MAX20043FGEEA/V+ [MAXIM]

Power Supply Support Circuit,;
MAX20043FGEEA/V+
型号: MAX20043FGEEA/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit,

文件: 总16页 (文件大小:1636K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX20042FMAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
General Description  
Benefits and Features  
Accurate Bus Current Limiting with  
The MAX20042F, MAX20043F, and MAX20044F devices  
provide high ESD and short-circuit protection for the  
low-voltage internal USB data and USB power line in auto-  
motive radio, navigation, connectivity, and USB hub appli-  
cations. The devices support USB Hi-Speed (480Mbps),  
USB full-speed (12Mbps), and USB low-speed (1.5Mbps)  
operation, as well as USB on-the-go (OTG) functionality.  
Minimal Voltage Drop  
• Low R  
90mΩ (max) USB Power Switch  
ON  
• 0.65A (typ), MAX20042F  
• 1.0A (typ), MAX20043F  
• 1.3A (typ), MAX20044F  
Targeted Features for Optimized USB Performance  
• Two R  
4Ω (typ) USB 2.0 Data Switches  
ON  
The short-circuit protection features include short-to-  
battery on the protected HVBUS, HVD+, and HVD-  
outputs, as well as short-to-HVBUS on the protected  
HVD+ and HVD- outputs. The devices are capable of a  
short-to-battery condition of up to +18V. Short-to-GND  
protection and overcurrent protection are also provided  
on the protected HVBUS output to protect the internal  
BUS power rail from an overcurrent fault.  
• 480Mbps or 12Mbps USB 2.0 Operation  
• 10ms Fault-Recovery Time  
• 1ms Overcurrent Blanking Time  
5.67V (typ) Fixed HVBUS Protection Trip Threshold  
Robust for the Automotive Environment  
• Short-to-Battery and Short-to-GND Protection on  
Protected HVBUS Output  
• Short-to-Battery and Short-to-BUS Protection on  
Protected HVD+ and HVD- Outputs  
Tested to ISO 10605 and IEC 61000-4-2 ESD  
Standards  
The devices feature high ESD protection to ±15kV Air Gap  
and ±8kV Contact on the protected HVBUS, HVD+, and  
HVD- outputs.  
16-Pin (3.90mm x 4.94mm) QSOP Package  
• -40°C to +105°C Operating Temperature Range  
AEC-Q100 Qualified  
The devices feature  
90mΩ (max) USB power switch, and two low on-  
a low on-resistance (R ),  
ON  
resistance (R ), 4Ω (typ) USB 2.0 data switches. These  
ON  
devices also feature an enable input, a fault output, a  
10ms fault-recovery time, a 1ms overcurrent blanking  
time, and an integrated overcurrent autoretry.  
Applications  
Automotive USB Protection  
The MAX20042F, MAX20043F, and MAX20044F are  
available in a lead-free, 16-pin QSOP package and  
operate over the -40°C to +105°C temperature range.  
Ordering Information appears at end of data sheet.  
Functional Diagram appears at end of data sheet.  
Typical Operating Circuit  
+3.3V  
IN  
D-  
HVD-  
USB  
CONNECTOR  
FAULT  
EN  
HVD+  
D+  
LOW-VOLTAGE  
D-  
MAX20042F  
MAX20043F  
MAX20044F  
USB  
TRANSCEIVER  
D+  
BUS  
GND  
HVBUS  
+ 5V  
BUS  
GND  
19-8707; Rev 0; 1/17  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Absolute Maximum Ratings  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
BUS, IN ...................................................................-0.3V to +6V  
FAULT, EN, D+, D-..................................................-0.3V to +6V  
D+, D- to IN........................................................................+0.3V  
HVD+, HVD-, HVBUS ...........................................-0.3V to +18V  
16-Pin QSOP (derate 9.6mW/°C above +70°C).......771.5mW  
Operating Temperature Range ........................ -40°C to +105°C  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
QSOP  
Junction-to-Ambient Thermal Resistance (θ ) .....103.7°C/W  
JA  
Junction-to-Case Thermal Resistance )...............37°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 5.0V V = +3.3V, T = T = -40°C to +105°C. R = ∞, unless otherwise noted. Typical values are at V  
= 0V or V  
= 3.3V  
BUS  
IN  
J
A
L
EN  
EN  
and T = +25°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Range (BUS)  
Power-Supply Range (IN)  
Input Current (BUS)  
V
4.75  
3.0  
5.5  
3.6  
V
V
BUS  
V
IN  
I
V
V
V
= 0V, I = 0A, no fault  
400  
10  
µA  
µA  
V
BUS  
EN  
L
Input Current (IN)  
I
= 0V, I = 0A, no fault  
EN L  
IN  
BUS Undervoltage Lockout  
BUS ANALOG SWITCH  
HVBUS Protection Trip Threshold  
Voltage Protection Response Time  
Protection Recovery Time  
V
falling, Figure 1  
3.85  
5.55  
4.2  
4.55  
UVLO  
BUS  
V
HVBUS rising, Figure 2  
HVBUS rising, Figure 2  
HVBUS falling to below V  
5.67  
0.3  
10  
5.8  
3.0  
22  
V
OV_BUS  
t
µs  
ms  
FP_BUS  
t
, Figure 2  
OV_BUS  
4.5  
0.7  
FPR_BUS  
HVBUS Short-to-Ground  
Threshold  
V
SHRT  
Figure 3  
2.2  
V
Short-to-Ground Response Time  
Short Detection Time  
On-Resistance  
t
HVBUS falling to GND, Figure 3  
Enabled into short-to-ground  
0.3  
2
1
µs  
ms  
mΩ  
FPS  
t
1
4
SHRT_DET  
R
V
= 5V, I = 500mA (Note 2)  
BUS  
51  
90  
ON  
BUS  
MAX20042F, Figure 4  
MAX20043F, Figure 4  
MAX20044F, Figure 4  
Figure 4 (Note 4)  
0.57  
0.88  
1.14  
0.35  
0.65  
1.00  
1.30  
1.2  
0.73  
1.12  
1.46  
2.8  
Forward-Current Threshold  
(Note 3)  
I
A
THR  
Overcurrent Blanking Time  
Overcurrent-Retry Blanking Time  
Overcurrent Autoretry Time  
t
ms  
ms  
ms  
BLANK  
t
Figure 4  
Figure 4  
12  
BLANK_RETRY  
t
128  
RETRY  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Electrical Characteristics (continued)  
(V  
= 5.0V V = +3.3V, T = T = -40°C to +105°C. R = ∞, unless otherwise noted. Typical values are at V  
= 0V or V  
= 3.3V  
BUS  
IN  
J
A
L
EN  
EN  
and T = +25°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= 18V, V  
= 18V, V  
= 4.75V  
750  
HVBUS  
BUS  
HVBUS Off-Leakage Current  
I
µA  
LKGOFF  
= 0V, V = 0V  
560  
+175  
15  
HVBUS  
BUS  
IN  
Thermal Shutdown  
°C  
°C  
Thermal-Shutdown Hysteresis  
D+, D- ANALOG USB SWITCHES  
Analog Signal Range  
0
3.6  
3.9  
V
V
HVD+, HVD- rises from V to > V + 1,  
Figure 2  
IN  
IN  
Protection Trip Threshold  
Protection Response Time  
V
OV_D  
HVD+, HVD- rises from V to > V + 1,  
Figure 2  
IN  
IN  
t
3.0  
10  
8.0  
22  
µs  
FP_D  
HVD+, HVD- falling to below V  
Figure 2  
,
OV_D  
Protection Recovery Time  
On-Resistance  
t
4.5  
ms  
FPR_D  
R
ON  
V
= 5V, I = 40mA, 0 V 3.6V  
4
BUS  
BUS  
L
D_  
On-Resistance Match Between  
Channels  
∆R  
V
= 5V; I = 40mA; V = 1.5V, 3.0V  
0.7  
1.5  
ON  
L
D_  
On-Resistance Flatness  
R
I = 40mA, V = 0V or 0.4V  
D_  
1.0  
FLAT(ON)  
L
V
, V  
= 18V; V , V = 0V  
-200  
+100  
+200  
HVD+ HVD-  
D+ D-  
HVD+, HVD- Off-Leakage Current  
I
µA  
HVD_OFF  
V
V
, V  
= 18V; V , V = 0V;  
BUS  
HVD+ HVD- D+ D-  
IN  
45  
= 0V; V  
= 0V  
HVD+, HVD- On-Leakage Current  
Propagation Delay  
I
V
, V  
= V or 0V; V = 0V  
EN  
+2.2  
200  
40  
µA  
ps  
ps  
HVD_ON  
HVD+ HVD-  
IN  
t
, t  
R = R = 50Ω, Figure 7  
L S  
PLH PHL  
Output Skew Between Switches  
t
Skew between D+ and D- switch, Figure 7  
SKB  
Skew between opposite transitions in  
same switch, Figure 7  
Output Skew Same Switch  
t
40  
ps  
SKS  
FAULT OUTPUT  
FAULT Output Low Voltage  
V
I
= 500µA  
0.5  
1
V
OL  
SINK  
FAULT Output High-Leakage  
Current  
µA  
ms  
FAULT-Recovery Time  
EN INPUT  
t
V
= V , Figure 3 (Note 3)  
4.5  
10  
40  
22  
FPR  
FAULT  
IN  
Input Logic-High  
V
1.65  
V
V
IH  
Input Logic-Low  
V
0.5  
1
IL  
Input Leakage Current  
Enable Delay Time  
I
V
= 0V or V  
IN  
µA  
µs  
EN  
EN  
t
D_EN  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Electrical Characteristics (continued)  
(V  
= 5.0V V = +3.3V, T = T = -40°C to +105°C. R = ∞, unless otherwise noted. Typical values are at V  
= 0V or V  
= 3.3V  
BUS  
IN  
J
A
L
EN  
EN  
and T = +25°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ESD PROTECTION HVD+, HVD-, HVBUS  
ISO 10605 Air Gap (330pF, 2kΩ)  
±25  
±8  
ISO 10605 Contact (330pF, 2kΩ)  
IEC 61000-4-2 Air Gap (150pF, 330Ω)  
IEC 61000-4-2 Contact (150pF, 330Ω)  
IEC 61000-4-2 Air Gap (330pF, 330Ω)  
IEC 61000-4-2 Contact (330pF, 330Ω)  
±15  
±8  
ESD Protection Level (Note 5)  
V
ESD  
kV  
±15  
±8  
Note 2: Specifications with minimum and maximum limits are 100% production tested at T = +25°C and are guaranteed over the  
A
operating temperature range by design and characterization. Actual typical values may vary and are not guaranteed.  
Note 3: Forward current is defined as current into BUS and out of HVBUS. See the Functional Diagram.  
Note 4: Guaranteed by design. Limits are not production tested.  
Note 5: Tested in the Typical Application Circuit, as shown on the MAX20044 evaluation kit.  
Timing Diagrams/Test Circuits  
V
UVLO  
V
BUS  
GND  
ON  
OFF  
ON  
DEVICE  
t
FPR_BUS  
FAULT  
GND  
Figure 1. Timing Diagram for Undervoltage Lockout on BUS  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Timing Diagrams/Test Circuits (continued)  
V
OV_D  
OR  
V
OV_BUS  
DEVICE  
FAULT  
GND  
ON  
OFF  
ON  
t
t
FP_D  
FP_BUS  
t
FPR_D  
t
FPR_BUS  
GND  
Figure 2. Timing Diagram for Overvoltage Protection on HVBUS, HVD+, and HVD-  
HARD SHORT  
HARD SHORT REMOVED  
V
HVBUS  
V
SHRT  
GND  
ON  
OFF  
ON  
DEVICE  
t
t
FPR  
FAULT  
FPS  
GND  
Figure 3. Timing Diagram for Short-to-Ground Protection  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Timing Diagrams/Test Circuits (continued)  
I
THR  
CURRENT  
GND  
t
t
BLANK_RETRY  
BLANK  
t
BLANK  
t
RETRY  
ON  
OFF  
ON  
OFF  
DEVICE  
FAULT  
GND  
Figure 4. Timing Diagram for Overcurrent Protection  
NETWORK  
ANALYZER  
V
V
OUT  
ON-LOSS = 20log  
IN  
V
50  
50  
V
V
IN  
D+  
(D-)  
OUT  
CROSSTALK = 20log  
V
IN  
MAX20042F  
MAX20043F  
MAX20044F  
HVD+  
D+  
HVD-  
D-  
ON-LOSS1 = 20log  
ON-LOSS2 = 20log  
MEAS  
50  
REF  
OUT  
HVD+  
(HVD-)  
HVD+  
D-  
50  
CROSSTALK1 = 20log  
CROSSTALK2 = 20log  
EN  
GND  
HVD-  
D+  
ON-LOSS IS MEASURED BETWEEN D+ AND HVD+, OR D- AND HVD-.  
CROSSTALK IS MEASURED FROM ONE CHANNEL TO THE OTHER CHANNEL.  
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.  
Figure 5. On-Channel -3dB Bandwidth and Crosstalk  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Timing Diagrams/Test Circuits (continued)  
MAX20042F  
MAX20043F  
MAX20044F  
D_ OR  
HVD_  
CAPACITANCE  
METER  
EN  
GND  
Figure 6. On-Capacitance  
MAX20042F  
MAX20043F  
MAX20044F  
R
R
S
S
D+  
D-  
HVD+  
HVD-  
INPUT+  
INPUT-  
OUT+  
OUT-  
RISE-TIME PROPAGATION DELAY = t  
FALL-TIME PROPAGATION DELAY = t  
OR t  
OR t  
PLHX  
PLHY  
PHLX  
|
|
PHLY  
R
R
L
t
t
= |t  
= |t  
- t  
| OR |t  
- t  
SKB  
SKS  
PLHX PLHY  
PHLX PHLY  
- t  
| OR |t - t  
PLHY PHLY  
PLHX PHLX  
L
EN  
V
IL  
TO V  
IH  
t
t
INFALL  
INRISE  
10%  
V+  
90%  
90%  
V
INPUT+  
50%  
50%  
50%  
10%  
0V  
V+  
V
50%  
INPUT-  
0V  
V+  
t
t
OUTRISE  
10%  
OUTFALL  
10%  
t
t
PLHX  
PHLX  
90%  
90%  
V
OUT+  
50%  
50%  
0V  
V+  
50%  
50%  
V
OUT-  
0V  
t
t
PHLY  
PLHY  
Figure 7. Propagation Delay and Output Skew  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
BUS SUPPLY CURRENT  
vs. TEMPERATURE (EN = GND)  
BUS SUPPLY CURRENT  
vs. TEMPERATURE (EN = VIN)  
HVD+/HVD- LEAKAGE CURRENT  
vs. TEMPERATURE  
toc2  
toc3  
toc1  
400  
350  
300  
250  
200  
150  
100  
50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
300  
280  
260  
240  
220  
200  
VEN = VIN  
VEN = 0V  
VBUS = 5.25V  
VBUS = 5.25V  
VBUS = 5.0V  
VIN = 3.3V  
VHVD = 3.3V  
VBUS = 5.00V  
VBUS = 4.75V  
VBUS = 5.00V  
VEN = 0V  
VBUS = 4.75V  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
105  
-40  
-15  
10  
35  
60  
85  
105  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
HVD+/HVD- LEAKAGE CURRENT  
vs. TEMPERATURE  
HVD+/HVD- LEAKAGE CURRENT  
vs. TEMPERATURE  
DATA SWITCH RON vs. APPLIED DATA VOLTAGE  
toc6  
toc4  
toc5  
3.45  
3.44  
3.43  
3.42  
3.41  
3.40  
14  
13  
12  
11  
10  
9
6
14  
13  
12  
11  
10  
9
6
VBUS =5.0V, VIN =3.3V
VBUS = 5.0V, VIN = 3.3V  
IL = 40mA  
VBUS = 0V, VIN = 0V  
VIN = 3.6V  
VN = 0V  
5
4
3
5
4
3
HVD+/HVD- SHORTED TO +18V  
HVD+/HVD- SHORTED TO +18V  
HVD+/HVD- SHORTED TO +5V  
VIN = 3.0V  
HVD+/HVD- SHORTED TO +5V  
VIN = 3.3V  
8
8
-40  
-15  
10  
35  
60  
85  
105  
-40  
-15  
10  
35  
60  
85  
105  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
APPLIED DATA VOLTAGE (V)  
HVD+/HVD-SHORT-TO-BATTERY  
TURN-OFF RESPONSE  
HVD+/HVD-SHORT-TO-BATTERY  
TURN-OFF RESPONSE  
DATA SWITCH RON vs. APPLIED DATA VOLTAGE  
toc8  
toc9  
toc7  
8
6
4
2
0
VBUS = 5.0V  
IL = 40mA  
UNPOWERED  
POWERED  
VD_  
5V/div  
5V/div  
5V/div  
5V/div  
VD_  
TA = +105°C  
VHVD_  
VHVD_  
2V/div  
5V/div  
VFAULT  
VFAULT  
2V/div  
5V/div  
TA = +25°C  
2.4  
TA = -40°C  
VIN  
VIN  
0.0  
0.6  
1.2  
1.8  
3.0  
3.6  
40µs/div  
40µs/div  
APPLIED DATA VOLTAGE (V)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
HVBUS LEAKAGE CURRENT  
vs. TEMPERATURE  
HVBUS LEAKAGE CURRENT  
vs. TEMPERATURE  
CROSSTALK  
toc12  
toc11  
toc10  
150  
140  
130  
120  
110  
100  
90  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
300  
250  
200  
150  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VBUS= 0V, VIN = 0V  
VBUS = 0V, VIN = 0V  
EN = 0V  
VEN = 0V  
V
HVBUS SHORTED TO +18V  
HVBUS SHORTED TO +18V  
HVBUS SHORTED TO +6V  
HVBUS SHORTED TO +5V  
80  
70  
60  
105  
105  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
HVBUS SHORT-TO-BATTERY  
TURN-OFF RESPONSE  
BUS ON RESISTANCE  
vs. TEMPERATURE  
BUS On Resistance Histogram  
toc14  
toc15  
toc13  
80  
70  
60  
50  
40  
45  
IL = 500mA  
40  
35  
5V/div  
5V/div  
VBUS  
VBUS = 5.00V  
30  
25  
20  
15  
10  
5
VHVBUS  
VBUS = 4.75V  
VBUS = 5.25V  
VFAULT  
2V/div  
0
POWERED  
40µs/div  
-40  
-15  
10  
35  
60  
85  
105  
TEMPERATURE (°C)  
ON RESISTANCE (mOhm)  
INRUSH CURRENT EN ON RESPONSE  
INRUSH CURRENT EN ON RESPONSE  
HVBUS SHORT-TO-BATTERY  
TURN-OFF RESPONSE  
WITH RC LOAD  
WITH RC LOAD  
toc18  
toc17  
toc16  
VFAULT  
VFAULT  
2V/div  
1V/div  
2V/div  
1V/div  
5V/div  
5V/div  
VBUS  
VBUS  
VBUS  
VHVBUS  
220µF  
100µF  
VHVBUS  
VHVBUS  
2V/div  
2A/div  
2V/div  
2A/div  
220µF  
100µF  
2V/div  
VFAULT  
IHVBUS  
IHVBUS  
NOT POWERED  
40µs/div  
1ms/div  
1ms/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
HVBUS OVERCURRENT AUTORETRY RESPONSE  
HVBUS OVERCURRENT AUTORETRY RESPONSE  
SHORT-CIRCUIT CURRENT, DEVICE ENABLED  
INTO SHORT-TO-GROUND  
(VHVBUS>VSHRT  
)
(VHVBUS< VSHRT  
)
toc20  
toc21  
toc19  
2V/div  
VEN  
IHVBUS  
1A/div  
5V/div  
IHVBUS  
500mA/div  
5V/div  
VHVBUS  
VBUS  
100mA/div  
IHVBUS  
VHVBUS  
VBUS  
5V/div  
5V/div  
5V/div  
5V/div  
VFAULT  
VFAULT  
2ms/div  
40µs/div  
20ms/div  
MAX20042F  
CURRENT-LIMIT HISTOGRAM  
MAX20043F  
CURRENT-LIMIT HISTOGRAM  
MAX20044F  
CURRENT-LIMIT HISTOGRAM  
toc24  
toc22  
toc23  
35  
30  
25  
60  
50  
30  
25  
40  
30  
20  
15  
20  
15  
20  
10  
0
10  
5
10  
0
CURRENT-LIMIT  
THRESHOLD (A)  
CURRENT-LIMIT  
THRESHOLD (A)  
CURRENT-LIMIT  
THRESHOLD (A)  
USB 2.0 HIGH-SPEED DIAGRAM  
(NO TUNING COMPONENTS)  
HVBUS INRUSH CURRENT FOR  
SHORT-TO-GROUND RESPONSE  
USB 2.0 HIGH-SPEED EYE DIAGRAM  
W/STANDARD EV KIT TUNING COMPONENTS  
toc26  
toc25  
toc27  
5V  
5V  
VBUS  
5V/div  
0.4  
0.2  
0.4  
VHVBUS  
5V/div  
0.2  
0.0  
3.3V  
0A  
0.0  
VFAULT  
5V/div  
-0.2  
-0.4  
-0.2  
-0.4  
IHVBUS  
10A/div  
0.0  
0.5  
1.0  
TIME (ns)  
1.5  
2.0  
0.0  
0.5  
1.0  
TIME (ns)  
1.5  
2.0  
20µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Pin Configuration  
TOP VIEW  
+
I.C.  
HVBUS  
HVBUS  
GND  
1
2
3
4
5
6
7
8
16 I.C.  
15 BUS  
14 BUS  
13 GND  
12 GND  
11 EN  
MAX20042F  
MAX20043F  
MAX20044F  
HVD-  
HVD+  
D-  
10 FAULT  
D+  
9 IN  
QSOP  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 16  
I.C.  
Internal Connection. Must be left unconnected.  
Protected BUS Output. Connect HVBUS directly to the USB connector. Connect both HVBUS outputs together  
for proper operation. Connect a 20V zener diode and a 0.1µF and 10µF capacitor from HVBUS to GND.  
2, 3  
HVBUS  
4, 12, 13  
GND  
HVD-  
HVD+  
D-  
Ground  
5
6
7
8
High-Voltage-Protected USB Differential Data D- Output. Connect HVD- directly to USB connector D-.  
High-Voltage-Protected USB Differential Data D+ Output. Connect HVD+ directly to USB connector D+.  
USB Differential Data D- Input. Connect D- to low-voltage USB transceiver D-.  
USB Differential Data D+ Input. Connect D+ to low-voltage USB transceiver D+.  
D+  
Logic Power-Supply Input. The supply voltage range is from +3.0V to +3.6V. Connect a 0.1µF and 10µF  
9
IN  
capacitor from IN to GND. Place these components on the same plane as the IC, close to the IN and GND  
pins.  
Open-Drain Fault Indicator Output. Used to indicate if an overvoltage condition exists on HVD-, HVD+,  
10  
FAULT or HVBUS, if an overcurrent condition exists on HVBUS, if a short-to-GND exists on HVBUS, or if an  
overtemperature condition occurs.  
11  
EN  
Active-Low Enable Input. Drive EN low to enable the device.  
USB Power Supply. Connect BUS to USB +5V supply. Connect both BUS inputs together for proper  
operation. Connect a 0.1µF and a 100µF, low-ESR ceramic capacitor from BUS to GND.  
14, 15  
BUS  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
HVBUS Overcurrent Protection  
Detailed Description  
The devices have a 0.65A/1.0A/1.3A (typ) forward  
current threshold ITHR. When the HVBUS forward  
current exceeds the ITHR threshold, the device is turned  
off. Forward current is defined as current into BUS and  
out of HVBUS. See the Functional Diagram.  
The MAX20042F, MAX20043F, and MAX20044F  
devices provide high ESD and short-circuit  
protection for the low-voltage internal USB data and  
USB power line in automotive radio, navigation, con-  
nectivity, and USB hub applications. The devices  
support both USB Hi-Speed (480Mbps) and USB full-  
speed (12Mbps) operation.  
HVD+ and HVD- Overvoltage Protection  
The devices have a 4.1V (typ) overvoltage threshold  
(VOV_D). When HVD+, or HVD- is greater than VOV_D,  
FAULT is enabled and all the device switches are high  
impedance. Note that HVD+ and HVD- do not have short-  
to-ground protection. Forward current is limited by the  
upstream transceiver.  
The short-circuit protection features include short-to-bat-  
tery on the protected HVBUS, HVD+, and HVD- outputs,  
as well as short-to-HVBUS on the protected HVD+ and  
HVD- outputs. These devices are capable of a short-to-  
battery condition of up to +18V. Short-to-GND protection  
and overcurrent protection are also provided on the pro-  
tected HVBUS output to protect the internal BUS power  
rail from overcurrent faults.  
FAULT Output  
FAULT goes low when a fault is detected on HVD+, HVD-,  
or HVBUS. The FAULT output is asserted low when the  
device is enabled and the switches are disabled due to  
a fault. Fault detection includes short-to-battery, short-  
to-GND or overcurrent on HVBUS, and short-to-battery  
or short-to-HVBUS on HVD+ or HVD-. Connect a 100kΩ  
pullup resistor from FAULT to IN.  
The devices feature high ESD protection to ±15kV Air  
Gap Discharge and ±8kV Contact Discharge on all pro-  
tected HVBUS, HVD+, and HVD- outputs.  
The devices feature a low on-resistance (R ) 0.14Ω  
ON  
(max) USB power switch and two low on-resistance  
(R ) of 4Ω (typ) USB 2.0 switches. These devices also  
ON  
feature an enable input, a fault output, a 10ms fault-re-  
covery time, a 1ms overcurrent blanking time, and an  
integrated overcurrent autoretry.  
EN Input  
EN is an active-low enable input. Drive EN low for normal  
operation and enable the protection switches. This allows  
BUS power, D+, and D- USB signaling to pass through  
the device if a fault is not present. Drive EN high to dis-  
able the device.  
BUS Undervoltage Lockout (Power-On Reset)  
The devices have a 4.2V (typ) undervoltage-lockout  
threshold (V  
). When V  
is less than V  
,
UVLO  
BUS  
UVLO  
The MAX20042F, MAX20043F, and MAX20044F devices  
support USB OTG. With these units, disabling the device  
through the EN pin disables the +5V BUS power switch,  
but leaves the D+ and D- data switches closed. This  
allows for a downstream device to assume the role of  
host when negotiated per the USB Host Negotiation  
Protocol. In this mode, the HVBUS, HVD+, and HVD-  
outputs continue to be protected and FAULT continues to  
assert normally in response to overvoltage conditions on  
these pins.  
FAULT is enabled and all the device switches are high  
impedance.  
HVBUS Overvoltage Protection  
The devices have a fixed 5.57V (typ) HVBUS protection  
trip threshold; when HVBUS rises from V  
to > 5.57V,  
BUS  
the device is turned off. Connect a 20V zener diode or  
RC snubber network from HVBUS to GND to limit positive  
inductive voltage spikes that are caused by the induc-  
tance from long wires at turn-off.  
HVBUS Short-to-Ground  
The devices have a 0.7V (min) HVBUS short-to-ground  
threshold (V  
). When HVBUS falls below the V  
SHRT  
SHRT  
threshold, the main power switch is turned off. During  
continuous short-to-ground conditions, an approximately  
250mA autoreset current remains active to detect removal  
of the short circuit.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
ESD Test Conditions  
Applications Information  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents test  
setup, test methodology, and test results.  
Power-Supply Bypass Capacitor  
Bypass HVBUS to GND with a 10µF and a 0.1µF ceramic  
capacitor as close to the device as possible to provide  
±15kV (HBM) ESD protection on the pin. If the power  
source has significant inductance due to long lead length,  
take care to prevent overshoots due to the LC tank circuit  
and provide protection if necessary to prevent violation  
of the +6V absolute maximum rating on BUS. Connect  
a 100µF low-ESR ceramic capacitor from BUS to GND.  
Connect a 0.1µF and 10µF ceramic capacitor from both  
BUS and IN to GND. Place these components on the  
same plane as the IC, close to the IN and GND pins.  
Human Body Model  
Figure 8 shows the Human Body Model, and Figure 9  
shows the current waveform it generates when discharged  
into a low impedance. This model consists of a 100pF  
capacitor charged to the ESD voltage of interest, which is  
then discharged into the device through a 1.5kΩ resistor.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. The MAX20042F,  
MAX20043F, and MAX20044F devices help users design  
equipment that meets Level 4 of IEC 61000-4-2. The  
main difference between tests done using the Human  
Body Model and IEC 61000-4-2 is higher peak current  
in IEC 61000-4-2. Because series resistance is lower in  
the IEC 61000-4-2 ESD test model (Figure 10), the ESD  
withstand voltage measured to this standard is generally  
lower than that measured using the Human Body Model.  
Figure 11 shows the current waveform for the ±8kV, IEC  
61000-4-2 Level 4, ESD Contact Discharge test. The  
Air-Gap Discharge test involves approaching the device  
with a charged probe. The Contact Discharge method  
connects the probe to the device before the probe is  
energized.  
Layout of USB Data Line Traces  
USB Hi-Speed requires careful PCB layout with 90Ω  
controlled-impedance matched traces of equal lengths.  
Use LC tuning components on the data lines as shown in  
the Typical Operating Circuit. The values of these com-  
ponents are layout and captive-cable dependent. Contact  
Maxim technical support for more detailed information.  
±15kV ESD Protection  
As with all Maxim devices, ESD-protection structures are  
incorporated on all pins to protect against electrostatic  
discharges encountered during handling and assembly.  
The devices have extra protection against static elec-  
tricity. Maxim’s engineers have developed state-of-the-  
art structures to protect against ESD of ±15kV at the  
HVD+, HVD-, and HVBUS ports without damage. The  
ESD structures withstand high ESD in all states: normal  
operation, shutdown, and powered down. After an ESD  
event, the devices keep working without latchup, whereas  
other solutions can latch and must be powered down to  
remove latchup. ESD protection can be tested in various  
ways; this product is characterized for protection to the  
following limits:  
±15kV using the Human Body Model  
±15kV using IEC 61000-4-2’s Air-Gap Discharge  
method, EN = GND  
±8kV using the Contact Discharge method specified  
in IEC 61000-4-2, EN = GND  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Functional Diagram  
FORWARD DIRECTION  
BUS  
HVBUS  
LV ESD  
CLAMP  
IEC  
SCR  
CLAMP  
SHORT  
TO  
GROUND  
FORWARD  
CURRENT  
DETECTION  
UNDER-  
VOLTAGE  
LOCKOUT  
OVP (SHORT-  
TO-BATTERY  
AND/OR  
CONTROL  
SHORT-  
FAULT  
EN  
TO-V  
)
HVBUS  
IN  
LV  
ESD  
CLAMP  
THERMAL  
SHUTDOWN  
D+  
HVD+  
HVD-  
IEC  
SCR  
CLAMP  
D-  
IEC  
SCR  
CLAMP  
MAX20042F  
MAX20043F  
MAX20044F  
GND  
R
D
1500  
R
C
1MΩ  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
P
R
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
S
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9. Human Body Current Waveform  
Figure 8. Human Body ESD Test Model  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
R
R
D
330  
C
50MTO 100MΩ  
I
100%  
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
S
150pF  
10%  
SOURCE  
30ns  
t
t = 0.7ns TO 1ns  
r
60ns  
Figure 10. IEC 61000-4-2 ESD Test Model  
Figure 11. IEC 61000-4-2 ESD Generator Current Waveform  
Ordering Information  
PART  
CURRENT RATING (A) (typ)  
OTG SUPPORT  
PIN-PACKAGE  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
MAX20042FGEEA/V+  
MAX20042FGEEB/V+  
MAX20043FGEEA/V+  
MAX20043FGEEB/V+  
MAX20044FGEEA/V+  
MAX20044FGEEB/V+  
0.65  
0.65  
1.0  
No  
Yes  
No  
1.0  
Yes  
No  
1.3  
1.3  
Yes  
Note: All devices are specified over the -40°C to +105°C operating temperature range.  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
16 QSOP  
E16+12C  
21-0055  
90-0167  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX20042F–MAX20044F  
Automotive Hi-Speed USB 2.0 Protectors  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1/17  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
16  

相关型号:

MAX20044EVKIT

Passes 480Mbps USB Data Signals
MAXIM

MAX20044F

Passes 480Mbps USB Data Signals
MAXIM

MAX20047AFPB/V+

Power Supply Support Circuit,
MAXIM

MAX20050

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20050ATC+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20050ATC/V+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20050CATC/V+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20051

MAX20051 Evaluation Kit
MAXIM

MAX20051AAUD+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20051AAUD/V+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM

MAX20051AUD/V+

LED Driver, 2-Segment, BICMOS, PDSO14, TSSOP-14
MAXIM

MAX20051BAUD/V+

2A Synchronous-Buck LED Drivers with Integrated MOSFETs
MAXIM