MAX1908|MAX8724 [MAXIM]

Low-Cost Multichemistry Battery Chargers ; 低成本,多种电池充电器\n
MAX1908|MAX8724
型号: MAX1908|MAX8724
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost Multichemistry Battery Chargers
低成本,多种电池充电器\n

电池
文件: 总27页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2764; Rev 1; 1/04  
Low-Cost Multichemistry Battery Chargers  
General Description  
Features  
The MAX1908/MAX8724 highly integrated, multichemistry  
battery-charger control ICs simplify the construction of  
accurate and efficient chargers. These devices use ana-  
log inputs to control charge current and voltage, and can  
be programmed by the host or hardwired. The MAX1908/  
MAX8724 achieve high efficiency using a buck topology  
with synchronous rectification.  
±0.5% Output Voltage Accuracy Using Internal  
Reference (0°C to +85°C)  
±4% Accurate Input Current Limiting  
±5% Accurate Charge Current  
Analog Inputs Control Charge Current and  
Charge Voltage  
The MAX1908/MAX8724 feature input current limiting.  
This feature reduces battery charge current when the  
input current limit is reached to avoid overloading the AC  
adapter when supplying the load and the battery charger  
simultaneously. The MAX1908/MAX8724 provide outputs  
to monitor current drawn from the AC adapter (DC input  
source), battery-charging current, and the presence of  
an AC adapter. The MAX1908’s conditioning charge fea-  
ture provides 300mA to safely charge deeply discharged  
lithium-ion (Li+) battery packs.  
Outputs for Monitoring  
Current Drawn from AC Adapter  
Charging Current  
AC Adapter Presence  
Up to 17.6V Battery-Voltage Set Point  
Maximum 28V Input Voltage  
>95% Efficiency  
The MAX1908 includes a conditioning charge feature  
while the MAX8724 does not.  
Shutdown Control Input  
Charges Any Battery Chemistry  
The MAX1908/MAX8724 charge two to four series Li+  
cells, providing more than 5A, and are available in a  
space-saving 28-pin thin QFN package (5mm × 5mm).  
An evaluation kit is available to speed designs.  
Li+, NiCd, NiMH, Lead Acid, etc.  
Applications  
Ordering Information  
Notebook and Subnotebook Computers  
PART  
MAX1908ETI  
MAX8724ETI  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN  
28 Thin QFN  
Personal Digital Assistants  
Hand-Held Terminals  
Minimum Operating Circuit  
AC ADAPTER  
INPUT  
TO EXTERNAL  
LOAD  
0.01  
Pin Configuration  
CSSP  
DCIN  
CSSN  
CELLS  
TOP VIEW  
LDO  
REFIN  
VCTL  
ICTL  
ACIN  
ACOK  
SHDN  
ICHG  
IINP  
28 27 26 25 24 23 22  
BST  
LDO  
DLOV  
DCIN  
LDO  
CLS  
REF  
1
2
3
4
5
6
7
21 DLO  
20 PGND  
19 CSIP  
18 CSIN  
17 CELLS  
16 BATT  
15 VCTL  
MAX1908  
MAX8724  
DHI  
LX  
FROM HOST µP  
MAX1908  
MAX8724  
DLO  
PGND  
10µH  
CCS  
CCI  
CSIP  
CCV  
CCV  
CCI  
0.015Ω  
CSIN  
BATT  
CCS  
BATT+  
8
9
10 11 12 13 14  
REF  
CLS  
GND  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Cost Multichemistry Battery Chargers  
ABSOLUTE MAXIMUM RATINGS  
DCIN, CSSP, CSSN, ACOK to GND.......................-0.3V to +30V  
BST to GND............................................................-0.3V to +36V  
BST to LX..................................................................-0.3V to +6V  
LDO, SHDN to GND .................................................-0.3V to +6V  
DLOV to LDO.........................................................-0.3V to +0.3V  
DLO to PGND .........................................-0.3V to (V  
+ 0.3V)  
DLOV  
DHI to LX...................................................-0.3V to (V  
+ 0.3V)  
LDO Short-Circuit Current...................................................50mA  
BST  
LX to GND .................................................................-6V to +30V  
BATT, CSIP, CSIN to GND .....................................-0.3V to +20V  
CSIP to CSIN or CSSP to CSSN or PGND  
to GND...............................................................-0.3V to +0.3V  
CCI, CCS, CCV, DLO, ICHG,  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin Thin QFN (5mm × 5mm)  
(derate 20.8mW/°C above +70°C) .........................1666.7mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IINP, ACIN, REF to GND...........................-0.3V to (V  
DLOV, VCTL, ICTL, REFIN, CELLS, CLS,  
+ 0.3V)  
LDO  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REFIN  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHARGE VOLTAGE REGULATION  
V
V
V
V
= V  
= V  
= V  
(2, 3, or 4 cells)  
-0.5  
-0.5  
-0.5  
4.0  
+0.5  
+0.5  
+0.5  
4.2  
VCTL  
VCTL  
VCTL  
VCTL  
REFIN  
Battery Regulation Voltage  
Accuracy  
/ 20 (2, 3, or 4 cells)  
%
REFIN  
(2, 3, or 4 cells)  
LDO  
VCTL Default Threshold  
REFIN Range  
rising  
4.1  
V
V
V
(Note 1)  
2.5  
3.6  
REFIN Undervoltage Lockout  
V
falling  
1.20  
1.92  
REFIN  
CHARGE CURRENT REGULATION  
CSIP-to-CSIN Full-Scale Current-  
Sense Voltage  
V
= V  
71.25  
75  
78.75  
mV  
%
ICTL  
REFIN  
V
V
V
V
= V  
= V  
= V  
-5  
-5  
+5  
+5  
+6  
4.2  
ICTL  
ICTL  
ICTL  
ICTL  
REFIN  
REFIN  
LDO  
Charging Current Accuracy  
ICTL Default Threshold  
x 0.6  
-6  
rising  
4.0  
4.1  
V
V
BATT/CSIP/CSIN Input Voltage  
Range  
0
19  
V
= 0 or V  
= 0 or SHDN = 0  
ICTL  
1
DCIN  
CSIP/CSIN Input Current  
µA  
A
Charging  
400  
6.8  
650  
Cycle-by-Cycle Maximum Current  
Limit  
I
RS2 = 0.015  
6.0  
7.5  
MAX  
ICTL Power-Down Mode  
Threshold Voltage  
REFIN / REFIN / REFIN /  
V
rising  
V
ICTL  
100  
55  
33  
+1  
+1  
V
V
= V  
= 0 or 3V  
-1  
VCTL  
DCIN  
ICTL  
ICTL, VCTL Input Bias Current  
µA  
= 0, V  
= V  
= V = 5V  
REFIN  
-1  
VCTL  
ICTL  
2
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REFIN  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 3V  
REFIN  
MIN  
-1  
TYP  
MAX  
+1  
UNITS  
µA  
V
V
V
V
V
V
V
V
= 5V, V  
= 5V  
DCIN  
REFIN Input Bias Current  
ICHG Transconductance  
-1  
+1  
REFIN  
G
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
= 45mV  
= 75mV  
= 45mV  
= 5mV  
2.7  
-6  
3
3.3  
+6  
µA/mV  
ICHG  
CSIP  
CSIP  
CSIP  
CSIP  
CSIP  
CSIP  
ICHG Accuracy  
-5  
+5  
%
-40  
350  
3.5  
+40  
ICHG Output Current  
= 150mV, V  
= 0  
µA  
V
ICHG  
ICHG Output Voltage  
= 150mV, ICHG = float  
INPUT CURRENT REGULATION  
CSSP-to-CSSN Full-Scale  
Current-Sense Voltage  
72  
75  
78  
mV  
%
V
V
= V  
= V  
-4  
+4  
CLS  
CLS  
REF  
Input Current-Limit Accuracy  
/ 2  
-7.5  
+7.5  
REF  
CSSP, CSSN Input Voltage  
Range  
8
28  
V
V
V
= 0  
0.1  
1
DCIN  
CSSP  
CSSP, CSSN Input Current  
µA  
= V  
= V  
> 8V  
DCIN  
350  
600  
REF  
+1  
CSSN  
CLS Input Range  
1.6  
-1  
V
CLS Input Bias Current  
IINP Transconductance  
V
V
V
V
V
V
= 2V  
µA  
CLS  
G
- V  
CSSN  
- V  
CSSN  
- V  
CSSN  
- V  
CSSN  
- V  
CSSN  
= 75mV  
= 75mV  
= 37.5mV  
2.7  
-5  
3
3.3  
+5  
µA/mV  
IINP  
CSSP  
CSSP  
CSSP  
CSSP  
CSSP  
IINP Accuracy  
%
-7.5  
350  
3.5  
+7.5  
IINP Output Current  
= 150mV, V  
= 0  
µA  
V
IINP  
IINP Output Voltage  
= 150mV,V  
= float  
IINP  
SUPPLY AND LDO REGULATOR  
DCIN Input Voltage Range  
V
8
7
28  
V
V
DCIN  
V
V
falling  
rising  
7.4  
7.5  
3.2  
DCIN  
DCIN  
DCIN Undervoltage-Lockout Trip  
Point  
7.85  
6
DCIN Quiescent Current  
I
I
8.0V < V  
< 28V  
DCIN  
mA  
µA  
DCIN  
V
V
= 19V, V  
= 0  
1
BATT  
BATT  
DCIN  
BATT Input Current  
BATT  
= 2V to 19V, V  
= 19.3V  
200  
5.4  
34  
500  
5.55  
100  
DCIN  
LDO Output Voltage  
LDO Load Regulation  
8V < V  
< 28V, no load  
5.25  
3.20  
V
DCIN  
0 < I  
< 10mA  
mV  
LDO  
LDO Undervoltage-Lockout Trip  
Point  
V
= 8V  
4
5.15  
V
V
DCIN  
REFERENCE  
REF Output Voltage  
0 < I  
< 500µA  
4.072  
4.096  
4.120  
REF  
_______________________________________________________________________________________  
3
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REFIN  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REF Undervoltage-Lockout Trip  
Point  
V
V
falling  
3.1  
3.9  
V
REF  
TRIP POINTS  
BATT Power-Fail Threshold  
falling, referred to V  
50  
100  
200  
150  
mV  
mV  
DCIN  
CSIN  
BATT Power-Fail Threshold  
Hysteresis  
ACIN Threshold  
ACIN rising  
0.5% of REF  
2.007  
-1  
2.048  
20  
2.089  
+1  
V
ACIN Threshold Hysteresis  
ACIN Input Bias Current  
SWITCHING REGULATOR  
mV  
µA  
V
= 2.048V  
ACIN  
V
V
= 16V, V  
= 19V,  
BATT  
DCIN  
DHI Off-Time  
0.36  
0.4  
0.44  
0.33  
µs  
µs  
= V  
CELLS  
REFIN  
V
V
= 16V, V  
= 17V,  
BATT  
DCIN  
DHI Minimum Off-Time  
0.24  
2.5  
0.28  
= V  
CELLS  
REFIN  
DHI Maximum On-Time  
DLOV Supply Current  
BST Supply Current  
5
5
6
7.5  
10  
15  
ms  
µA  
µA  
I
DLO low  
DHI high  
DLOV  
I
BST  
V
V
= 0, V  
= 24.5V,  
DCIN  
BATT  
BST  
BST Input Quiescent Current  
0.3  
1
µA  
= V = 20V  
LX  
LX Input Bias Current  
V
V
= 28V, V  
= V = 20V  
150  
0.3  
500  
1
µA  
µA  
%
DCIN  
DCIN  
BATT  
LX  
LX Input Quiescent Current  
DHI Maximum Duty Cycle  
= 0, V  
= V = 20V  
BATT LX  
99  
99.9  
Minimum Discontinuous-Mode  
Ripple Current  
0.5  
A
Battery Undervoltage Charge  
Current  
V
= 3V per cell (RS2 = 15m),  
BATT  
150  
300  
450  
mA  
MAX1908 only, V  
rising  
BATT  
CELLS = GND, MAX1908 only, V  
rising  
rising  
6.1  
6.2  
9.3  
12.4  
4
6.3  
9.45  
12.6  
7
BATT  
Battery Undervoltage Current  
Threshold  
V
CELLS = float, MAX1908 only, V  
CELLS = V  
9.15  
12.2  
BATT  
, MAX1908 only, V  
rising  
BATT  
REFIN  
DHI On-Resistance High  
DHI On-Resistance Low  
DLO On-Resistance High  
DLO On-Resistance Low  
ERROR AMPLIFIERS  
V
V
V
V
- V = 4.5V, I  
= +100mA  
= -100mA  
BST  
LX  
DHI  
DHI  
- V = 4.5V, I  
LX  
1
3.5  
7
BST  
= 4.5V, I  
= +100mA  
= -100mA  
4
DLOV  
DLOV  
DLO  
DLO  
= 4.5V, I  
1
3.5  
V
= V  
, V = 16.8V,  
REFIN  
VCTL  
LDO BATT  
GMV Amplifier Transconductance  
GMI Amplifier Transconductance  
GMV  
GMI  
0.0625  
0.5  
0.125 0.2500 µA/mV  
2.0 µA/mV  
CELLS = V  
V
= V  
, V  
- V = 75mV  
CSIN  
1
ICTL  
REFIN CSIP  
4
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = float, CLS =  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REFIN  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
GMS Amplifier Transconductance  
CCI, CCS, CCV Clamp Voltage  
LOGIC LEVELS  
SYMBOL  
CONDITIONS  
, V - V = 75mV  
MIN  
0.5  
TYP  
1
MAX  
2.0  
UNITS  
µA/mV  
mV  
GMS  
V
= V  
CLS  
REF CSSP  
CSSN  
0.25V < V  
< 2V  
150  
300  
600  
CCV,CCS,CCI  
CELLS Input Low Voltage  
0.4  
V
V
(V  
/ 2) -  
0.2V  
(V  
REFIN  
REFIN  
/ 2) +  
0.2V  
V
REFIN  
/ 2  
CELLS Input Float Voltage  
CELLS = float  
V
REFIN  
CELLS Input High Voltage  
V
- 0.4V  
CELLS Input Bias Current  
ACOK AND SHDN  
CELLS = 0 or V  
-2  
+2  
28  
µA  
REFIN  
ACOK Input Voltage Range  
ACOK Sink Current  
0
1
V
mA  
µA  
V
V
V
= 0.4V, V  
= 3V  
= 0  
ACOK  
ACOK  
ACIN  
ACOK Leakage Current  
SHDN Input Voltage Range  
= 28V, V  
1
ACIN  
0
LDO  
+1  
V
V
= 0 or V  
-1  
-1  
SHDN  
LDO  
SHDN Input Bias Current  
SHDN Threshold  
µA  
= 0, V  
= 5V  
SHDN  
+1  
DCIN  
% of  
V
falling  
22  
23.5  
1
25  
SHDN  
V
REFIN  
% of  
SHDN Threshold Hysteresis  
V
REFIN  
_______________________________________________________________________________________  
5
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHARGE VOLTAGE REGULATION  
V
V
V
= V  
= V  
= V  
(2, 3, or 4 cells)  
-0.6  
-0.6  
-0.6  
2.5  
+0.6  
+0.6  
+0.6  
3.6  
VCTL  
VCTL  
VCTL  
REFIN  
Battery Regulation Voltage  
Accuracy  
/ 20 (2, 3, or 4 cells)  
%
REFIN  
(2, 3, or 4 cells)  
LDO  
REFIN Range  
(Note 1)  
V
V
REFIN Undervoltage Lockout  
V
falling  
1.92  
REFIN  
CHARGE CURRENT REGULATION  
CSIP-to-CSIN Full-Scale Current-  
Sense Voltage  
V
= V  
70.5  
79.5  
mV  
%
ICTL  
REFIN  
V
V
V
= V  
= V  
= V  
-6  
+6  
ICTL  
ICTL  
ICTL  
REFIN  
REFIN  
LDO  
Charging Current Accuracy  
× 0.6  
-7.5  
-7.5  
+7.5  
+7.5  
BATT/CSIP/CSIN Input Voltage  
Range  
0
19  
V
µA  
A
V
= 0 or V  
= 0 or SHDN = 0  
ICTL  
1
DCIN  
CSIP/CSIN Input Current  
Charging  
650  
Cycle-by-Cycle Maximum Current  
Limit  
I
RS2 = 0.015Ω  
6.0  
7.5  
MAX  
ICTL Power-Down Mode  
Threshold Voltage  
REFIN /  
100  
REFIN /  
33  
V
rising  
V
ICTL  
ICHG Transconductance  
G
V
V
V
V
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
- V  
CSIN  
= 45mV  
= 75mV  
= 45mV  
= 5mV  
2.7  
-7.5  
-7.5  
-40  
3.3  
+7.5  
+7.5  
+40  
µA/mV  
ICHG  
CSIP  
CSIP  
CSIP  
CSIP  
ICHG Accuracy  
%
INPUT CURRENT REGULATION  
CSSP-to-CSSN Full-Scale  
Current-Sense Voltage  
71.25  
78.75  
mV  
%
V
V
= V  
= V  
-5  
+5  
CLS  
CLS  
REF  
Input Current-Limit Accuracy  
/ 2  
-7.5  
+7.5  
REF  
CSSP, CSSN Input Voltage  
Range  
8
28  
V
V
V
= 0  
1
DCIN  
CSSP  
CSSP, CSSN Input Current  
µA  
= V  
= V  
> 8V  
DCIN  
600  
REF  
3.3  
CSSN  
CLS Input Range  
1.6  
2.7  
V
IINP Transconductance  
G
V
V
V
- V  
CSSN  
- V  
CSSN  
- V  
CSSN  
= 75mV  
= 75mV  
= 37.5mV  
µA/mV  
IINP  
CSSP  
CSSP  
CSSP  
-7.5  
-7.5  
+7.5  
+7.5  
IINP Accuracy  
%
6
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY AND LDO REGULATOR  
DCIN Input Voltage Range  
DCIN Quiescent Current  
V
8
28  
6
V
DCIN  
I
8V < V  
< 28V  
mA  
DCIN  
DCIN  
V
V
= 19V, V  
= 0  
1
BATT  
BATT  
DCIN  
BATT Input Current  
I
µA  
BATT  
= 2V to 19V, V  
= 19.3V  
500  
5.55  
100  
DCIN  
LDO Output Voltage  
LDO Load Regulation  
REFERENCE  
8V < V  
< 28V, no load  
5.25  
V
DCIN  
0 < I  
< 10mA  
mV  
LDO  
REF Output Voltage  
TRIP POINTS  
0 < I  
< 500µA  
4.065  
4.120  
V
REF  
BATT Power-Fail Threshold  
ACIN Threshold  
V
V
falling, referred to V  
rising  
50  
150  
mV  
V
DCIN  
ACIN  
CSIN  
2.007  
2.089  
SWITCHING REGULATOR  
V
V
= 16V, V  
= 19V,  
BATT  
DCIN  
DHI Off-Time  
0.35  
0.24  
0.45  
µs  
µs  
= V  
CELLS  
REFIN  
V
V
= 16V, V  
= 17V,  
BATT  
DCIN  
DHI Minimum Off-Time  
0.33  
7.5  
= V  
CELLS  
REFIN  
DHI Maximum On-Time  
2.5  
99  
ms  
%
DHI Maximum Duty Cycle  
Battery Undervoltage Charge  
Current  
V
= 3V per cell (RS2 = 15m),  
BATT  
150  
450  
mA  
MAX1908 only, V  
rising  
BATT  
CELLS = GND, MAX1908 only, V  
rising  
rising  
6.09  
9.12  
6.30  
9.45  
12.6  
7
BATT  
Battery Undervoltage Current  
Threshold  
CELLS = float, MAX1908 only, V  
CELLS = V  
V
BATT  
, MAX1908 only, V  
rising 12.18  
BATT  
REFIN  
DHI On-Resistance High  
DHI On-Resistance Low  
DLO On-Resistance High  
DLO On-Resistance Low  
ERROR AMPLIFIERS  
V
V
V
V
- V = 4.5V, I  
= +100mA  
= -100mA  
BST  
LX  
DHI  
DHI  
- V = 4.5V, I  
LX  
3.5  
7
BST  
= 4.5V, I  
= +100mA  
= -100mA  
DLOV  
DLOV  
DLO  
DLO  
= 4.5V, I  
3.5  
V
= V  
, V = 16.8V,  
VCTL  
LDO BATT  
GMV Amplifier Transconductance  
GMV  
0.0625  
0.250  
µA/mV  
CELLS = V  
REFIN  
GMI Amplifier Transconductance  
GMS Amplifier Transconductance  
CCI, CCS, CCV Clamp Voltage  
LOGIC LEVELS  
GMI  
V
V
= V  
, V  
- V = 75mV  
CSIN  
0.5  
0.5  
150  
2.0  
2.0  
600  
µA/mV  
µA/mV  
mV  
ICTL  
CLS  
REFIN CSIP  
GMS  
= V  
, V  
- V  
CSSN  
= 75mV  
REF CSSP  
0.25V < V  
< 2V  
CCV,CCS,CCI  
CELLS Input Low Voltage  
0.4  
V
_______________________________________________________________________________________  
7
Low-Cost Multichemistry Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DCIN  
= V  
BST  
= V  
= 18V, V  
= V  
= V  
= 12V, V  
= 3V, V  
= V  
= 0.75 x V  
, CELLS = FLOAT, CLS =  
REFIN  
CSSP  
CSSN  
BATT  
CSIP  
CSIN  
REFIN  
VCTL  
ICTL  
REF, V  
- V = 4.5V, ACIN = GND = PGND = 0, C  
= 1µF, LDO = DLOV, C  
= 1µF; CCI, CCS, and CCV are compensated  
LX  
LDO  
REF  
per Figure 1a; T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
(V  
/ 2) -  
0.2V  
TYP  
MAX  
UNITS  
(V  
REFIN  
/ 2) +  
0.2V  
REFIN  
CELLS Input Float Voltage  
CELLS = float  
V
V
REFIN  
CELLS Input High Voltage  
V
- 0.4V  
ACOK AND SHDN  
ACOK Input Voltage Range  
ACOK Sink Current  
0
1
0
28  
V
mA  
V
V
V
= 0.4V, V  
falling  
= 3V  
ACIN  
A COK  
S HDN  
SHDN Input Voltage Range  
LDO  
25  
% of  
REFIN  
SHDN Threshold  
22  
V
Note 1: If both ICTL and VCTL use default mode (connected to LDO), REFIN is not used and can be connected to LDO.  
Note 2: Specifications to -40°C are guaranteed by design and not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LOAD-TRANSIENT RESPONSE  
(STEP IN-LOAD CURRENT)  
LOAD-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
(STEP IN-LOAD CURRENT)  
(BATTERY INSERTION AND REMOVAL)  
MAX1908 toc01  
MAX1908 toc03  
MAX1908 toc02  
ADAPTER  
CURRENT  
5A/div  
LOAD  
CURRENT  
5A/div  
I
BATT  
2A/div  
LOAD  
CURRENT  
5A/div  
0
0
0
0
ADAPTER  
CURRENT  
5A/div  
0
V
BATT  
5V/div  
V_BATT  
2V/div  
16.8V  
CCV  
CCI  
CHARGE  
CURRENT  
2A/div  
CCI  
V_CCI  
500mV/div  
CCI  
V
CCS  
CCI 500mV/div  
V_CCS  
500mV/div  
V
CCV 500mV/div  
V_BATT  
2V/div  
CCS  
1ms/div  
1ms/div  
1ms/div  
ICTL = LDO  
ICTL = LDO  
ICTL = LDO  
CHARGING CURRENT = 3A  
V_BATT = 16.8V  
CHARGING CURRENT = 3A  
VBATT = 16.8V  
VCTL = LDO  
LOAD STEP = 0 TO 4A  
I_SOURCE LIMIT = 5A  
LOAD STEP = 0 TO 4A  
I_SOURCE LIMIT = 5A  
8
_______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
LINE-TRANSIENT RESPONSE  
LDO LOAD REGULATION  
LDO LINE REGULATION  
MAX1908 toc04  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
DCIN  
I
V
= 0  
LDO  
10V/div  
= 5.4V  
LDO  
V
BATT  
500mV/div  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
INDUCTOR  
CURRENT  
500mA/div  
V
LDO  
= 5.4V  
10ms/div  
0
1
2
3
4
5
6
7
8
9
10  
8
10 12 14 16 18 20 22 24 26 28  
(V)  
ICTL = LDO  
VCTL = LDO  
ICHARGE = 3A  
LDO CURRENT (mA)  
V
IN  
LINE STEP 18.5V TO 27.5V  
REF VOLTAGE LOAD REGULATION  
REF VOLTAGE ERROR vs. TEMPERATURE  
EFFICIENCY vs. CHARGE CURRENT  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
100  
90  
80  
V
BATT  
= 16V  
70  
60  
V
BATT  
= 12V  
50  
40  
V
BATT  
= 8V  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
REF CURRENT (µA)  
TEMPERATURE (°C)  
CHARGE CURRENT (A)  
FREQUENCY vs. V - V  
BATT VOLTAGE ERROR vs. VCTL  
OUTPUT V/I CHARACTERISTICS  
IN  
BATT  
0.5  
0.4  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2 CELLS  
3 CELLS  
3 CELLS  
0.3  
0.2  
4 CELLS  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
4 CELLS  
I
= 3A  
CHARGE  
4 CELLS  
REFIN = 3.3V  
NO LOAD  
VCTL = ICTL = LDO  
0
1.0  
0
2
4
6
8
10 12 14 16 18 20 22  
0
1
2
3
4
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VCTL/REFIN (%)  
(V - V ) (V)  
BATT CURRENT (A)  
IN  
BATT  
_______________________________________________________________________________________  
9
Low-Cost Multichemistry Battery Chargers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V  
= 20V, T = +25°C, unless otherwise noted.)  
A
DCIN  
ICHG ERROR vs. CHARGE CURRENT  
CURRENT SETTING ERROR vs. ICTL  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
V = 3.3V  
REFIN  
V
REFIN  
= 3.3V  
V
BATT  
= 16V  
V
V
= 12V  
= 8V  
BATT  
BATT  
-1  
0
0
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0.5  
1.0  
(V)  
1.5  
2.0  
I
V
BATT  
ICTL  
IINP ERROR vs. SYSTEM LOAD CURRENT  
IINP ERROR vs. INPUT CURRENT  
40  
30  
80  
60  
20  
40  
ERROR DUE TO SWITCHING NOISE  
I
= 0  
BATT  
10  
20  
0
0
-10  
-20  
-30  
-40  
-20  
-40  
-60  
-80  
SYSTEM LOAD = 0  
0
1
2
3
4
0
0.5  
1.0  
1.5  
2.0  
SYSTEM LOAD CURRENT (A)  
INPUT CURRENT (A)  
10 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Pin Description  
PIN  
1
NAME  
DCIN  
LDO  
CLS  
FUNCTION  
Charging Voltage Input. Bypass DCIN with a 1µF capacitor to PGND.  
2
Device Power Supply. Output of the 5.4V linear regulator supplied from DCIN. Bypass with a 1µF capacitor to GND.  
Source Current-Limit Input. Voltage input for setting the current limit of the input source.  
4.096V Voltage Reference. Bypass REF with a 1µF capacitor to GND.  
3
4
REF  
5
CCS  
CCI  
Input-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND.  
Output-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND.  
Voltage Regulation Loop-Compensation Point. Connect 1kin series with 0.1µF capacitor to GND.  
6
7
CCV  
Shutdown Control Input. Drive SHDN logic low to shut down the MAX1908/MAX8724. Use with a thermistor to  
detect a hot battery and suspend charging.  
8
9
SHDN  
Charge-Current Monitor Output. ICHG is a scaled-down replica of the charger output current. Use ICHG to  
monitor the charging current and detect when the chip changes from constant-current mode to constant-  
voltage mode. The transconductance of (CSIP - CSIN) to ICHG is 3µA/mV.  
ICHG  
ACIN  
10  
11  
12  
AC Detect Input. Input to an uncommitted comparator. ACIN can be used to detect AC-adapter presence.  
ACOK AC Detect Output. High-voltage open-drain output is high impedance when V  
is less than V  
/ 2.  
REF  
ACIN  
REFIN Reference Input. Allows the ICTL and VCTL inputs to have ratiometric ranges for increased accuracy.  
Output Current-Limit Set Input. ICTL input voltage range is V  
/ 32 to V  
. The device shuts down if  
REFIN  
REFIN  
13  
14  
15  
ICTL  
GND  
VCTL  
BATT  
ICTL is forced below V  
/ 100. When ICTL is equal to LDO, the set point for CSIP - CSIN is 45mV.  
REFIN  
Analog Ground  
Output-Voltage Limit Set Input. VCTL input voltage range is 0 to V  
point is (4.2 x CELLS) V.  
. When VCTL is equal to LDO, the set  
REFIN  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Battery Voltage Input  
CELLS Cell Count Input. Trilevel input for setting number of cells. GND = 2 cells, float = 3 cells, REFIN = 4 cells.  
CSIN  
CSIP  
Output Current-Sense Negative Input  
Output Current-Sense Positive Input. Connect a current-sense resistor from CSIP to CSIN.  
PGND Power Ground  
DLO  
DLOV  
LX  
Low-Side Power MOSFET Driver Output. Connect to low-side NMOS gate.  
Low-Side Driver Supply. Bypass DLOV with a 1µF capacitor to GND.  
High-Side Power MOSFET Driver Power-Return Connection. Connect to the source of the high-side NMOS.  
High-Side Power MOSFET Driver Power-Supply Connection. Connect a 0.1µF capacitor from LX to BST.  
High-Side Power MOSFET Driver Output. Connect to high-side NMOS gate.  
Input Current-Sense Negative Input  
BST  
DHI  
CSSN  
CSSP  
Input Current-Sense Positive Input. Connect a current-sense resistor from CSSP to CSSN.  
Input-Current Monitor Output. IINP is a scaled-down replica of the input current. IINP monitors the total  
system current. The transconductance of (CSSP - CSSN) to IINP is 3µA/mV.  
28  
IINP  
______________________________________________________________________________________ 11  
Low-Cost Multichemistry Battery Chargers  
Setting the Battery Regulation Voltage  
Detailed Description  
The MAX1908/MAX8724 use a high-accuracy voltage  
The MAX1908/MAX8724 include all the functions neces-  
regulator for charging voltage. The VCTL input adjusts  
the charger output voltage. VCTL control voltage can  
sary to charge Li+ batteries. A high-efficiency synchro-  
nous-rectified step-down DC-DC converter controls  
vary from 0 to V  
, providing a 10% adjustment  
REFIN  
charging voltage and current. The device also includes  
input source current limiting and analog inputs for set-  
ting the charge current and charge voltage. Control  
charge current and voltage using the ICTL and VCTL  
inputs, respectively. Both ICTL and VCTL are ratiometric  
with respect to REFIN, allowing compatibility with D/As  
or microcontrollers (µCs). Ratiometric ICTL and VCTL  
improve the accuracy of the charge current and voltage  
range on the V  
regulation voltage. By limiting the  
BATT  
adjust range to 10% of the regulation voltage, the exter-  
nal resistor mismatch error is reduced from 1% to  
0.05% of the regulation voltage. Therefore, an overall  
voltage accuracy of better than 0.7% is maintained  
while using 1% resistors. The per-cell battery termina-  
tion voltage is a function of the battery chemistry.  
Consult the battery manufacturer to determine this volt-  
age. Connect VCTL to LDO to select the internal default  
set point by matching V  
to the reference of the  
REFIN  
host. For standard applications, internal set points for  
ICTL and VCTL provide 3A charge current (with 0.015Ω  
sense resistor), and 4.2V (per cell) charge voltage.  
Connect ICTL and VCTL to LDO to select the internal set  
points. The MAX1908 safely conditions overdischarged  
cells with 300mA (with 0.015sense resistor) until the  
battery-pack voltage exceeds 3.1V × number of series-  
connected cells. The SHDN input allows shutdown from  
a microcontroller or thermistor.  
setting V  
= 4.2V × number of cells, or program the  
BATT  
battery voltage with the following equation:  
V
VCTL  
V
= CELLS × 4V + 0.4 ×  
BATT  
  
V
REFIN  
CELLS is the programming input for selecting cell count.  
Connect CELLS as shown in Table 1 to charge 2, 3, or 4  
Li+ cells. When charging other cell chemistries, use  
CELLS to select an output voltage range for the charger.  
The DC-DC converter uses external N-channel  
MOSFETs as the buck switch and synchronous rectifier  
to convert the input voltage to the required charging  
current and voltage. The Typical Application Circuit  
shown in Figure 1 uses a µC to control charging cur-  
rent, while Figure 2 shows a typical application with  
charging voltage and current fixed to specific values  
for the application. The voltage at ICTL and the value of  
RS2 set the charging current. The DC-DC converter  
generates the control signals for the external MOSFETs  
to regulate the voltage and the current set by the VCTL,  
ICTL, and CELLS inputs.  
The internal error amplifier (GMV) maintains voltage  
regulation (Figure 3). The voltage error amplifier is  
compensated at CCV. The component values shown in  
Figures 1 and 2 provide suitable performance for most  
applications. Individual compensation of the voltage reg-  
ulation and current-regulation loops allows for optimal  
compensation (see the Compensation section).  
Table 1. Cell-Count Programming  
The MAX1908/MAX8724 feature a voltage-regulation  
loop (CCV) and two current-regulation loops (CCI and  
CCS). The CCV voltage-regulation loop monitors BATT  
to ensure that its voltage does not exceed the voltage  
set by VCTL. The CCI battery current-regulation loop  
monitors current delivered to BATT to ensure that it  
does not exceed the current limit set by ICTL. A third  
loop (CCS) takes control and reduces the battery-  
charging current when the sum of the system load and  
the battery-charging input current exceeds the input  
current limit set by CLS.  
CELLS  
CELL COUNT  
GND  
2
3
4
Float  
V
REFIN  
12 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Typical Application Circuits  
RS1  
0.01  
TO EXTERNAL  
LOAD  
AC ADAPTER INPUT  
8.5V TO 28V  
D1  
C1  
2 × 10µF  
0.1µF  
0.1µF  
D2  
CSSP  
DCIN  
CSSN  
CELLS  
R6  
59kΩ  
1%  
(FLOAT-THREE CELLS SELECT)  
R7  
19.6kΩ  
1%  
C5  
1µF  
LDO  
C13  
R13  
1µF  
33Ω  
LDO  
VCTL  
D3  
BST  
D/A OUTPUT  
ICTL  
DLOV  
12.6V OUTPUT VOLTAGE  
C15  
0.1µF  
C16  
1µF  
V
CC  
REFIN  
R8  
1MΩ  
ACIN  
N1a  
DHI  
LX  
ACOK  
SHDN  
ICHG  
OUTPUT  
N1b  
DLO  
A/D INPUT  
MAX1908  
MAX8724  
L1  
PGND  
10µH  
A/D INPUT  
IINP  
CCV  
CSIP  
C14  
C20  
R10  
R9  
R5  
0.1µF  
0.1µF  
10kΩ  
20kΩ  
1kΩ  
RS2  
HOST  
0.015Ω  
C11  
0.1µF  
CSIN  
BATT  
GND  
CCI  
+
BATT  
CCS  
C9  
0.01µF  
C10  
0.01µF  
C4  
22µF  
REF  
CLS  
AVDD/REF  
R19, R20, R21  
10kΩ  
7.5A INPUT  
CURRENT LIMIT  
C12  
1µF  
SMART  
BATTERY  
SCL  
SDA  
SCL  
SDA  
A/D INPUT  
GND  
TEMP  
BATT-  
PGND  
GND  
Figure 1. µC-Controlled Typical Application Circuit  
______________________________________________________________________________________ 13  
Low-Cost Multichemistry Battery Chargers  
Typical Application Circuits (continued)  
AC ADAPTER  
INPUT  
8.5V TO 28V  
RS1  
0.01  
TO EXTERNAL  
LOAD  
P1  
R11  
15kΩ  
C1  
2 × 10µF  
0.01µF 0.01µF  
R12  
12kΩ  
REFIN (4 CELLS SELECT)  
CSSP  
ACOK  
CSSN  
D2  
R6  
59kΩ  
1%  
CELLS  
R7  
19.6kΩ  
1%  
DCIN  
LDO  
C5  
1µF  
LDO  
R14  
10.5kΩ  
1%  
VCTL  
LDO  
C13  
R13  
1µF  
33Ω  
D3  
REFIN  
BST  
R15  
8.25kΩ  
1%  
DLOV  
C15  
C16  
0.1µF  
1µF  
ICTL  
N1a  
16.8V OUTPUT VOLTAGE  
2.5A CHARGE LIMIT  
R16  
8.25kΩ  
1%  
DHI  
LX  
ACIN  
R19  
C12  
10kΩ  
1%  
1.5nF  
N1b  
FROM HOST µP  
(SHUTDOWN)  
N
DLO  
MAX1908  
MAX8724  
L1  
10µH  
SHDN  
PGND  
R20  
10kΩ  
1%  
ICHG  
IINP  
CSIP  
CCV  
R5  
1kΩ  
RS2  
0.015Ω  
C11  
0.1µF  
CSIN  
BATT  
GND  
CCI  
+
BATT  
CCS  
C9  
0.01µF  
C10  
0.01µF  
C4  
22µF  
BATTERY  
THM  
BATT-  
REF  
CLS  
C12  
1µF  
R17  
19.1kΩ  
1%  
PGND GND  
R18  
22kΩ  
1%  
4A INPUT CURRENT LIMIT  
Figure 2. Typical Application Circuit with Fixed Charging Parameters  
14 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Functional Diagram  
MAX1908  
MAX8724  
DCIN  
SHDN  
GND  
23.5%  
REFIN  
LDO  
RDY  
5.4V  
LINEAR  
REGULATOR  
4.096V  
REFERENCE  
REF  
LOGIC  
BLOCK  
GND  
1/55  
ICTL  
REFIN  
SRDY  
ACIN  
ACOK  
DCIN  
X
N
REF/2  
CCS  
CLS  
75mV  
REF  
IINP  
GM  
GM  
GMS  
CSSP  
CSSN  
LEVEL  
SHIFTER  
ICHG  
CSI  
CSIP  
CSIN  
LEVEL  
SHIFTER  
BST  
DHI  
LX  
GMI  
75mV  
REFIN  
LEVEL  
SHIFTER  
ICTL  
CCI  
X
DRIVER  
MAX1908 ONLY  
3.1V/CELL  
BATT  
BAT_UV  
LVC  
DC-DC  
LVC  
CONVERTER  
R1  
REFIN  
GMV  
CELL  
SELECT  
LOGIC  
CELLS  
DLOV  
DLO  
DRIVER  
CCV  
PGND  
400mV  
REFIN  
VCTL  
4V  
X
Figure 3. Functional Diagram  
______________________________________________________________________________________ 15  
Low-Cost Multichemistry Battery Chargers  
AC adapter voltage. An internal amplifier compares the  
voltage between CSSP and CSSN to the voltage at  
Setting the Charging-Current Limit  
The ICTL input sets the maximum charging current. The  
current is set by current-sense resistor RS2, connected  
between CSIP and CSIN. The full-scale differential  
voltage between CSIP and CSIN is 75mV; thus, for a  
0.015sense resistor, the maximum charging current  
is 5A. Battery-charging current is programmed with  
ICTL using the equation:  
CLS. V  
can be set by a resistive divider between  
CLS  
REF and GND. Connect CLS to REF for the full-scale  
input current limit.  
The input current is the sum of the device current, the  
charger input current, and the load current. The device  
current is minimal (3.8mA) in comparison to the charge  
and load currents. Determine the actual input current  
required as follows:  
V
0.075  
RS2  
ICTL  
I
=
×
CHG  
V
REFIN  
I
× V  
BATT  
CHG  
I
= I  
+
INPUT  
LOAD  
The input voltage range for ICTL is V  
/ 32 to  
REFIN  
V
× η  
IN  
V
V
. The device shuts down if ICTL is forced below  
REFIN  
REFIN  
where η is the efficiency of the DC-DC converter.  
determines the reference voltage of the GMS  
/ 100 (min).  
V
Connect ICTL to LDO to select the internal default full-  
scale charge-current sense voltage of 45mV. The  
charge current when ICTL = LDO is:  
CLS  
error amplifier. Sense resistor RS1 and V  
determine  
CLS  
the maximum allowable input current. Calculate the  
input current limit as follows:  
0.045V  
RS2  
I
=
V
0.075  
RS1  
CHG  
CLS  
I
=
×
INPUT  
V
REF  
Once the input current limit is reached, the charging  
current is reduced until the input current is at the  
desired threshold.  
where RS2 is 0.015, providing a charge-current set  
point of 3A.  
The current at the ICHG output is a scaled-down replica  
of the battery output current being sensed across CSIP  
and CSIN (see the Current Measurement section).  
When choosing the current-sense resistor, note that the  
voltage drop across this resistor causes further power  
loss, reducing efficiency. Choose the smallest value for  
RS1 that achieves the accuracy requirement for the  
input current-limit set point.  
When choosing the current-sense resistor, note that the  
voltage drop across this resistor causes further power  
loss, reducing efficiency. However, adjusting ICTL to  
reduce the voltage across the current-sense resistor  
can degrade accuracy due to the smaller signal to the  
input of the current-sense amplifier. The charging cur-  
rent-error amplifier (GMI) is compensated at CCI (see  
the Compensation section).  
Conditioning Charge  
The MAX1908 includes a battery voltage comparator  
that allows a conditioning charge of overdischarged  
Li+ battery packs. If the battery-pack voltage is less  
than 3.1V × number of cells programmed by CELLS,  
the MAX1908 charges the battery with 300mA current  
when using sense resistor RS2 = 0.015. After the  
battery voltage exceeds the conditioning charge  
threshold, the MAX1908 resumes full-charge mode,  
charging to the programmed voltage and current limits.  
The MAX8724 does not offer this feature.  
Setting the Input Current Limit  
The total input current (from an AC adapter or other DC  
source) is a function of the system supply current and  
the battery-charging current. The input current regulator  
limits the input current by reducing the charging  
current when the input current exceeds the input  
current-limit set point. System current normally  
fluctuates as portions of the system are powered up or  
down. Without input current regulation, the source must  
be able to supply the maximum system current and the  
maximum charger input current simultaneously. By  
using the input current limiter, the current capability of  
the AC adapter can be lowered, reducing system cost.  
AC Adapter Detection  
Connect the AC adapter voltage through a resistive  
divider to ACIN to detect when AC power is available,  
as shown in Figure 1. ACIN voltage rising trip point is  
V
REF  
/ 2 with 20mV hysteresis. ACOK is an open-drain  
output and is high impedance when ACIN is less than  
/ 2. Since ACOK can withstand 30V (max), ACOK  
V
REF  
can drive a P-channel MOSFET directly at the charger  
input, providing a lower dropout voltage than a  
Schottky diode (Figure 2).  
The MAX1908/MAX8724 limit the battery charge current  
when the input current-limit threshold is exceeded,  
ensuring the battery charger does not load down the  
16 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
CCV, CCI, CCS, and LVC Control Blocks  
The MAX1908/MAX8724 control input current (CCS  
control loop), charge current (CCI control loop), or  
charge voltage (CCV control loop), depending on the  
operating condition.  
Current Measurement  
Use ICHG to monitor the battery charging current being  
sensed across CSIP and CSIN. The ICHG voltage is  
proportional to the output current by the equation:  
V
= I  
x RS2 x G  
x R9  
ICHG  
CHG  
ICHG  
The three control loops, CCV, CCI, and CCS are brought  
together internally at the LVC amplifier (lowest voltage  
clamp). The output of the LVC amplifier is the feedback  
control signal for the DC-DC controller. The output of the  
where I  
is the battery charging current, G  
is  
CHG  
ICHG  
the transconductance of ICHG (3µA/mV typ), and R9 is  
the resistor connected between ICHG and ground.  
Leave ICHG unconnected if not used.  
G
amplifier that is the lowest sets the output of the LVC  
M
Use IINP to monitor the system input current being  
sensed across CSSP and CSSN. The voltage of IINP is  
proportional to the input current by the equation:  
amplifier and also clamps the other two control loops to  
within 0.3V above the control point. Clamping the other  
two control loops close to the lowest control loop ensures  
fast transition with minimal overshoot when switching  
between different control loops.  
V
= I  
x RS2 x G  
x R10  
IINP  
INPUT  
IINP  
where I  
is the DC current being supplied by the AC  
INPUT  
adapter power, G  
is the transconductance of IINP  
IINP  
DC-DC Controller  
The MAX1908/MAX8724 feature a variable off-time, cycle-  
by-cycle current-mode control scheme. Depending upon  
the conditions, the MAX1908/MAX8724 work in continu-  
ous or discontinuous-conduction mode.  
(3µA/mV typ), and R10 is the resistor connected between  
IINP and ground. ICHG and IINP have a 0 to 3.5V output  
voltage range. Leave IINP unconnected if not used.  
LDO Regulator  
LDO provides a 5.4V supply derived from DCIN and  
can deliver up to 10mA of load current. The MOSFET  
drivers are powered by DLOV and BST, which must be  
connected to LDO as shown in Figure 1. LDO supplies  
the 4.096V reference (REF) and most of the control cir-  
cuitry. Bypass LDO with a 1µF capacitor to GND.  
Continuous-Conduction Mode  
With sufficient charger loading, the MAX1908/MAX8724  
operate in continuous-conduction mode (inductor current  
never reaches zero) switching at 400kHz if the BATT  
voltage is within the following range:  
3.1V x (number of cells) < V  
< (0.88 x V  
)
DCIN  
BATT  
Shutdown  
The MAX1908/MAX8724 feature a low-power shutdown  
mode. Driving SHDN low shuts down the MAX1908/  
MAX8724. In shutdown, the DC-DC converter is dis-  
abled and CCI, CCS, and CCV are pulled to ground.  
The IINP and ACOK outputs continue to function.  
The operation of the DC-DC controller is controlled by  
the following four comparators as shown in Figure 4:  
IMIN—Compares the control point (LVC) against 0.15V  
(typ). If IMIN output is low, then a new cycle cannot  
begin.  
CCMP—Compares the control point (LVC) against the  
charging current (CSI). The high-side MOSFET on-time  
is terminated if the CCMP output is high.  
SHDN can be driven by a thermistor to allow automatic  
shutdown of the MAX1908/MAX8724 when the battery  
pack is hot. The shutdown falling threshold is 23.5%  
(typ) of V  
with 1% V  
hysteresis to provide  
REFIN  
REFIN  
IMAX—Compares the charging current (CSI) to 6A  
(RS2 = 0.015). The high-side MOSFET on-time is ter-  
minated if the IMAX output is high and a new cycle  
cannot begin until IMAX goes low.  
smooth shutdown when driven by a thermistor.  
DC-DC Converter  
The MAX1908/MAX8724 employ a buck regulator with  
a bootstrapped NMOS high-side switch and a low-side  
NMOS synchronous rectifier.  
ZCMP—Compares the charging current (CSI) to 33mA  
(RS2 = 0.015). If ZCMP output is high, then both  
MOSFETs are turned off.  
______________________________________________________________________________________ 17  
Low-Cost Multichemistry Battery Chargers  
DC-DC Functional Diagram  
5ms  
S
R
CSSP  
AC ADAPTER  
RESET  
1.8V  
BST  
CSS  
X20  
RS1  
LDO  
D3  
IMAX  
CCMP  
IMIN  
MAX1908  
MAX8724  
CSSN  
BST  
Q
N1a  
DHI  
LX  
R
S
Q
C
BST  
DHI  
CHG  
Q
L1  
0.15V  
0.1V  
N1b  
DLO  
DLO  
t
OFF  
GENERATOR  
CSIP  
ZCMP  
CSI  
X20  
RS2  
CSIN  
BATT  
GMS  
GMI  
LVC  
C
OUT  
BATTERY  
GMV  
SETV  
CONTROL SETI  
CELL  
SELECT  
LOGIC  
CLS  
CELLS  
CCS CCI  
CCV  
Figure 4. DC-DC Functional Diagram  
18 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
In normal operation, the controller starts a new cycle by  
turning on the high-side N-channel MOSFET and  
turning off the low-side N-channel MOSFET. When the  
charge current is greater than the control point (LVC),  
CCMP goes high and the off-time is started. The  
off-time turns off the high-side N-channel MOSFET and  
turns on the low-side N-channel MOSFET. The opera-  
tional frequency is governed by the off-time and is  
Discontinuous Conduction  
The MAX1908/MAX8724 enter discontinuous-conduction  
mode when the output of the LVC control point falls below  
0.15V. For RS2 = 0.015, this corresponds to 0.5A:  
0.15V  
20×RS2  
I
=
= 0.5A for RS2 = 0.015Ω  
MIN  
dependent upon V  
and V  
. The off-time is set  
BATT  
DCIN  
In discontinuous mode, a new cycle is not started until  
the LVC voltage rises above 0.15V. Discontinuous-  
mode operation can occur during conditioning charge  
of overdischarged battery packs, when the charge cur-  
rent has been reduced sufficiently by the CCS control  
loop, or when the battery pack is near full charge (con-  
stant voltage charging mode).  
by the following equations:  
V
V  
DCIN  
BATT  
t
= 2.5µs ×  
OFF  
t
V
DCIN  
L ×I  
RIPPLE  
V  
BATT  
=
ON  
MOSFET Drivers  
The low-side driver output DLO switches between  
PGND and DLOV. DLOV is usually connected through  
a filter to LDO. The high-side driver output DHI is boot-  
V
CSSN  
where:  
strapped off LX and switches between V and V  
.
BST  
LX  
V
× t  
OFF  
L
BATT  
I
=
When the low-side driver turns on, BST rises to one  
diode voltage below DLOV.  
RIPPLE  
Filter DLOV with a lowpass filter whose cutoff frequency  
is approximately 5kHz (Figure 1):  
1
+ t  
f =  
t
ON  
OFF  
1
1
f =  
=
= 4.8kHz  
C
2πRC 2π × 33×1µF  
These equations result in fixed-frequency operation  
over the most common operating conditions.  
Dropout Operation  
At the end of the fixed off-time, another cycle begins if  
the control point (LVC) is greater than 0.15V, IMIN =  
high, and the peak charge current is less than 6A (RS2  
= 0.015), IMAX = high. If the charge current exceeds  
The MAX1908/MAX8724 have 99% duty-cycle capability  
with a 5ms (max) on-time and 0.3µs (min) off-time. This  
allows the charger to achieve dropout performance limit-  
ed only by resistive losses in the DC-DC converter com-  
ponents (D1, N1, RS1, and RS2, Figure 1). Replacing  
diode D1 with a P-channel MOSFET driven by ACOK  
improves dropout performance (Figure 2). The dropout  
voltage is set by the difference between DCIN and CSIN.  
When the dropout voltage falls below 100mV, the charger  
is disabled; 200mV hysteresis ensures that the charger  
does not turn back on until the dropout voltage rises to  
300mV.  
I
, the on-time is terminated by the IMAX comparator.  
MAX  
IMAX governs the maximum cycle-by-cycle current limit  
and is internally set to 6A (RS2 = 0.015). IMAX pro-  
tects against sudden overcurrent faults.  
If during the off-time the inductor current goes to zero,  
ZCMP = high, both the high- and low-side MOSFETs  
are turned off until another cycle is ready to begin.  
There is a minimum 0.3µs off-time when the (V  
-
DCIN  
0.88 ×  
V
V
) differential becomes too small. If V  
BATT  
DCIN  
BATT  
Compensation  
Each of the three regulation loops—input current limit,  
charging current limit, and charging voltage limit—are  
compensated separately using CCS, CCI, and CCV,  
respectively.  
, then the threshold for minimum off-time is  
is fixed at 0.3µs. A maximum on-  
reached and the t  
OFF  
time of 5ms allows the controller to achieve >99% duty  
cycle in continuous-conduction mode. The switching  
frequency in this mode varies according to the equation:  
1
f =  
L ×I  
RIPPLE  
+ 0.3µs  
V
V  
(
)
CSSN  
BATT  
______________________________________________________________________________________ 19  
Low-Cost Multichemistry Battery Chargers  
where R varies with load according to R = V / I  
BATT CHG.  
L
L
Output zero due to output capacitor ESR:  
BATT  
1
f
=
GM  
OUT  
Z _ESR  
2πR  
× C  
OUT  
ESR  
The loop transfer function is given by:  
LTF = GM ×R ×GMV ×R ×  
OGMV  
R
R
L
ESR  
CCV  
OUT  
L
GMV  
C
OUT  
1+sC  
× R  
1+sC × R  
(
)(  
)
)
OUT  
ESR CV CV  
1+sC × R  
1+sC  
)(  
× R  
L
(
CV  
OGMV  
OUT  
R
CV  
R
OGMV  
REF  
Assuming the compensation pole is a very low  
frequency, and the output zero is a much higher fre-  
quency, the crossover frequency is given by:  
C
CV  
GMV × R  
× GM  
OUT  
CV  
f
=
CO_CV  
Figure 5. CCV Loop Diagram  
2πC  
OUT  
CCV Loop Definitions  
Compensation of the CCV loop depends on the para-  
meters and components shown in Figure 5. C and  
To calculate R and C values of the circuit of Figure 2:  
Cells = 4  
CV  
CV  
CV  
C
OUT  
= 22µF  
R
are the CCV loop compensation capacitor and  
CV  
V
I
= 16.8V  
= 2.5A  
BATT  
CHG  
series resistor. R  
(ESR) of the charger output capacitor (C  
equivalent charger output load, where R = V  
CHG  
is the equivalent series resistance  
ESR  
). R is the  
L
OUT  
/
BATT  
GMV = 0.125µA/mV  
L
I
. The equivalent output impedance of the GMV  
GM  
= 3.33A/V  
OUT  
amplifier, R  
10M. The voltage amplifier  
OGMV  
R
OGMV  
= 10MΩ  
transconductance, GMV = 0.125µA/mV. The DC-DC  
converter transconductance, GM = 3.33A/V:  
f = 400kHz  
OUT  
Choose crossover frequency to be 1/5th the  
MAX1908’s 400kHz switching frequency:  
1
GM  
=
OUT  
A
× RS2  
CSI  
GMV × R  
× GM  
OUT  
CV  
f
=
= 80kHz  
CO_CV  
2πC  
OUT  
where A  
= 20, and RS2 is the charging current-  
CSI  
sense resistor in the Typical Application Circuits.  
Solving yields R = 26k.  
CV  
The compensation pole is given by:  
Conservatively set R = 1k, which sets the crossover  
CV  
frequency at:  
1
f
=
P _CV  
f
= 3kHz  
2πR  
× C  
CV  
CO_CV  
OGMV  
Choose the output-capacitor ESR such that the output-  
capacitor zero is 10 times the crossover frequency:  
The compensation zero is given by:  
1
1
f
=
R
=
= 0.24Ω  
Z _CV  
ESR  
2πR  
× C  
CV  
2π ×10× f  
×C  
OUT  
CV  
CO_CV  
The output pole is given by:  
1
f
=
= 2.412MHz  
Z_ESR  
2πR  
×C  
1
ESR  
OUT  
f
=
P _OUT  
2πR × C  
L
OUT  
20 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
The 22µF ceramic capacitor has a typical ESR of  
CCI Loop Definitions  
0.003, which sets the output zero at 2.412MHz.  
Compensation of the CCI loop depends on the parame-  
ters and components shown in Figure 7. C is the CCI  
CI  
The output pole is set at:  
loop compensation capacitor. A  
is the internal gain  
CSI  
of the current-sense amplifier. RS2 is the charge cur-  
1
f
=
= 1.08kHz  
P _OUT  
rent-sense resistor, RS2 = 15m. R  
is the equiva-  
OGMI  
2πR × C  
L
OUT  
lent output impedance of the GMI amplifier 10M.  
GMI is the charge-current amplifier transconductance  
where:  
= 1µA/mV. GM  
is the DC-DC converter transcon-  
OUT  
ductance = 3.3A/V. The CCI loop is a single-pole sys-  
V  
I  
BATT  
CHG  
tem with a dominant pole compensation set by f  
:
R
=
= Battery ESR  
P_CI  
L
1
f
=
P _CI  
Set the compensation zero (f  
) such that it is equiv-  
Z_CV  
2πR  
× C  
CI  
OGMI  
alent to the output pole (f  
= 1.08kHz), effectively  
P_OUT  
producing a pole-zero cancellation and maintaining a  
single-pole system response:  
The loop transfer function is given by:  
R
1
OGMI  
LTF = GM  
× A ×RS2×GMI  
CSI  
f
=
OUT  
Z _CV  
1+sR  
×C  
2πR  
× C  
OGMI  
CI  
CV  
CV  
Since:  
1
C
=
=147nF  
1
CV  
2πR ×1.08kHz  
GM  
=
CV  
OUT  
A
× RS2  
CSI  
Choose C  
= 100nF, which sets the compensation  
CV  
The loop transfer function simplifies to:  
zero (f  
) at 1.6kHz. This sets the compensation pole:  
Z_CV  
1
R
OGMI  
f
=
= 0.16Hz  
LTF = GMI ×  
P _CV  
2πR  
× C  
CV  
1+sR  
×C  
OGMV  
OGMI  
CI  
CCV LOOP PHASE  
vs. FREQUENCY  
CCV LOOP GAIN  
vs. FREQUENCY  
80  
60  
-45  
-60  
40  
-75  
20  
-90  
0
-105  
-120  
-135  
-20  
-40  
-60  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. CCV Loop Gain/Phase vs. Frequency  
______________________________________________________________________________________ 21  
Low-Cost Multichemistry Battery Chargers  
To calculate the CCI loop compensation pole, C :  
CI  
GMI = 1µA/mV  
CSIP  
CSIN  
GM  
= 3.33A/V  
OUT  
GM  
OUT  
R
= 10MΩ  
OGMI  
RS2  
CSI  
f = 400kHz  
Choose crossover frequency f  
to be 1/5th the  
CI  
CO_  
MAX1908/MAX8724 switching frequency:  
GMI  
CCI  
C
f
=
= 80kHz  
CO_CI  
2πC  
GMI  
CI  
Solving for C , C = 2nF.  
CI CI  
R
OGMI  
CI  
ICTL  
To be conservative, set C = 10nF, which sets the  
CI  
crossover frequency at:  
GMI  
2π10nF  
f
=
= 16kHz  
Figure 7. CCI Loop Diagram  
CO_CI  
The crossover frequency is given by:  
GMI  
The compensation pole, f  
is set at:  
P_CI  
f
=
CO_CI  
GMI  
2πC  
CI  
f
=
= 0.0016Hz  
P_CI  
2πR  
×C  
CI  
OGMI  
The CCI loop dominant compensation pole:  
1
CCS Loop Definitions  
Compensation of the CCS loop depends on the parame-  
f
=
P _CI  
ters and components shown in Figure 9. C is the CCS  
CS  
2πR  
× C  
CI  
OGMI  
loop compensation capacitor. A  
is the internal gain of  
CSS  
the current-sense amplifier. RS1 is the input current-  
where the GMI amplifier output impedance, R  
10M.  
=
OGMI  
sense resistor, RS1 = 10m. R  
output impedance of the GMS amplifier 10M. GMS is  
is the equivalent  
OGMS  
CCI LOOP GAIN  
vs. FREQUENCY  
CCI LOOP PHASE  
vs. FREQUENCY  
100  
0
80  
60  
-15  
-30  
40  
-45  
20  
-60  
0
-75  
-20  
-40  
-60  
-90  
-105  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
Figure 8. CCI Loop Gain/Phase vs. Frequency  
22 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
the charge-current amplifier transconductance = 1µA/mV.  
GM is the DC-DC converter transconductance =  
IN  
3.3A/V. The CCS loop is a single-pole system with a dom-  
CSSP  
CSSN  
inant pole compensation set by f  
:
P_CS  
GM  
IN  
RS1  
CSS  
1
f
=
P _CS  
2πR  
× C  
CS  
OGMS  
The loop transfer function is given by:  
CCS  
C
R
OGMS  
LTF = GM × A  
×RS1×GMS×  
CSS  
GMS  
IN  
1+sR  
×C  
OGMS  
CS  
R
OGMS  
Since:  
CS  
CLS  
1
GM  
=
IN  
A
× RS1  
CSS  
Then, the loop transfer function simplifies to:  
Figure 9. CCS Loop Diagram  
R
OGMS  
The CCS loop dominant compensation pole:  
1
LTF = GMS×  
1+sR  
×C  
OGMS  
CS  
f
=
P _CS  
2πR  
× C  
CS  
OGMS  
The crossover frequency is given by:  
GMS  
where the GMS amplifier output impedance, R  
10M.  
=
OGMS  
f
=
CO_CS  
2πC  
CS  
To calculate the CCI loop compensation pole, C  
GMS = 1µA/mV  
:
CS  
GM = 3.33A/V  
IN  
R
OGMS  
= 10MΩ  
f = 400kHz  
CCS LOOP GAIN  
vs. FREQUENCY  
CCS LOOP PHASE  
vs. FREQUENCY  
100  
0
-15  
-30  
-45  
-60  
-75  
-90  
80  
60  
40  
20  
0
-20  
-40  
-60  
-105  
0.1  
0.1  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
1
10 100 1k  
FREQUENCY (Hz)  
10k 100k 1M  
Figure 10. CCS Loop Gain/Phase vs. Frequency  
______________________________________________________________________________________ 23  
Low-Cost Multichemistry Battery Chargers  
Choose crossover frequency f  
to be 1/5th the  
where:  
CO_CS  
MAX1908/MAX8724 switching frequency:  
t
= 2.5µs × (V  
– V ) / V  
BATT DCIN  
OFF  
DCIN  
V
< 0.88 × V  
BATT  
DCIN  
GMS  
f
=
= 80kHz  
CO_CS  
or:  
2πC  
CS  
t
= 0.3µs  
OFF  
Solving for C , C = 2nF.  
CS CS  
V
> 0.88 × V  
DCIN  
BATT  
To be conservative, set C  
crossover frequency at:  
= 10nF, which sets the  
CS  
Figure 11 illustrates the variation of ripple current vs.  
battery voltage when charging at 3A with a fixed input  
voltage of 19V.  
GMS  
2π10nF  
f
=
= 16kHz  
Higher inductor values decrease the ripple current.  
Smaller inductor values require higher saturation cur-  
rent capabilities and degrade efficiency. Designs for  
ripple current, I  
good balance between inductor size and efficiency.  
CO_CS  
The compensation pole, f  
is set at:  
P_CS  
= 0.3 × I  
usually result in a  
RIPPLE  
CHG  
1
f
=
= 0.0016Hz  
P_CS  
Input Capacitor  
Input capacitor C1 must be able to handle the input  
ripple current. At high charging currents, the DC-DC  
converter operates in continuous conduction. In this  
case, the ripple current of the input capacitor can be  
approximated by the following equation:  
2πR  
×C  
CS  
OGMS  
Component Selection  
Table 2 lists the recommended components and refers  
to the circuit of Figure 2. The following sections  
describe how to select these components.  
Inductor Selection  
Inductor L1 provides power to the battery while it is  
being charged. It must have a saturation current of at  
2
I
= I  
D D  
C1 CHG  
where:  
= input capacitor ripple current.  
least the charge current (I  
), plus 1/2 the current rip-  
CHG  
I
ple I  
:
C1  
RIPPLE  
D = DC-DC converter duty ratio.  
= battery-charging current.  
I
= I  
+ (1/2) I  
CHG RIPPLE  
SAT  
I
Ripple current varies according to the equation:  
CHG  
Input capacitor C1 must be sized to handle the maxi-  
mum ripple current that occurs during continuous con-  
duction. The maximum input ripple current occurs at  
50% duty cycle; thus, the worst-case input ripple cur-  
I
= (V  
) × t  
/ L  
RIPPLE  
BATT  
OFF  
RIPPLE CURRENT vs. V  
BATT  
rent is 0.5 × I  
. If the input-to-output voltage ratio is  
CHG  
1.5  
1.0  
0.5  
0
such that the DC-DC converter does not operate at a  
50% duty cycle, then the worst-case capacitor current  
occurs where the duty cycle is nearest 50%.  
3 CELLS  
4 CELLS  
The input capacitor ESR times the input ripple current  
sets the ripple voltage at the input, and should not  
exceed 0.5V ripple. Choose the ESR of C1 according to:  
0.5V  
ESR  
<
C1  
I
V
DCIN  
= 19V  
C1  
VCTL = ICTL = LDO  
The input capacitor size should allow minimal output  
voltage sag at the highest switching frequency:  
8
9
10 11 12 13 14 15 16 17 18  
(V)  
V
BATT  
I
dV  
dt  
C1  
2
= C1  
Figure 11. MAX1908 Ripple Current vs. Battery Voltage  
24 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
where dV is the maximum voltage sag of 0.5V while  
delivering energy to the inductor during the high-side  
MOSFET on-time, and dt is the period at highest oper-  
ating frequency (400kHz):  
the MOSFET. Choose N1b with either an internal  
Schottky diode or body diode capable of carrying the  
maximum charging current during the dead time. The  
Schottky diode D3 provides the supply current to the  
high-side MOSFET driver.  
I
2.5µs  
C1  
C1>  
×
Layout and Bypassing  
2
0.5V  
Bypass DCIN with a 1µF capacitor to power ground  
(Figure 1). D2 protects the MAX1908/MAX8724 when  
the DC power source input is reversed. A signal diode  
for D2 is adequate because DCIN only powers the  
MAX1908 internal circuitry. Bypass LDO, REF, CCV,  
CCI, CCS, ICHG, and IINP to analog ground. Bypass  
DLOV to power ground.  
Both tantalum and ceramic capacitors are suitable in  
most applications. For equivalent size and voltage  
rating, tantalum capacitors have higher capacitance,  
but also higher ESR than ceramic capacitors. This  
makes it more critical to consider ripple current and  
power-dissipation ratings when using tantalum capaci-  
tors. A single ceramic capacitor often can replace two  
tantalum capacitors in parallel.  
Good PC board layout is required to achieve specified  
noise, efficiency, and stable performance. The PC  
board layout artist must be given explicit instructions—  
preferably, a pencil sketch showing the placement of  
the power-switching components and high-current rout-  
ing. Refer to the PC board layout in the MAX1908 eval-  
uation kit for examples. Separate analog and power  
grounds are essential for optimum performance.  
Output Capacitor  
The output capacitor absorbs the inductor ripple cur-  
rent. The output capacitor impedance must be signifi-  
cantly less than that of the battery to ensure that it  
absorbs the ripple current. Both the capacitance and  
ESR rating of the capacitor are important for its effec-  
tiveness as a filter and to ensure stability of the DC-DC  
converter (see the Compensation section). Either tanta-  
lum or ceramic capacitors can be used for the output  
filter capacitor.  
Use the following step-by-step guide:  
1) Place the high-power connections first, with their  
grounds adjacent:  
MOSFETs and Diodes  
Schottky diode D1 provides power to the load when the  
AC adapter is inserted. This diode must be able to  
deliver the maximum current as set by RS1. For  
reduced power dissipation and improved dropout per-  
formance, replace D1 with a P-channel MOSFET (P1)  
as shown in Figure 2. Take caution not to exceed the  
a) Minimize the current-sense resistor trace lengths,  
and ensure accurate current sensing with Kelvin  
connections.  
b) Minimize ground trace lengths in the high-current  
paths.  
c) Minimize other trace lengths in the high-current  
paths.  
maximum V  
limit the V  
of P1. Choose resistors R11 and R12 to  
GS  
.
d) Use > 5mm wide traces.  
GS  
The N-channel MOSFETs (N1a, N1b) are the switching  
devices for the buck controller. High-side switch N1a  
should have a current rating of at least the maximum  
charge current plus one-half the ripple current and  
e) Connect C1 to high-side MOSFET (10mm max  
length).  
f) LX node (MOSFETs, inductor (15mm max  
length)).  
have an on-resistance (R  
) that meets the power  
DS(ON)  
Ideally, surface-mount power components are flush  
against one another with their ground terminals  
almost touching. These high-current grounds are  
then connected to each other with a wide, filled zone  
of top-layer copper, so they do not go through vias.  
dissipation requirements of the MOSFET. The driver for  
N1a is powered by BST. The gate-drive requirement for  
N1a should be less than 10mA. Select a MOSFET with a  
low total gate charge (Q  
) and determine the  
GATE  
required drive current by I  
= Q  
× f (where f is  
GATE  
GATE  
the DC-DC converter’s maximum switching frequency).  
The resulting top-layer power ground plane is  
connected to the normal ground plane at the  
MAX1908/MAX8724s’ backside exposed pad.  
Other high-current paths should also be minimized,  
but focusing primarily on short ground and current-  
sense connections eliminates most PC board lay-  
out problems.  
The low-side switch (N1b) has the same current rating  
and power dissipation requirements as N1a, and  
should have a total gate charge less than 10nC. N2 is  
used to provide the starting charge to the BST capacitor  
(C15). During the dead time (50ns, typ) between N1a  
and N1b, the current is carried by the body diode of  
______________________________________________________________________________________ 25  
Low-Cost Multichemistry Battery Chargers  
2) Place the IC and signal components. Keep the  
main switching node (LX node) away from sensitive  
analog components (current-sense traces and REF  
capacitor). Important: The IC must be no further  
than 10mm from the current-sense resistors.  
current-sense lines and REF. Place ceramic  
bypass capacitors close to the IC. The bulk capac-  
itors can be placed further away.  
3) Use a single-point star ground placed directly  
below the part at the backside exposed pad of the  
MAX1908/MAX8724. Connect the power ground  
and normal ground to this node.  
Keep the gate-drive traces (DHI, DLO, and BST)  
shorter than 20mm, and route them away from the  
Table 2. Component List for Circuit of Figure 2  
DESIGNATION QTY  
DESCRIPTION  
Schottky diode  
DESIGNATION QTY  
DESCRIPTION  
10µF, 50V 2220-size ceramic  
capacitors  
TDK C5750X7R1H106M  
D3  
1
Central Semiconductor CMPSH1-4  
C1  
C4  
2
1
10µH, 4.4A inductor  
Sumida CDRH104R-100NC  
TOKO 919AS-100M  
L1  
1
22µF, 25V 2220-size ceramic  
capacitor  
TDK C5750X7R1E226M  
Dual, N-channel, 8-pin SO MOSFET  
Fairchild FDS6990A or FDS6990S  
N1  
P1  
1
1
1µF, 25V X7R ceramic capacitor  
(1206)  
Murata GRM31MR71E105K  
Taiyo Yuden TMK316BJ105KL  
TDK C3216X7R1E105K  
Single, P-channel, 8-pin SO MOSFET  
Fairchild FDS6675  
C5  
1
2
4
R5  
R6  
1
1
1
1
1
1
1
2
1
1
2
1k5% resistor (0603)  
59k1% resistor (0603)  
19.6k1% resistor (0603)  
12k5% resistor (0603)  
15k5% resistor (0603)  
335% resistor (0603)  
10.5k1% resistor (0603)  
8.25k1% resistors (0603)  
19.1k1% resistor (0603)  
22k1% resistor (0603)  
10k1% resistors (0603)  
0.01µF, 16V ceramic capacitors (0402)  
Murata GRP155R71E103K  
Taiyo Yuden EMK105BJ103KV  
TDK C1005X7R1E103K  
R7  
C9, C10  
R11  
R12  
R13  
0.1µF, 25V X7R ceramic capacitors  
(0603)  
Murata GRM188R71E104K  
TDK C1608X7R1E104K  
R14  
C11, C14,  
C15, C20  
R15, R16  
R17  
1µF, 6.3V X5R ceramic capacitors  
(0603)  
Murata GRM188R60J105K  
Taiyo Yuden JMK107BJ105KA  
TDK C1608X5R1A105K  
R18  
R19, R20  
C12, C13, C16  
3
0.011%, 0.5W 2010 sense resistor  
Vishay Dale WSL2010 0.010 1.0%  
IRC LRC-LR2010-01-R010-F  
RS1  
1
10A Schottky diode (D-PAK)  
Diodes, Inc. MBRD1035CTL  
ON Semiconductor MBRD1035CTL  
D1 (optional)  
D2  
1
1
0.0151%, 0.5W 2010 sense  
resistor  
Vishay Dale WSL2010 0.015 1.0%  
IRC LRC-LR2010-01-R015-F  
RS2  
U1  
1
1
Schottky diode  
Central Semiconductor  
CMPSH1–4  
MAX1908ETI or MAX8724ETI  
Chip Information  
TRANSISTOR COUNT: 3772  
PROCESS: BiCMOS  
26 ______________________________________________________________________________________  
Low-Cost Multichemistry Battery Chargers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY