ing ma y or ma y not b e c e nte r  
tapped, depending on the rectifier topology used. The  
phasing of the secondary winding is not critical. In  
s ome a p p lic a tions , multip le s e c ond a rie s mig ht b e  
required. Half-wave rectification could be used, but is  
discouraged because it normally adds a DC imbalance  
to the magnetic flux in the core, reducing the ET prod-  
uct. If the DC load is imbalanced, full-wave rectification  
is recommended, as shown in Figure 9b.  
MAX253  
______________Co m p o n e n t S e le c t io n  
Tra n s fo rm e r S e le c t io n  
The transformer primary used with the MAX253 must be  
a center-tapped winding with sufficient ET product to  
prevent saturation at the worst-case lowest selected  
frequency. The MAX253s guaranteed minimum fre-  
quency with the FS pin held low is 150kHz, equating to  
a maximum period of 6.67µs. The required ET product  
The transformer turns ratio must be set to provide the  
minimum re q uire d outp ut volta g e a t the ma ximum  
anticipated load with the minimum expected input volt-  
Table 2. Typical Transformer Characteristics  
CHARACTERISTIC  
+5V to ±10V  
9a  
+5V to +5V  
2, 3, 5, 6  
+3.3V to +5V  
4, 7  
+5V to +24V  
+5V to ±5V; ±12V  
10  
Figure  
8
Turns Ratio  
1CT*:1  
44CT  
44  
1CT:1.3CT  
44CT  
1CT:2.1CT  
28CT  
1CT:5CT  
44CT  
1CT:1.5CT:3CT  
44CT  
Primary  
Typical  
Windings  
Secondary  
FS Low  
56CT  
56CT  
220CT  
18.3V-µs  
11V-µs  
66CT, 132CT  
18.3V-µs  
18.3V-µs  
11V-µs  
18.3V-µs  
11V-µs  
12V-µs  
7.2V-µs  
Primary ET  
Product  
FS High  
11V-µs  
*CT = Center Tapped  
Table 3. Transformer, Transformer Core, and Optocoupler Suppliers  
TRANSFORMERS  
BH Electronics  
TRANSFORMER CORES  
Philips Components  
OPTOCOUPLERS  
Quality Technology  
Phone: (507) 532-3211  
FAX: (507) 532-3705  
Phone: (407) 881-3200  
FAX: (407) 881-3300  
Phone: (408) 720-1440  
FAX: (408) 720-0848  
Coilcraft  
Magnetics Inc.  
Sharp Electronics  
Phone: (708) 639-6400  
FAX: (708) 639-1469  
Phone: (412) 282-8282  
FAX: (412) 282-6955  
Phone: (206) 834-2500  
FAX: (206) 834-8903  
Coiltronics  
Phone: (407) 241-7876  
FAX: (407) 241-9339  
Fair-Rite Products  
Phone: (914) 895-2055  
FAX: (914) 895-2629  
Siemens Components  
Phone: (408) 777-4500  
FAX: (408) 777-4983  
14 ______________________________________________________________________________________  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
MAX253  
a g e . In a d d ition, inc lud e in the c a lc ula tions a n  
allowance for worst-case losses in the rectifiers. Since  
the turns ratio determined in this manner will ordinarily  
produce a much higher voltage at the secondary under  
conditions of high input voltage and/or light loading, be  
careful to prevent an overvoltage condition from occur-  
ring (see Output Voltage vs. Load Current in the Typical  
Operating Characteristics).  
is a good choice for through-hole applications, and the  
NIEC* SB05W05C dual in an SOT-23 package is rec-  
ommended for surface-mount applications. Use the  
higher frequency setting to reduce ripple.  
Output Filter Capacitor  
In applications sensitive to output-ripple noise, the out-  
p ut filte r c a p a c itor C2 s hould ha ve a low e ffe c tive  
series resistance (ESR), and its capacitance should  
remain fairly constant over temperature. Sprague 595D  
surface-mount solid tantalum capacitors and Sanyo  
OS-CON through-hole capacitors are recommended  
due to their extremely low ESR. Capacitor ESR usually  
rises at low temperatures, but OS-CON capacitors pro-  
vide very low ESR below 0°C.  
Transformers used with the MAX253 will ordinarily be  
wound on high-permeability magnetic material. To min-  
imize radiated noise, use common closed-magnetic-  
path physical shapes (e.g., pot cores, toroids, E/I/U  
cores). A typical core is the Philips 213CT050-3B7,  
which is a toroid 0.190” in diameter and 0.05” thick.  
For operation with this core at 5.5V maximum supply  
voltage, the primary should have about 22 turns on  
each side of the center tap, or 44 turns total. This will  
result in a nominal primary inductance of about 832µH.  
The secondary can be scaled to produce the required  
DC output.  
In applications where output ripple is not critical, a  
0.1µF chip or ceramic capacitor is sufficient. Refer to  
Table 4 for suggested capacitor suppliers. Use the  
higher frequency setting to reduce ripple.  
Input Bypass Capacitor  
The input bypass capacitor C1 is not critical. Unlike  
switching regulators, the MAX253s supply current is  
fairly constant, and is therefore less dependent on the  
inp ut b yp a s s c a p a c itor. A low-c os t 0.1µF c hip or  
c e ra mic c a p a c itor is norma lly s uffic ie nt for inp ut  
Dio d e S e le c t io n  
The MAX253s hig h s witc hing fre q ue nc y d e ma nd s  
hig h-s p e e d re c tifie rs . Sc hottky d iod e s a re re c om-  
mended. Ensure that the Schottky diode average cur-  
rent rating exceeds the load-current level. The 1N5817  
Table 4. Suggested Capacitor Suppliers  
PRODUCTION METHOD  
CAPACITORS  
Matsuo  
267 series (low ESR)  
USA Phone: (714) 969-2491, FAX: (714) 960-6492  
Sprague Electric Co.  
Surface Mount  
595D/293D series (very low ESR)  
USA Phone: (603) 224-1961, FAX: (603) 224-1430  
Murata Erie  
Ceramic  
USA Phone: (800) 831-9172, FAX: (404) 436-3030  
Sanyo  
High-Performance  
Through Hole  
OS-CON series (very low ESR)  
USA Phone: (619) 661-6835, FAX: (619) 661-1055  
Japan Phone: 81-7-2070-1005, FAX: 81-7-2070-1174  
Nichicon  
PL series (low ESR)  
USA Phone: (708) 843-7500, FAX: (708) 843-2798  
Japan Phone: 81-7-5231-8461, FAX: 81-7-5256-4158  
Through Hole  
* Nihon Inter Electronics Corp.  
USA Phone: (805) 867-2555  
FAX: (805) 867-2556  
Japan Phone: 81-3-3494-7411  
FAX: 81-3-3494-7414  
______________________________________________________________________________________ 15  
Tra n s fo rm e r Drive r fo r  
Is o la t e d RS -4 8 5 In t e rfa c e  
___________________Ch ip To p o g ra p h y  
D1  
D2  
MAX253  
0. 085"  
(2. 159mm)  
GND1  
GND2  
FS  
V
CC  
SD  
0. 058"  
(1. 4732mm)  
TRANSISTOR COUNT: 31;  
SUBSTRATE CONNECTED TO V  
.
CC  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.032  
MAX  
0.036  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.81  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
0.91  
0.20  
0.46  
0.18  
3.04  
3.04  
A
A1 0.004  
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
E
H
0.0256  
0.65  
H
L
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.90  
0.55  
0°  
– –  
– –  
α
6°  
21-0036  
D
C
α
A
8-PIN µMAX  
.127mm  
.004 in  
PACKAGE  
e
B
A1  
L
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX253CD

MAX253 Transformer Driver for Isolated RS-485 Interface
MAXIM

MAX253CPA

Transformer Driver for Isolated RS-485 Interface
MAXIM

MAX253CPA+

Interface Circuit, CMOS, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
MAXIM

MAX253CSA

Transformer Driver for Isolated RS-485 Interface
MAXIM

MAX253CSA+

Interface Circuit, CMOS, PDSO8, ROHS COMPLIANT, SOP-8
MAXIM

MAX253CSA+T

Interface Circuit, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX253CSA-T

Interface Circuit, CMOS, PDSO8, SOP-8
MAXIM

MAX253CUA

Transformer Driver for Isolated RS-485 Interface
MAXIM

MAX253CUA+

Interface Circuit, CMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX253CUA+T

Interface Circuit, CMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX253CUA-T

Interface Circuit, CMOS, PDSO8, UMAX-8
MAXIM

MAX253EPA

Transformer Driver for Isolated RS-485 Interface
MAXIM