MAX19700ETM-T [MAXIM]

暂无描述;
MAX19700ETM-T
型号: MAX19700ETM-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总37页 (文件大小:542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3826; Rev 1; 6/07  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
General Description  
Features  
The MAX19707 is an ultra-low-power, mixed-signal ana-  
log front-end (AFE) designed for power-sensitive com-  
munication equipment. Optimized for high dynamic  
performance at ultra-low power, the device integrates a  
dual, 10-bit, 45Msps receive (Rx) ADC; dual, 10-bit,  
45Msps transmit (Tx) DAC; three fast-settling 12-bit  
aux-DAC channels for ancillary RF front-end control;  
and a 10-bit, 333ksps housekeeping aux-ADC. The typ-  
ical operating power in Tx-Rx FAST mode is 84.6mW at  
a 45MHz clock frequency.  
Dual, 10-Bit, 45Msps Rx ADC and Dual, 10-Bit,  
45Msps Tx DAC  
Ultra-Low Power  
84.6mW at fCLK = 45MHz, Fast Mode  
77.1mW at fCLK = 45MHz, Slow Mode  
Low-Current Standby and Shutdown Modes  
Programmable Tx DAC Common-Mode DC Level  
and I/Q Offset Trim  
Excellent Dynamic Performance  
SNR = 54.2dB at fIN = 5.5MHz (Rx ADC)  
SFDR = 73.2dBc at fOUT = 2.2MHz (Tx DAC)  
The Rx ADCs feature 54.2dB SNR and 71.2dBc SFDR  
at fIN = 5.5MHz and f  
= 45MHz. The analog I/Q  
CLK  
input amplifiers are fully differential and accept  
Three 12-Bit, 1µs Aux-DACs  
1.024V full-scale signals. Typical I/Q channel match-  
P-P  
10-Bit, 333ksps Aux-ADC with 4:1 Input Mux and  
ing is 0.03ꢀ phase and 0.01dB gain.  
Data Averaging  
The Tx DACs feature 73.2dBc SFDR at f  
= 2.2MHz  
OUT  
Excellent Gain/Phase Match  
0.03ꢀ Phase, 0.01dB Gain (Rx ADC) at  
fIN = 5.5MHz  
and f  
= 45MHz. The analog I/Q full-scale output volt-  
CLK  
age is 400mV differential. The Tx DAC common-mode  
DC level is programmable from 0.71V to 1.05V. The I/Q  
channel offset is programmable to optimize radio lineup  
sideband/carrier suppresion. The typical I/Q channel  
matching is 0.01dB gain and 0.07ꢀ phase.  
Multiplexed Parallel Digital I/O  
Serial-Interface Control  
Versatile Power-Control Circuits  
The Rx ADC and Tx DAC share a single, 10-bit parallel,  
high-speed digital bus allowing half-duplex operation  
for time-division duplex (TDD) applications. A 3-wire  
serial interface controls power-management modes, the  
aux-DAC channels, and the aux-ADC channels.  
Shutdown, Standby, Idle, Tx/Rx Disable  
Miniature 48-Pin Thin QFN Package  
(7mm x 7mm x 0.8mm)  
Pin Configuration  
The MAX19707 operates on a single 2.7V to 3.3V ana-  
log supply and 1.8V to 3.3V digital I/O supply. The  
MAX19707 is specified for the extended (-40ꢀC to  
+85ꢀC) temperature range and is available in a 48-pin,  
thin QFN package. The Selector Guide at the end of the  
data sheet lists other pin-compatible versions in this  
AFE family.  
TOP VIEW  
36 35 34 33  
31 30 29 28 27 26 25  
32  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DAC2 37  
DAC1 38  
D9  
D8  
D7  
D6  
OV  
V
39  
DD  
Applications  
VoIP Terminals  
IDN 40  
IDP 41  
WiMAX CPEs  
DD  
GND  
42  
43  
OGND  
D5  
802.11a/b/g WLAN  
Portable Communication  
Equipment  
V
DD  
MAX19707  
D4  
QDN 44  
QDP 45  
REFIN 46  
D3  
Ordering Information  
EXPOSED PADDLE (GND)  
D2  
COM  
47  
D1  
PART*  
PIN-PACKAGE  
48 Thin QFN-EP**  
48 Thin QFN-EP**  
PKG CODE  
T4877-4  
D0  
REFN 48  
MAX19707ETM  
MAX19707ETM+  
1
2
3
4
6
7
8
9
10 11 12  
5
T4877-4  
*All devices are specified over the -40°C to +85°C operating  
range.  
**EP = Exposed paddle.  
THIN QFN  
+Denotes lead-free package.  
Functional Diagram and Selector Guide appear at end of  
data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ABSOLUTE MAXIMUM RATINGS  
V
to GND, OV  
to OGND ..............................-0.3V to +3.6V  
DD  
Continuous Power Dissipation (T = +70ꢀC)  
A
DD  
GND to OGND.......................................................-0.3V to +0.3V  
IAP, IAN, QAP, QAN, IDP, IDN, QDP,  
48-Pin Thin QFN (derate 27.8mW/ꢀC above +70ꢀC) .....2.22W  
Thermal Resistance θ ..................................................36ꢀC/W  
JA  
QDN, DAC1, DAC2, DAC3 to GND.....................-0.3V to V  
Operating Temperature Range ...........................-40ꢀC to +85ꢀC  
Junction Temperature......................................................+150ꢀC  
Storage Temperature Range.............................-60ꢀC to +150ꢀC  
Lead Temperature (soldering, 10s) .................................+300ꢀC  
DD  
+ 0.3V)  
ADC1, ADC2 to GND.................................-0.3V to (V  
DD  
+ 0.3V)D0–D9,  
REFP, REFN, REFIN, COM to GND-0.3V to (V  
DOUT, T/R, SHDN, SCLK, DIN, CS,  
DD  
CLK to OGND .....................................-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage  
Output Supply Voltage  
V
2.7  
1.8  
3.0  
3.3  
V
V
DD  
OV  
V
DD  
DD  
Ext1-Tx, Ext3-Tx, and SPI2-Tx states;  
transmit DAC operating mode (Tx):  
f
= 45MHz, f  
= 2.2MHz on both  
16.5  
29.8  
28.2  
25.7  
CLK  
OUT  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext2-Tx, Ext4-Tx, and SPI4-Tx states;  
transmit DAC operating mode (Tx):  
f
= 45MHz, f  
= 2.2MHz on both  
35  
34  
CLK  
OUT  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
V
Supply Current  
mA  
DD  
Ext1-Rx, Ext4-Rx, and SPI3-Rx states;  
receive ADC operating mode (Rx):  
f
= 45MHz, f = 5.5MHz on both  
IN  
CLK  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
Ext2-Rx, Ext3-Rx, and SPI1-Rx states;  
receive ADC operating mode (Rx):  
f
= 45MHz, f = 5.5MHz on both  
IN  
CLK  
channels; aux-DACs ON and at midscale,  
aux-ADC ON  
2
_______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mA  
Standby mode: CLK = 0 or OV  
aux-DACs ON and at midscale,  
aux-ADC ON  
;
DD  
3.2  
5
V
Supply Current  
DD  
Idle mode: f  
= 45MHz; aux-DACs ON  
CLK  
12.1  
1
15  
and at midscale, aux-ADC ON  
Shutdown mode: CLK = 0 or OV  
µA  
DD  
Ext1-Rx, Ext2-Rx, Ext3-Rx, Ext4-Rx,  
SPI1-Rx, SPI3-Rx states; receive ADC  
operating mode (Rx): f  
= 45MHz,  
CLK  
7.7  
mA  
µA  
f
IN  
= 5.5MHz on both channels;  
aux-DACs ON and at midscale,  
aux-ADC ON  
OV  
Supply Current  
DD  
Ext1-Tx, Ext2-Tx, Ext3-Tx, Ext4-Tx,  
SPI2-Tx, SPI4-Tx states; transmit DAC  
operating mode (Tx), f  
= 45MHz, f  
485  
1
CLK  
OUT  
= 2.2MHz on both channels; aux-DACs  
ON and at midscale, aux-ADC ON  
Standby mode: CLK = 0 or OV ; aux-DACs  
DD  
ON and at midscale, aux-ADC ON  
Idle mode: f  
and at midscale, aux-ADC ON  
= 45MHz; aux-DACs ON  
CLK  
76  
1
Shutdown mode: CLK = 0 or OV  
DD  
Rx ADC DC ACCURACY  
Resolution  
N
10  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
1.6  
0.7  
0.5  
1.0  
0.01  
13  
LSB  
Residual DC offset error  
Include reference error  
-5  
+5  
%FS  
%FS  
dB  
Gain Error  
-5.5  
-0.15  
+5.5  
+0.15  
DC Gain Matching  
Offset Matching  
LSB  
Gain Temperature Coefficient  
30  
ppm/ꢀC  
LSB  
Offset error (V  
5%)  
5%)  
0.4  
0.1  
DD  
Power-Supply Rejection  
PSRR  
Gain error (V  
%FS  
DD  
_______________________________________________________________________________________  
3
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Rx ADC ANALOG INPUT  
Input Differential Range  
V
Differential or single-ended inputs  
0.512  
V
V
ID  
Input Common-Mode Voltage  
Range  
V
V
/ 2  
DD  
CM  
R
Switched capacitor load  
120  
5
k  
IN  
Input Impedance  
C
pF  
IN  
Rx ADC CONVERSION RATE  
Maximum Clock Frequency  
f
(Note 2)  
45  
MHz  
CLK  
Channel I  
Channel Q  
5
Clock  
Cycles  
Data Latency (Figure 3)  
5.5  
Rx ADC DYNAMIC CHARACTERISTICS (Note 3)  
f
f
f
f
f
f
f
f
= 5.5MHz, f  
= 45MHz  
= 45MHz  
= 45MHz  
= 45MHz  
= 45MHz  
= 45MHz  
= 45MHz  
= 45MHz  
52.5  
52.2  
62.1  
54.2  
54.1  
54.1  
54  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
CLK  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
HD3  
dB  
= 22MHz, f  
CLK  
= 5.5MHz, f  
CLK  
CLK  
Signal-to-Noise Plus Distortion  
Spurious-Free Dynamic Range  
Third-Harmonic Distortion  
Intermodulation Distortion  
dB  
= 22MHz, f  
= 5.5MHz, f  
71.2  
70.4  
CLK  
CLK  
dBc  
dBc  
dBc  
dBc  
dBc  
= 22MHz, f  
= 5.5MHz, f  
-78.1  
-73.1  
CLK  
CLK  
= 22MHz, f  
f = 1.8MHz, -7dBFS;  
1
IMD  
-68.6  
-79.2  
f = 1MHz, -7dBFS  
2
Third-Order Intermodulation  
Distortion  
f = 1.8MHz, -7dBFS;  
1
f = 1MHz, -7dBFS  
2
IM3  
f
f
= 5.5MHz, f  
= 45MHz  
= 45MHz  
-68.4  
-68.8  
3.5  
-61.5  
IN  
CLK  
Total Harmonic Distortion  
THD  
= 22MHz, f  
IN  
CLK  
Aperture Delay  
ns  
ns  
Overdrive Recovery Time  
1.5x full-scale input  
2
Rx ADC INTERCHANNEL CHARACTERISTICS  
f
= 5.5MHz at -0.5dBFS, f  
= 1.8MHz  
INX,Y  
INX,Y  
Crosstalk Rejection  
-90  
dB  
at -0.5dBFS (Note 4)  
Amplitude Matching  
Phase Matching  
f
= 5.5MHz at -0.5dBFS (Note 5)  
= 5.5MHz at -0.5dBFS (Note 5)  
0.01  
0.03  
dB  
IN  
f
IN  
Degrees  
4
_______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Tx DAC DC ACCURACY  
Resolution  
N
10  
0.3  
0.2  
1
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
DNL  
Guaranteed monotonic (Note 6)  
-1  
+1  
T
+25ꢀC  
-4  
+4  
A
A
Residual DC Offset  
Full-Scale Gain Error  
V
mV  
mV  
OS  
T
< +25ꢀC  
-4.5  
-30  
-40  
1
+4.5  
+30  
+40  
T
T
+25ꢀC  
A
Include reference error  
(peak-to-peak error)  
< +25ꢀC  
A
Tx DAC DYNAMIC PERFORMANCE  
DAC Conversion Rate  
f
(Note 2)  
45  
MHz  
CLK  
In-Band Noise Density  
N
f
= 2.2MHz, f = 45MHz  
CLK  
-130.6  
80  
dBc/Hz  
D
OUT  
Third-Order Intermodulation  
Distortion  
IM3  
f = 2MHz, f = 2.2MHz  
1
dBc  
pVs  
dBc  
2
Glitch Impulse  
10  
Spurious-Free Dynamic Range to  
Nyquist  
SFDR  
f
= 45MHz, f  
= 2.2MHz  
60  
73.2  
CLK  
OUT  
Total Harmonic Distortion to  
Nyquist  
THD  
SNR  
f
f
= 45MHz, f  
= 45MHz, f  
= 2.2MHz  
= 2.2MHz  
-71  
-59  
dB  
dB  
CLK  
CLK  
OUT  
Signal-to-Noise Ratio to Nyquist  
57.1  
OUT  
Tx DAC INTERCHANNEL CHARACTERISTICS  
I-to-Q Output Isolation  
f
= 2MHz, f  
= 2.2MHz  
85  
dB  
dB  
OUTX,Y  
OUTX,Y  
T
T
+25ꢀC  
-0.3  
0.01  
+0.3  
A
Gain Mismatch Between DAC  
Outputs  
Measured at DC  
< +25ꢀC  
-0.42  
+0.42  
A
Phase Mismatch Between DAC  
Outputs  
f
= 2.2MHz, f  
= 45MHz  
0.07  
800  
Degrees  
OUT  
CLK  
Differential Output Impedance  
Tx DAC ANALOG OUTPUT  
Full-Scale Output Voltage  
V
400  
1.05  
0.95  
0.80  
0.71  
mV  
V
FS  
Bits CM1 = 0, CM0 = 0 (default)  
Bits CM1 = 0, CM0 = 1  
Bits CM1 = 1, CM0 = 0  
Bits CM1 = 1, CM0 = 1  
1.0  
1.1  
Output Common-Mode Voltage  
V
COM  
_______________________________________________________________________________________  
5
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Rx ADC–Tx DAC INTERCHANNEL CHARACTERISTICS  
ADC f = f  
= 5.5MHz, DAC f  
=
INI  
INQ  
OUTI  
Receive Transmit Isolation  
85  
dB  
f
= 2.2MHz, f  
= 45MHz  
OUTQ  
CLK  
AUXILIARY ADC (ADC1, ADC2)  
Resolution  
N
10  
Bits  
V
AD1 = 0 (default)  
AD1 = 1  
2.048  
Full-Scale Reference  
V
REF  
V
DD  
0 to  
Analog Input Range  
V
V
REF  
Analog Input Impedance  
Input-Leakage Current  
At DC  
500  
kΩ  
µA  
Measured at unselected input from 0 to  
0.1  
V
REF  
Gain Error  
GE  
ZE  
Includes reference error  
-5  
+5  
%FS  
mV  
Zero-Code Error  
Differential Nonlinearity  
Integral Nonlinearity  
Supply Current  
2
DNL  
INL  
0.53  
0.45  
210  
LSB  
LSB  
µA  
AUXILIARY DACs (DAC1, DAC2, DAC3)  
Resolution  
N
(Note 6)  
12  
Bits  
Integral Nonlinearity  
INL  
1.25  
LSB  
Guaranteed monotonic over codes 100 to  
4000 (Note 6)  
Differential Nonlinearity  
DNL  
-1.0  
0.65  
+1.1  
0.1  
LSB  
Gain Error  
GE  
ZE  
R > 200kΩ  
L
0.7  
0.6  
%FS  
%FS  
V
Zero-Code Error  
Output-Voltage Low  
Output-Voltage High  
DC Output Impedance  
Settling Time  
R > 200kΩ  
L
V
OL  
V
R > 200kΩ  
L
2.56  
V
OH  
DC output at midscale  
4
1
From 1/4 FS to 3/4 FS, within 10 LSB  
From 0 to FS transition  
µs  
Glitch Impulse  
24  
nVs  
Rx ADC–Tx DAC TIMING CHARACTERISTICS  
CLK Rise to Channel-I Output Data  
Valid  
t
Figure 3 (Note 6)  
Figure 3 (Note 6)  
Figure 5 (Note 6)  
5.4  
7.3  
9
6.5  
8.8  
8.1  
ns  
ns  
ns  
DOI  
CLK Fall to Channel-Q Output  
Data Valid  
t
11.1  
DOQ  
I-DAC DATA to CLK Fall Setup  
Time  
t
DSI  
6
_______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
Figure 5 (Note 6)  
MIN  
TYP  
MAX  
UNITS  
ns  
Q-DAC DATA to CLK Rise Setup  
Time  
t
9
DSQ  
CLK Fall to I-DAC Data Hold Time  
t
Figure 5 (Note 6)  
Figure 5 (Note 6)  
-4  
-4  
ns  
DHI  
CLK Rise to Q-DAC Data Hold  
Time  
t
ns  
DHQ  
CLK Duty Cycle  
50  
15  
%
%
ns  
CLK Duty-Cycle Variation  
Digital Output Rise/Fall Time  
20% to 80%  
2.6  
SERIAL-INTERFACE TIMING CHARACTERISTICS (Figure 6, Note 6)  
Falling Edge of CS to Rising Edge  
of First SCLK Time  
t
10  
ns  
CSS  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Period  
t
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
CH  
t
t
25  
25  
50  
10  
80  
t
CL  
CP  
CS  
t
t
SCLK to CS Setup Time  
CS High Pulse Width  
CS High to DOUT Active High  
t
CSW  
t
Bit AD0 set  
200  
4.27  
200  
200  
CSD  
Bit AD0 set, no averaging (see Table 14),  
CS High to DOUT Low (Aux-ADC  
Conversion Time)  
t
f
= 45MHz,  
µs  
CONV  
CLK  
CLK divider = 16 (see Table 15)  
DOUT Low to CS Setup Time  
SCLK Low to DOUT Data Out  
CS High to DOUT High Impedance  
t
t
Bit AD0, AD10 set  
Bit AD0, AD10 set  
Bit AD0, AD10 set  
ns  
ns  
ns  
DCS  
t
14.5  
CD  
CHZ  
MODE-RECOVERY TIMING CHARACTERISTICS (Figure 7)  
From shutdown to Rx mode, ADC settles  
to within 1dB SINAD  
85.2  
28.2  
9.8  
Shutdown Wake-Up Time  
Idle Wake-Up Time (With CLK)  
Standby Wake-Up Time  
t
µs  
µs  
µs  
WAKE,SD  
From shutdown to Tx mode, DAC settles to  
within 10 LSB error  
From idle to Rx mode with CLK present  
during idle, ADC settles to within 1dB SINAD  
t
WAKE,ST0  
WAKE,ST1  
From idle to Tx mode with CLK present  
during idle, DAC settles to 10 LSB error  
6.4  
From standby to Rx mode, ADC settles to  
within 1dB SINAD  
13.7  
24  
t
From standby to Tx mode, DAC settles to  
10 LSB error  
_______________________________________________________________________________________  
7
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable Time from Tx to Rx, (Ext2-  
Tx to Ext2-Rx, Ext4-Tx to Ext4-Rx,  
and SPI4-Tx to SPI3-Rx States)  
t
ADC settles to within 1dB SINAD  
500  
ns  
ENABLE, RX  
Enable Time from Rx to Tx, (Ext1-  
Rx to Ext1-Tx, Ext4-Rx to Ext4-Tx,  
and SPI3-Rx to SPI4-Tx States)  
t
DAC settles to within 10 LSB error  
ADC settles to within 1dB SINAD  
DAC settles to within 10 LSB error  
500  
4.1  
7.0  
ns  
µs  
µs  
ENABLE, TX  
ENABLE, RX  
Enable Time from Tx to Rx, (Ext1-  
Tx to Ext1-Rx, Ext3-Tx to Ext3-Rx,  
and SPI1-Tx to SPI2-Rx States)  
t
Enable Time from Rx to Tx, (Ext2-  
Rx to Ext2-Tx, Ext3-Rx to Ext3-Tx,  
and SPI1-Rx to SPI2-Tx States)  
t
ENABLE, TX  
INTERNAL REFERENCE (V  
Positive Reference  
= V ; V  
, V  
, V  
levels are generated internally)  
REFIN  
DD REFP REFN COM  
V
V
- V  
0.256  
V
V
REFP  
REFN  
COM  
Negative Reference  
- V  
-0.256  
COM  
V
/ 2  
V
/ 2  
DD  
DD  
Common-Mode Output Voltage  
V
V
/ 2  
V
COM  
DD  
2
- 0.15  
+ 0.15  
Maximum REFP/REFN/COM  
Source Current  
I
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
mA  
V
SINK  
Differential Reference Output  
V
V
- V  
REFN  
+0.489 +0.512 +0.534  
10  
REF  
REFP  
Differential Reference Temperature  
Coefficient  
REFTC  
ppm/ꢀC  
BUFFERED EXTERNAL REFERENCE (external V  
= 1.024V applied; V  
, V  
, V  
levels are generated internally)  
REFIN  
REFP REFN COM  
Reference Input Voltage  
V
1.024  
0.512  
V
V
V
REFIN  
Differential Reference Output  
Common-Mode Output Voltage  
V
V
- V  
REFP REFN  
DIFF  
V
V
/ 2  
COM  
DD  
Maximum REFP/REFN/COM  
Source Current  
I
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM  
Sink Current  
I
2
SINK  
REFIN Input Current  
-0.7  
500  
µA  
REFIN Input Resistance  
kΩ  
8
_______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, unless otherwise noted. C < 5pF on all aux-DAC outputs. Typical values are at T = +25ꢀC.) (Note 1)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (CLK, SCLK, DIN, CS, D0–D9, T/R, SHDN)  
Input High Threshold  
Input Low Threshold  
V
0.7 x OV  
V
V
INH  
DD  
V
0.3 x OV  
DD  
INL  
D0–D9, CLK, SCLK, DIN, CS, T/R,  
Input Leakage  
DI  
-1  
+1  
µA  
pF  
IN  
SHDN = OGND or OV  
DD  
Input Capacitance  
DC  
5
5
IN  
DIGITAL OUTPUTS (D0–D9, DOUT)  
Output-Voltage Low  
V
I
I
= 200µA  
0.2 x OV  
DD  
V
V
OL  
SINK  
Output-Voltage High  
V
= 200µA  
0.8 x OV  
-1  
OH  
SOURCE  
DD  
Tri-State Leakage Current  
Tri-State Output Capacitance  
I
+1  
µA  
pF  
LEAK  
C
OUT  
Note 1: Specifications from T = +25ꢀC to +85ꢀC are guaranteed by production tests. Specifications from T = +25ꢀC to -40ꢀC are  
A
A
guaranteed by design and characterization.  
Note 2: The minimum clock frequency (f  
) for the MAX19707 is 7.5MHz (typical). The minimum aux-ADC sample rate clock fre-  
CLK  
quency (ACLK) is determined by f  
and the chosen aux-ADC clock-divider value. The minimum aux-ADC ACLK >  
CLK  
7.5MHz / 128 = 58.6kHz. The aux-ADC conversion time does not include the time to clock the serial data out of the SPI™.  
The maximum conversion time (for no averaging, NAVG = 1) will be, t (max) = (12 x 1 x 128) / 7.5MHz = 205µs.  
CONV  
Note 3: SNR, SINAD, SFDR, HD3, and THD are based on a differential analog input voltage of -0.5dBFS referenced to the amplitude  
of the digital outputs. SINAD and THD are calculated using HD2 through HD6.  
Note 4: Crosstalk rejection is measured by applying a high-frequency test tone to one channel and a low-frequency tone to the second  
channel. FFTs are performed on each channel. The parameter is specified as the power ratio of the first and second channel  
FFT test tone.  
Note 5: Amplitude and phase matching is measured by applying the same signal to each channel, and comparing the two output  
signals using a sine-wave fit.  
Note 6: Guaranteed by design and characterization.  
SPI is a trademark of Motorola, Inc.  
_______________________________________________________________________________________  
9
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
A
Rx ADC CHANNEL-IA  
TWO-TONE FFT PLOT  
Rx ADC CHANNEL-IA FFT PLOT  
Rx ADC CHANNEL-QA FFT PLOT  
0
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
= 45.006848MHz  
= 13.00155MHz  
16,384-POINT  
DATA RECORD  
f
f
= 45.006848MHz  
CLK  
= 13.00155MHz  
16,384-POINT  
DATA RECORD  
f
= 45.006848MHz  
CLK  
IA  
CLK  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f = 1.4MHz  
QA  
1
f = 1.8MHz  
2
A
= -7dBFS  
IA  
PER TONE  
8192-POINT  
DATA RECORD  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT FREQUENCY  
56  
Rx ADC CHANNEL-QA  
TWO-TONE FFT PLOT  
56  
55  
54  
53  
52  
51  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 45.006848MHz  
CLK  
f = 1.4MHz  
1
55  
54  
53  
52  
51  
50  
f = 1.8MHz  
2
A
= -7dBFS  
QA  
PER TONE  
8192-POINT  
DATA RECORD  
QA  
IA  
QA  
IA  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT AMPLITUDE  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
60  
50  
40  
30  
20  
10  
0
85  
80  
75  
70  
65  
60  
f
= 13.00155MHz  
QA  
IN  
QA  
QA  
IA  
IA  
IA  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
-21 -18 -15 -12  
-9  
-6  
-3  
0
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT AMPLITUDE (dBFS)  
10 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
A
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. ANALOG INPUT AMPLITUDE  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT AMPLITUDE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT AMPLITUDE  
60  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
75  
70  
65  
f
= 12.4980346MHz  
f = 12.4980346MHz  
IN  
f
= 13.00155MHz  
IN  
IN  
QA  
50  
40  
QA  
IA  
IA  
QA  
IA  
30  
20  
10  
0
60  
55  
50  
45  
-21 -18 -15 -12  
-9  
-6  
-3  
0
-21 -18 -15 -12  
-9  
-6  
-3  
0
-21 -18 -15 -12  
-9  
-6  
-3  
0
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
ANALOG INPUT AMPLITUDE (dBFS)  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. SAMPLING RATE  
Rx ADC TOTAL HARMONIC DISTORTION  
vs. SAMPLING RATE  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. SAMPLING RATE  
57  
56  
55  
54  
53  
52  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
56  
55  
54  
53  
52  
f
= 12.4980346MHz  
f = 12.4980346MHz  
IN  
IN  
f
= 12.4980346MHz  
IN  
IA  
QA  
IA  
QA  
IA  
QA  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
Rx ADC SPURIOUS-FREE DYNAMIC  
RANGE vs. SAMPLING RATE  
Rx ADC SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
Rx ADC SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. CLOCK DUTY CYCLE  
90  
85  
80  
75  
70  
65  
60  
57  
56  
55  
54  
53  
52  
57  
56  
55  
54  
53  
52  
f
= 12.4980346MHz  
f
= 12.4980346MHz  
f = 12.4980346MHz  
IN  
IN  
IN  
IA  
QA  
QA  
IA  
QA  
IA  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
35  
45  
55  
65  
35  
45  
55  
65  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
______________________________________________________________________________________ 11  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
A
Rx ADC TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
Rx ADC SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
Rx ADC OFFSET ERROR  
vs. TEMPERATURE  
1.0  
0.8  
-55  
90  
85  
f
= 12.4980346MHz  
f = 12.4980346MHz  
IN  
IN  
-60  
-65  
-70  
-75  
-80  
-85  
IA  
0.6  
QA  
IA  
IA  
0.4  
80  
75  
70  
65  
60  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
QA  
QA  
-90  
-95  
35  
45  
55  
65  
85  
0
35  
45  
55  
65  
-40  
-15  
10  
35  
60  
85  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
TEMPERATURE (°C)  
Rx ADC GAIN ERROR  
vs. TEMPERATURE  
Tx DAC SPURIOUS-FREE DYNAMIC  
RANGE vs. SAMPLING RATE  
Tx DAC SPURIOUS-FREE DYNAMIC  
RANGE vs. OUTPUT FREQUENCY  
74  
73  
72  
71  
70  
69  
68  
67  
66  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
75  
70  
65  
60  
55  
50  
45  
f
= f / 10  
OUT CLK  
QA  
IA  
-40  
-15  
10  
35  
60  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
0
2
4
6
8
10 12 14 16 18 20 22  
TEMPERATURE (°C)  
OUTPUT FREQUENCY (MHz)  
Tx DAC SPURIOUS-FREE DYNAMIC  
RANGE vs. OUTPUT AMPLITUDE  
Tx DAC CHANNEL-ID SPECTRAL PLOT  
Tx DAC CHANNEL-QD SPECTRAL PLOT  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 2.2MHz  
OUT  
f
= 5.498MHz  
QD  
f
= 5.498MHz  
ID  
-30  
-20  
-10  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (MHz)  
OUTPUT AMPLITUDE (dBFS)  
12 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
A
Rx ADC INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
Rx ADC DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT vs. SAMPLING RATE  
1.0  
30  
28  
26  
24  
22  
20  
18  
16  
0.5  
0.4  
Ext4-Rx MODE  
0.8  
0.6  
0.4  
0.2  
0.3  
0.2  
0.1  
I
VDD  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
5
10 15 20 25 30 35 40 45  
SAMPLING RATE (MHz)  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
Tx DAC INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
Tx DAC DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
0.520  
0.515  
0.510  
0.505  
0.500  
1.0  
0.8  
0.5  
0.4  
V
- V  
REFN  
REFP  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40  
-15  
10  
35  
60  
85  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
AUX-DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
AUX-DAC SETTLING TIME  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
STEP FROM 1/4FS TO 3/4FS  
500mV/div  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
500ns/div  
OUTPUT SINK CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
______________________________________________________________________________________ 13  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 1.8V, internal reference (1.024V), C 10pF on all digital outputs, f  
= 45MHz (50% duty cycle), Rx ADC input  
DD  
DD  
L
CLK  
amplitude = -0.5dBFS, Tx DAC output amplitude = 0dBFS, differential Rx ADC input, differential Tx DAC output, C  
= C  
=
REFN  
REFP  
C
COM  
= 0.33µF, T = +25ꢀC, unless otherwise noted.)  
A
AUX-DAC DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
AUX-DAC INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.5  
1.0  
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.5  
-1.0  
-1.5  
-2.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
AUX-ADC INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
AUX-ADC DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
2.0  
1.5  
1.0  
0.5  
0
0.8  
0.4  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.4  
-0.8  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
Pin Description  
PIN  
NAME  
FUNCTION  
1
REFP  
Upper Reference Voltage. Bypass with a 0.33µF capacitor to GND as close to REFP as possible.  
2, 8, 11, 31,  
33, 39, 43  
Analog Supply Voltage. Supply range from 2.7V to 3.3V. Bypass V  
a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
to GND with a combination of  
DD  
V
DD  
3
4
IAP  
IAN  
Channel-IA Positive Analog Input. For single-ended operation, connect signal source to IAP.  
Channel-IA Negative Analog Input. For single-ended operation, connect IAN to COM.  
Analog Ground. Connect all GND pins to ground plane.  
5, 7, 12, 32, 42  
GND  
CLK  
QAN  
6
9
Conversion Clock Input. Clock signal for both receive ADCs and transmit DACs.  
Channel-QA Negative Analog Input. For single-ended operation, connect QAN to COM.  
14 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
10  
QAP  
Channel-QA Positive Analog Input. For single-ended operation, connect signal source to QAP.  
Digital I/O. Outputs for receive ADC in Rx mode. Inputs for transmit DAC in Tx mode. D9 is the most  
significant bit (MSB) and D0 is the least significant bit (LSB).  
13–18, 21–24  
D0–D9  
OGND  
19  
20  
Output-Driver Ground  
Output-Driver Power Supply. Supply range from 1.8V to V . Bypass OV  
DD  
to OGND with a  
DD  
OV  
DD  
combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
25  
26  
SHDN  
Active-Low Shutdown Input. Apply logic-low to place the MAX19707 in shutdown.  
Aux-ADC Digital Output  
DOUT  
Transmit- or Receive-Mode Select Input. T/R logic-low input sets the device in receive mode. A  
logic-high input sets the device in transmit mode.  
27  
T/R  
28  
29  
DIN  
SCLK  
CS  
3-Wire Serial-Interface Data Input. Data is latched on the rising edge of the SCLK.  
3-Wire Serial-Interface Clock Input  
30  
3-Wire Serial-Interface Chip-Select Input. Logic-low enables the serial interface.  
Analog Input for Auxiliary ADC  
34  
ADC2  
ADC1  
DAC3  
DAC2  
DAC1  
IDN, IDP  
35  
Analog Input for Auxiliary ADC  
36  
Analog Output for Auxiliary DAC3  
37  
Analog Output for Auxiliary DAC2  
38  
Analog Output for Auxiliary DAC1 (AFC DAC, V = 1.1V During Power-Up)  
OUT  
40, 41  
44, 45  
46  
DAC Channel-ID Differential Voltage Output  
QDN, QDP DAC Channel-QD Differential Voltage Output  
REFIN  
COM  
Reference Input. Connect to V  
for internal reference. Bypass to GND with a 0.1µF capacitor.  
DD  
47  
Common-Mode Voltage I/O. Bypass COM to GND with a 0.33µF capacitor.  
Negative Reference I/O. Rx ADC conversion range is (V  
0.33µF capacitor.  
- V  
). Bypass REFN to GND with a  
REFP  
REFN  
48  
REFN  
EP  
Exposed Paddle. Exposed paddle is internally connected to GND. Connect EP to the GND plane.  
automatic frequency-control (AFC) level setting. The  
Detailed Description  
aux-ADC features data averaging to reduce processor  
overhead and a selectable clock-divider to program the  
conversion rate.  
The MAX19707 integrates a dual, 10-bit Rx ADC and a  
dual, 10-bit Tx DAC while providing ultra-low power  
and high dynamic performance at a 45Msps conver-  
sion rate. The Rx ADC analog input amplifiers are fully  
The MAX19707 includes a 3-wire serial interface to  
control operating modes and power management. The  
serial interface is SPI and MICROWIRE™ compatible.  
The MAX19707 serial interface selects shutdown, idle,  
standby, transmit (Tx), and receive (Rx) modes, as well  
as controls aux-DAC and aux-ADC channels.  
differential and accept 1.024V  
full-scale signals. The  
P-P  
Tx DAC analog outputs are fully differential with  
400mV full-scale output, selectable common-mode  
DC level, and adjustable I/Q offset trim.  
The MAX19707 integrates three 12-bit auxiliary DAC  
(aux-DAC) channels and a 10-bit, 333ksps auxiliary  
ADC (aux-ADC) with 4:1 input multiplexer. The aux-DAC  
channels feature 1µs settling time for fast automatic  
gain-control (AGC), variable-gain amplifier (VGA), and  
The Rx ADC and Tx DAC share a common digital I/O to  
reduce the digital interface to a single, 10-bit parallel  
multiplexed bus. The 10-bit digital bus operates on a  
single 1.8V to 3.3V supply.  
MICROWIRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 15  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
is the difference between V  
and V  
. See the  
REFN  
Dual, 10-Bit Rx ADC  
The ADC uses a seven-stage, fully differential, pipelined  
architecture that allows for high-speed conversion while  
minimizing power consumption. Samples taken at the  
inputs move progressively through the pipeline stages  
every half clock cycle. Including the delay through the  
output latch, the total clock-cycle latency is 5 clock  
cycles for channel IA and 5.5 clock cycles for channel  
REFP  
Reference Configurations section for details.  
Input Track-and-Hold (T/H) Circuits  
Figure 1 displays a simplified diagram of the Rx ADC  
input track-and-hold (T/H) circuitry. Both ADC inputs  
(IAP, QAP, IAN, and QAN) can be driven either differ-  
entially or single-ended. Match the impedance of IAP  
and IAN, as well as QAP and QAN, and set the input  
signal common-mode voltage within the Rx ADC range  
QA. The ADC full-scale analog input range is  
V
REF  
REF  
with a V / 2 0.2V common-mode input range. V  
DD  
of V /2 ( 200mV) for optimum performance.  
DD  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
IAP  
IAN  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
CLK  
HOLD  
HOLD  
INTERNAL  
BIAS  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
TRACK  
TRACK  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
QAP  
QAN  
OUT  
C2a  
C2b  
S4c  
S1  
MAX19707  
OUT  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 1. Rx ADC Internal T/H Circuits  
16 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 1. Rx ADC Output Codes vs. Input Voltage  
DIFFERENTIAL INPUT  
VOLTAGE  
DIFFERENTIAL INPUT (LSB)  
OFFSET BINARY (D0–D9)  
OUTPUT DECIMAL CODE  
V
V
x 512/512  
x 511/512  
511 (+Full Scale - 1 LSB)  
510 (+Full Scale - 2 LSB)  
+1  
11 1111 1111  
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1023  
1022  
513  
512  
511  
1
REF  
REF  
V
V
x 1/512  
x 0/512  
x 1/512  
REF  
REF  
0 (Bipolar Zero)  
-1  
-V  
REF  
-V  
x 511/512  
x 512/512  
-511 (-Full Scale +1 LSB)  
-512 (-Full Scale)  
REF  
REF  
-V  
0
multiplexed at the D0–D9 outputs. CHI data is updated  
on the rising edge and CHQ data is updated on the  
falling edge of the CLK. Including the delay through the  
output latch, the total clock-cycle latency is 5 clock  
cycles for CHI and 5.5 clock cycles for CHQ.  
2 x V  
REF  
V
= V  
- V  
1 LSB =  
REF  
REFP REFN  
1024  
V
V
REF  
REF  
11 1111 1111  
11 1111 1110  
11 1111 1101  
Digital Input/Output Data (D0–D9)  
D0–D9 are the Rx ADC digital logic outputs when the  
MAX19707 is in receive mode. This bus is shared with  
the Tx DAC digital logic inputs and operates in half-  
duplex mode. D0–D9 are the Tx DAC digital logic inputs  
when the MAX19707 is in transmit mode. The logic level  
10 0000 0001  
10 0000 0000  
01 1111 1111  
(COM)  
is set by OV  
from 1.8V to V . The digital output cod-  
DD  
DD  
ing is offset binary (Table 1). Keep the capacitive load  
on the digital outputs D0–D9 as low as possible (< 15pF)  
to avoid large digital currents feeding back into the ana-  
log portion of the MAX19707 and degrading its dynamic  
performance. Buffers on the digital outputs isolate the out-  
puts from heavy capacitive loads. Adding 100resistors  
in series with the digital outputs close to the MAX19707  
helps improve Rx ADC and Tx DAC performance. Refer  
to the MAX19707EVKIT schematic for an example of the  
digital outputs driving a digital buffer through 100series  
resistors.  
00 0000 0011  
00 0000 0010  
00 0000 0001  
00 0000 0000  
-1  
1
+512  
+509 +510 +511  
-512 -511 -510 -509  
0+  
(COM)  
INPUT VOLTAGE (LSB)  
Figure 2. Rx ADC Transfer Function  
During SHDN, IDLE, and STBY states, D0–D9 are inter-  
nally pulled up to prevent floating digital inputs. To ensure  
no current flows through D0–D9 I/O, the external bus  
Rx ADC System Timing Requirements  
Figure 3 shows the relationship between the clock, ana-  
log inputs, and the resulting output data. Channel I  
(CHI) and channel Q (CHQ) are sampled on the rising  
edge of the clock signal (CLK) and the resulting data is  
needs to be either tri-stated or pulled up to OV  
should not be pulled to ground.  
and  
DD  
______________________________________________________________________________________ 17  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
5.5 CLOCK-CYCLE LATENCY (CHQ)  
5 CLOCK-CYCLE LATENCY (CHI)  
CHI  
CHQ  
t
CLK  
t
t
CH  
CL  
CLK  
t
DOQ  
t
DOI  
D0–D9  
D0Q  
D1I  
D1Q  
D2I  
D2Q  
D3I  
D3Q  
D4I  
D4Q  
D5I  
D5Q  
D6I  
D6Q  
Figure 3. Rx ADC System Timing Diagram  
analog interface between RF quadrature upconverters  
and the MAX19707. Many RF upconverters require a  
0.7V to 1.05V common-mode bias. The Tx DAC DC  
common-mode bias eliminates discrete level-setting  
resistors and code-generated level shifting while pre-  
serving the full dynamic range of each Tx DAC. The Tx  
DAC differential analog outputs cannot be used in sin-  
gle-ended mode because of the internally generated  
common-mode DC level. Table 2 shows the Tx DAC  
output voltage vs. input codes. Table 10 shows the  
selection of DC common-mode levels. See Figure 4 for  
an illustration of the Tx DAC analog output levels.  
Dual, 10-Bit Tx DAC  
The dual, 10-bit digital-to-analog converter (Tx DAC)  
operates with clock speeds up to 45MHz. The Tx DAC  
digital inputs, D0–D9, are multiplexed on a single 10-bit  
bus. The voltage reference determines the Tx DAC full-  
scale output voltage. See the Reference Configurations  
section for details on setting the reference voltage.  
The Tx DAC outputs at IDN, IDP and QDN, QDP are  
biased at a 0.7V to 1.05V adjustable DC common-  
mode bias and designed to drive a differential input  
stage with 70kinput impedance. This simplifies the  
Table 2. Tx DAC Output Voltage vs. Input Codes  
(Internal Reference Mode V  
= 1.024V, External Reference Mode V  
= V  
; V  
= 400 for 800mV  
REFDAC  
REFDAC  
REFIN FS P-P  
Full Scale)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
OFFSET BINARY (D0–D9)  
INPUT DECIMAL CODE  
V
1023  
1023  
REFDAC  
1024  
V
×
×
11 1111 1111  
1023  
(
)
)
FS  
V
1021  
1023  
REFDAC  
1024  
V
11 1111 1110  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
1022  
513  
512  
511  
1
(
FS  
V
3
1023  
REFDAC  
1024  
V
×
×
(
)
)
FS  
V
1
1023  
REFDAC  
1024  
V
(
FS  
V  
1
1023  
REFDAC  
1024  
V
×
(
)
FS  
V  
1021  
1023  
1023  
1023  
REFDAC  
1024  
V
×
×
(
(
)
)
FS  
V  
REFDAC  
1024  
V
0
FS  
18 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
The Tx DAC also features independent DC offset cor-  
rection of each I/Q channel. This feature is configured  
through the SPI interface. The DC offset correction is  
used to optimize sideband and carrier suppression in  
the Tx signal path (see Table 9).  
MAX19707  
EXAMPLE:  
Tx DAC  
I-CH  
Tx RFIC INPUT REQUIREMENTS  
• DC COMMON-MODE BIAS =  
0.9V (MIN), 1.3V (MAX)  
0
90  
• BASEBAND INPUT = 400mV  
DC-COUPLED  
Tx DAC  
Q-CH  
FULL SCALE = 1.25V  
COMMON-MODE LEVEL  
SELECT CM1 = 0, CM0 = 0  
V
= 1.05V  
COM  
V
V
= 1.05V  
COM  
DIFF  
=
400mV  
ZERO SCALE = 0.85V  
0V  
Figure 4. Tx DAC Common-Mode DC Level at IDN, IDP or QDN, QDP Differential Outputs  
______________________________________________________________________________________ 19  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Tx DAC Timing  
Figure 5 shows the relationship between the clock, input  
data, and analog outputs. Data for the I channel (ID) is  
latched on the falling edge of the clock signal, and Q-  
channel (QD) data is latched on the rising edge of the  
clock signal. Both I and Q outputs are simultaneously  
updated on the next rising edge of the clock signal.  
composed of A3–A0 control bits and D11–D0 data bits.  
Data is shifted in MSB first (D11) and LSB last (A0).  
Tables 4, 5, and 6 show the MAX19707 operating  
modes and SPI commands. The serial interface remains  
active in all modes.  
SPI Register Description  
Program the control bits, A3–A0, in the register as shown  
in Table 3 to select the operating mode. Modify A3–A0  
bits to select from ENABLE-16, Aux-DAC1, Aux-DAC2,  
Aux-DAC3, IOFFSET, QOFFSET, Aux-ADC, ENABLE-8,  
and COMSEL modes. ENABLE-16 is the default operat-  
ing mode. This mode allows for shutdown, idle, and  
standby states as well as switching between FAST,  
SLOW, Rx, and Tx modes. Table 4 shows the MAX19707  
power-management modes. Table 5 shows the T/R pin-  
controlled external Tx-Rx switching modes. Table 6  
shows the SPI-controlled Tx-Rx switching modes.  
3-Wire Serial Interface and  
Operation Modes  
The 3-wire serial interface controls the MAX19707 oper-  
ation modes as well as the three 12-bit aux-DACs and  
the 10-bit aux-ADC. Upon power-up, program the  
MAX19707 to operate in the desired mode. Use the 3-  
wire serial interface to program the device for shut-  
down, idle, standby, Rx, Tx, aux-DAC controls, or  
aux-ADC conversion. A 16-bit data register sets the  
mode control as shown in Table 3. The 16-bit word is  
CLK  
t
t
DHQ  
DSQ  
Q: N - 2  
I: N - 1  
Q: N - 1  
Q: N  
I: N + 1  
D0–D9  
I: N  
t
t
DHI  
DSI  
N - 2  
N - 2  
ID  
N - 1  
N - 1  
N
N
QD  
Figure 5. Tx DAC System Timing Diagram  
20 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 3. MAX19707 Mode Control  
D11  
D10  
15  
D9  
14  
D8  
13  
D7  
12  
D6  
11  
D5  
10  
D4  
9
D3  
8
D2  
7
D1  
6
D0  
5
A3 A2 A1  
A0  
REGISTER  
NAME  
(MSB)  
4
3
2
1 (LSB)  
E11 = 0  
Reserved Reserved  
E10 = 0  
ENABLE-16  
E9  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
0
0
0
0
Aux-DAC1  
Aux-DAC2  
Aux-DAC3  
IOFFSET  
1D11  
2D11  
3D11  
1D10  
2D10  
3D10  
1D9 1D8 1D7 1D6 1D5 1D4 1D3 1D2 1D1 1D0  
2D9 2D8 2D7 2D6 2D5 2D4 2D3 2D2 2D1 2D0  
3D9 3D8 3D7 3D6 3D5 3D4 3D3 3D2 3D1 3D0  
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
IO5 IO4 IO3 IO2 IO1 IO0  
QO5 QO4 QO3 QO2 QO1 QO0  
QOFFSET  
COMSEL  
CM1 CM0  
AD11 = 0  
Reserved  
Aux-ADC  
AD10  
AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0  
0
1
1
0
1
0
1
0
ENABLE-8  
E3  
E2  
E1  
E0  
— = Not used.  
Table 4. Power-Management Modes  
ADDRESS  
DATA BITS  
T/R  
FUNCTION  
(POWER  
MODE  
DESCRIPTION  
COMMENT  
MANAGEMENT)  
A3 A2 A1 A0 E9* E3 E2 E1 E0 PIN 27  
Rx ADC = OFF  
Tx DAC = OFF  
Aux-DAC = OFF  
Aux-ADC = OFF  
CLK = OFF  
REF = OFF  
Rx ADC = OFF  
Tx DAC = OFF  
Device is in  
complete shutdown.  
Overrides T/R pin.  
1X000  
XX001  
1X010  
X
X
X
SHDN  
SHUTDOWN  
0000  
(16-Bit Mode)  
or  
1000  
(8-Bit Mode)  
Fast turn-on time.  
Moderate idle power.  
Overrides T/R pin.  
IDLE  
IDLE  
Aux-DAC = Last State  
CLK = ON  
REF = ON  
Rx ADC = OFF  
Tx DAC = OFF  
Aux-DAC = Last State  
Aux-ADC = OFF  
CLK = OFF  
Slow turn-on time.  
Low standby power.  
Overrides T/R pin.  
STBY  
STANDBY  
REF = ON  
X = Don't care.  
*Bit E9 is not available in 8-bit mode.  
______________________________________________________________________________________ 21  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 5. External Tx-Rx Control Using T/R Pin (T/R = 0 = Rx Mode, T/R = 1 = Tx Mode)  
FUNCTION  
Rx TO Tx-Tx TO Rx  
ADDRESS  
DATA BITS  
T/R  
STATE  
DESCRIPTION  
COMMENT  
SWITCHING SPEED  
A3 A2 A1 A0 E3 E2 E1 E0 PIN 27  
Rx Mode:  
Moderate Power:  
Fast Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enable  
0
Ext1-Rx  
0011  
FAST-SLOW  
SLOW-FAST  
SLOW-SLOW  
FAST-FAST  
Tx Mode:  
Low Power:  
Slow Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
1
Ext1-Tx  
Rx Mode:  
Low Power:  
Slow Rx to Tx when T/R  
transitions 0 to 1.  
Ext2-Rx  
(Default)  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
0
0100  
Tx Mode:  
Moderate Power:  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enable  
Fast Tx to Rx when T/R  
transitions 1 to 0.  
1
Ext2-Tx  
Ext3-Rx  
Ext3-Tx  
Ext4-Rx  
Ext4-Tx  
0000  
(16-Bit Mode)  
or  
Rx Mode:  
1000  
(8-Bit Mode)  
Low Power:  
Slow Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
0
0101  
Tx Mode:  
Low Power:  
Slow Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
1
Rx Mode:  
Moderate Power:  
Fast Rx to Tx when T/R  
transitions 0 to 1.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enable  
0
0110  
Tx Mode:  
Moderate Power:  
Fast Tx to Rx when T/R  
transitions 1 to 0.  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enable  
1
22 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 6. Tx-Rx Control Using SPI Commands  
FUNCTION  
(Tx-Rx SWITCHING  
SPEED)  
ADDRESS  
DATA BITS  
T/R  
MODE  
DESCRIPTION  
COMMENTS  
A3 A2 A1 A0 E3 E2 E1 E0 PIN 27  
Rx Mode:  
Low Power:  
Slow Rx to Tx through  
SPI command.  
Rx ADC = ON  
Tx DAC = OFF  
Rx Bus = Enable  
1011  
1100  
1101  
1110  
X
X
X
X
SPI1-Rx  
SLOW  
SLOW  
FAST  
FAST  
Tx Mode:  
Low Power:  
Slow Tx to Rx through  
SPI command.  
Rx ADC = OFF  
Tx DAC = ON  
Tx Bus = Enable  
SPI2-Tx  
SPI3-Rx  
SPI4-Tx  
0000  
(16-Bit Mode)  
or  
1000  
(8-Bit Mode)  
Rx Mode:  
Moderate Power:  
Fast Rx to Tx through  
SPI command.  
Rx ADC = ON  
Tx DAC = ON  
Rx Bus = Enabled  
Tx Mode:  
Moderate Power:  
Fast Tx to Rx through  
SPI command.  
Rx ADC = ON  
Tx DAC = ON  
Tx Bus = Enabled  
X = Don’t care.  
In ENABLE-16 mode, the aux-DACs have independent  
control bits E4, E5, and E6, and bit E9 enables the aux-  
ADC. Table 7 shows the auxiliary DAC enable codes  
and Table 8 shows the auxiliary ADC enable codes. Bits  
E11 and E10 are reserved. Program bits E11 and E10 to  
logic-low.  
Table 7. Aux-DAC Enable Table  
(ENABLE-16 Mode)  
E6 E5  
E4  
AUX-DAC3  
AUX-DAC2  
AUX-DAC1  
ON  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
ON  
ON  
1
ON  
ON  
OFF  
Modes aux-DAC1, aux-DAC2, and aux-DAC3 select  
the aux-DAC channels named DAC1, DAC2, and  
DAC3 and hold the data inputs for each DAC. Bits  
_D11–_D0 are the data inputs for each aux-DAC and  
can be programmed through SPI. The MAX19707 also  
includes two 6-bit registers that can be programmed to  
adjust the offsets for the Tx DAC I and Q channels  
independently (see Table 9). Use the COMSEL mode  
to select the output common-mode voltage with bits  
CM1 and CM0 (see Table 10). Use Aux-ADC mode to  
start the auxiliary ADC conversion (see the 10-Bit,  
333ksps Auxiliary ADC section for details). Use  
ENABLE-8 mode for faster enable and switching  
between shutdown, idle, and standby states as well as  
switching between FAST, SLOW, and Rx and Tx modes.  
0
ON  
OFF  
ON  
1
ON  
OFF  
OFF  
0
OFF  
ON  
ON  
1
OFF  
ON  
OFF  
0
OFF  
OFF  
ON  
1
OFF  
OFF  
OFF  
Table 8. Aux-ADC Enable Table  
(ENABLE-16 Mode)  
E9  
0 (Default)  
1
SELECTION  
Aux-ADC is Powered ON  
Aux-ADC is Powered OFF  
______________________________________________________________________________________ 23  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 9. Offset Control Bits for I and Q Channels (IOFFSET or QOFFSET Mode)  
BITS IO5–IO0 WHEN IN IOFFSET MODE, BITS QO5–QO0 WHEN IN QOFFSET MODE  
OFFSET 1 LSB =  
(VFS / 1023)  
P-P  
IO5/QO5  
IO4/QO4  
IO3/QO3  
IO2/QO2  
IO1/QO1  
IO0/QO0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
-31 LSB  
-30 LSB  
-29 LSB  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
1
0
-2 LSB  
-1 LSB  
0mV  
0mV (Default)  
1 LSB  
2 LSB  
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29 LSB  
30 LSB  
31 LSB  
Note: For transmit full-scale of 400mꢀV 1 LSB = ꢁ800mꢀ  
/ 1023) = 0.7820mꢀ.  
P-P  
Table 10. Common-Mode Select  
(COMSEL Mode)  
Rx ADC outputs are forced to tri-state. The wake-up  
time is 9.8µs to enter Rx mode and 6.4µs to enter Tx  
mode. When the Rx ADC outputs transition from tri-  
state to ON, the last converted word is placed on the  
digital outputs.  
CM1  
CM0  
Tx DAC OUTPUT COMMON MODE (V)  
0
0
1
1
0
1
0
1
1.05 (Default)  
0.95  
In standby mode, the reference is powered, but the rest  
of the device functions are off. The wake-up time from  
standby mode is 13.7µs to enter Rx mode and 24µs to  
enter Tx mode. When the Rx ADC outputs transition  
from tri-state to active, the last converted word is  
placed on the digital outputs.  
0.80  
0.70  
Shutdown mode offers the most dramatic power sav-  
ings by shutting down all the analog sections of the  
MAX19707 and placing the Rx ADC digital outputs in  
tri-state mode. When the Rx ADC outputs transition  
from tri-state to ON, the last converted word is placed  
on the digital outputs. The Tx DAC previously stored  
data is lost when coming out of shutdown mode. The  
wake-up time from shutdown mode is dominated by the  
time required to charge the capacitors at REFP, REFN,  
and COM. In internal reference mode and buffered  
external reference mode, the wake-up time is typically  
85.2µs to enter Rx mode and 28.2µs to enter Tx mode.  
FAST and SLOW Rx and Tx Modes  
In addition to the external Tx-Rx control, the MAX19707  
also features SLOW and FAST modes for switching  
between Rx and Tx operation. In FAST Tx mode, the Rx  
ADC core is powered on but the ADC core digital out-  
puts are tri-stated on the D0–D9 bus; likewise, in FAST  
Rx mode, the transmit DAC core is powered on but the  
DAC core digital inputs are tri-stated on the D0–D9 bus.  
The switching time between Tx to Rx or Rx to Tx is FAST  
because the converters are on and do not have to  
recover from a power-down state. In FAST mode, the  
switching time between Rx to Tx and Tx to Rx is 0.5µs.  
In idle mode, the reference and clock distribution cir-  
cuits are powered, but all other functions are off. The  
24 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
However, power consumption is higher in this mode  
mode, use the T/R input (pin 27) to switch between Rx  
and Tx modes. Using the T/R pin provides faster switch-  
ing between Rx and Tx modes. To override the external  
Tx-Rx control, program the MAX19707 through the serial  
interface. During SHDN, IDLE, or STBY modes, the T/R  
input is overridden. To restore external Tx-Rx control,  
program bit E3 low and exit the SHDN, IDLE, or STBY  
modes through the serial interface.  
because both the Tx and Rx cores are always on. To  
prevent bus contention in these states, the Rx ADC out-  
put buffers are tri-stated during Tx and the Tx DAC  
input bus is tri-stated during Rx.  
In SLOW mode, the Rx ADC core is off during Tx; like-  
wise the Tx DAC and filters are turned off during Rx to  
yield lower power consumption in these modes. For  
example, the power in SLOW Tx mode is 49.5mW. The  
power consumption during Rx is 77.1mW compared to  
84.6mW power consumption in FAST mode. However,  
the recovery time between states is increased. The  
switching time in SLOW mode between Rx to Tx is 7µs  
and Tx to Rx is 4.1µs.  
SPI Timing  
The serial digital interface is a standard 3-wire connec-  
tion compatible with SPI/QSPI™/MICROWIRE/DSP inter-  
faces. Set CS low to enable the serial data loading at  
DIN or output at DOUT. Following a CS high-to-low tran-  
sition, data is shifted synchronously, most significant bit  
first, on the rising edge of the serial clock (SCLK). After  
16 bits are loaded into the serial input register, data is  
transferred to the latch when CS transitions high. CS  
must transition high for a minimum of 80ns before the  
next write sequence. The SCLK can idle either high or  
low between transitions. Figure 6 shows the detailed  
timing diagram of the 3-wire serial interface.  
External T/R Switching Control vs.  
Serial-Interface Control  
Bit E3 in the ENABLE-16 or ENABLE-8 register deter-  
mines whether the device Tx-Rx mode is controlled  
externally through the T/R input (E3 = low) or through the  
SPI command (E3 = high). By default, the MAX19707 is  
in the external Tx-Rx control mode. In the external control  
QSPI is a trademark of Motorola, Inc.  
16-BIT OR 8-BIT WRITE INTO SPI (DIN)  
16-BIT OR 8-BIT WRITE  
INTO SPI DURING  
10-BIT READ OUT OF AUX-ADC (DOUT) WITH  
SIMULTANEOUS 16-BIT WRITE INTO SPI (DIN)  
AUX-ADC CONVERSION  
t
CSS  
t
CP  
t
CS  
CS  
t
CSW  
t
CONV  
t
CL  
t
t
CHZ  
DCS  
t
CSD  
t
CH  
t
DS  
SCLK  
t
CD  
t
DH  
MSB  
BIT D11  
(DIN)  
MSB  
D11 (16-BIT)  
D3 (8-BIT)  
LSB  
BIT A0  
(DIN)  
D10 (16-BIT)  
D2 (8-BIT)  
LSB  
A0  
BIT D10  
(DIN)  
BIT D1  
(DIN)  
DIN  
MSB  
LSB  
AUX-ADC  
IS BUSY  
DOUT  
TRI-  
STATED  
BIT AD0  
CLEARED  
LSB  
MSB  
BIT D9  
(DOUT)  
LSB  
BIT D0  
(HELD)  
DOUT = TRI-STATED WHEN  
AUX-ADC IS IDLE  
DOUT = ACTIVE WHEN  
BIT AD0 IS SET  
DOUT  
BIT D0  
AUX-ADC  
DATA READY  
(DOUT)  
Figure 6. Serial-Interface Timing Diagram  
______________________________________________________________________________________ 25  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
the rising and falling edges of the external clock, use a  
Mode-Recovery Timing  
clock with low jitter and fast rise and fall times (< 2ns).  
Specifically, sampling occurs on the rising edge of the  
clock signal, requiring this edge to provide the lowest  
possible jitter. Any significant clock jitter limits the SNR  
performance of the on-chip Rx ADC as follows:  
Figure 7 shows the mode-recovery timing diagram.  
WAKE  
t
is the wakeup time when exiting shutdown, idle,  
or standby mode and entering Rx or Tx mode. t  
ENABLE  
is the recovery time when switching between either Rx  
or Tx mode. t or t is the time for the Rx ADC  
WAKE  
ENABLE  
to settle within 1dB of specified SINAD performance and  
Tx DAC settling to 10 LSB error. t and t  
times are measured after either the 16-bit serial com-  
mand is latched into the MAX19707 by a CS transition  
high (SPI controlled) or a T/R logic transition (external  
Tx-Rx control). In FAST mode, the recovery time is 0.5µs  
to switch between Tx or Rx modes.  
WAKE  
ENABLE  
1
SNR = 20 × log  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the clock jitter.  
Clock jitter is especially critical for undersampling  
applications. Consider the clock input as an analog  
input and route away from any analog input or other  
digital signal lines. The MAX19707 clock input operates  
System Clock Input (CLK)  
Both the Rx ADC and Tx DAC share the CLK input. The  
CLK input accepts a CMOS-compatible signal level set  
with an OV  
/ 2 voltage threshold and accepts a 50%  
by OV  
from 1.8V to V . Since the interstage con-  
DD  
DD  
DD  
15% duty cycle.  
version of the device depends on the repeatability of  
CS  
SCLK  
DIN  
16-BIT SERIAL DATA INPUT  
ADC DIGITAL OUTPUT  
SINAD SETTLES WITHIN 1dB  
D0–D9  
ID/QD  
t
TO Rx MODE OR t  
,
ENABLE RX  
WAKE, SD, ST_  
DAC ANALOG OUTPUT  
OUTPUT SETTLES TO 10 LSB ERROR  
t
TO Tx MODE OR t  
,
ENABLE TX  
WAKE, SD, ST_  
t
,
EXTERNAL T/R CONTROL  
ENABLE TX  
T/R  
Rx - > Tx  
t
,
EXTERNAL T/R CONTROL  
ENABLE RX  
T/R  
Tx - > Rx  
Figure 7. Mode-Recovery Timing Diagram  
26 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
determines the internal reference of the auxiliary ADC  
(see Table 12). Bits AD2 and AD3 determine the auxil-  
iary ADC input source (see Table 13). Bits AD4, AD5,  
and AD6 select the number of averages taken when a  
single start-convert command is given. The conversion  
time increases as the number of averages increases  
(see Table 14). The conversion clock can be divided  
down from the system clock by properly setting bits  
AD7, AD8, and AD9 (see Table 15). The aux-ADC out-  
put data can be written out of DOUT by setting bit  
AD10 high (see Table 16).  
12-Bit Auxiliary Control DACs  
The MAX19707 includes three 12-bit aux-DACs (DAC1,  
DAC2, DAC3) with 1µs settling time for controlling VGA,  
AGC, and AFC functions. The aux-DAC output range is  
0.1V to 2.56V. During power-up, the VGA and AGC out-  
puts (DAC2 and DAC3) are at zero. The AFC DAC  
(DAC1) is at 1.1V during power-up. The aux-DACs can  
be independently controlled through the SPI bus,  
except during SHDN mode where the aux-DACs are  
turned off completely and the output voltage is set to  
zero. In STBY and IDLE modes, the aux-DACs maintain  
the last value. On wakeup from SHDN, the aux-DACs  
resume the last values.  
The aux-ADC features a 4:1 input multiplexer to allow  
measurements on four input sources. The input sources  
are selected by AD3 and AD2 (see Table 13). Two of  
the multiplexer inputs (ADC1 and ADC2) can be con-  
nected to external sources such as an RF power detec-  
tor like the MAX2208 or temperature sensor like the  
MAX6613. The other two multiplexer inputs are internal  
Loading on the aux-DAC outputs should be carefully  
observed to achieve specified settling time and stabili-  
ty. The capacitive load must be kept to a maximum of  
5pF including package and trace capacitance. The  
resistive load must be greater than 200k. If capacitive  
loading exceeds 5pF, then add a 10kresistor in  
series with the output. Adding the series resistor helps  
drive larger load capacitance (< 15pF) at the expense  
of slower settling time.  
connections to V  
and OV  
that monitor the power-  
DD  
DD  
supply voltages. The internal V  
and OV  
connec-  
DD  
DD  
tions are made through integrated resistor-dividers that  
yield V / 2 and OV / 2 measurement results. The  
DD  
DD  
aux-ADC voltage reference can be selected between  
10-Bit, 333ksps Auxiliary ADC  
The MAX19707 integrates a 10-bit, 333ksps aux-ADC  
with an input 4:1 multiplexer. In the aux-ADC mode reg-  
ister, setting bit AD0 begins a conversion with the auxil-  
iary ADC. Bit AD0 automatically clears when the  
conversion is complete. Setting or clearing AD0 during  
a conversion has no effect (see Table 11). Bit AD1  
an internal 2.048V bandgap reference or V (see  
DD  
Table 12). The V  
reference selection is provided to  
DD  
allow measurement of an external voltage source with a  
full-scale range extending beyond the 2.048V level. The  
input source voltage range cannot extend above V  
.
DD  
Table 13. Auxiliary ADC Input Source  
Table 11. Auxiliary ADC Convert  
AD0  
SELECTION  
AD3  
AD2  
AUX-ADC INPUT SOURCE  
0
1
Aux-ADC Idle (Default)  
Aux-ADC Start-Convert  
0
0
1
1
0
1
0
1
ADC1 (Default)  
ADC2  
V
/ 2  
DD  
OV  
/ 2  
DD  
Table 12. Auxiliary ADC Reference  
AD1  
SELECTION  
0
1
Internal 2.048V Reference (Default)  
Internal V  
Reference  
DD  
______________________________________________________________________________________ 27  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
The conversion requires 12 clock edges (1 for input  
Table 14. Auxiliary ADC Averaging  
sampling, 1 for each of the 10 bits, and 1 at the end for  
loading into the serial output register) to complete one  
conversion cycle (when no averaging is being done).  
Each conversion of an average (when averaging is set  
greater than 1) requires 12 clock edges. The conver-  
sion clock is generated from the system clock input  
(CLK). An SPI-programmable divider divides the sys-  
tem clock by the appropriate divisor (set with bits AD7,  
AD8, and AD9; see Table 15) and provides the conver-  
sion clock to the auxiliary ADC. The auxiliary ADC has a  
maximum conversion rate of 333ksps. The maximum  
conversion clock frequency is 4MHz (333ksps x 12  
clocks). Choose the proper divider value to keep the  
conversion clock frequency under 4MHz, based upon  
the system CLK frequency supplied to the MAX19707  
AD6  
AD5  
AD4  
AUX-ADC AVERAGING  
1 Conversion (No Averaging) (Default)  
Average of 2 Conversions  
Average of 4 Conversions  
Average of 8 Conversions  
Average of 16 Conversions  
Average of 32 Conversions  
Average of 32 Conversions  
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
X
X = Don’t care.  
Table 15. Auxiliary ADC Clock (CLK)  
Divider  
(see Table 15). The total conversion time (t  
) of the  
CONV  
auxiliary ADC can be calculated as t  
= (12 x  
CONV  
N
x N  
) / f  
; where N  
is the number of  
AVG  
DIV  
CLK  
AVG  
AD9  
0
AD8  
0
AD7  
0
AUX-ADC CONVERSION CLOCK  
CLK Divided by 1 (Default)  
CLK Divided by 2  
averages (see Table 14), N  
is the CLK divisor (see  
DIV  
Table 15), and f  
is the system CLK frequency.  
CLK  
0
0
1
DOUT is normally in a tri-state condition. Upon setting  
the auxiliary ADC start conversion bit (bit AD0), DOUT  
becomes active and goes high, indicating that the aux-  
ADC is busy. When the conversion cycle is complete  
(including averaging), the data is placed into an output  
register and DOUT goes low, indicating that the output  
data is ready to be driven onto DOUT. When bit AD10 is  
set (AD10 = 1), the aux-ADC enters a data output mode  
where data is available on DOUT upon the next asser-  
tion low of CS. The auxiliary ADC data is shifted out of  
DOUT (MSB first) with the data transitioning on the  
falling edge of the serial clock (SCLK). DOUT enters tri-  
state condition when CS is deasserted high. When bit  
AD10 is cleared (AD10 = 0), the aux-ADC data is not  
available on DOUT (see Table 16).  
0
1
0
CLK Divided by 4  
0
1
1
CLK Divided by 8  
1
0
0
CLK Divided by 16  
1
0
1
CLK Divided by 32  
1
1
0
CLK Divided by 64  
1
1
1
CLK Divided by 128  
Table 16. Auxiliary ADC Data Output  
Mode  
AD10  
SELECTION  
0
Aux-ADC Data is Not Available on DOUT (Default)  
DIN can be written independent of DOUT state. A 16-  
bit instruction at DIN updates the device configuration.  
To prevent modifying internal registers while reading  
data from DOUT, hold DIN at a high state. This effec-  
tively writes all ones into address 1111. Since address  
1111 does not exist, no internal registers are affected.  
Aux-ADC Enters Data Output Mode Where  
Data is Available on DOUT  
1
28 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Table 17. Reference Modes  
V
REFIN  
REFERENCE MODE  
Internal Reference Mode. V  
with a 0.33µF capacitor.  
is internally generated to be 0.512V. Bypass REFP, REFN, and COM each  
REF  
> 0.8V x V  
DD  
Buffered External Reference Mode. An external 1.024V 10% reference voltage is applied to REFIN. V  
is  
REF  
1.024V 10%  
internally generated to be V  
/ 2. Bypass REFP, REFN, and COM each with a 0.33µF capacitor. Bypass  
REFIN  
REFIN to GND with a 0.1µF capacitor.  
Reference Configurations  
25Ω  
The MAX19707 features an internal precision 1.024V  
bandgap reference that is stable over the entire power-  
supply and temperature ranges. The REFIN input pro-  
vides two modes of reference operation. The voltage at  
IAP  
0.1µF  
22pF  
V
IN  
REFIN (V  
) sets the reference operation mode  
REFIN  
(Table 17).  
COM  
0.33µF  
0.1µF  
In internal reference mode, connect REFIN to V  
REF  
REFP, and REFN are low-impedance outputs with  
.
DD  
V
is an internally generated 0.512V 4%. COM,  
IAN  
V
V
= V  
= V  
/ 2, V  
/ 2 - V  
= V  
/ 2 + V  
/ 2, and  
REF  
COM  
REFN  
DD  
DD  
REFP  
DD  
25Ω  
25Ω  
22pF  
22pF  
/ 2. Bypass REFP, REFN, and  
REF  
MAX19707  
COM each with a 0.33µF capacitor. Bypass REFIN to  
GND with a 0.1µF capacitor.  
QAP  
In buffered external reference mode, apply 1.024V  
10% at REFIN. In this mode, COM, REFP, and REFN  
0.1µF  
V
IN  
are low-impedance outputs with V  
= V  
/ 2,  
COM  
REFN  
DD  
V
V
= V  
/ 2 + V / 4, and V  
REFIN  
= V  
/ 2 -  
REFP  
REFIN  
DD  
DD  
/ 4. Bypass REFP, REFN, and COM each with a  
0.33µF  
0.1µF  
0.33µF capacitor. Bypass REFIN to GND with a 0.1µF  
capacitor. In this mode, the Tx DAC full-scale output is  
proportional to the external reference. For example, if  
QAN  
the V  
is increased by 10% (max), the Tx DAC full-  
REFIN  
25Ω  
22pF  
scale output is also increased by 10% or 440mV.  
Applications Information  
Using Balun Transformer AC-Coupling  
An RF transformer (Figure 8) provides an excellent  
solution to convert a single-ended signal source to a  
fully differential signal for optimum ADC performance.  
Connecting the center tap of the transformer to COM  
Figure 8. Balun Transformer-Coupled Single-Ended-to-  
Differential Input Drive for Rx ADC  
especially for high input frequencies. In differential  
mode, even-order harmonics are lower as both inputs  
(IAP, IAN, QAP, QAN) are balanced, and each of the  
Rx ADC inputs only requires half the signal swing com-  
pared to single-ended mode. Figure 9 shows an RF  
transformer converting the MAX19707 Tx DAC differen-  
tial analog outputs to single-ended.  
provides a V  
/ 2 DC level shift to the input. A 1:1  
DD  
transformer can be used, or a step-up transformer can  
be selected to reduce the drive requirements. In gener-  
al, the MAX19707 provides better SFDR and THD with  
fully differential input signals than single-ended signals,  
______________________________________________________________________________________ 29  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Using Op-Amp Coupling  
Drive the MAX19707 Rx ADC with op amps when a  
balun transformer is not available. Figures 10 and 11  
show the Rx ADC being driven by op amps for AC-cou-  
pled single-ended and DC-coupled differential applica-  
tions. Amplifiers such as the MAX4454 and MAX4354  
provide high speed, high bandwidth, low noise, and  
low distortion to maintain the input signal integrity. The  
op-amp circuit shown in Figure 11 can also be used to  
interface with the Tx DAC differential analog outputs to  
provide gain or buffering. The Tx DAC differential ana-  
log outputs cannot be used in single-ended mode  
because of the internally generated common-mode  
level. Also, the Tx DAC analog outputs are designed to  
drive a differential input stage with input impedance  
70k. If single-ended outputs are desired, use an  
amplifier to provide differential-to-single-ended conver-  
sion and select an amplifier with proper input common-  
mode voltage range.  
IDP  
V
OUT  
MAX19707  
IDN  
QDP  
V
OUT  
QDN  
Figure 9. Balun Transformer-Coupled Differential-to-Single-  
Ended Output Drive for Tx DAC  
TDD Mode  
The MAX19707 is optimized to operate in TDD applica-  
tions. When FAST mode is selected, the MAX19707 can  
switch between Tx and Rx modes through the T/R pin  
in typically 0.5µs. The Rx ADC and Tx DAC operate  
independently. The Rx ADC and Tx DAC digital bus are  
shared forming a single 10-bit parallel bus. Using the 3-  
wire serial interface or external T/R pin, select between  
Rx mode to enable the Rx ADC or Tx mode to enable  
the Tx DAC. When operating in Rx mode, the Tx DAC  
bus is not enabled and in Tx mode the Rx ADC bus is  
tri-stated, eliminating any unwanted spurious emissions  
and preventing bus contention. In TDD mode, the  
REFP  
1kΩ  
1kΩ  
R
50Ω  
ISO  
V
IN  
0.1µF  
IAP  
C
22pF  
IN  
100Ω  
100Ω  
COM  
IAN  
REFN  
0.1µF  
R
ISO  
50Ω  
MAX19707 uses 84.6mW power at f  
= 45MHz.  
CLK  
C
IN  
22pF  
TDD Application  
Figure 12 illustrates a typical TDD application circuit.  
The MAX19707 interfaces directly with the radio front-  
ends to provide a complete “RF-to-Bits” solution for  
TDD applications such as 802.11, 802.16, DSRC, and  
proprietary radio systems. The MAX19707 provides  
several system benefits to digital baseband developers.  
REFP  
MAX19707  
R
50Ω  
1kΩ  
ISO  
V
IN  
0.1µF  
QAP  
C
IN  
Fast Time-to-Market  
22pF  
100Ω  
100Ω  
1kΩ  
High-Performance, Low-Power Analog Functions  
Low Risk, Proven Analog Front-End Solution  
No Mixed-Signal Test Times  
No NRE Charges  
REFN  
0.1µF  
R
ISO  
50Ω  
QAN  
C
IN  
No IP Royalty Charges  
22pF  
Enables Digital Baseband to Scale with 65nm to  
90nm CMOS  
Figure 10. Single-Ended Drive for Rx ADC  
30 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
R4  
R5  
600Ω  
600Ω  
R
22Ω  
ISO  
R1  
600Ω  
IAN  
C
IN  
5pF  
R2  
600Ω  
MAX19707  
R6  
R7  
600Ω  
600Ω  
COM  
R3  
600Ω  
R8  
600Ω  
R9  
600Ω  
R
ISO  
22Ω  
IAP  
C
IN  
5pF  
R10  
R11  
600Ω  
600Ω  
Figure 11. Rx ADC DC-Coupled Differential Drive  
10-BIT ADC  
Rx-I  
802.11X  
Rx  
ENCODE  
T/R  
Rx-Q  
HALF-  
DUPLEX  
BUS  
D9  
D0  
ZIF  
10-BIT DAC  
Tx-I  
TRANSCEIVER  
CLK  
Tx  
SOURCE  
DIGITAL  
BASEBAND  
ASIC  
Tx-Q  
AGC  
SCLK  
DIN  
12-BIT DAC  
DAC3  
SYSTEM  
CONTROL  
CLK DIST  
SPI REG  
CS  
SHDN  
DAC2  
DAC1  
0V  
TCXO  
REFIN  
REFP  
REFN  
REF  
1.024V  
BUFFER  
MAX19707  
V
DD  
DD  
COM  
BATTERY VOLTAGE MONITOR  
TEMPERATURE MEASURE  
ADC  
10-BIT, 333ksps  
DOUT  
4:1 MUX  
Figure 12. Typical Application Circuit for 802.11 Radio  
______________________________________________________________________________________ 31  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
input lines to each respective converter to minimize  
channel-to-channel crosstalk. Keep all signal lines  
short and free of 90ꢀ turns.  
Grounding, Bypassing, and  
Board Layout  
The MAX19707 requires high-speed board layout  
design techniques. Refer to the MAX19707 EV kit data  
sheet for a board layout reference. Place all bypass  
capacitors as close to the device as possible, prefer-  
ably on the same side of the board as the device, using  
surface-mount devices for minimum inductance.  
Dynamic Parameter Definitions  
ADC and DAC Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the device are measured using  
the best-straight-line fit (DAC Figure 13a).  
Bypass V  
to GND with a 0.1µF ceramic capacitor in  
DD  
parallel with a 2.2µF capacitor. Bypass OV  
to OGND  
DD  
with a 0.1µF ceramic capacitor in parallel with a 2.2µF  
capacitor. Bypass REFP, REFN, and COM each to  
GND with a 0.33µF ceramic capacitor. Bypass REFIN  
to GND with a 0.1µF capacitor.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes (ADC) and a monotonic transfer function  
(ADC and DAC) (DAC Figure 13b).  
Multilayer boards with separated ground and power  
planes yield the highest level of signal integrity. Use a  
split ground plane arranged to match the physical loca-  
tion of the analog ground (GND) and the digital output-  
driver ground (OGND) on the device package.  
Connect the MAX19707 exposed backside paddle to  
GND plane. Join the two ground planes at a single  
point so the noisy digital ground currents do not inter-  
fere with the analog ground plane. The ideal location  
for this connection can be determined experimentally  
at a point along the gap between the two ground  
planes. Make this connection with a low-value, surface-  
mount resistor (1to 5), a ferrite bead, or a direct  
short. Alternatively, all ground pins could share the  
same ground plane, if the ground plane is sufficiently  
isolated from any noisy digital system’s ground plane  
(e.g., downstream output buffer or DSP ground plane).  
ADC Offset Error  
Ideally, the midscale transition occurs at 0.5 LSB above  
midscale. The offset error is the amount of deviation  
between the measured transition point and the ideal  
transition point.  
DAC Offset Error  
Offset error (Figure 13a) is the difference between the  
ideal and actual offset point. The offset point is the out-  
put value when the digital input is midscale. This error  
affects all codes by the same amount and usually can  
be compensated by trimming.  
Route high-speed digital signal traces away from sensi-  
tive analog traces. Make sure to isolate the analog  
7
6
6
1 LSB  
5
4
5
DIFFERENTIAL LINEARITY  
ERROR (-0.25 LSB)  
4
AT STEP  
011 (0.5 LSB)  
3
2
3
2
1
0
1 LSB  
DIFFERENTIAL  
LINEARITY ERROR (+0.25 LSB)  
AT STEP  
1
0
001 (0.25 LSB)  
000  
001  
010  
011  
100  
101  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 13b. Differential Nonlinearity  
Figure 13a. Integral Nonlinearity  
32 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
ADC Gain Error  
Ideally, the ADC full-scale transition occurs at 1.5 LSB  
below full scale. The gain error is the amount of devia-  
tion between the measured transition point and the  
ideal transition point with the offset error removed.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise. RMS noise includes all spectral  
components to the Nyquist frequency excluding the  
fundamental and the DC offset.  
ADC Dynamic Parameter Definitions  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
Aperture Jitter  
Figure 14 shows the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
ENOB = (SINAD - 1.76) / 6.02  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 14).  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first five  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error) and results directly  
from the ADC’s resolution (N bits):  
2
2
2
3
2
2
5
2
6
(V +V +V +V +V )  
4
THD = 20×log  
V
1
SNR(max) = 6.02 x N + 1.76  
where V is the fundamental amplitude and V –V are  
1
2
6
the amplitudes of the 2nd- through 6th-order harmonics.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
Third Harmonic Distortion (HD3)  
HD3 is defined as the ratio of the RMS value of the third  
harmonic component to the fundamental input signal.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset.  
CLK  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
ANALOG  
INPUT  
relative to the total input power when two tones, f and f ,  
1
2
are present at the inputs. The intermodulation products  
are (f f ), (2 f ), (2 f ), (2 f f ), (2 f f ).  
1
2
1
2
1
2
2
1
t
AD  
The individual input tone levels are at -7dBFS.  
t
AJ  
SAMPLED  
DATA (T/H)  
3rd-Order Intermodulation (IM3)  
IM3 is the power of the worst 3rd-order intermodulation  
product relative to the input power of either input tone  
when two tones, f and f , are present at the inputs. The  
1
2
HOLD  
TRACK  
TRACK  
T/H  
3rd-order intermodulation products are (2 x f f ), (2 ✕  
1
2
f
2
f ). The individual input tone levels are at -7dBFS.  
1
Figure 14. T/H Aperture Timing  
______________________________________________________________________________________ 33  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Power-Supply Rejection  
Power-supply rejection is defined as the shift in offset  
and gain error when the power supply is changed 5%.  
DAC Dynamic Parameter Definitions  
Total Harmonic Distortion  
THD is the ratio of the RMS sum of the output harmonics  
up to the Nyquist frequency divided by the fundamental:  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in so that the signal’s slew rate does not limit the  
ADC’s performance. The input frequency is then swept  
up to the point where the amplitude of the digitized  
conversion result has decreased by 3dB. Note that the  
T/H performance is usually the limiting factor for the  
small-signal input bandwidth.  
(V2 +V2 +...+V2)  
2
3
n
THD = 20×log  
V
1
where V is the fundamental amplitude and V through  
1
2
V are the amplitudes of the 2nd through nth harmonic  
n
up to the Nyquist frequency.  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as the full-  
power bandwidth frequency.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component up to the Nyquist frequency excluding DC.  
Selector Guide  
SAMPLING RATE  
PART  
DESCRIPTION  
(Msps)  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Integrated TD-SCDMA  
Filters, Three 12-Bit Auxiliary DACs  
MAX19700  
7.5  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Integrated TD-SCDMA  
Filters, Three 12-Bit Auxiliary DACs, 10-Bit Auxiliary ADC with 4:1  
Input Mux  
MAX19708  
11  
Dual 10-Bit Rx ADC, Dual 10-Bit Tx DAC, Three 12-Bit Auxiliary  
DACs, 10-Bit Auxiliary ADC with 4:1 Input Mux  
MAX19705/MAX19706/MAX19707  
7.5/22/45  
34 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Functional Diagram  
V
DD  
= 2.7V TO 3.3V  
OV = 1.8V TO 3.3V  
DD  
IAP  
IAN  
10-BIT  
ADC  
MAX19707  
SHDN  
T/R  
QAP  
QAN  
10-BIT  
ADC  
D0–D9  
HALF-  
DUPLEX  
BUS  
IDP  
IDN  
10-BIT  
DAC  
QDP  
QDN  
10-BIT  
DAC  
SYSTEM  
CLOCK  
CLK  
PROGRAMMABLE  
OFFSET/CM  
SERIAL  
INTERFACE  
AND SYSTEM  
CONTROL  
DIN  
SCLK  
CS  
12-BIT  
DAC  
DAC1  
DAC2  
DAC3  
12-BIT  
DAC  
REFIN  
REFP  
REFN  
COM  
1.024V  
REFERENCE  
BUFFER  
12-BIT  
DAC  
V
DD  
0V  
DD  
ADC1  
ADC2  
10-BIT  
ADC  
DOUT  
4:1 MUX  
GND  
OGND  
______________________________________________________________________________________ 35  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
E
DETAIL A  
(NE-1) X  
e
E/2  
k
e
e
D/2  
C
(ND-1) X  
D
D2  
L
D2/2  
b
L
E2/2  
C
L
k
E2  
C
C
L
L
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
F
21-0144  
2
36 ______________________________________________________________________________________  
10-Bit, 45Msps, Ultra-Low-Power  
Analog Front-End  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
F
21-0144  
2
Revision History  
Pages changed at Rev 1: 1, 4, 6, 7, 10–15, 17, 33, 35,  
36, 37  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 37  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Springer  

相关型号:

MAX19705

10-Bit, 45Msps, Ultra-Low-Power Analog Front-End
MAXIM

MAX19705ETM

SPECIALTY TELECOM CIRCUIT, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48
ROCHESTER

MAX19705ETM+GH7

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220, TQFN-48
MAXIM

MAX19705ETM+T

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-48
MAXIM

MAX19705ETM+TGH7

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-48
MAXIM

MAX19706

10-Bit, 45Msps, Ultra-Low-Power Analog Front-End
MAXIM

MAX19706ETM+

暂无描述
MAXIM

MAX19706ETM+T

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-48
MAXIM

MAX19706ETM-T

Telecom Circuit, 1-Func, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48
MAXIM

MAX19707

10-Bit, 45Msps, Ultra-Low-Power Analog Front-End
MAXIM

MAX19707ETM

10-Bit, 45Msps, Ultra-Low-Power Analog Front-End
MAXIM

MAX19707ETM+

10-Bit, 45Msps, Ultra-Low-Power Analog Front-End
MAXIM