MAX199BEAI [MAXIM]

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface; 多范围( 4V 【 【 2V , 4V + , + 2V ) , + 5V电源,12位DAS ,8 + 4总线接口
MAX199BEAI
型号: MAX199BEAI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
多范围( 4V 【 【 2V , 4V + , + 2V ) , + 5V电源,12位DAS ,8 + 4总线接口

文件: 总16页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0401; Rev 0; 6/95  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
12-Bit Resolution, 1/2LSB Linearity  
Single +5V Operation  
The MAX199 multi-range, 12-bit data-acquisition system  
(DAS) requires only a single +5V supply for operation,  
and converts analog signals up to ±4V at its inputs. This  
system provides eight analog input channels that are  
independently software programmable for a variety of  
Software-Selectable Input Ranges:  
±V  
, ±V  
, 0V to V  
, 0V to V  
REF REF/2  
REF  
REF/2  
Internal 4.096V or External Reference  
Fault-Protected Input Multiplexer (±16.5V)  
8 Analog Input Channels  
6µs Conversion Time, 100ksps Sampling Rate  
Internal or External Acquisition Control  
Two Power-Down Modes  
ranges: ±V  
, ±V  
, 0V to V  
, or 0V to V  
.
REF  
REF/2  
REF  
REF/2  
This increases effective dynamic range to 14 bits, and  
provides the user flexibility to interface 4mA-to-20mA,  
±12V, and ±15V powered sensors to a single +5V sys-  
tem. In addition, the converter is fault-protected to  
±16.5V; a fault condition on any channel will not affect  
the conversion result of the selected channel. Other fea-  
tures include a 5MHz bandwidth track/hold, 100ksps  
throughput rate, internal/external clock, internal/external  
acquisition control, 8+4 parallel interface, and operation  
with an internal 4.096V or external reference.  
Internal or External Clock  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
A hardware SHDN pin and two programmable power-  
down modes (STBYPD, FULLPD) provide low-current  
shutdown between conversions. In STBYPD mode, the  
reference buffer remains active, eliminating start-up  
delays.  
MAX199ACNI  
MAX199BCNI  
MAX199ACWI  
MAX199BCWI  
MAX199ACAI  
MAX199BCAI  
MAX199BC/D  
28 Wide SO  
The MAX199 employs a standard microprocessor (µP)  
interface. Its three-state data I/O interface is configured  
to operate with 8-bit data buses, and data-access and  
bus-release timing specifications are compatible with  
most popula r µPs. All logic inputs a nd outp uts a re  
TTL/CMOS compatible.  
28 SSOP  
28 SSOP  
Dice*  
Ordering Information continued at end of data sheet.  
*Dice are specified at TA = +25°C, DC parameters only.  
__________________P in Co n fig u ra t io n  
The MAX199 is available in 28-pin DIP, wide SO, SSOP,  
and ceramic SB packages.  
TOP VIEW  
For a different combination of input ranges (±10V, ±5V,  
0V to 10V, 0V to 5V), see the MAX197 data sheet. For 12-  
bit bus interfaces, see the MAX196/MAX198 data sheet.  
CLK  
28 DGND  
1
2
CS  
WR  
V
DD  
27  
26  
25  
24  
23  
REF  
3
________________________Ap p lic a t io n s  
Industrial-Control Systems  
Robotics  
REFADJ  
INT  
RD  
4
HBEN  
SHDN  
D7  
5
MAX199  
CH7  
6
Data-Acquisition Systems  
Automatic Testing Systems  
Medical Instruments  
7
22 CH6  
21 CH5  
D6  
8
D5  
CH4  
CH3  
CH2  
CH1  
CH0  
AGND  
9
20  
19  
18  
17  
16  
15  
Telecommunications  
D4  
10  
D3/D11 11  
D2/D10 12  
13  
14  
D1/D9  
D0/D8  
Functional Diagram appears at end of data sheet.  
DIP/SO/SSOP/Ceramic SB  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -7 2 2 -8 2 6 6 fo r fre e s a m p le s o r lit e ra t u re .  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND............................................................-0.3V to +7V  
Wide SO (derate 12.50mW/°C above +70°C)..............1000mW  
SSOP (derate 9.52mW/°C above +70°C) ......................762mW  
Narrow Ceramic SB (derate 20.00mW/°C above +70°C)..1600mW  
Operating Temperature Ranges  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
REF to AGND..............................................-0.3V to (V + 0.3V)  
REFADJ to AGND.......................................-0.3V to (V + 0.3V)  
DD  
DD  
Digital Inputs to DGND...............................-0.3V to (V + 0.3V)  
MAX199_C_ _ .......................................................0°C to +70°C  
MAX199_E_ _.....................................................-40°C to +85°C  
MAX199_M_ _..................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
Digital Outputs to DGND............................-0.3V to (V + 0.3V)  
DD  
CH0–CH7 to AGND ..........................................................±16.5V  
MAX19  
Continuous Power Dissipation (T = +70°C)  
A
Narrow Plastic DIP (derate 14.29mW/°C above +70°C)....1143mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
DD  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
REF  
with 50% duty cycle; T = T  
to T , unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
MAX199A  
MAX199B  
±1/2  
±1  
Integral Nonlinearity  
INL  
Differential Nonlinearity  
DNL  
±1  
MAX199A  
±3  
Unipolar  
Bipolar  
MAX199B  
MAX199A  
MAX199B  
±5  
Offset Error  
LSB  
LSB  
±5  
±10  
Unipolar  
Bipolar  
±0.1  
±0.5  
Channel-to-Channel Offset  
Error Matching  
MAX199A  
MAX199B  
MAX199A  
MAX199B  
±7  
±10  
±7  
Unipolar  
Bipolar  
Gain Error  
(Note 2)  
LSB  
±10  
Unipolar  
Bipolar  
3
5
Gain Temperature Coefficient  
(Note 2)  
ppm/°C  
dB  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, ±4.096Vp-p, f  
= 100ksps)  
SAMPLE  
MAX199A  
MAX199B  
70  
69  
Signal-to-Noise + Distortion Ratio  
SINAD  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Aperture Delay  
THD  
Up to the 5th harmonic  
-85  
-78  
dB  
dB  
dB  
ns  
SFDR  
80  
50kHz, V = ±4V (Note 3)  
IN  
-86  
15  
External CLK mode/external acquisition control  
External CLK mode/external acquisition  
control  
<50  
10  
ps  
ns  
Aperture Jitter  
Internal CLK mode/internal acquisition  
control (Note 4)  
2
_______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
DD  
REF  
with 50% duty cycle; T = T  
to T , unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Track/Hold Acquisition Time  
f
= 2.0MHz  
3
µs  
CLK  
±V  
REF  
range  
5
±V  
range  
2.5  
2.5  
1.25  
REF/2  
Small-Signal Bandwidth  
-3dB rolloff  
MHz  
0V to V  
range  
REF  
0V to V  
range  
REF/2  
0
0
V
REF  
Unipolar (see Table 2)  
V
REF/2  
Input Voltage Range  
V
-V  
REF  
V
REF  
Bipolar (see Table 2)  
Unipolar range  
Bipolar  
-V  
V
REF/2  
REF/2  
0.1  
10  
Input Current  
±V  
range  
-1200  
-600  
10  
µA  
REF  
±V  
REF/2  
range  
10  
Unipolar  
Bipolar  
40  
10  
M  
kΩ  
pF  
Input Dynamic Resistance  
Input Capacitance  
(Note 5)  
40  
INTERNAL REFERENCE  
REF Output Voltage  
V
T
= +25°C  
4.076  
4.096  
±15  
4.116  
V
REF  
A
REF Output Tempco  
MAX199_C  
MAX199_E  
MAX199_M  
(Contact Maxim Applications  
for guaranteed temperature  
drift specifications)  
TC V  
±30  
ppm/°C  
REF  
±40  
Output Short-Circuit Current  
30  
mA  
mV  
0mA to 0.5mA output current (Note 6)  
0mA to 0.1mA output current (Note 6)  
7.5  
Load Regulation  
0.8  
Capacitive Bypass at REF  
REFADJ Output Voltage  
REFADJ Adjustment Range  
Buffer Voltage Gain  
4.7  
µF  
V
2.465  
2.500  
±1.5  
2.535  
With recommended circuit (Figure 1)  
%
1.6384  
V/V  
REFERENCE INPUT (Buffer disabled, reference input applied to REF pin)  
Input Voltage Range  
2.4  
4.18  
400  
V
Normal, or STANDBY  
power-down mode  
FULL power-down  
mode  
Input Current  
V
REF  
= 4.18V  
µA  
1
Normal, or STANDBY power-down mode  
FULL power-down mode  
10  
5
kΩ  
Input Resistance  
MΩ  
REFADJ Threshold for  
Buffer Disable  
V
DD  
- 50mV  
V
_______________________________________________________________________________________  
3
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
DD  
REF  
with 50% duty cycle; T = T  
to T , unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
4.75  
5.25  
18  
V
DD  
1
Normal mode, bipolar ranges  
Normal mode, unipolar ranges  
Standby power-down (STBYPD)  
Full power-down mode (FULLPD) (Note 7)  
External reference = 4.096V  
Internal reference  
mA  
6
10  
Supply Current  
I
DD  
700  
60  
850  
120  
1
µA  
± /  
2
Power-Supply Rejection Ratio  
(Note 8)  
PSRR  
LSB  
1
± /  
2
TIMING  
Internal Clock Frequency  
External Clock Frequency Range  
f
C
= 100pF  
CLK  
1.25  
0.1  
3.0  
3.0  
3.0  
1.56  
2.00  
2.0  
MHz  
MHz  
CLK  
f
CLK  
External CLK  
Internal CLK  
t
Internal acquisition  
ACQI  
ACQE  
CONV  
5.0  
Acquisition Time  
µs  
External acquisition (Note 9)  
After FULLPD or STBYPD  
External CLK  
t
5
6.0  
6.0  
Conversion Time  
Throughput Rate  
t
µs  
ksps  
µs  
Internal CLK, C  
External CLK  
= 100pF  
7.7  
10.0  
100  
CLK  
Internal CLK, C  
= 100pF  
62  
CLK  
Bandgap Reference  
Start-Up Time  
Power-up (Note 10)  
200  
To 0.1mV, REF  
bypass capacitor  
fully discharged  
C
C
= 4.7µF  
= 33µF  
8
REF  
REF  
Reference Buffer Settling  
ms  
60  
DIGITAL INPUTS (D7–D0, CLK, RD, WR, CS, HBEN, SHDN) (Note 11)  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
V
2.4  
V
V
INH  
V
INL  
0.8  
±10  
15  
I
V
= 0V or V  
DD  
µA  
pF  
IN  
IN  
C
(Note 5)  
IN  
DIGITAL OUTPUTS (D7–D4, D3/D11, D2/D10, D1/D9, D0/D8, INT)  
Output Low Voltage  
V
V
= 4.75V, I  
= 4.75V, I  
= 1.6mA  
0.4  
15  
V
V
OL  
DD  
SINK  
Output High Voltage  
V
OH  
V
DD  
= 1mA  
V
DD  
- 1  
SOURCE  
Three-State Output Capacitance  
C
(Note 5)  
pF  
OUT  
4
_______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
TIMING CHARACTERISTICS  
(V = 5V ±5%; unipolar/bipolar range; external reference mode, V  
DD  
= 4.096V; 4.7µF at REF pin; external clock, f = 2.0MHz  
CLK  
REF  
with 50% duty cycle; T = T  
to T , unless otherwise noted.)  
MAX  
A
MIN  
PARAMETER  
CS Pulse Width  
SYMBOL  
CONDITIONS  
MIN  
80  
80  
0
TYP  
MAX  
UNITS  
ns  
t
CS  
WR Pulse Width  
t
ns  
WR  
CS to WR Setup Time  
CS to WR Hold Time  
CS to RD Setup Time  
CS to RD Hold Time  
CLK to WR Setup Time  
CLK to WR Hold Time  
Data Valid to WR Setup  
Data Valid to WR Hold  
t
ns  
CSWS  
CSWH  
t
0
ns  
t
0
ns  
CSRS  
t
0
ns  
CSRH  
t
100  
50  
ns  
CWS  
t
ns  
CWH  
t
60  
0
ns  
DS  
DH  
DO  
t
ns  
RD Low to Output Data Valid  
t
Figure 2, C = 100pF (Note 12)  
120  
120  
ns  
L
HBEN High or HBEN Low to  
Output Valid  
t
Figure 2, C = 100pF (Note 12)  
L
ns  
DO1  
RD High to Output Disable  
RD Low to INT High Delay  
t
(Note 13)  
70  
ns  
ns  
TR  
t
120  
INT1  
Note 1: Accuracy specifications tested at V = 5.0V. Performance at power-supply tolerance limits guaranteed by Power-Supply  
DD  
Rejection test. Tested for the ±4.096V input range.  
Note 2: External reference: V  
= 4.096V, offset error nulled, ideal last code transition = FS - 3/2LSB.  
REF  
Note 3: Ground on” channel; sine wave applied to all “off” channels.  
Note 4: Maximum full-power input frequency for 1LSB error with 10ns jitter = 3kHz.  
Note 5: Guaranteed by design. Not tested.  
Note 6: Use static loads only.  
Note 7: Tested using internal reference.  
Note 8: PSRR measured at full-scale. V = 4.75V to 5.25V.  
DD  
Note 9: External acquisition timing: starts at rising edge of WR with control bit ACQMOD = low; ends at rising edge of WR with  
ACQMOD = high.  
Note 10: Not subject to production testing. Provided for design guidance only.  
Note 11: All input control signals specified with t = t = 5ns from a voltage level of 0.8V to 2.4V.  
R
F
Note 12: t  
and t  
are measured with the load circuits of Figure 2 and defined as the time required for an output to cross 0.8V  
DO  
DO1  
or 2.4V.  
Note 13: t is defined as the time required for the data lines to change by 0.5V.  
TR  
_______________________________________________________________________________________  
5
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
EFFECTIVE NUMBER OF BITS  
vs. INPUT FREQUENCY  
vs. DIGITAL CODE  
FFT PLOT  
0
-20  
0.250  
12.0  
11.5  
11.0  
10.5  
f = 100kHz  
SAMPLE  
f
= 10kHz  
= 100kHz  
TONE  
0.200  
0.150  
0.100  
0.050  
0
MAX19  
f
SAMPLE  
-40  
-60  
-80  
-0.050  
-0.100  
-0.150  
-100  
-120  
10.0  
0
25  
FREQUENCY (kHz)  
50  
0
1000  
2000  
3000  
4000  
1
10  
INPUT FREQUENCY (kHz)  
100  
DIGITAL CODE  
POWER-SUPPLY REJECTION RATIO  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE (V  
)
REF  
vs. TEMPERATURE  
0.4  
4.100  
V
DD  
= 5V ±0.25V  
120Hz  
0.2  
0
4.095  
100Hz  
4.090  
-0.2  
-0.4  
A = 1.6384  
V
+2.5V  
INTERNAL  
REFERENCE  
4.085  
4.080  
REF  
REFADJ  
-0.6  
-70 -50  
110  
130  
-30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
-55 -35  
5
25 45 65  
-15  
85 105 125  
TEMPERATURE (°C)  
CHANNEL-TO-CHANNEL  
CHANNEL-TO-CHANNEL  
OFFSET-ERROR MATCHING vs. TEMPERATURE  
GAIN-ERROR MATCHING vs. TEMPERATURE  
0.33  
0.20  
0.32  
0.31  
0.30  
0.18  
0.16  
0.14  
0.12  
0.10  
0.29  
0.28  
0.27  
130  
130  
-70 -50 -30 -10 10 30 50 70 90 110  
-70 -50 -30 -10 10 30 50 70 90 110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
CLK  
CS  
FUNCTION  
Clock Input. In external clock mode, drive CLK with a TTL/CMOS compatible clock. In internal clock mode,  
1
place a capacitor (C  
) from this pin to ground to set the internal clock frequency; f  
= 1.56MHz typical  
CLK  
CLK  
with C  
= 100pF.  
CLK  
2
Chip Select, active low.  
When CS is low, in the internal acquisition mode, a rising edge on WRlatches in configuration data and starts an  
acquisition plus a conversion cycle. When CS is low, in the external acquisition mode, the first rising edge on  
WR starts an acquisition and a second rising edge on WRends acquisition and starts a conversion cycle.  
3
WR  
4
5
RD  
When CS is low, a falling edge on RD will enable a read operation on the data bus.  
Used to multiplex the 12-bit conversion result. When high, the 4 MSBs are multiplexed on the data bus;  
when low, the 8 LSBs are available on the bus.  
HBEN  
6
7–10  
11  
SHDN  
D7–D4  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
AGND  
Shutdown. Puts the device into full power-down (FULLPD) mode when pulled low.  
Three-State Digital I/O  
Three-State Digital I/O. D3 output (HBEN = low), D11 output (HBEN = high).  
Three-State Digital I/O. D2 output (HBEN = low), D10 output (HBEN = high).  
Three-State Digital I/O. D1 output (HBEN = low), D9 output (HBEN = high).  
Three-State Digital I/O. D0 output (HBEN = low), D8 output (HBEN = high). D0 = LSB.  
Analog Ground  
12  
13  
14  
15  
16–23 CH0–CH7  
Analog Input Channels  
24  
INT  
INT goes low when conversion is complete and output data is ready.  
Bandgap Voltage-Reference Output / External Adjust Pin. Bypass with a 0.01µF capacitor to AGND.  
Connect to V when using an external reference at the REF pin.  
DD  
25  
REFADJ  
Reference Buffer Output / ADC Reference Input. In internal reference mode, the reference buffer provides a  
4.096V nominal output, externally adjustable at REFADJ. In external reference mode, disable the internal  
26  
REF  
buffer by pulling REFADJ to V  
.
DD  
27  
28  
V
+5V Supply. Bypass with 0.1µF capacitor to AGND.  
Digital Ground  
DD  
DGND  
+5V  
3k  
+5V  
MAX199  
D
OUT  
510k  
100k  
REFADJ  
D
OUT  
C
LOAD  
3k  
C
LOAD  
0.01µF  
24k  
a) High-Z to V and V to V  
OH  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
Figure 1. Reference-Adjust Circuit  
Figure 2. Load Circuits for Enable Time  
_______________________________________________________________________________________  
7
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
where R = 7k, and t is never less than 2µs (0V to  
IN  
AZ  
_______________De t a ile d De s c rip t io n  
V
range) or 3µs (0V to V  
range).  
REF  
REF/2  
Co n ve rt e r Op e ra t io n  
The MAX199, a multi-range, fault-tolerant ADC, uses  
successive approximation and internal input track/hold  
(T/H) circuitry to convert an analog signal to a 12-bit  
digital output. The parallel-output format provides easy  
interface to microprocessors (µPs). Figure 3 shows the  
MAX199 in its simplest operational configuration.  
In the external acquisition control mode (D5 = 1), the  
T/H enters its tracking mode on the first WR rising edge  
and enters its hold mode when it detects the second WR  
rising edge with D5 = 0. See the External Acquisition  
section.  
MAX19  
In p u t Ba n d w id t h  
The ADCs input tracking circuitry has a 5MHz small-  
signal bandwidth. When using the internal acquisition  
mode with an external clock frequency of 2MHz, a  
100ksps throughput rate can be achieved. It is possible  
to digitize high-speed transient events and measure  
periodic signals with bandwidths exceeding the ADCs  
sampling rate by using undersampling techniques. To  
avoid high-frequency signals being aliased into the fre-  
quency band of interest, anti-alias filtering is recom-  
mended (MAX274/MAX275 continuous-time filters).  
An a lo g -In p u t Tra c k /Ho ld  
In the internal acquisition control mode (control bit D5  
set to 0), the T/H enters its tracking mode on WR’s ris-  
ing edge, and enters its hold mode when the internally  
timed (6 clock cycles) acquisition interval ends. In bipo-  
lar mode, a low-impedance input source, which settles  
in less than 1.5µs, is required to maintain conversion  
accuracy at the maximum conversion rate.  
When configured for unipolar mode, the input does not  
need to be driven from a low-impedance source. The  
In p u t Ra n g e a n d P ro t e c t io n  
Figure 4 shows the equivalent input circuit. The MAX199  
acquisition time (t ) is a function of the source output  
AZ  
resistance (R ), the channel input resistance (R ), and  
S
IN  
can be programmed for input ranges of ±V , ±V  
,
REF  
REF/2  
the T/H capacitance.  
0V to V , or 0V to V  
by setting the appropriate  
REF  
REF/2  
Acquisition time is calculated by:  
control bits (D3, D4) in the control byte (see Tables 1 and  
2). When an external reference is applied at REFADJ, the  
For 0V to V : t = 9 x (R + R ) x 16pF  
REF AZ  
S
IN  
voltage at REF is given by V  
= 1.6384 x V  
(2.4V  
REF  
REFADJ  
For 0V to V : t = 9 x (R + R ) x 32pF  
REF/2 AZ S IN  
< V  
< 4.18V).  
REF  
1
28  
CLK  
DGND  
BIPOLAR  
VOLTAGE  
REFERENCE  
100pF  
S1  
+5V  
27  
26  
25  
MAX199  
V
DD  
+4.096V  
2
3
CS  
REF  
UNIPOLAR  
OFF  
0.1µF  
WR  
RD  
REFADJ  
µP  
CONTROL  
INPUTS  
4.7µF  
5.12k  
4
24  
23  
22  
21  
20  
19  
18  
17  
16  
INT  
CH7  
CH6  
CH5  
5
OUTPUT STATUS  
HBEN  
SHDN  
D7  
5.12k  
6
CH_  
C
HOLD  
7
S2  
T/H  
OUT  
8
ON  
D6  
CH4  
9
ANALOG  
INPUTS  
D5  
10  
11  
12  
13  
14  
CH3  
CH2  
CH1  
D4  
S3  
TRACK  
TRACK S4  
HOLD  
D3/D11  
HOLD  
D2/D10  
CH0  
D1/D9  
D0/D8  
15  
AGND  
S1 = BIPOLAR/UNIPOLAR SWITCH  
S2 = INPUT MUX SWITCH  
S3, S4 = T/H SWITCH  
µP DATA BUS  
Figure 4. Equivalent Input Circuit  
Figure 3. Operational Diagram  
8
_______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
The inp ut c ha nne ls a re ove rvolta g e p rote c te d to  
±16.5V. This protection is active even if the device is in  
power-down mode.  
Input Format  
The control byte is latched into the device, on pins  
D7–D0, during a write cycle. Table 1 shows the control-  
byte format.  
Even with V = 0V, the input resistive network provides  
DD  
current-limiting that adequately protects the device.  
Output Data Format  
The output data format is binary in unipolar mode and  
twos-complement binary in bipolar mode. When read-  
ing the output data, CS and RD must be low. When  
HBEN is low, the lower eight bits are read. When HBEN  
is high, the upper four MSBs are available and the out-  
p ut d a ta b its D4–D7 a re e ithe r s e t low (in unip ola r  
mode) or set to the value of the MSB (in bipolar mode)  
(Table 5).  
Dig it a l In t e rfa c e  
Input data (control byte) and output data are multiplexed  
on a three-state parallel interface. This parallel I/O can  
easily be interfaced with a µP. CS, WR, and RD control  
the write and read operations. CS is the standard chip-  
select signal, which enables a µP to address the MAX199  
as an I/O port. When high, it disables the WR and RD  
inputs and forces the interface into a high-Z state.  
Table 1. Control-Byte Format  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0 (LSB)  
PD1  
PD0  
ACQMOD  
RNG  
BIP  
A2  
A1  
A0  
BIT  
NAME  
PD1, PD0  
ACQMOD  
RNG  
DESCRIPTION  
These two bits select the clock and power-down modes (Table 3).  
7, 6  
5
0 = internally controlled acquisition (6 clock cycles), 1 = externally controlled acquisition  
Selects the full-scale voltage magnitude at the input (Table 2).  
4
3
BIP  
Selects unipolar or bipolar conversion mode (Table 2).  
2, 1, 0  
A2, A1, A0  
These are address bits for the input mux to select the “on” channel (Table 4).  
Table 2. Range and Polarity Selection  
Table 3. Clock and Power-Down Selection  
PD1 PD0  
DEVICE MODE  
BIP  
RNG  
INPUT RANGE (V)  
0
0
0
1
Normal Operation / External Clock Mode  
Normal Operation / Internal Clock Mode  
0
0
1
0
1
0 to V  
REF/2  
0
0 to V  
REF  
Standby Power-Down (STBYPD); clock mode  
is unaffected  
1
1
0
1
1
±V  
REF/2  
1
±V  
REF  
Full Power-Down (FULLPD); clock mode is  
unaffected  
Table 4. Channel Selection  
A2  
0
A1  
0
A0  
0
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
_______________________________________________________________________________________  
9
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
Writing a new control byte during the conversion cycle  
will abort the conversion in progress and start a new  
acquisition interval.  
Table 5. Data-Bus Output  
PIN  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
HBEN = LOW  
HBEN = HIGH  
B0 (LSB)  
B1  
B8  
Internal Acquisition  
B9  
Select internal acquisition by writing the control byte  
with the ACQMOD bit cleared (ACQMOD = 0). This  
causes the write pulse to initiate an acquisition interval  
whose duration is internally timed. Conversion starts  
when this six-clock-cycle acquisition interval (3µs with  
B2  
B10  
B3  
B11 (MSB)  
MAX19  
B4  
B11 (BIP = 1) / 0 (BIP = 0)  
B11 (BIP = 1) / 0 (BIP = 0)  
B11 (BIP = 1) / 0 (BIP = 0)  
B11 (BIP = 1) / 0 (BIP = 0)  
B5  
f
= 2MHz) ends. See Figure 5.  
CLK  
B6  
External Acquisition  
B7  
Use the external acquisition timing mode for precise con-  
trol of the sampling aperture and/or independent control of  
acquisition and conversion times. The user controls acqui-  
sition and start-of-conversion with two separate write puls-  
es. The first pulse, written with ACQMOD = 1, starts an  
acquisition interval of indeterminate length. The second  
write pulse, written with ACQMOD = 0, terminates acquisi-  
tion and starts conversion on WR’s rising edge (Figure 6).  
However, if the second control byte contains ACQMOD =  
1, an indefinite acquisition interval is restarted.  
Ho w t o S t a rt a Co n ve rs io n  
Conversions are initiated with a write operation, which  
selects the mux channel and configures the MAX199 for  
either unipolar or bipolar input range. A write pulse (WR  
+ CS) can either start an acquisition interval or initiate a  
combined acquisition plus conversion. The sampling  
interval occurs at the end of the acquisition interval.  
The ACQMOD bit in the input control byte offers two  
options for acquiring the signal: internal or external.  
The conversion period lasts for 12 clock cycles in either  
internal or external clock or acquisition mode.  
The address bits for the input mux must have the same  
values on the first and second write pulses. Power-  
down mode bits (PD0, PD1) can assume new values on  
the second write pulse (see Power-Down Mode).  
tCSRH  
tCS  
tCSRS  
CS  
tACQI  
tCONV  
tCSWS  
tCSWH  
tDH  
tWR  
WR  
tDS  
CONTROL  
BYTE  
D7D0  
ACQMOD ="0"  
tINT1  
INT  
RD  
HBEN  
tTR  
tD0  
tD01  
HIGH-Z  
HIGH-Z  
HIGH / LOW  
BYTE VALID  
HIGH / LOW  
BYTE VALID  
DOUT  
Figure 5. Conversion Timing Using Internal Acquisition Mode  
10 ______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
tCSRS  
tCSRH  
tCS  
CS  
tCSWS  
tACQI  
tCSHW  
tCONV  
tWR  
WR  
tDH  
tDS  
CONTROL  
CONTROL  
BYTE  
ACQMOD = "0"  
D7D0  
INT  
BYTE  
ACQMOD = "1"  
tINT1  
RD  
HBEN  
tD01  
tD0  
tTR  
HIGH-Z  
HIGH-Z  
HIGH / LOW  
BYTE VALID  
HIGH / LOW  
BYTE VALID  
DOUT  
Figure 6. Conversion Timing Using External Acquisition Mode  
shows a linear relationship between the internal clock  
period and the value of the external capacitor used.  
Ho w t o Re a d a Co n ve rs io n  
A standard interrupt signal, INT, is provided to allow the  
device to flag the µP when the conversion has ended  
and a valid result is available. INT goes low when the  
conversion is complete and the output data is ready  
(Figures 5 and 6). It returns high on the first read cycle  
or if a new control byte is written.  
2000  
1500  
1000  
Clo c k Mo d e s  
The MAX199 ope ra te s with e ithe r a n inte rna l or a n  
external clock. Control bits (D6, D7) select either inter-  
nal or external clock mode. Once the desired clock  
mod e is s e le c te d , c ha ng ing the s e b its to p rog ra m  
power-down will not affect the clock mode. In each  
mode, internal or external acquisition can be used. At  
power-up, the MAX199 defaults to external clock mode.  
500  
0
Internal Clock Mode  
Se le c t inte rna l c loc k mod e to fre e the µP from the  
burden of running the SAR conversion clock. To select  
this mode, write the control byte with D7 = 0 and D6 = 1.  
A 100pF capacitor between the CLK pin and ground  
s e ts this fre q ue nc y to 1.56MHz nomina l. Fig ure 7  
0
50 100 150 200 250 300 350  
CLOCK PIN CAPACITANCE (pF)  
Figure 7. Internal Clock Period vs. Clock Pin Capacitance  
______________________________________________________________________________________ 11  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
External Clock Mode  
Select external clock mode by writing the control byte  
with D7 = 0 and D6 = 0. Figure 8 shows CLK and WR  
timing relationships in internal and external acquisition  
modes, with an external clock. A 100kHz to 2.0MHz  
external clock with 45% to 55% duty cycle is required  
for proper operation. Operating at clock frequencies  
lower than 100kHz will cause a voltage droop across  
the hold capacitor, and subsequently degrade perfor-  
mance.  
MAX19  
ACQUISITION STARTS  
CONVERSION STARTS  
ACQUISITION ENDS  
CLK  
tCWS  
WR  
WR GOES HIGH WHEN CLK IS HIGH  
ACQMOD = "0"  
ACQUISITION ENDS  
tCWH  
ACQUISITION STARTS  
CONVERSION STARTS  
CLK  
WR  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS LOW  
Figure 8a. External Clock and WR Timing (Internal Acquisition Mode)  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
tCWS  
tDH  
WR  
ACQMOD = "0"  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS HIGH  
ACQUISITION ENDS  
ACQUISITION STARTS  
CONVERSION STARTS  
CLK  
WR  
tCWH  
tDH  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS LOW  
ACQMOD = "0"  
Figure 8b. External Clock and WR Timing (External Acquisition Mode)  
12 ______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
e xte rna l re fe re nc e a t REF mus t b e a b le to d e live r  
400µA DC load currents, and must have an output  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
At power-up, the internal power-supply circuitry sets INT  
high and puts the device in normal operation / external  
clock mode. This state is selected to keep the internal  
clock from loading the external clock driver when the  
part is used in external clock mode.  
impedance of 10or less. If the reference has higher  
input impedance or is noisy, bypass it close to the REF  
pin with a 4.7µF capacitor to AGND.  
With an external reference voltage of less than 4.096V  
at the REF pin or less than 2.5V at the REFADJ pin, the  
increase in the ratio of the RMS noise to the LSB value  
(FS / 4096) results in performance degradation (loss of  
effective bits).  
In t e rn a l o r Ex t e rn a l Re fe re n c e  
The MAX199 can operate with either an internal or external  
reference. An external reference can be connected to  
either the REF pin or to the REFADJ pin (Figure 9).  
To use the REF input directly, disable the internal buffer  
REF 26  
4.096V  
by tying REFADJ to V . Using the REFADJ input elimi-  
DD  
na te s the ne e d to b uffe r the re fe re nc e e xte rna lly.  
Whe n the re fe re nc e is a p p lie d a t REFADJ , b yp a s s  
REFADJ with a 0.01µF capacitor to AGND.  
MAX199  
4.7µF  
C
REF  
The REFADJ internal buffer gain is trimmed to 1.6384 to  
provide 4.096V at the REF pin from a 2.5V reference.  
V
DD  
A = 1.638  
V
REFADJ 25  
Internal Reference  
The inte rna lly trimme d 2.50V re fe re nc e is g a ine d  
through the REFADJ buffer to provide 4.096V at REF.  
Bypass the REF pin with a 4.7µF capacitor to AGND  
and the REFADJ pin with a 0.01µF capacitor to AGND.  
The internal reference voltage is adjustable to ±1.5%  
(±65 LSBs) with the reference-adjust circuit of Figure 1.  
10k  
2.5V  
External Reference  
At REF and REFADJ, the input impedance is a mini-  
mum of 10kfor DC currents. During conversions, an  
Figure 9b. External Reference at REF  
REF 26 4.096V  
REF 26 4.096V  
MAX199  
4.7µF  
C
REF  
4.7µF  
C
REF  
MAX199  
A = 1.638  
V
A = 1.638  
V
REFADJ 25  
REFADJ 25  
2.5V  
0.01µF  
0.01µF  
10k  
10k  
2.5V  
2.5V  
Figure 9a. Internal Reference  
Figure 9c. The external reference at REFADJ overdrives the  
internal reference.  
______________________________________________________________________________________ 13  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
However, in FULLPD mode, only the bandgap refer-  
ence is active. Connect a 33µF capacitor between REF  
and AGND to maintain the reference voltage between  
conversion and to reduce transients when the buffer is  
enabled and disabled. Throughput rates down to 1ksps  
can be achieved without allotting extra acquisition time  
for reference recovery prior to conversion. This allows a  
c onve rsion to be gin imme d ia te ly a fte r powe r-d own  
ends. If the discharge of the REF capacitor during  
FULLPD exceeds the desired limits for accuracy (less  
than a fraction of an LSB), run a STBYPD power-down  
cycle prior to starting conversions. Take into account  
that the reference buffer recharges the bypass capaci-  
tor at an 80mV/ms slew rate and add 50µs for settling  
time. Throughput rates of 10ksps offer typical supply  
c urre nts of 470µA, us ing the re c omme nd e d 33µF  
capacitor value.  
P o w e r-Do w n Mo d e  
To save power, you can put the converter into low-  
current shutdown mode between conversions. Two  
programmable power-down modes are available, in  
addition to a hardware shutdown. Select STBYPD or  
FULLPD by programming PD0 and PD1 in the input  
control byte. When software power-down is asserted, it  
becomes effective only after the end of conversion. In all  
power-down modes, the interface remains active and  
conversion results may be read. Input overvoltage pro-  
tection is active in all power-down modes. The device  
returns to normal operation on the first WR falling edge  
during a write operation.  
MAX19  
For hardware-controlled (FULLPD) power-down, pull  
the SHDN pin low. When hardware shutdown is assert-  
ed, it becomes effective immediately and the conver-  
sion is aborted.  
Auto-Shutdown  
Selecting STBYPD on every conversion automatically  
shuts the MAX199 down after each conversion without  
requiring any start-up time on the next conversion.  
Choosing Power-Down Modes  
The bandgap reference and reference buffer remain  
active in STBYPD mode, maintaining the voltage on the  
4.7µF capacitor at the REF pin. This is a “DC” state that  
does not degrade after power-down of any duration.  
Therefore, you can use any sampling rate with this  
mode, without regard to start-up delays.  
OUTPUT CODE  
2 FS  
4096  
OUTPUT CODE  
1 LSB =  
FS  
4096  
1 LSB =  
FULL-SCALE  
TRANSITION  
011... 111  
11... 111  
011... 110  
11... 110  
11... 101  
000... 001  
000... 000  
111... 111  
00... 011  
00... 010  
00... 001  
00... 000  
100... 010  
100... 001  
100... 000  
FS  
0
1
2
3
-FS  
0V  
+FS - 1 LSB  
3
FS - / LSB  
INPUT VOLTAGE (LSB)  
2
INPUT VOLTAGE (LSB)  
Figure 10. Unipolar Transfer Function  
Figure 11. Bipolar Transfer Function  
14 ______________________________________________________________________________________  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
MAX19  
Tra n s fe r Fu n c t io n  
Output data coding for the MAX199 is binary in unipolar  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
mode with 1LSB = (FS / 4096) and twos-complement  
binary in bipolar mode with 1LSB = [(2 x FS ) / 4096].  
Code transitions occur halfway between successive-  
inte g e r LSB va lue s . Fig ure s 10 a nd 11 s how the  
input/output (I/O) transfer functions for unipolar and  
bipolar operations, respectively.  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Narrow Plastic DIP  
28 Narrow Plastic DIP  
28 Wide SO  
|
|
MAX199AENI  
MAX199BENI  
MAX199AEWI  
MAX199BEWI  
MAX199AEAI  
MAX199BEAI  
MAX199AMYI  
MAX199BMYI  
28 Wide SO  
28 SSOP  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
Careful printed circuit board layout is essential for best  
s ys te m p e rforma nc e . For b e s t p e rforma nc e , us e a  
ground plane. To reduce crosstalk and noise injection,  
ke e p a na log a nd d ig ita l s ig na ls s e p a ra te . Dig ita l  
ground lines can run between digital signal lines to  
minimize interference. Connect analog grounds and  
DGND in a star configuration to AGND. For noise-free  
operation, ensure the ground return from AGND to the  
supply ground is low impedance and as short as possi-  
ble. Connect the logic grounds directly to the supply  
28 SSOP  
-55°C to +125°C 28 Narrow Ceramic SB**  
-55°C to +125°C 28 Narrow Ceramic SB**  
** Contact factory for availability and processing to MIL-STD-883.  
___________________Ch ip To p o g ra p h y  
WR CLK  
CS  
V
V
CC  
DD  
DGND  
REF  
ground. Bypass V  
to AGND to minimize high- and low-frequency fluctua-  
with 0.1µF and 4.7µF capacitors  
DD  
RD  
REFADJ  
INT  
tions. If the supply is excessively noisy, connect a 5Ω  
HBEN  
SHDN  
resistor between the supply and V , as shown in  
DD  
Figure 12.  
D7  
CH7  
0. 231"  
(5. 870mm)  
SUPPLY  
CH6  
CH5  
GND  
+5V  
D6  
CH4  
CH3  
CH2  
4.7µF  
0.1µF  
D5  
D4  
R* = 5Ω  
D3  
**  
D1  
CH0  
V
DD  
+5V  
DGND  
AGND  
DGND  
D2  
D0 AGND  
0. 144"  
CH1  
DIGITAL  
CIRCUITRY  
MAX199  
(3. 659mm)  
TRANSISTOR COUNT: 2956  
SUBSTRATE CONNECTED TO GND  
* OPTIONAL  
** CONNECT AGND AND DGND WITH A GROUND PLANE OR A SHORT TRACE  
Figure 12. Power-Supply Grounding Connection  
______________________________________________________________________________________ 15  
Mu lt i-Ra n g e (±4 V, ±2 V, +4 V, +2 V),  
+5 V S u p p ly, 1 2 -Bit DAS w it h 8 +4 Bu s In t e rfa c e  
_________________________________________________________Fu n c t io n a l Dia g ra m  
REF  
REFADJ  
10k  
+2.5V  
REFERENCE  
A =  
V
1.638  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
MAX19  
SIGNAL  
CONDITIONING  
BLOCK  
T/H  
&
CHARGE REDISTRIBUTION  
12-BIT DAC  
COMP  
OVERVOLTAGE  
TOLERANT  
MUX  
12  
SUCCESSIVE-  
APPROXIMATION  
REGISTER  
CLK  
CLOCK  
4
4
8
8
CS  
WR  
CONTROL LOGIC  
&
RD  
LATCHES  
MUX  
8
SHDN  
HBEN  
8
V
DD  
MAX199  
THREE-STATE, BIDIRECTIONAL  
I/O INTERFACE  
AGND  
DGND  
INT  
D0D7  
8-BIT DATA BUS  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX199BEAI+

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX199BEAI+T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX199BENI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199BEWI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX199BEWI-T

Analog Circuit, 1 Func, PDSO28, 0.300 INCH, SO-28
MAXIM

MAX199BMYI

Multi-Range (【4V, 【2V, +4V, +2V), +5V Supply, 12-Bit DAS with 8+4 Bus Interface
MAXIM

MAX1K2000D

MAX1K2000D 5 PPM
VISHAY

MAX20-10.0C

HIGH CURRENT TRANSIENT VOLTAGE SUPPRESSOR (TVS) DIODE
MDE

MAX20-10.0CA

HIGH CURRENT TRANSIENT VOLTAGE SUPPRESSOR (TVS) DIODE
MDE

MAX20-11.0C

HIGH CURRENT TRANSIENT VOLTAGE SUPPRESSOR (TVS) DIODE
MDE

MAX20-11.0CA

HIGH CURRENT TRANSIENT VOLTAGE SUPPRESSOR (TVS) DIODE
MDE

MAX20-12.0C

HIGH CURRENT TRANSIENT VOLTAGE SUPPRESSOR (TVS) DIODE
MDE