MAX19791ETX+ [MAXIM]

50MHz to 4000MHz Dual Analog Voltage Variable 50MHz to 4000MHz Dual Analog Voltage Variable;
MAX19791ETX+
型号: MAX19791ETX+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

50MHz to 4000MHz Dual Analog Voltage Variable 50MHz to 4000MHz Dual Analog Voltage Variable

信息通信管理
文件: 总24页 (文件大小:4188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
General Description  
Features  
The MAX19791 dual general-purpose analog voltage  
variable attenuator (VVA) is designed to interface with  
50I systems operating in the 50MHz to 4000MHz  
frequency range. The device includes a patented con-  
trol circuit that provides 23dB of attenuation range (per  
attenuator) with a typical linear control slope of 8dB/V.  
S Wideband Coverage  
50MHz to 4000MHz RF Frequency Range  
S High Linearity  
Greater Than +37.4dBm IIP3 Over the Full  
Attenuation Range  
+22.6dBm Input P  
1dB  
Both attenuators share a common analog control and  
can be cascaded together to yield 46dB of total attenua-  
tion range with a typical combined linear control slope of  
16dB/V (5V operation).  
S Integrates Two Analog Attenuators in One  
Monolithic Device  
S Two Convenient Control Options  
Single Analog Voltage  
Alternatively, the on-chip 4-wire SPI-controlled 10-bit  
DAC can be used to control both attenuators. In addi-  
tion, a step-up/down feature allows user-programmable  
attenuator stepping through command pulses without  
reprogramming the SPI interface.  
On-Chip SPI-Controlled 10-Bit DAC  
S Step-Up/Down Pulse Command Inputs  
S Flexible Attenuation Control Ranges  
23dB (Per Attenuator)  
46dB (Both Attenuators Cascaded)  
The MAX19791 is a monolithic device designed using  
one of Maxim’s proprietary SiGe BiCMOS processes. The  
part operates from a single +5V supply or alternatively  
from a single +3.3V supply. It is available in a compact  
36-pin TQFN package (6mm x 6mm x 0.8mm) with an  
exposed pad. Electrical performance is guaranteed over  
the -40NC to +100NC extended temperature range.  
S Linear dB/V Analog Control Response Curve  
Simplifies Automatic Leveling Control and  
Gain-Trim Algorithms  
S Excellent Attenuation Flatness Over Wide  
Frequency Ranges and Attenuation Settings  
S On-Chip Comparator (for Successive  
Approximation Measurement of Attenuator  
Control Voltage)  
Applications  
Broadband System Applications, Including  
Wireless Infrastructure Digital and  
Spread-Spectrum Communication Systems  
S Low 13mA Supply Current  
S Single 5V or 3.3V Supply Voltage  
S Pin-Compatible with the MAX19792 and MAX19793  
WCDMA/LTE, TD-SCDMA/TD-LTE, WiMAX®,  
M
S Pin-Compatible with the MAX19794 with Addition  
cdma2000 , GSM/EDGE, and  
of Two Shunt Capacitors  
MMDS Base Stations  
S PCB-Compatible with the MAX19790  
S Lead(Pb)-Free Package  
VSAT/Satellite Modems  
Microwave Point-to-Point Systems  
Lineup Gain Trim  
Ordering Information appears at end of data sheet.  
Temperature-Compensation Circuits  
Automatic Level Control (ALC)  
Transmitter Gain Control  
Receiver Gain Control  
For related parts and recommended products to use with this part,  
refer to www.maximintegrated.com/MAX19791.related.  
General Test Equipment  
WiMAX® is a registered certification mark and registered service mark of WiMAX Forum.  
cdma2000 is a registered trademark of Telecommunications Industry Association.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6454; Rev 2; 5/15  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
.......................................................................-0.3V to +5.5V  
RF Input Power at IN_A, IN_B, OUT_A, OUT_B ...........+20dBm  
Continuous Power Dissipation (Note 1) ..............................2.8W  
Operating Case Temperature Range (Note 2)…-40NC to +100NC  
Maximum Junction Temperature.....................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
REF_IN..............................-0.3V to Minimum (V  
+ 0.3V, 3.6V)  
CC  
REF_SEL DAC_LOGIC, MODE, DWN, UP,  
,
DIN, CLK, CS............... -0.3V to Minimum (V  
+ 0.3V, 3.6V)  
CC  
COMP_OUT, DOUT..............................................-0.3V to +3.6V  
IN_A, OUT_A, IN_B, OUT_B .......................-0.3V to V  
CTRL (except for test mode).......................-0.3V to V  
Maximum CTRL Pin Load Current  
+ 0.3V  
+ 0.3V  
CC  
CC  
(CTRL configured as an output)....................................0.3mA  
Note 1: Based on junction temperature T = T + (B x V x I ). This formula can be used when the temperature of the  
J
C
JC  
CC  
CC  
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.  
The junction temperature must not exceed +150NC.  
Note 2: T is the temperature on the exposed pad of the package. T is the ambient temperature of the device and PCB.  
C
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS  
TQFN  
Junction-to-Ambient Thermal Resistance (q  
)
Junction-to-Case Thermal Resistance (q  
)
JA  
JC  
(Notes 3, 4)............................................................... +36NC/W  
(Notes 1, 4)............................................................... +10NC/W  
Note 3: Junction temperature T = T + (B x V x I ). This formula can be used when the ambient temperature of the PCB is  
J
A
JA  
CC  
CC  
known. The junction temperature must not exceed +150NC.  
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
3.3V DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.15V to 3.45V, V  
= 1V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, no RF signals applied, all input and output  
CC  
CTRL  
DAC_LOGIC  
ports terminated with 50I through DC blocks, T = -40NC to +100NC, unless otherwise noted. Typical values are at V  
= 3.3V,  
C
CC  
V
= 1V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, T = +25NC, unless otherwise noted.) (Note 5)  
CTRL  
DAC_LOGIC C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
MAX  
3.45  
14  
UNITS  
Supply Voltage  
V
3.15  
V
mA  
V
CC  
Supply Current  
I
9.5  
CC  
Control Voltage Range  
CTRL Input Resistance  
Input Current Logic-High  
V
R
1
2.5  
CTRL  
1.0  
MI  
µA  
CTRL  
I
-1  
-1  
+1  
+1  
IH  
Input Current Logic-Low  
REF_IN Voltage  
I
µA  
V
IL  
1.4  
1.0  
REF_IN Input Resistance  
DAC Number of Bits  
Input Voltage Logic-High  
MI  
Bits  
V
Monotonic  
10  
V
2
IH  
Input Voltage Logic-Low  
V
0.8  
V
IL  
RDBK_EN(D9, REG3) = logic 1,  
= 47kI  
COMP_OUT Logic-High  
3.3  
0
V
R
LOAD  
RDBK_EN(D9, REG3) = logic 1,  
= 47kI  
COMP_OUT Logic-Low  
V
R
LOAD  
Maxim Integrated  
2
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
5V DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= 4.75V to 5.25V, V  
= 1V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, no RF signals applied, all input and output  
CTRL  
ports terminated with 50I through DC blocks, T = -40NC to +100NC, unless otherwise noted. Typical values are at V  
DAC_LOGIC  
= 5V, V  
CTRL  
C
CC  
= 1V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, T = +25NC, unless otherwise noted.) (Note 5)  
DAC_LOGIC  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.0  
13  
MAX  
5.25  
20  
UNITS  
Supply Voltage  
V
4.75  
V
mA  
V
CC  
Supply Current  
I
CC  
CTRL Voltage Range  
CTRL Input Resistance  
Input Current Logic-High  
V
R
1
4
CTRL  
124  
kI  
µA  
CTRL  
I
-1  
-1  
+1  
+1  
IH  
Input Current Logic-Low  
REF_IN Voltage Range  
REF_IN Input Resistance  
DAC Number of Bits  
I
µA  
V
IL  
1.4  
1.0  
10  
MI  
Bits  
V
Monotonic  
Input Voltage Logic-High  
V
2
IH  
Input Voltage Logic-Low  
V
0.8  
V
IL  
RDBK_EN(D9, REG3) = logic 1,  
= 47kI  
COMP_OUT Logic-High  
3.3  
0
V
R
LOAD  
RDBK_EN(D9, REG3) = logic 1,  
= 47kI  
COMP_OUT Logic-Low  
V
R
LOAD  
RECOMMENDED AC OPERATING CONDITIONS  
PARAMETER  
RF Frequency Range  
RF Port Input Power  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
4000  
15  
UNITS  
MHz  
f
(Note 6)  
Continuous operation  
50  
RF  
P
dBm  
RF  
Maxim Integrated  
3
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
3.3V AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, one attenuator, V  
= 3.15V to 3.45V, RF ports are driven from 50Isources and loaded into 50I, input  
CC  
P
= 0dBm, f = 900MHz, V  
= 1V to 2.5V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, T = -40NC to +100NC. Typical  
RF  
RF  
CTRL  
DAC_LOGIC C  
values are for T = +25NC, V  
= 3.3V, input P = 0dBm, f = 900MHz, V  
= 1V,  
V
= 0V, RDBK_EN (D9, REG3) =  
C
CC  
RF  
RF  
CTRL  
DAC_LOGIC  
logic 0, unless otherwise noted.) (Notes 5, 7)  
PARAMETER  
Insertion Loss  
SYMBOL  
CONDITIONS  
One attenuator  
Two attenuators  
MIN  
TYP  
2.0  
MAX  
UNITS  
IL  
dB  
3.9  
Loss Variation Over  
Temperature  
T
= -40NC to +100NC  
0.25  
16.4  
dB  
C
Input P  
IP  
dBm  
1dB  
1dB  
One attenuator, f  
+f  
term,  
RF1 RF2  
f
P
-f  
= 1MHz, V  
= 1V to 2.5V,  
RF1 RF2  
CTRL  
59  
= 0dBm/tone applied to attenuator  
RF  
Minimum Input Second-Order  
Intercept Point Over Full  
Attenuation Range (Note 8)  
input  
IIP2  
IIP3  
dBm  
dBm  
Two attenuators, f  
+ f  
term,  
= 1V to 2.5V,  
RF1  
= 1MHz, V  
RF2  
f
- f  
RF1 RF2  
CTRL  
55.6  
P
= 0dBm/tone applied to attenuator  
RF  
input  
One attenuator, V  
= 1V to 2.5V,  
CTRL  
f
- f  
= 1MHz, P = 0dBm/tone  
33.9  
32.8  
RF1 RF2  
RF  
Minimum Input Third-Order  
Intercept Point Over Full  
Attenuation Range (Note 8)  
applied to attenuator input  
Two attenuators, V = 1V to 2.0V,  
CTRL  
f
- f  
= 1MHz, P = 0dBm/tone  
RF1 RF2 RF  
applied to attenuator input  
Second Harmonic  
Third Harmonic  
71  
91  
dBc  
dBc  
One attenuator, V  
= 1V to 2.5V  
23.1  
CTRL  
Attenuation Control Range  
dB  
Two attenuators, V  
= 1V to 2.5V  
46.2  
CTRL  
Average Attenuation-Control  
Slope  
V
V
V
= 1.4V to 2.3V  
22.2  
dB/V  
dB/V  
dB  
CTRL  
CTRL  
CTRL  
Maximum Attenuation-Control  
Slope  
= 1V to 2.5V  
49  
S21 Attenuation Deviation from  
a Straight Line  
= 1.4V to 2.1V  
0.4  
Maxim Integrated  
4
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
5V AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, one attenuator, V  
= 4.75V to 5.25V, RF ports are driven from 50Isources and loaded into 50I, input  
CC  
P
= 0dBm, f = 900MHz, V  
= 1V to 4V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, T = -40NC to +100NC. Typical  
RF  
RF  
CTRL  
DAC_LOGIC C  
values are for T = +25NC, V  
= 5V, input P = 0dBm, f = 900MHz, V  
= 1V,  
V
= 0V, RDBK_EN (D9, REG3) =  
C
CC  
RF  
RF  
CTRL  
DAC_LOGIC  
logic 0, unless otherwise noted.) (Notes 5, 7)  
PARAMETER  
Insertion Loss  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2.0  
MAX  
UNIT  
One attenuator  
Two attenuators  
IL  
dB  
3.9  
Loss Variation Over  
Temperature  
T
= -40NC to +100NC  
0.26  
22.6  
dB  
C
Input P  
IP  
dBm  
1dB  
1dB  
One attenuator, f  
+ f  
term,  
RF1  
RF2  
f
P
input  
- f  
= 1MHz, V  
= 1V to 4V,  
RF1 RF2  
CTRL  
65.7  
62.5  
= 0dBm/tone applied to attenuator  
RF  
Minimum Input Second-Order  
Intercept Point Over Full  
Attenuation Range (Note 8)  
IIP2  
IIP3  
dBm  
dBm  
Two attenuators, f  
+ f  
term,  
RF1  
= 1MHz, V  
RF2  
f
- f  
= 1V to 4V,  
RF1 RF2  
CTRL  
P
= 0dBm/tone applied to attenuator  
RF  
input  
One attenuator, V  
from 1V to 4V,  
CTRL  
f
- f  
= 1MHz, P = 0dBm/tone  
37.4  
35.5  
RF1 RF2  
RF  
Minimum Input Third-Order  
Intercept Point Over Full  
Attenuation Range (Note 8)  
applied to attenuator input  
Two attenuators, V from 1V to 3.5V,  
CTRL  
f
- f  
= 1MHz, P = 0dBm/tone  
RF1 RF2 RF  
applied to attenuator input  
Second Harmonic  
Third Harmonic  
78  
94  
23  
46  
dBc  
dBc  
dB  
One attenuator, V  
= 1V to 4V  
CTRL  
Attenuation Control Range  
Two attenuators, V  
= 1V to 4V  
dB  
CTRL  
Average Attenuation-Control  
Slope  
V
= 1.4V to 3.1V  
8.0  
32  
dB/V  
dB/V  
dB  
CTRL  
Maximum Attenuation-Control  
Slope  
V
= 1V to 3.5V  
= 1V to 3.1V  
CTRL  
CTRL  
Attenuation Flatness Over Any  
125MHz Band  
V
f
0.1  
= 250MHz to 2500MHz  
RF  
Maxim Integrated  
5
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
5V AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, one attenuator, V  
= 4.75V to 5.25V, RF ports are driven from 50Isources and loaded into 50I, input  
CC  
P
= 0dBm, f = 900MHz, V  
= 1V to 4V, V  
= 0V, RDBK_EN(D9, REG3) = logic 0, T = -40NC to +100NC. Typical  
RF  
RF  
CTRL  
DAC_LOGIC C  
values are for T = +25NC, V  
= 5V, input P = 0dBm, f = 900MHz, V  
= 1V,  
V
= 0V, RDBK_EN (D9, REG3) =  
C
CC  
RF  
RF  
CTRL  
DAC_LOGIC  
logic 0, unless otherwise noted.) (Notes 5, 7)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
350  
860  
840  
2300  
580  
1950  
24.5  
23  
MAX  
UNIT  
13dB to 0dB range  
0dB to 13dB range  
17dB to 0dB range  
0dB to 17dB range  
CTRL Switching Time (Note 9)  
ns  
ns  
ns  
CS Switching Time (Note 10)  
10dB to 0dB range (MODE 1 to 0)  
0dB to 10dB range (MODE 0 to 1)  
MODE Switching Time  
(Note 11)  
Input Return Loss  
Output Return Loss  
Group Delay  
dB  
dB  
ps  
Input/output 50I lines deembedded  
190  
Group Delay Flatness Over  
125MHz Band  
Peak to peak  
20  
ps  
ps  
Group Delay Change  
V
V
= 1V to 4V  
= 1V to 4V  
-80  
14.8  
CTRL  
Insertion Phase Change vs.  
Attenuation Control  
Degrees  
CTRL  
S21 Attenuation Deviation from  
a Straight Line  
V
= 1.4V to 3.1V  
0.4  
dB  
CTRL  
SERIAL PERIPHERAL INTERFACE (SPI)  
Maximum Clock Speed  
20  
2
MHz  
ns  
Data-to-Clock Setup Time  
Data-to-Clock Hold Time  
t
(Note 12)  
(Note 12)  
(Note 12)  
(Note 12)  
(Note 12)  
CS  
t
2.5  
3
ns  
CH  
t
ns  
CS-to-CLK Setup Time  
CS Positive Pulse Width  
Clock Pulse Width  
EWS  
t
7
ns  
EW  
t
5
ns  
CW  
Note 5: Production tested at T = +100NC. All other temperatures are guaranteed by design and characterization.  
C
Note 6: Recommended functional range. Not production tested. Operation outside this range is possible, but with degraded  
performance of some parameters.  
Note 7: All limits include external component losses, connectors and PCB traces. Output measurements taken at the RF port of  
the Typical Application Circuit.  
Note 8:  
f
= 901MHz, f  
= 900MHz, P = 0dBm/tone applied to attenuator input.  
RF  
RF1  
RF2  
Note 9: Switching time measured from 50% of the CTRL signal to when the RF output settles to Q1dB (R3 = 0I).  
Note 10: Switching time measured from when CS is asserted to when the RF output settles to Q1dB.  
Note 11: Switching time measured from when MODE is asserted to when the RF output settles to Q1dB.  
Note 12: Typical minimum time for proper SPI operation.  
Maxim Integrated  
6
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 5V, configured for single attenuator, RF ports are driven from 50I sources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = Logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL  
IN  
RF  
C
INPUT MATCH vs. RF FREQUENCY  
OVER CODE SETTINGS  
OUTPUT MATCH vs. RF FREQUENCY  
OVER CODE SETTINGS  
SUPPLY CURRENT vs. V  
CC  
15  
14  
13  
12  
11  
0
-10  
-20  
-30  
-40  
-50  
0
-10  
-20  
-30  
-40  
-50  
T
= +85°C  
C
T
= +25°C  
C
T
= -40°C  
C
10  
4.750  
4.875  
5.000  
(V)  
5.125  
5.250  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
V
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
CC  
S21 vs. RF FREQUENCY  
OVER CODE SETTINGS  
INPUT MATCH vs. DAC CODE  
OUTPUT MATCH vs. DAC CODE  
0
-10  
-20  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
4000MHz  
4000MHz  
900MHz  
2500MHz  
50MHz  
100MHz  
500MHz  
50MHz  
100MHz  
512  
500MHz  
900MHz  
2500MHz  
-30  
0
1000  
2000  
3000  
4000  
0
256  
768  
1024  
0
256  
512  
DAC CODE  
768  
1024  
RF FREQUENCY (MHz)  
DAC CODE  
S21 vs. DAC CODE  
S21 vs. DAC CODE  
0
-5  
0
f
RF  
= 900MHz  
-5  
50MHz  
4000MHz  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
100MHz  
T
C
= -40°C, +25°C, +85°C  
500MHz, 900MHz, 2500MHz  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
DAC CODE  
DAC CODE  
Maxim Integrated  
7
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5V, configured for single attenuator, RF ports are driven from 50I sources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = Logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL IN RF C  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
CTRL  
S21 PHASE CHANGE vs. DAC CODE  
CTRL  
55  
50  
60  
55  
50  
45  
40  
35  
30  
100  
75  
REFERENCED TO INSERTION LOSS STATE  
POSITIVE PHASE = ELECTRICALLY SHORTER  
f
P
= 50MHz  
= 0dBm/TONE  
f
P
= 100MHz  
= 0dBm/TONE  
RF  
RF  
IN  
IN  
4000MHz  
50  
2500MHz  
900MHz  
500MHz  
45  
40  
25  
0
-25  
-50  
-75  
100MHz  
50MHz  
35  
30  
LSB, USB  
3.0  
LSB, USB  
1.0  
2.0  
4.0  
1.0  
2.0  
3.0  
4.0  
0
256  
512  
768  
1024  
V
CTRL  
(V)  
V
CTRL  
(V)  
DAC CODE  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
CTRL  
CTRL  
CTRL  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
LSB, USB  
LSB, USB  
T
= -40°C, +25°C, +85°C  
LSB, USB  
C
f
P
= 500MHz  
f
P
= 900MHz  
f
P
= 900MHz  
RF  
RF  
RF  
= 0dBm/TONE  
= 0dBm/TONE  
= 0dBm/TONE  
IN  
IN  
IN  
1.0  
2.0  
3.0  
4.0  
1.0  
2.0  
3.0  
4.0  
1.0  
2.0  
3.0  
4.0  
V
CTRL  
(V)  
V
CTRL  
(V)  
V
CTRL  
(V)  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
CTRL  
CTRL  
55  
50  
45  
40  
35  
50  
45  
40  
35  
30  
f
P
= 2200MHz  
= 0dBm/TONE  
RF  
IN  
LSB, USB  
LSB, USB  
f
P
= 3000MHz  
RF  
IN  
= 0dBm/TONE  
30  
1.0  
2.0  
3.0  
4.0  
1.0  
2.0  
3.0  
4.0  
V
CTRL  
(V)  
V
CTRL  
(V)  
Maxim Integrated  
8
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5V, configured for single attenuator, RF ports are driven from 50I sources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = Logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL IN RF C  
INPUT IP2 vs. V  
INPUT IP2 vs. V  
INPUT IP2 vs. V  
CTRL  
CTRL  
CTRL  
75  
65  
55  
45  
100  
80  
90  
80  
70  
60  
50  
60  
f
P
= 50MHz  
= 0dBm/TONE  
f
P
= 100MHz  
RF  
IN  
RF  
IN  
f
RF  
= 500MHz  
= 0dBm/TONE  
2.0  
P
IN  
= 0dBm/TONE  
35  
40  
1.0  
2.0  
3.0  
4.0  
1.0  
3.0  
4.0  
1.0  
0
1.0  
2.0  
3.0  
4.0  
V
(V)  
V
CTRL  
(V)  
V
(V)  
CTRL  
CTRL  
INPUT IP2 vs. V  
INPUT IP2 vs. V  
CTRL  
CTRL  
100  
90  
80  
70  
60  
100  
f
RF  
= 900MHz  
= 0dBm/TONE  
f
= 2200MHz  
P = 0dBm/TONE  
RF  
IN  
P
IN  
90  
80  
70  
60  
T
= -40°C, +25°C, +85°C  
3.0  
C
1.0  
2.0  
4.0  
2.0  
3.0  
4.0  
V
CTRL  
(V)  
V
(V)  
CTRL  
INPUT IP2 vs. V  
CTRL  
INPUT P1dB vs. RF FREQUENCY  
100  
90  
80  
70  
60  
26  
25  
24  
23  
22  
21  
20  
f
RF  
= 3000MHz  
= 0dBm/TONE  
P
IN  
T
= +25°C  
C
T
= -40°C  
C
T
C
= +85°C  
1.0  
2.0  
3.0  
4.0  
1000  
2000  
3000  
V
(V)  
CTRL  
RF FREQUENCY(MHz)  
Maxim Integrated  
9
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5V, configured for single attenuator, RF ports are driven from 50I sources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = Logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL  
IN  
RF  
C
INPUT P1dB vs. RF FREQUENCY  
RESPONSE TIME V  
STEP  
RESPONSE TIME V  
STEP  
CTRL  
CTRL  
26  
25  
24  
23  
22  
21  
0
-5  
0
-5  
V
STEP OCCURS AT t = t  
0
CTRL  
V
= 5.25V  
CC  
-10  
-15  
-20  
-25  
-30  
V
V
STEP FROM 1V TO 3V  
STEP FROM 1V TO 4V  
-10  
-15  
-20  
-25  
-30  
CTRL  
CTRL  
V
STEP FROM 3V TO 1V  
CTRL  
V
STEP FROM 4V TO 1V  
CTRL  
V
= 5.00V  
CC  
V
STEP OCCURS AT t = t  
0
CTRL  
V
= 4.75V  
CC  
0
1000  
2000  
3000  
0
500  
1000  
TIME (ns)  
1500  
2000  
0
250  
500  
750  
1000  
RF FREQUENCY(MHz)  
TIME (ns)  
RESPONSE TIME WITH CS STEP  
RESPONSE TIME WITH CS STEP  
RESPONSE TIME WITH MODE STEP  
0
-5  
0
-5  
0
-5  
CS STEP OCCURS AT t = t  
0
MODE 1 TO 0 (CODE 500 TO 0)  
MODE 1 TO 0 (CODE 1023 TO 0)  
CODE 0 TO 500  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
CODE 500 TO 0  
CODE 0 TO 750  
MODE 0 TO 1 (CODE 0 TO 500)  
MODE 0 TO 1 (CODE 0 TO 1023)  
CODE 750 TO 0  
CODE 1023 TO 0  
CS STEP OCCURS AT t = t  
0
CODE 0 TO 1023  
1000  
MODE STEP OCCURS AT t = t  
0
0
2000  
3000  
4000  
0
500  
1000  
1500  
2000  
0
1000  
2000  
3000  
4000  
TIME (ns)  
TIME (ns)  
TIME (ns)  
Maxim Integrated  
10  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, configured for single attenuator, RF ports are driven from 50Isources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL IN RF C  
INPUT MATCH vs. RF FREQUENCY  
OVER CODE SETTINGS  
OUTPUT MATCH vs. RF FREQUENCY  
OVER CODE SETTINGS  
SUPPLY CURRENT vs. V  
CC  
11  
0
-10  
-20  
-30  
-40  
-50  
0
-10  
-20  
-30  
-40  
-50  
T
C
= +85°C  
10  
9
T
= +25°C  
C
T
= -40°C  
C
8
3.15 3.20 3.25 3.30 3.35 3.40 3.45  
(V)  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
V
CC  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
S21 vs. RF FREQUENCY  
OVER CODE SETTINGS  
INPUT MATCH vs. DAC CODE  
OUTPUT MATCH vs. DAC CODE  
0
-10  
-20  
-30  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
4000MHz  
4000MHz  
900MHz  
50MHz  
2500MHz  
900MHz  
500MHz  
500MHz  
50MHz  
100MHz, 2500MHz  
256  
100MHz  
256  
0
1000  
2000  
3000  
4000  
0
512  
DAC CODE  
768  
1024  
0
512  
DAC CODE  
768  
1024  
RF FREQUENCY (MHz)  
S21 vs. DAC CODE  
S21 vs. DAC CODE  
S21 PHASE CHANGE vs. DAC CODE  
0
-5  
0
-5  
100  
75  
REFERENCED TO INSERTION LOSS STATE  
POSITIVE PHASE =  
f
RF  
= 900MHz  
ELECTRICALLY SHORTER  
4000MHz  
2500MHz  
50MHz  
50  
4000MHz  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
25  
900MHz  
100MHz  
T
C
= -40°C, +25°C, +85°C  
0
500MHz  
-25  
-50  
-75  
100MHz  
50MHz  
500MHz, 900MHz, 2500MHz  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
DAC CODE  
DAC CODE  
DAC CODE  
Maxim Integrated  
11  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, configured for single attenuator, RF ports are driven from 50Isources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL  
IN  
RF  
C
INPUT IP3 vs. V  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
CTRL  
CTRL  
CTRL  
50  
45  
40  
35  
30  
45  
40  
35  
30  
45  
40  
35  
30  
f
P
= 100MHz  
= 0dBm/TONE  
f
= 500MHz  
f
P
= 50MHz  
= 0dBm/TONE  
RF  
IN  
RF  
IN  
RF  
IN  
P = 0dBm/TONE  
LSB  
USB  
LSB, USB  
LSB, USB  
25  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
2.5  
2.5  
1.0  
1.0  
1.5  
2.0  
2.5  
V
(V)  
V
(V)  
V
(V)  
CTRL  
CTRL  
CTRL  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
INPUT IP3 vs. V  
CTRL  
CTRL  
CTRL  
55  
55  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
f
P
= 900MHz  
f
P
= 900MHz  
f
= 2200MHz  
RF  
RF  
RF  
= 0dBm/TONE  
= 0dBm/TONE  
P = 0dBm/TONE  
IN  
IN  
IN  
50  
45  
40  
35  
30  
LSB, USB  
LSB, USB  
T
C
= -40°C, +25°C, +85°C  
LSB, USB  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
1.0  
1.5  
2.0  
2.5  
V
(V)  
V
(V)  
V
CTRL  
(V)  
CTRL  
CTRL  
INPUT IP3 vs. V  
INPUT IP2 vs. V  
CTRL  
CTRL  
50  
80  
70  
60  
50  
40  
30  
f
= 3000MHz  
= 0dBm/TONE  
f
= 50MHz  
RF  
RF  
IN  
P
P = 0dBm/TONE  
IN  
45  
40  
35  
30  
LSB, USB  
1.0  
1.5  
2.0  
2.5  
1.5  
2.0  
2.5  
V
CTRL  
(V)  
V
CTRL  
(V)  
Maxim Integrated  
12  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, configured for single attenuator, RF ports are driven from 50Isources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL  
IN  
RF  
C
INPUT IP2 vs. V  
INPUT IP2 vs. V  
INPUT IP2 vs. V  
CTRL  
CTRL  
CTRL  
80  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
f
P
= 100MHz  
= 0dBm/TONE  
f
P
= 500MHz  
= 0dBm/TONE  
RF  
IN  
RF  
IN  
f
RF  
= 900MHz  
P
IN  
= 0dBm/TONE  
70  
60  
50  
40  
T
C
= -40°C, +25°C, +85°C  
2.0  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.5  
V
(V)  
V
CTRL  
(V)  
V
CTRL  
(V)  
CTRL  
INPUT IP2 vs. V  
INPUT IP2 vs. V  
CTRL  
CTRL  
INPUT P1dB vs. RF FREQUENCY  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
19  
18  
17  
16  
15  
14  
f
P
= 2200MHz  
= 0dBm/TONE  
f
= 3000MHz  
RF  
IN  
RF  
IN  
P = 0dBm/TONE  
T
= +25°C, +85°C  
C
T
= -40°C  
C
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
2.5  
0
1000  
2000  
3000  
V
CTRL  
(V)  
V
(V)  
CTRL  
RF FREQUENCY(MHz)  
INPUT P1dB vs. RF FREQUENCY  
RESPONSE TIME V  
STEP  
CTRL  
19  
18  
17  
16  
15  
14  
0
-5  
V
= 3.45V  
CC  
V
STEP FROM 1V TO 1.5V  
STEP FROM 1V TO 2.5V  
-10  
-15  
-20  
-25  
-30  
CTRL  
V
= 3.3V  
CC  
V
CTRL  
V
= 3.15V  
CC  
V
STEP OCCURS AT t = t  
0
CTRL  
0
1000  
2000  
3000  
0
500  
1000  
1500  
2000  
RF FREQUENCY(MHz)  
TIME (ns)  
Maxim Integrated  
13  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, configured for single attenuator, RF ports are driven from 50Isources and loaded into 50I,  
CC  
V
= 0V, RDBK_EN = logic 0, V  
= 1V, P = 0dBm, f = 900MHz, T = 25°C, unless otherwise noted.).  
DAC_LOGIC  
CTRL  
IN  
RF  
C
RESPONSE TIME V  
STEP  
RESPONSE TIME WITH CS STEP  
CTRL  
0
-5  
0
-5  
CODE 0 TO 500  
V
STEP FROM 1.5V TO 1V  
CTRL  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
CODE 0 TO 750  
V
STEP FROM 2.5V TO 1V  
CTRL  
CODE 0 TO 1023  
CS STEP OCCURS AT t = t  
0
V
STEP OCCURS AT t = t  
0
CTRL  
0
250  
500  
750  
1000  
0
1000  
2000  
3000  
4000  
TIME (ns)  
TIME (ns)  
RESPONSE TIME WITH CS STEP  
RESPONSE TIME WITH MODE STEP  
0
-5  
0
-5  
CODE 500 TO 0  
CODE 750 TO 0  
MODE 0 TO 1 (CODE 0 TO 500)  
MODE 1 TO 0 (CODE 500 TO 0)  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
MODE 1 TO 0 (CODE 1023 TO 0)  
MODE 0 TO 1 (CODE 0 TO 1023)  
CODE 1023 TO 0  
CS STEP OCCURS AT t = t  
MODE STEP OCCURS AT t = t  
0
0
0
500  
1000  
1500  
2000  
0
1000  
2000  
3000  
4000  
TIME (ns)  
TIME (ns)  
Maxim Integrated  
14  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Pin Configuration  
TOP VIEW  
27 26 25 24 23 22 21 20 19  
18  
17 COMP_OUT  
16  
MODE  
GND 28  
OUT_B 29  
GND 30  
DAC_LOGIC  
MAX19791  
N.C. 31  
15 REF_SEL  
14 REF_IN  
V
32  
33  
CC  
GND  
13  
12 GND  
CTRL  
10 GND  
V
CC  
GND 34  
IN_B 35  
GND 36  
11  
EP*  
+
1
2
3
4
5
6
7
8
9
TQFN  
(6mm x 6mm)  
*INTERNALLY CONNECTED TO GND.  
Pin Description  
PIN  
NAME  
DESCRIPTION  
1, 3, 6, 7, 9, 10,  
12, 26, 27, 28,  
30, 33, 34, 36  
GND  
Ground. Connect to the board’s ground plane using low-inductance layout techniques.  
Attenuator A RF Output. Internally matched to 50I over the operating frequency band. This pin,  
if used, requires a DC block. If this attenuator is not used, the pin can be left unconnected.  
2
OUT_A  
N.C.  
No Internal Connection. This pin can be left open or ground.  
Note: If a common layout is desired to support the MAX19794, connect a 0402 capacitor  
to ground on each of these pins.  
4, 31  
Attenuator A Power Supply. Bypass to GND with a capacitor and resistor, as shown in the  
5
8
V
CC  
Typical Application Circuit  
.
Attenuator A RF Input. Internally matched to 50I over the operating frequency band. This pin, if  
IN_A  
used, requires a DC block. If this attenuator is not used, the pin can be left unconnected.  
Attenuator Control Voltage Input. Except in test mode, where no voltage can be applied  
11  
CTRL  
to this pin. V  
must be present unless using a current-limiting resistor as noted in the  
CC  
Applications Information section.  
Maxim Integrated  
15  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Pin Description (continued)  
PIN  
13  
NAME  
DESCRIPTION  
Analog Supply Voltage. Bypass to GND with a capacitor as close as possible to the device.  
V
CC  
See the Typical Application Circuit.  
14  
REF_IN  
DAC Reference Voltage Input (Optional)  
DAC Reference Voltage Selection Logic Input  
Logic = 0 to enable on-chip DAC reference.  
Logic = 1 to use off-chip DAC reference (pin 14).  
15  
REF_SEL  
16  
17  
DAC_LOGIC DAC Logic Control Input (Table 1)  
Comparator Logic Output. Use a 4.7pF capacitor to reduce any potential rise-time glitching  
COMP_OUT  
when the comparator changes state.  
Attenuator Control Mode Logic Input  
18  
MODE  
Logic = 1 to enable attenuator step control.  
Logic = 0 to enable attenuator SPI control.  
Down Pulse Input  
Logic pulse = 0 for each step-down.  
19  
20  
DWN  
UP  
Up Pulse Input  
Logic pulse = 0 for each step-up.  
19/20  
21  
DWN/UP  
CLK  
Logic = 0 to both pins to reset the attenuator to a minimum attenuation state  
SPI Clock Input  
SPI Data Input  
22  
DIN  
23  
DOUT  
CS  
SPI Data Output  
SPI Chip-Select Input  
24  
Digital Supply Voltage. Bypass to GND with a capacitor as close as possible to the device.  
See the Typical Application Circuit.  
25  
29  
32  
35  
V
CC  
Attenuator B RF Output. Internally matched to 50I over the operating frequency band. This pin,  
if used, requires a DC block. If this attenuator is not used, the pin can be left unconnected.  
OUT_B  
Attenuator B Power Supply. Bypass to GND with a capacitor and resistor, as shown in the  
Typical Application Circuit.  
V
CC  
Attenuator B RF Input. Internally matched to 50I over the operating frequency band. This pin,  
if used, requires a DC block. If this attenuator is not used, the pin can be left unconnected.  
IN_B  
EP  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses  
multiple ground vias to provide heat transfer out of the device into the PCB ground planes.  
These multiple via grounds are also required to achieve the noted RF performance. See the  
Layout Considerations section.  
Maxim Integrated  
16  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
DAC Mode Control  
In the Table 1 state (1, 0), the attenuators are controlled  
Detailed Description  
The MAX19791 is a dual general-purpose analog VVA  
designed to interface with 50I systems operating in the  
50MHz to 4000MHz frequency range. Each attenuator  
provides 23dB of attenuation range with a linear control  
slope of 8dB/V. Both attenuators share a common analog  
control and can be cascaded together to yield 46dB of  
total dynamic range with a combined linear control slope  
of 16dB/V. Alternatively, the on-chip 4-wire SPI-controlled  
10-bit DAC can be used to control both attenuators. In  
addition, a step-up/down feature allows user-programma-  
ble attenuator stepping through command pulses without  
reprogramming the SPI interface.  
by the on-chip 10-bit DAC register. See the Register  
Mode Up/Down Operation section. In this condition, no  
signal is applied to the CTRL pin and the load on the  
CTRL pin should be > 100kI. The DAC is set using the  
SPI-loaded code in the registers, along with the setting  
of the MODE pin.  
Analog Mode Control  
with Alarm Monitoring  
In the Table 1 state (0, 1), the attenuators are controlled  
using a voltage applied to the CTRL pin of the device.  
See the Register Mode Up/Down Operation section.  
In this condition, the DAC is enabled and a voltage is  
also applied to the CTRL pin. The on-chip switches are  
set to compare the DAC voltage to the CTRL voltage  
at the comparator input; the output of the comparator  
Applications Information  
Attenuation Control and Features  
The device has various states used to control the analog  
attenuator along with some monitoring conditions. The  
device can be controlled by an external control voltage,  
an internal SPI bus, or a combination of the two. The  
various states are described in Table 1. The SPI bus has  
multiple registers used to control the device when not  
configured for the analog-only mode. For cases where  
(COMP_OUT) trips from high to low when V  
the on-chip DAC voltage.  
exceeds  
CTRL  
DAC Test Mode  
In the Table 1 state (1, 1), the attenuators are controlled  
by the on-chip 10-bit DAC register. See the Register  
Mode Up/Down Operation section. In this condition, the  
DAC is enabled and the DAC voltage appears at the  
CTRL pin. In this condition, no signal can be applied to  
the CTRL pin and the load on the CTRL pin should be >  
100kI. This mode is only used in production testing of the  
DAC voltage and is not recommended for customer use.  
CTRL is used, the control range is 1V to 4V for V  
= 5V,  
CC  
and is 1V to 2.5V for V  
= 3.3V.  
CC  
Up to 23dB of attenuation control range is provided per  
attenuator. At the insertion-loss setting, the single attenu-  
ator’s loss is approximately 2dB. If a larger attenuation-  
control range is desired, the second on-chip attenuator  
can be connected in series to provide an additional 23dB  
of gain-control range.  
Register Mode Up/Down Operation  
The device has four 13-bit registers that are used for the  
operation of the device. The first bit is the read/write bit,  
the following two are address bits, and the remaining 10  
are the desired data bits. The read/write bit determines  
whether the register is being written to or read from. The  
next two address bits select the desired register to write  
or read from. These address bits can be seen in Table 2.  
Table 3 describes the contents of the four registers.  
Note that the on-chip control driver simultaneously  
adjusts both on-chip attenuators. It is suggested that a  
current-limiting resistor be included in series with CTRL  
to limit the input current to less than 40mA, should the  
control voltage be applied when V  
series resistor of greater than 200I provides complete  
is not present. A  
CC  
Figure 1 shows the configuration of the internal regis-  
ters of the device and Figure 2 shows the timing of the  
SPI bus. Register 0 sets the DAC code to the desired  
value, register 1 selects the step-up code, and register 2  
selects the step-down code.  
protection for 5V control voltage ranges.  
Analog-Only Mode Control  
In the Table 1 state (0, 0), the attenuators are controlled  
using a voltage applied to the CTRL pin of the device and  
the on-chip DAC is disabled. In cases where features of  
the SPI bus are not needed, the part can be operated in  
a pure analog control mode by grounding pins 14–25.  
This method allows the MAX19791 to be pin compatible  
with the MAX19790.  
The device also contains a mode control pin (Table 4),  
along with UP and DWN controls (Table 5). When MODE  
is 0, the contents of register 0 get loaded into the 10-bit  
DAC register and set the value of the on-chip DAC. In this  
condition, the UP and DWN control pins have no effect on  
Maxim Integrated  
17  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
the part. In MODE 1, the effective DAC code fed to the  
10-bit DAC register is equal to:  
SPI Interface  
Thedevicecanbecontrolledwitha4-wire, SPI-compatible  
serial interface. Figure 2 shows a timing diagram for the  
interface. In the write mode, a 13-bit word is loaded into  
the device through the DIN pin, with CS set low. The first  
bit of the word in the write mode is 0, and the next two  
bits select the register to be written to (Table 2). The  
next 10 bits contain the data to be written to the selected  
register. After the 13 bits are shifted in, a low-to-high CS  
command is applied and this latches the 10 bits into the  
selected register. The entire write command is ignored if  
CS is pulsed low to high before the last data bit is suc-  
cessfully captured.  
m x Register 1 - n x Register 2  
where m and n are the number of UP and DWN control  
steps accumulated, respectively.  
After powering up the device, UP and DWN should both  
be set to 0 to reset the m and n counters to 0. This results  
in a 10-bit all 0 code out of the mathematical block in  
Figure 1, and applied to the 10-bit DAC register that  
drives the DAC. To increase (decrease) the code using  
the UP (DWN) pin, the DWN (UP) pin must be high and  
the UP (DWN) pin should be pulsed low to high. The  
device is designed to produce no wraparounds when  
using UP and DWN stepping so that the DAC code  
maxes out at 1023 or goes no lower than 0. See Figure 3  
for the UP and DWN control operation.  
For the read cycle, the first bit clocked in is a 1 and this  
establishes that a register is to be read. The next two  
clocked bits form the address of the register to be read  
(Table 2). In this read mode, data starts to get clocked  
out of the DOUT pin after A0 is captured. The DOUT  
pin goes to a high-impedance state after the 10 bits are  
transmitted or if CS goes high at any point during the  
transmission.  
Switching back to MODE = 0 produces the same 10-bit  
DAC code as was previously loaded into register 0.  
Switching back to MODE = 1 results in the previous  
10-bit DAC code from the register 1 and 2 combiner/  
multiplier block.  
Voltage Reference  
The device has an on-chip voltage reference for the DAC  
and a provision to operate with an off-chip reference.  
Table 6 provides details in selecting the desired reference.  
Register 3 is used to set the RDBK_EN register in the  
write mode and is used to read back the RDBK_EN reg-  
ister and COMP_OUT in the read mode.  
Table 1. Attenuator Control Logic States  
RDBK_EN  
(D9, REG 3)  
INTERNAL SWITCH  
STATES  
DAC_LOGIC  
ATTENUATOR  
10-BIT DAC  
Disabled  
S1 = closed  
S2, S3, S4 = open  
Controlled by an external analog voltage on the  
CTRL pin.  
0
1
0
0
S1, S3, S4 = open  
S2 = closed  
Controlled by an on-chip DAC; no voltage is  
applied to the CTRL pin.  
Enabled  
Controlled by an external analog voltage on the  
CTRL pin. CTRL is compared with the  
DAC output. The comparator drives the  
COMP_OUT pin.  
Enabled  
S1, S3, S4 = closed  
S2 = open  
(update DAC code  
to estimate voltage  
on the CTRL pin)  
0
1
1
1
Controlled by an on-chip DAC. The DAC output  
is connected to the CTRL pin. This state can be  
used to test the DAC output. In this condition,  
no voltage can be applied to the CTRL pin and  
the load on this pin must be > 100kΩ.  
S1, S2 = closed  
S3, S4 = open  
Enabled  
Maxim Integrated  
18  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Table 2. Address Data Bits  
R/W  
A1  
A0  
0
DESCRIPTION  
0
0
Write to register 0 using DIN  
Write to register 1 using DIN  
Write to register 2 using DIN  
Write to register 3 using DIN  
0
0
1
0
1
0
0
1
1
1
0
0
Read from register 0 using DOUT  
Read from register 1 using DOUT  
Read from register 2 using DOUT  
Read from register 3 using DOUT  
1
0
1
1
1
0
1
1
1
Table 3. Register Definitions  
D9  
REGISTER 0 (Read/Write Bits, 10-Bit DAC Code)  
DAC MSB  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DAC LSB  
REGISTER 1 (Read/Write Bits, 10-Bit Step-Up Code)  
Step-up MSB  
REGISTER 2 (Read/Write Bits, 10-Bit Step-Down Code)  
Step-up LSB  
Step-down LSB  
Step-down MSB  
REGISTER 3 (Write Bits)*  
not  
used  
set = 0  
not  
used  
set = 0  
not  
used  
set = 0  
not  
used  
set = 0  
not  
used  
set = 0  
not  
used  
set = 0  
not  
used  
set = 0  
not used set  
= 0  
RDBK_EN  
not used set = 0  
not used set = 0  
REGISTER 3 (Read Bits)**  
RDBK_EN COMP_OUT  
not  
used  
not  
used  
not  
used  
not  
used  
not  
used  
not  
used  
not  
used  
set = 0  
set = 0  
set = 0  
set = 0  
set = 0  
set = 0  
set = 0  
*RDBK_EN = Enable bit for the voltage comparator that drives the COMP_OUT pin.  
**RDBK_EN = Enable bit for the voltage comparator that drives the COMP_OUT pin.  
COMP_OUT = Read logic level of COMP_OUT pin.  
DIN DOUT  
REGISTER 0  
MODE  
UP  
OR  
10-BIT DAC REGISTER  
m
n
REGISTER 1  
m x REGISTER 1 - n x REGISTER 2  
m = NUMBER OF UP PULSES  
n = NUMBER OF DOWN PULSES  
REGISTER 2  
REGISTER 3  
DOWN  
RESET TO ALL ZEROS WHEN UP/DOWN  
PULSED TOGETHER  
Figure 1. Register Configuration Diagram  
Maxim Integrated  
19  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Table 4. Attenuator-Mode Control Logic State  
MODE PIN  
ATTENUATOR  
SPI-mode control (the DAC code is located in register 0).  
0
Step-mode control using the UP and DWN pins (the step-up code is located in register 1 and the step-down  
code is located in register 2).  
1
Table 5. Step-Mode Logic State (MODE = 1)  
UP  
DWN  
ATTENUATOR  
Logic 0  
Logic 0  
Reset the DAC for the minimum attenuation state (DAC code = 0000000000).  
Increase the DAC code* by the amount located in register 1.  
UP is pulsed from high to low to high (see Figure 3).  
Logic 0 pulse  
Logic 1  
Logic 1  
Decrease the DAC code* by amount located in register 2.  
DWN is pulsed from high to low to high (see Figure 3).  
Logic 0 pulse  
*Continued UP or DWN stepping results in saturation (no code wrapping).  
Table 6. REF_SEL Logic State  
REF_SEL  
DAC REFERENCE  
0
1
Uses an on-chip DAC reference.  
User provides off-chip DAC reference voltage on REF_IN pin.  
SPI Interface Programming  
DIN  
R/W A1 A0  
D[9:0] TO REGISTER 0, 1, 2, 3  
1
HIGH-  
IMPEDANCE  
HIGH-  
IMPEDANCE  
UP  
D[9:0] FROM REGISTER 0, 1, 2, 3  
DOUT  
CLK  
0
1
t
t
CH  
CS  
DWN  
0
t
EWS  
CS  
NO DAC  
CODE CHANGE  
DAC CODE  
INCREASED  
BY UP STEP  
DAC CODE DAC CODE  
DECREASED RESET TO  
BY DWN STEP ALL 0's  
t
ES  
t
CW  
t
EW  
Figure 2. SPI Timing Diagram  
Figure 3. UP/DWN Control Diagram (MODE = 1)  
Maxim Integrated  
20  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Layout Considerations  
A properly designed PCB is an essential part of any RF/  
microwave circuit. Keep RF signal lines as short as pos-  
sible to reduce losses, radiation, and inductance. For best  
performance, route the ground-pin traces directly to the  
exposed pad underneath the package. This pad MUST  
be connected to the ground plane of the board by using  
multiple vias under the device to provide the best RF and  
thermal conduction path. Solder the exposed pad on the  
bottom of the device package to a PCB. Pins 4 and 31  
for the MAX19791 have no internal connection. These two  
pins are in place to support the MAX19794 part in the fam-  
ily. The MAX19794 requires an additional bypass capaci-  
tor on each of these pins for proper operation. If desired  
to have a common layout to support the MAX19794, then  
include these capacitors in the common layout. Refer to  
the MAX19794 data sheet for details.  
Table 7. Typical Application Circuit  
Component Values  
DESIGNATION QTY  
DESCRIPTION  
3900pF Q10%, 50V X7R ceramic  
capacitors (0402)  
C1, C2, C4  
3
1
5
1
3900pF Q10%, 50V X7R ceramic  
capacitor (0402)  
Not installed for two attenuators  
in cascade.  
C3  
1000pF Q5%, 50V C0G ceramic  
capacitors (0402)  
C5–C9  
C12  
120pF Q5%, 50V C0G ceramic  
capacitor (0402)  
Provides some external noise  
filtering along with R3.  
Power-Supply Bypassing  
Not installed, 4.7pF capacitor  
could be used to reduce any  
potential rise time glitching when  
the comparator changes state.  
Proper voltage-supply bypassing is essential for high-  
C13  
0
2
frequency circuit stability. Bypass each V  
pin with  
CC  
capacitors placed as close as possible to the device.  
Place the smallest capacitor closest to the device. See  
the Typical Application Circuit and Table 7 for details.  
R1, R2  
10I Q5% resistors* (0402)  
200I Q5% resistor (0402)  
Exposed Pad RF and  
Thermal Considerations  
Use this resistor to provide some  
lowpass noise filtering when used  
with C12. The value of R3 slows  
down the response time. R3 also  
provides protection for the device  
R3  
U1  
1
1
The exposed pad (EP) of the device’s 36-pin TQFN pack-  
age provides a low thermal-resistance path to the die. It  
is important that the PCB on which the IC is mounted be  
designed to conduct heat from this contact.  
in case V  
is applied without  
CTRL  
V
present.  
CC  
In addition, provide the EP with a low-inductance RF  
ground path for the device. The EP must be soldered to  
a ground plane on the PCB, either directly or through an  
array of plated via holes. Soldering the pad to ground is  
also critical for efficient heat transfer. Use a solid ground  
plane wherever possible.  
Maxim MAX19791  
*Add two additional 10I series resistors between V ’s lead-  
CC  
ing to C5 and C6, unless a V  
power plane is used.  
CC  
Maxim Integrated  
21  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Typical Application Circuit  
V
CC  
C9  
CS DOUT DIN CLK UP DWN  
27  
26  
25  
24  
23  
22  
21  
20  
19  
MODE  
GND  
OUT_B  
GND  
28  
29  
30  
31  
18  
17  
16  
15  
14  
13  
12  
11  
10  
MODE  
MAX19791  
C4  
R2  
COMP_OUT  
DAC_LOGIC  
REF_SEL  
REF_IN  
EP  
RFOUT_B  
COMP_OUT  
DAC_LOGIC  
REF_SEL  
REF_IN  
C13  
S3  
S2  
S4  
N.C.  
ATTEN_B  
V
CC  
DAC  
ATTENUATION-  
CONTROL  
CIRCUITRY  
V
CC  
32  
33  
34  
S1  
V
CC  
V
CC  
C8  
C6  
GND  
GND  
IN_B  
GND  
C7  
GND  
CTRL  
GND  
C3  
R3  
ATTEN_A  
35  
36  
V
CTRL  
RF_AB  
C12  
C2  
1
2
3
4
5
6
7
8
9
R1  
C1  
RFIN_A  
V
CC  
C5  
NOTE:  
FOR ATTENUATOR A ONLY CONFIGURATION, REMOVE C3 AND MOVE C2 DIAGONALLY TO CONNECT  
PIN 2 TO THE OUTPUT CONNECTION RF_AB.  
FOR ATTENUATOR B ONLY CONFIGURATION, REMOVE C2.  
FOR CASCADED CONFIGURATION, REMOVE C3 AND USE C2 TO CONNECT OUT_A TO IN_B.  
Maxim Integrated  
22  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Ordering Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
-40NC to +100NC  
-40NC to +100NC  
PIN-PACKAGE  
36 TQFN-EP*  
36 TQFN-EP*  
MAX19791ETX+  
MAX19791ETX+T  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
36 TQFN-EP  
T3666+2  
21-0141  
90-0049  
Chip Information  
PROCESS: SiGe BiCMOS  
Maxim Integrated  
23  
MAX19791  
50MHz to 4000MHz Dual Analog Voltage Variable  
Attenuator with On-Chip 10-Bit SPI-Controlled DAC  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
8/12  
Initial release  
5
10/12  
5/15  
Updated Electrical Characteristics Table  
Removed military reference from Applications  
1
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
24  
©
2015 Maxim Integrated  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX19791ETX+T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-36
MAXIM

MAX19791_V01

50MHz to 4000MHz Dual Analog Voltage Variable 50MHz to 4000MHz Dual Analog Voltage Variable
MAXIM

MAX19792

500MHz to 4000MHz Dual Analog Voltage Variable Attenuator with On-Chip 10-Bit SPI-Controlled DAC
MAXIM

MAX19792ETX+T

D/A Converter, 1 Func, Serial Input Loading, TQFN-36
MAXIM

MAX19793

1500MHz to 6000MHz Dual Analog Voltage Variable Attenuator with On-Chip 10-Bit SPI-Controlled DAC
MAXIM

MAX19793ETX+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-36
MAXIM

MAX19793ETX+T

暂无描述
MAXIM

MAX19794

10MHz to 500MHz Dual Analog Voltage Variable Attenuator with On-Chip 10-Bit SPI-Controlled DAC
MAXIM

MAX19794ETX

10MHz to 500MHz Dual Analog Voltage Variable Attenuator with On-Chip 10-Bit SPI-Controlled DAC
MAXIM

MAX19794ETX+

Variable Attenuator,
MAXIM

MAX19794ETXT

10MHz to 500MHz Dual Analog Voltage Variable Attenuator with On-Chip 10-Bit SPI-Controlled DAC
MAXIM

MAX1979ETM

Integrated Temperature Controllers for Peltier Modules
MAXIM