MAX1771C/D [MAXIM]

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller; 12V或可调,高效率,低IQ ,升压型DC- DC控制器
MAX1771C/D
型号: MAX1771C/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
12V或可调,高效率,低IQ ,升压型DC- DC控制器

开关 信息通信管理 控制器
文件: 总16页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0263; Rev 1; 7/95  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
90% Efficiency for 30mA to 2A Load Currents  
Up to 24W Output Power  
The MAX1771 step-up switching controller provides  
90% efficiency over a 30mA to 2A load. A unique cur-  
rent-limited pulse-frequency-modulation (PFM) control  
scheme gives this device the benefits of pulse-width-  
modulation (PWM) converters (high efficiency at heavy  
loads), while using less than 110µA of supply current (vs.  
2mA to 10mA for PWM converters).  
110µA Max Supply Current  
5µA Max Shutdown Current  
2V to 16.5V Input Range  
This controller uses miniature external components. Its  
high switching frequency (up to 300kHz) allows sur-  
face-mount magnetics of 5mm height and 9mm diame-  
ter. It accepts input voltages from 2V to 16.5V. The  
output voltage is preset at 12V, or can be adjusted  
using two resistors.  
Preset 12V or Adjustable Output Voltage  
Current-Limited PFM Control Scheme  
Up to 300kHz Switching Frequency  
Evaluation Kit Available  
The MAX1771 optimizes efficiency at low input voltages  
and reduces noise by using a single 100mV current-limit  
threshold under all load conditions. A family of similar  
devices, the MAX770–MAX773, trades some full-load  
efficiency for greater current-limit accuracy; they provide  
a 200mV current limit at full load, and switch to 100mV  
for light loads.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX1771CPA  
MAX1771CSA  
MAX1771C/D  
MAX1771EPA  
MAX1771ESA  
MAX1771MJA  
The MAX1771 drives an external N-channel MOSFET  
switch, allowing it to power loads up to 24W. If less power  
is required, use the MAX756/MAX757 or MAX761/MAX762  
step-up switching regulators with on-board MOSFETs.  
0°C to +70°C  
0°C to +70°C  
Dice*  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
An evaluation kit is available. Order the MAX1771EVKIT-SO.  
8 CERDIP**  
________________________Ap p lic a t io n s  
Positive LCD-Bias Generators  
* Contact factory for dice specifications.  
** Contact factory for availability and processing to MIL-STD-883B.  
Flash Memory Programmers  
High-Power RF Power-Amplifier Supply  
Palmtops/Hand-Held Terminals  
Battery-Powered Applications  
__________________P in Co n fig u ra t io n  
Portable Communicators  
__________Typ ic a l Op e ra t in g Circ u it  
TOP VIEW  
INPUT  
2V TO V  
OUT  
OUTPUT  
12V  
1
2
3
4
8
7
6
5
EXT  
V+  
CS  
N
EXT  
CS  
MAX1771  
SHDN  
GND  
AGND  
MAX1771  
ON/OFF  
FB  
REF  
SHDN  
REF  
V+  
DIP/SO  
FB AGND GND  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Operating Temperature Ranges  
V+ to GND ...............................................................-0.3V, 17V  
EXT, CS, REF, SHDN, FB to GND ...................-0.3V, (V+ + 0.3V)  
GND to AGND.............................................................0.1V, -0.1V  
MAX1771C_A .....................................................0°C to +70°C  
MAX1771E_A ..................................................-40°C to +85°C  
MAX1771MJA ................................................-55°C to +125°C  
Junction Temperatures  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
MAX1771C_A/E_A.......................................................+150°C  
MAX1771MJA ..............................................................+175°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
MAX71  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, I  
= 0mA, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.0  
3.0  
3.1  
TYP  
MAX  
12.5  
16.5  
16.5  
2.0  
UNITS  
MAX1771 (internal feedback resistors)  
MAX1771C/E (external resistors)  
MAX1771MJA (external resistors)  
Input Voltage Range  
V
Minimum Start-Up Voltage  
Supply Current  
1.8  
85  
2
V
µA  
V+ = 16.5V, SHDN = 0V (normal operation)  
V+ = 10.0V, SHDN 1.6V (shutdown)  
V+ = 16.5V, SHDN 1.6V (shutdown)  
110  
5
µA  
V
Standby Current  
4
V+ = 2.0V to 12.0V, over full load range,  
Circuit of Figure 2a  
Output Voltage (Note 1)  
11.52  
12.0  
5
12.48  
Output Voltage Line Regulation  
(Note 2)  
V+ = 5V to 7V, V  
= 12V  
OUT  
mV/V  
I
= 700mA, Circuit of Figure 2a  
LOAD  
Output Voltage Load Regulation  
(Note 2)  
V+ = 6V, V  
500mA, Circuit of Figure 2a  
= 12V, I  
= 0mA to  
OUT  
LOAD  
20  
mV/A  
µs  
µs  
Maximum Switch On-Time  
Minimum Switch Off-Time  
t
(max)  
12  
16  
20  
ON  
t
(min)  
1.8  
2.3  
2.8  
OFF  
V+ = 5V, V  
Circuit of Figure 2a  
= 12V, I  
LOAD  
= 500mA,  
OUT  
Efficiency  
92  
%
MAX1771C  
MAX1771E  
MAX1771M  
MAX1771C/E  
MAX1771M  
1.4700  
1.4625  
1.4550  
1.5  
1.5  
1.5  
4
1.5300  
1.5375  
1.5450  
10  
I
0µA  
Reference Voltage  
V
V
REF =  
REF  
REF Load Regulation  
REF Line Regulation  
0µA I  
100µA  
mV  
REF  
4
15  
3V V+ 16.5V  
MAX1771C  
40  
1.5  
1.5  
1.5  
100  
µV/V  
1.4700  
1.4625  
1.4550  
1.5300  
1.5375  
1.5450  
FB Trip Point Voltage  
V
MAX1771E  
V
FB  
MAX1771M  
_______________________________________________________________________________________  
2
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, I  
= 0mA, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
A
MIN  
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±20  
±40  
±60  
UNITS  
MAX1771C  
MAX1771E  
MAX1771M  
FB Input Current  
I
FB  
nA  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
V
V+ = 2.0V to 16.5V  
1.6  
V
V
IH  
V
IL  
V+ = 2.0V to 16.5V  
0.4  
±1  
µA  
V+ = 16.5V, SHDN = 0V or V+  
MAX1771C/E  
MAX1771M  
85  
75  
100  
100  
0.01  
55  
115  
125  
±1  
Current-Limit Trip Level  
V
CS  
V+ = 5V to 16V  
mV  
µA  
ns  
CS Input Current  
EXT Rise Time  
EXT Fall Time  
V+ = 5V, 1nF from EXT to ground  
V+ = 5V, 1nF from EXT to ground  
55  
ns  
Note 1: Output voltage guaranteed using preset voltages. See Figures 4a–4d for output current capability versus input voltage.  
Note 2: Output voltage line and load regulation depend on external circuit components.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
LOAD CURRENT vs.  
MINIMUM START-UP INPUT VOLTAGE  
EFFICIENCY vs. LOAD CURRENT  
(BOOTSTRAPED MODE)  
EFFICIENCY vs. LOAD CURRENT  
(NON-BOOTSTRAPED MODE)  
700  
600  
100  
100  
95  
V
= 12V, CIRCUIT OF FIGURE 2a  
OUT  
95  
90  
V
IN  
= 10V  
V
IN  
=10V  
EXTERNAL FET THRESHOLD  
LIMITS FULL-LOAD START-UP  
BELOW 3.5V  
90  
V
= 8V  
IN  
500  
400  
300  
200  
V
= 8V  
IN  
85  
80  
85  
80  
V
IN  
= 3V  
V
= 5V  
IN  
75  
70  
75  
70  
V
= 5V  
IN  
V
= 12V  
V
= 12V  
OUT  
OUT  
CIRCUIT OF  
FIGURE 2a  
CIRCUIT OF  
FIGURE 2b  
100  
0
65  
60  
65  
60  
1
10  
1000  
10,000  
1
10  
100  
1000  
10,000  
2.00 2.25 2.50 2.75 3.00 3.25 3.50  
MINIMUM START-UP INPUT VOLTAGE (V)  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
_______________________________________________________________________________________  
3
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. TEMPERATURE  
EXT RISE/FALL TIME vs. SUPPLY VOLTAGE  
250  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
4
0.8  
0.6  
0.4  
V
OUT  
= 12V, V = 5V  
IN  
V
OUT  
= 12V  
CIRCUIT OF FIGURE 2a  
BOOTSTRAPPED MODE  
200  
150  
3
2
C
= 2200pF  
= 1000pF  
= 446pF  
= 100pF  
BOOTSTRAPPED  
CIRCUIT OF  
FIGURE 2a  
EXT  
MAX71  
ENTIRE  
CIRCUIT  
C
EXT  
C
EXT  
C
EXT  
100  
50  
0
SCHOTTKY DIODE  
LEAKAGE EXCLUDED  
1
0
0.2  
0
NON-BOOTSTRAPPED  
CIRCUIT OF FIGURE 2b  
12  
-50 -25  
0
10  
-75  
25 50 75 100 125  
12  
2
6
8
10  
4
2
6
8
4
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
REFERENCE OUTPUT RESISTANCE vs.  
TEMPERATURE  
MAXIMUM SWITCH ON-TIME vs.  
TEMPERATURE  
REFERENCE vs. TEMPERATURE  
16.5  
16.0  
250  
200  
1.506  
1.504  
1.502  
10µA  
150  
100  
50  
1.500  
1.498  
1.496  
1.494  
1.492  
50µA  
100µA  
15.5  
0
-30  
0
30  
60  
120 150  
-60  
90  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM SWITCH ON-TIME/  
MINIMUM SWITCH OFF-TIME RATIO  
vs. TEMPERATURE  
MINIMUM SWITCH OFF-TIME vs.  
TEMPERATURE  
SHUTDOWN CURRENT vs. TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.30  
2.25  
8.0  
7.5  
7.0  
2.0  
1.5  
1.0  
0.5  
0
V+ = 15V  
V+ = 8V  
6.5  
6.0  
V+ = 4V  
2.20  
-30  
0
30  
60  
120 150  
-30  
0
30  
60  
120 150  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60  
90  
-60  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
4
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2a, T = +25°C, unless otherwise noted.)  
A
HEAVY-LOAD SWITCHING WAVEFORMS  
MEDIUM-LOAD SWITCHING WAVEFORMS  
V
V
OUT  
OUT  
A
B
C
A
B
0V  
0V  
I
LIM  
I
LIM  
0A  
0A  
C
s/div  
= 5V, I = 900mA, V = 12V  
10µs/div  
V
IN  
V = 5V, I = 500mA, V = 12V  
IN OUT OUT  
OUT  
OUT  
A: EXT VOLTAGE, 10V/div  
A: EXT VOLTAGE, 10V/div  
B: INDUCTOR CURRENT, 1A/div  
B: INDUCTOR CURRENT, 1A/div  
C: V RIPPLE, 50mV/div, AC-COUPLED  
C: V RIPPLE, 50mV/div, AC-COUPLED  
OUT  
OUT  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
A
7V  
5V  
500mA  
0A  
A
B
0V  
B
5ms/div  
5ms/div  
I
= 700mA, V = 12V  
OUT  
V
IN  
= 6V, V = 12V  
OUT  
OUT  
A: V , 5V to 7V, 2V/div  
IN  
A: LOAD CURRENT, 0mA to 500mA, 500mA/div  
B: V RIPPLE, 100mV/div, AC-COUPLED  
OUT  
B: V RIPPLE, 100mV/div, AC-COUPLED  
OUT  
_______________________________________________________________________________________  
5
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Circuit of Figure 2a, T = +25°C, unless otherwise noted.)  
A
ENTERING/EXITING SHUTDOWN  
MAX71  
A
B
0V  
5V  
0V  
2ms/div  
I
= 500mA, V = 5V  
IN  
OUT  
A: SHDN, 5V/div  
B: V , 5V/div  
OUT  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
2
EXT  
V+  
Gate Drive for External N-Channel Power Transistor  
Power-Supply Input. Also acts as a voltage-sense point when in bootstrapped mode.  
Feedback Input for Adjustable-Output Operation. Connect to ground for fixed-output operation.  
Use a resistor divider network to adjust the output voltage. See Setting the Output Voltage section.  
3
4
5
FB  
Active-High TTL/CMOS Logic-Level Shutdown Input. In shutdown mode, V  
is a diode drop  
OUT  
below V+ (due to the DC path from V+ to the output) and the supply current drops to 5µA  
maximum. Connect to ground for normal operation.  
SHDN  
REF  
1.5V Reference Output that can source 100µA for external loads. Bypass to GND with 0.1µF.  
The reference is disabled in shutdown.  
6
7
AGND  
GND  
Analog Ground  
High-Current Ground Return for the Output Driver  
Positive Input to the Current-Sense Amplifier. Connect the current-sense resistor between CS  
and GND.  
8
CS  
_______________________________________________________________________________________  
6
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
range of load currents; and 3) the maximum supply  
current is only 110µA.  
_______________De t a ile d De s c rip t io n  
The MAX1771 is a BiCMOS, step-up, switch-mode pow-  
er-supply controller that provides a preset 12V output,  
in addition to adjustable-output operation. Its unique  
control scheme combines the advantages of pulse-fre-  
quency modulation (low supply current) and pulse-  
width modulation (high efficiency with heavy loads),  
providing high efficiency over a wide output current  
range, as well as increased output current capability  
over previous PFM devices. In addition, the external  
sense resistor and power transistor allow the user to tai-  
lor the output current capability for each application.  
Figure 1 shows the MAX1771 functional diagram.  
The device has a shutdown mode that reduces the  
supply current to 5µA max.  
Bo o t s t ra p p e d /No n -Bo o t s t ra p p e d Mo d e s  
Figure 2 shows the standard application circuits for  
bootstrapped and non-bootstrapped modes. In boot-  
strapped mode, the IC is powered from the output  
(V , which is connected to V+) and the input voltage  
OUT  
range is 2V to V . The voltage applied to the gate of  
OUT  
the external power transistor is switched from V  
to  
OUT  
ground, providing more switch gate drive and thus  
reducing the transistors on-resistance.  
The MAX1771 offers three main improvements over  
prior pulse-skipping control solutions: 1) the converter  
operates with miniature (5mm height and less than  
9mm d ia me te r) s urfa c e -mount ind uc tors d ue to its  
300kHz switching frequency; 2) the current-limited PFM  
control scheme allows 90% efficiencies over a wide  
In non-bootstrapped mode, the IC is powered from the  
input voltage (V+) and operates with minimum supply  
current. In this mode, FB is the output voltage sense  
point. Since the voltage swing applied to the gate of the  
external power transistor is reduced (the gate swings  
from V+ to ground), the power transistors on-resistance  
REF  
FB  
DUAL-MODE  
COMPARATOR  
SHDN  
MAX1771  
50mV  
BIAS  
1.5V  
CIRCUITRY  
REFERENCE  
ERROR  
COMPARATOR  
MIN OFF-TIME  
ONE-SHOT  
Q
TRIG  
2.3µs  
V+  
N
F/F  
R
S
Q
LOW-VOLTAGE  
OSCILLATOR  
2.5V  
MAX ON-TIME  
ONE-SHOT  
TRIG  
16µs  
Q
EXT  
CURRENT-SENSE  
AMPLIFIER  
0.1V  
CS  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
7
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
VIN = 5V  
VIN = 5V  
C1  
C2  
68µF  
0.1µF  
C2  
0.1µF  
2
2
L1  
22µH  
V+  
V+  
V
= 12V  
@ 0.5A  
D1  
1N5817-22  
OUT  
5
4
6
C1  
68µF  
5
4
3
6
REF  
REF  
C3  
0.1µF  
C3  
0.1µF  
L1  
22µH  
C4  
300µF  
MAX1771  
MAX1771  
1
8
D1  
1N5817-22  
V
= 12V  
@ 0.5A  
OUT  
SHDN  
AGND  
EXT  
CS  
N
SHDN  
MAX71  
MTD20N03HDL  
1
8
N
FB  
EXT  
CS  
R
SENSE  
R2  
127k  
Si9410DY/  
40mΩ  
MTD20N03HDL  
3
FB  
AGND  
GND  
7
R
40mΩ  
C4  
300µF  
SENSE  
R1  
18k  
GND  
7
C5  
100pF  
R2 = (R1) (VV -1)  
OUT  
REF  
V
REF  
= 1.5V  
Figure 2a. 12V Preset Output, Bootstrapped  
Figure 2b. 12V Output, Non-Bootstrapped  
for fixed-output operation. External resistors must  
be used to set the output voltage. Use 1% external  
feedback resistors when operating in adjustable-output  
mode (Figures 2b, 2c) to achieve an overall output volt-  
age accuracy of ±5%. To achieve highest efficiency,  
operate in bootstrapped mode whenever possible.  
V
= 4V  
IN  
C2  
0.1µF  
C1  
47µF  
2
L1  
22µH  
V+  
D1  
5
REF  
V
OUT  
= 9V  
1N5817-22  
C3  
0.1µF  
Ex t e rn a l P o w e r-Tra n s is t o r  
Co n t ro l Circ u it ry  
MAX1771  
1
8
3
C4  
200µF  
4
6
SHDN  
AGND  
EXT  
CS  
N
Si9410DY/  
MTD20N03HDL  
PFM Control Scheme  
The MAX1771 uses a proprietary current-limited PFM  
control scheme to provide high efficiency over a wide  
range of load currents. This control scheme combines the  
ultra-low supply current of PFM converters (or pulse skip-  
pers) with the high full-load efficiency of PWM converters.  
R
SENSE  
R2  
140k  
40mΩ  
FB  
GND  
7
R1  
28k  
C5  
100pF  
Unlike traditional PFM converters, the MAX1771 uses a  
sense resistor to control the peak inductor current. The  
device also operates with high switching frequencies  
(up to 300kHz), allowing the use of miniature external  
components.  
R2 = (R1) (VV -1)  
OUT  
REF  
V
= 1.5V  
REF  
Figure 2c. 9V Output, Bootstrapped  
As with traditional PFM converters, the power transistor  
is not turned on until the voltage comparator senses  
the output is out of regulation. However, unlike tradition-  
al PFM converters, the MAX1771 switch uses the com-  
bination of a peak current limit and a pair of one-shots  
that set the maximum on-time (16µs) and minimum off-  
time (2.3µs); there is no oscillator. Once off, the mini-  
mum off-time one-shot holds the switch off for 2.3µs.  
After this minimum time, the switch either 1) stays off if  
the output is in regulation, or 2) turns on again if the  
output is out of regulation.  
increases at low input voltages. However, the supply  
current is also reduced because V+ is at a lower volt-  
a g e , a nd b e c a us e le s s e ne rg y is c ons ume d while  
charging and discharging the external MOSFETs gate  
capacitance. The minimum input voltage is 3V when  
using external feedback resistors. With supply voltages  
below 5V, bootstrapped mode is recommended.  
Note: When using the MAX1771 in non-boot-  
strapped mode, there is no preset output operation  
because V+ is also the output voltage sense point  
_______________________________________________________________________________________  
8
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
The control circuitry allows the IC to operate in continu-  
ous-conduction mode (CCM) while maintaining high  
efficiency with heavy loads. When the power switch is  
turned on, it stays on until either 1) the maximum on-  
time one-shot turns it off (typically 16µs later), or 2) the  
switch current reaches the peak current limit set by the  
current-sense resistor.  
R2  
V
OUT  
FB  
MAX1771  
GND  
R1  
C5*  
The MAX1771 switching frequency is variable (depend-  
ing on load current and input voltage), causing variable  
switching noise. However, the subharmonic noise gen-  
erated does not exceed the peak current limit times the  
filter capacitor equivalent series resistance (ESR). For  
example, when generating a 12V output at 500mA from  
a 5V input, only 100mV of output ripple occurs using  
the circuit of Figure 2a.  
R1 = 10k TO 500k  
V
OUT  
R2 = R1  
-1  
)
(
V
REF  
V
= 1.5V  
REF  
* SEE TEXT FOR VALUE  
Figure 3. Adjustable Output Circuit  
Low-Voltage Start-Up Oscillator  
The MAX1771 features a low input voltage start-up oscil-  
lator that guarantees start-up with no load down to 2V  
when operating in bootstrapped mode and using inter-  
nal feedback resistors. At these low voltages, the supply  
voltage is not large enough for proper error-comparator  
operation and internal biasing. The start-up oscillator  
has a fixed 50% duty cycle and the MAX1771 disre -  
gards the error-comparator output when the supply volt-  
age is less than 2.5V. Above 2.5V, the error-comparator  
and normal one-shot timing circuitry are used. The low-  
voltage start-up circuitry is disabled if non-bootstrapped  
mode is selected (FB is not tied to ground).  
R1 a nd R2 c onfig ure d a s s hown in Fig ure 3. For  
adjustable-output operation, select feedback resistor  
R1 in the 10kto 500krange. R2 is given by:  
V
OUT  
R2 = (R1) ––––– -1  
(
)
V
REF  
where V  
equals 1.5V.  
REF  
For p re s e t-outp ut op e ra tion, tie FB to GND (this  
forces bootstrapped-mode operation.  
Figure 2 shows various circuit configurations for boot-  
strapped/non-bootstrapped, preset/adjustable operation.  
S h u t d o w n Mo d e  
When SHDN is high, the MAX1771 enters shutdown  
mod e . In this mod e , the inte rna l b ia s ing c irc uitry is  
De t e rm in in g R  
S ENS E  
Use the theoretical output current curves shown in  
Figures 4a–4d to select R . They were derived  
turned off (including the reference) and V  
falls to a  
OUT  
d iod e d rop b e low V (d ue to the DC p a th from the  
SENSE  
IN  
using the minimum (worst-case) current-limit compara-  
tor thre s hold va lue ove r the e xte nd e d te mp e ra ture  
range (-40°C to +85°C). No tolerance was included for  
inp ut to the outp ut). In s hutd own mod e , the s up p ly  
current drops to less than 5µA. SHDN is a TTL/CMOS  
log ic -le ve l inp ut. Conne c t SHDN to GND for norma l  
operation.  
R
. The volta g e d rop a c ros s the d iod e wa s  
SENSE  
assumed to be 0.5V, and the drop across the power  
__________________De s ig n P ro c e d u re  
switch r  
0.3V.  
and coil resistance was assumed to be  
DS(ON)  
S e t t in g t h e Ou t p u t Vo lt a g e  
To set the output voltage, first determine the mode of  
operation, either bootstrapped or non-bootstrapped.  
Boots tra p p e d mod e p rovid e s more outp ut c urre nt  
capability, while non-bootstrapped mode reduces the  
supply current (see Typical Operating Characteristics).  
If a decaying voltage source (such as a battery) is  
used, see the additional notes in the Low Input Voltage  
Operation section.  
De t e rm in in g t h e In d u c t o r (L)  
Practical inductor values range from 10µH to 300µH.  
22µH is a good choice for most applications. In appli-  
cations with large input/output differentials, the ICs  
output current capability will be much less when the  
inductance value is too low, because the IC will always  
operate in discontinuous mode. If the inductor value  
is too low, the current will ramp up to a high level before  
the current-limit comparator can turn off the switch.  
The MAX1771s output voltage can be adjusted from  
very high voltages down to 3V, using external resistors  
The minimum on-time for the s witc h (t (min)) is  
ON  
_______________________________________________________________________________________  
9
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
V
= 5V  
V
= 12V  
OUT  
OUT  
L = 22µH  
L = 22µH  
R
SENSE  
= 20mΩ  
R
= 20mΩ  
SENSE  
R
= 25mΩ  
SENSE  
R
SENSE  
= 25mΩ  
R
SENSE  
= 35mΩ  
2.0  
1.5  
1.0  
2.0  
1.5  
1.0  
R
= 35mΩ  
SENSE  
MAX71  
R
SENSE  
= 50mΩ  
R
= 50mΩ  
SENSE  
0.5  
0
0.5  
0
R
SENSE  
= 100mΩ  
R
SENSE  
= 100mΩ  
2
3
4
5
2
4
6
8
10  
12  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 4a. Maximum Output Current vs. Input Voltage  
(V = 5V)  
Figure 4b. Maximum Output Current vs. Input Voltage  
(V = 12V)  
OUT  
OUT  
0.8  
3.5  
3.0  
2.5  
V
= 15V  
OUT  
V
= 24V  
OUT  
L = 22µH  
L =150µH  
R
SENSE  
= 20mΩ  
0.6  
0.4  
0.2  
R
SENSE  
= 25mΩ  
R
= 50mΩ  
SENSE  
R
SENSE  
= 35mΩ  
R
SENSE  
= 100mΩ  
2.0  
1.5  
1.0  
R
SENSE  
= 50mΩ  
0.5  
0
R
= 200mΩ  
SENSE  
R
= 100mΩ  
SENSE  
0
2
4
6
8
10  
12  
14  
16  
2
6
10  
INPUT VOLTAGE (V)  
14  
INPUT VOLTAGE (V)  
Figure 4c. Maximum Output Current vs. Input Voltage  
(V = 15V)  
Figure 4d. Maximum Output Current vs. Input Voltage  
(V = 24V)  
OUT  
OUT  
approximately 2µs; select an inductor that allows the cur-  
rent to ramp up to I  
Inductors with a ferrite core or equivalent are recom-  
mended; powder iron cores are not recommended for  
use with high switching frequencies. Make sure the  
inductors saturation current rating (the current at which  
the core begins to saturate and the inductance starts to  
.
LIM  
The standard operating circuits use a 22µH inductor.  
If a different inductance value is desired, select L such  
that:  
fall) exceeds the peak current rating set by R  
.
SENSE  
However, it is generally acceptable to bias the inductor  
into saturation by approximately 20% (the point where  
the inductance is 20% below the nominal value). For  
highest efficiency, use a coil with low DC resistance,  
preferably under 20m. To minimize radiated noise,  
use a toroid, a pot core, or a shielded coil.  
V
(max) x 2µs  
IN  
L —————----—--  
I
LIM  
Larger inductance values tend to increase the start-up  
time slightly, while smaller inductance values allow the  
c oil c urre nt to ra mp up to hig he r le ve ls b e fore the  
switch turns off, increasing the ripple at light loads.  
Table 1 lists inductor suppliers and specific recom-  
mended inductors.  
______________________________________________________________________________________  
10  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
P o w e r Tra n s is t o r S e le c t io n  
Use an N-channel MOSFET power transistor with the  
MAX1771.  
Dio d e S e le c t io n  
The MAX1771s high switching frequency demands a  
hig h-s p e e d re c tifie r. Sc hottky d iod e s s uc h a s the  
1N5817–1N5822 are recommended. Make sure the  
Schottky diodes average current rating exceeds the  
To ensure the external N-channel MOSFET (N-FET) is  
turne d on ha rd , us e log ic -le ve l or low-thre s hold  
N-FETs when the input drive voltage is less than 8V. This  
applies even in bootstrapped mode, to ensure start-up.  
N-FETs provide the highest efficiency because they do  
not draw any DC gate-drive current.  
peak current limit set by R  
, and that its break-  
SENSE  
down voltage exceeds V . For high-temperature  
OUT  
applications, Schottky diodes may be inadequate due  
to the ir hig h le a ka g e c urre nts ; hig h-s p e e d s ilic on  
diodes such as the MUR105 or EC11FS1 can be used  
instead. At heavy loads and high temperatures, the  
benefits of a Schottky diodes low forward voltage may  
outweigh the disadvantages of its high leakage current.  
When selecting an N-FET, three important parameters  
are the total gate charge (Q ), on-resistance (r  
),  
g
DS(ON)  
and reverse transfer capacitance (C  
).  
RSS  
Q
takes into account all capacitances associated with  
g
Ca p a c it o r S e le c t io n  
charging the gate. Use the typical Q value for best  
g
results; the maximum value is usually grossly over-  
specified since it is a guaranteed limit and not the mea-  
sured value. The typical total gate charge should be  
50nC or less. With larger numbers, the EXT pins may  
not be a ble to a de q ua te ly drive the ga te . The EXT  
rise/fall time varies with different capacitive loads as  
shown in the Typical Operating Characteristics.  
Output Filter Capacitor  
The primary criterion for selecting the output filter capac-  
itor (C4) is low effective series resistance (ESR). The  
product of the peak inductor current and the output filter  
capacitors ESR determines the amplitude of the ripple  
seen on the output voltage. Two OS-CON 150µF, 16V  
output filter capacitors in parallel with 35mof ESR each  
typically provide 75mV ripple when stepping up from 5V  
to 12V at 500mA (Figure 2a). Smaller-value and/or high-  
er-ESR capacitors are acceptable for light loads or in  
applications that can tolerate higher output ripple.  
The two most sig nific a nt losse s c ontributing to the  
2
N-FETs power dissipation are I R losses and switching  
losses. Select a transistor with low r  
and low  
DS(ON)  
C
to minimize these losses.  
RSS  
Since the output filter capacitors ESR affects efficien-  
cy, use low-ESR capacitors for best performance. See  
Table 1 for component selection.  
Determine the maximum required gate-drive current  
from the Q specification in the N-FET data sheet.  
g
The MAX1771s maximum allowed switching frequency  
during normal operation is 300kHz; but at start-up, the  
maximum frequency can be 500kHz, so the maximum  
c urre nt re q uire d to c ha rg e the N-FETs g a te is  
Input Bypass Capacitors  
The input bypass capacitor (C1) reduces peak currents  
drawn from the voltage source and also reduces noise  
at the voltage source caused by the switching action of  
the MAX1771. The input voltage source impedance  
determines the size of the capacitor required at the V+  
input. As with the output filter capacitor, a low-ESR  
capacitor is recommended. For output currents up to  
1A, 68µF (C1) is adequate, although smaller bypass  
capacitors may also be acceptable.  
f(max) x Q (typ). Use the typical Q number from the  
g
g
transistor data sheet. For example, the Si9410DY has a  
Q (typ) of 17nC (at V = 5V), therefore the current  
g
GS  
required to charge the gate is:  
I
= (500kHz) (17nC) = 8.5mA.  
GATE (max)  
The bypass capacitor on V+ (C2) must instantaneously  
furnish the gate charge without excessive droop (e.g.,  
less than 200mV):  
Bypass the IC with a 0.1µF ceramic capacitor (C2)  
placed as close to the V+ and GND pins as possible.  
Q
g
V+ = ——  
C2  
Reference Capacitor  
Byp a s s REF with a 0.1µF c a p a c itor (C3). REF c a n  
source up to 100µA of current for external loads.  
Continuing with the example, V+ = 17nC/0.1µF = 170mV.  
Figure 2as application circuit uses an 8-pin Si9410DY  
Feed-Forward Capacitor  
In adjustable output voltage and non-bootstrapped  
modes, parallel a 47pF to 220pF capacitor across R2,  
as shown in Figures 2 and 3. Choose the lowest capac-  
itor value that insures stability; high capacitance values  
may degrade line regulation.  
surface-mount N-FET that has 50mon-resistance with  
4.5V V , and a guaranteed V of less than 3V. Figure  
GS  
TH  
2bs application circuit uses an MTD20N03HDL logic-  
level N-FET with a guaranteed threshold voltage (V  
)
TH  
of 2V.  
______________________________________________________________________________________  
11  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
Table 1. Component Suppliers  
PRODUCTION  
INDUCTORS  
CAPACITORS  
TRANSISTORS  
Siliconix  
Si9410DY  
Si9420DY (high voltage)  
Motorola  
DIODES  
Central Semiconductor  
CMPSH-3  
CMPZ5240  
Sumida  
CD54 series  
CDR125 series  
Coiltronics  
CTX20 series  
Coilcraft  
DO3316 series  
DO3340 series  
Matsuo  
267 series  
Sprague  
595D series  
AVX  
TPS series  
Nihon  
MTP3055EL  
Surface Mount  
EC11 FS1 series (high-  
speed silicon)  
Motorola  
MBRS1100T3  
MMBZ5240BL  
MTD20N03HDL  
MMFT3055ELT1  
MTD6N1O  
MMBT8099LT1  
MMBT8599LT1  
MAX71  
Sanyo  
OS-CON series  
Nichicon  
Motorola  
Sumida  
RCH855 series  
RCH110 series  
1N5817–1N5822  
MUR115 (high voltage)  
MUR105 (high-speed  
silicon)  
Through Hole  
PL series  
SUPPLIER  
PHONE  
FAX  
AVX  
USA: (803) 448-9411  
(803) 448-1943  
Central  
Semiconductor  
USA: (516) 435-1110  
(516) 435-1824  
Coilcraft  
USA: (708) 639-6400  
USA: (407) 241-7876  
(708) 639-1469  
(407) 241-9339  
Coiltronics  
USA: (714) 969-2491  
Japan: 81-6-337-6450  
(714) 960-6492  
81-6-337-6456  
Matsuo  
Motorola  
Nichicon  
Nihon  
USA: (800) 521-6274  
USA: (708) 843-7500  
USA: (805) 867-2555  
(602) 952-4190  
(708) 843-2798  
(805) 867-2556  
USA: (619) 661-6835  
Japan: 81-7-2070-1005  
(619) 661-1055  
81-7-2070-1174  
Sanyo  
Siliconix  
Sprague  
USA: (800) 554-5565  
USA: (603) 224-1961  
(408) 970-3950  
(603) 224-1430  
USA: (708) 956-0666  
Japan: 81-3-3607-5111  
(708) 956-0702  
81-3-3607-5144  
Sumida  
______________________________________________________________________________________  
12  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
La yo u t Co n s id e ra t io n s  
Due to high current levels and fast switching wave-  
forms, which radiate noise, proper PC board layout is  
C1  
2.2µF  
V *  
3V TO 11V  
IN  
essential. Protect sensitive analog grounds by using a  
star ground configuration. Minimize ground noise by  
connecting GND, the input bypass capacitor ground  
lead, and the output filter capacitor ground lead to a  
single point (star ground configuration). Also, minimize  
lead lengths to reduce stray capacitance, trace resis-  
tance, and radiated noise. Place input bypass capaci-  
tor C2 as close as possible to V+ and GND.  
D2  
1N5817  
2
L1  
20µH  
1 CTX20-4  
V+  
V
OUT  
5V  
500mA  
4
D1  
1N5817  
SHDN  
3V = OFF  
C2  
47µF  
16V  
MAX1771  
5
C4  
0.1µF  
1
8
L2  
C3  
220µF  
10V  
EXT  
CS  
Q1**  
REF  
Excessive noise at the V+ input may falsely trigger the  
timing circuitry, resulting in short pulses at EXT. If this  
occurs it will have a negligible effect on circuit efficien-  
cy. If desired, place a 4.7µF directly across the V+ and  
GND pins (in parallel with the 0.1µF C2 bypass capaci-  
tor) to reduce the noise at V+.  
R1  
0.1Ω  
GND AGND FB  
7
6
3
R3  
R2  
C5  
47pF  
Ot h e r Ap p lic a t io n Circ u it s  
SEE TEXT FOR FURTHER COMPONENT INFO  
4 Cells to 5V (or 3 Cells to 3.3V), 500mA  
Step-Up/Down Converter  
**V MAY BE LOWER THAN INDICATED IF THE SUPPLY IS NOT  
IN  
**REQUIRED TO START UNDER FULL LOAD  
**MOTOROLA MMFT3055ELT1  
The circuit shown in Figure 5 generates 5V (or 3.3V) at  
500mA with 85% efficiency, from an input voltage that  
varies above and below the output. The output couples  
to the switching circuitry via a capacitor. This configu-  
ration offers two advantages over flyback-transformer  
and step-up linear-regulator circuits: smooth regulation  
as the input passes through the output, and no output  
current in shutdown.  
FOR 5V: R2 = 200k, R3 = 470kΩ  
3.3V: R2 = 100k, R3 = 20kΩ  
Figure 5. Step-Up/Down for a 5V/3.3V Output  
__________Ap p lic a t io n s In fo rm a t io n  
This circuit requires two inductors, which can be wound  
on one core with no regard to coupling since they do  
not work as a transformer. L1 and L2 can either be  
wound together (as with the Coiltronics CTX20-4) or  
kept as two separate inductors; both methods provide  
equal performance. Capacitors C2 and C3 should be  
low-ESR typ e s for b e s t e ffic ie nc y. A 1µF c e ra mic  
capacitor will work at C2, but with about 3% efficiency  
loss. C2s voltage rating must be greater than the maxi-  
mum input voltage. Also note that the LX switch must  
withstand a voltage equal to the sum of the input and  
output voltage; for example, when converting 11V to  
5V, the switch must withstand 16V.  
Lo w In p u t Vo lt a g e Op e ra t io n  
Whe n us ing a p owe r s up p ly tha t d e c a ys with time  
(such as a battery), the N-FET transistor will operate in  
its linear region when the voltage at EXT approaches  
the threshold voltage of the FET, dissipating excessive  
power. Prolonged operation in this mode may damage  
the FET. This effect is much more significant in non-  
bootstrapped mode than in bootstrapped mode, since  
bootstrapped mode typically provides much higher  
V
GS  
voltages. To avoid this condition, make sure V  
EXT  
is above the V of the FET, or use a voltage detector  
TH  
(such as the MAX8211) to put the IC in shutdown mode  
once the input supply voltage falls below a predeter-  
mined minimum value. Excessive loads with low input  
voltages can also cause this condition.  
LX switch pulses are captured by Schottky diode D2 to  
boost V+ to (V  
+ V ). This improves efficiency with  
OUT  
IN  
a low input voltage, but also limits the maximum input  
supply to 11V. If the input voltage does not fall below 4V  
and if a 3V logic threshold FET is used for Q1, you may  
omit D2 and connect V+ directly to the input supply.  
S t a rt in g Up Un d e r Lo a d  
The Typical Operating Characteristics show the Start-  
Up Voltage vs. Load Current graph for bootstrapped-  
mod e op e ra tion. This g ra p h d e p e nd s on the typ e  
of power switch used. The MAX1771 is not designed to  
start up under full load in bootstrapped mode with low  
input voltages.  
12V Output Buck/Boost  
The circuit in Figure 6 generates 12V from a 4.5V to  
16V input. Higher input voltages are possible if you  
______________________________________________________________________________________  
13  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
tries to use internal feedback and looks to V+ for its  
V
feedback signal. However, since V+ may be greater  
than the internally set feedback (12V for the MAX1771),  
the IC may think the output is sufficiently high and not  
start. D2 ensures start-up by pulling FB above ground  
and forcing the external feedback mode. In a normal  
(not AC-coupled) boost circuit, D2 isnt needed, since  
the outp ut a nd FB ris e a s s oon a s inp ut p owe r is  
applied.  
IN  
4.5V TO 15V  
C1  
33µF  
L1  
16V  
2
20µH  
V
12V  
250mA  
OFF  
ON  
OUT  
V+  
4
D1  
1N5819  
C2*  
1µF  
SHDN  
MAX71  
MAX1771  
1
8
Transformerless -48V to +5V at 300mA  
The circuit in Figure 7 uses a transformerless design to  
supply 5V at 300mA from a -30V to -75V input supply.  
The MAX1771 is biased such that its ground connec-  
tions are made to the -48V input. The ICs supply volt-  
age (at V+) is set to about 9.4V (with respect to -48V)  
by a zener-biased emitter follower (Q2). An N-channel  
FET (Q1) is driven in a boost configuration. Output reg-  
ulation is achieved by a transistor (Q3), which level  
shifts a feedback signal from the 5V output to the ICs  
FB input. Conversion efficiency is typically 82%.  
Q1**  
EXT  
CS  
L2*  
20µH  
C4  
100µF  
16V  
C3  
100µF  
16V  
6
7
AGND  
R1  
0.1Ω  
5
GND  
FB  
3
REF  
C5  
0.1µF  
NOTE: HIGH-  
CURRENT GND  
R3  
28k  
1%  
R2  
200k  
1%  
D2*  
1N4148  
*SEE TEXT FOR FURTHER  
COMPONENT INFORMATION  
**Q1 = MOTOROLA MMFT3055ELT1  
NOTE: KEEP ALL TRACES CONNECTED  
TO PIN 3 AS SHORT AS POSSIBLE  
When selecting components, be sure that D1, Q1, Q2,  
Q3, and C6 are rated for the full input voltage plus a  
reasonable safety margin. Also, if D1 is substituted, it  
L1 + L2 = ONE COILTRONICS CTX20-4  
should be a fast-recovery type with a t less than 30ns.  
rr  
R7, R9, C8, and D3 are optional and may be used to  
soft start the circuit to prevent excessive current surges  
at power-up.  
Figure 6. 12V Buck/Boost from a 4.5V to 15V Input  
carefully observe the component voltage ratings, since  
some components must withstand the sum of the input  
and output voltage (27V in this case). The circuit oper-  
ates as an AC-coupled boost converter, and does not  
change operating modes when crossing from buck to  
b oos t. The re is no ins ta b ility a round a 12V inp ut.  
Efficiency ranges from 85% at medium loads to about  
82% at full load. Also, when shutdown is activated  
(SHDN high) the output goes to 0V and sources no cur-  
rent. A 1µF ceramic capacitor is used for C2. A larger  
capacitor value improves efficiency by about 1% to 3%.  
Battery-Powered LCD Bias Supply  
The circuit in Figure 8 boosts two cells (2V min) to 24V  
for LCD b ia s or othe r p os itive outp ut a p p lic a tions .  
Output power is boosted from the battery input, while  
V+ voltage for the MAX1771 is supplied by a 5V or 3.3V  
logic supply.  
5V, 1A Boost Converter  
The circuit in Figure 9 boosts a 2.7V to 5.5V input to a  
regulated 5V, 1A output for logic, RF power, or PCMCIA  
applications. Efficiency vs. load current is shown in the  
adjacent graph.  
D2 ensures start-up for this AC-coupled configuration  
by overriding the MAX1771s Dual-Mode feature, which  
allows the use of preset internal or user-set external  
feedback. When operating in Dual-Mode, the IC first  
______________________________________________________________________________________  
14  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
MAX71  
L1  
D03340  
220µH680µH  
D1  
+5V  
300mA  
MBRS1100T3  
3
R2  
C1  
220µF  
10V  
Q1  
MTD6N10  
C3  
0.33µF  
C8  
1µF  
C7  
220pF  
C2  
220µF  
10V  
4
5
3
7
1
8
2
6
2
47k  
1%  
EXT  
SHDN  
REF  
R9  
R7  
C5  
0.1µF  
1
5.1k  
200Ω  
CS  
V+  
Q3  
D3  
CMPSH-3  
MMBT8599LT1  
MAX1771  
FB  
Q2  
MMBT8099LT1  
-48V  
R4  
AGND  
GND  
C4  
2.2µF  
100k  
20V  
R6  
200k  
R5  
1k  
R1  
R3  
C6  
10µF  
100V  
D2  
0.15Ω  
16k  
1%  
CMPZ5240/  
MMBZ5240BL  
Figure 7. -48V Input to 5V Output at 300mA, Without a Transformer  
BATTERY  
INPUT  
2V TO 12V  
OUTPUT  
Adj. = 12V TO 24V  
(AS SHOWN)  
L1  
22µH  
3.3V OR 5V  
LOGIC  
1N5817  
0.1µF  
SUPPLY  
2
V+  
1
8
N
EXTL  
CS  
MMFT3055ELT1  
47µF  
OFF  
4
SHDN  
ON  
R2  
150k  
R
SENSE  
0.2Ω  
MAX1771  
3
FB  
REF GND  
R3  
10k  
5
6, 7  
0.1µF  
10k  
Figure 8. 2V Input to 24V Output LCD Bias  
______________________________________________________________________________________  
15  
1 2 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w I , S t e p -Up DC-DC Co n t ro lle r  
Q
INPUT  
2.7V TO 5.5V  
22µH  
EFFICIENCY vs. LOAD CURRENT  
100  
OUTPUT  
5V  
1A  
150µF  
1N5820  
90  
80  
70  
60  
1
8
EXT  
CS  
MTD20N03HDL  
4
V
= 4V  
IN  
SHDN  
OFF  
MAX71  
ON  
V
= 3V  
330µF  
IN  
0.04Ω  
232k  
100k  
MAX1771  
2
5
V+  
FB  
REF  
0.1µF  
100pF  
3
50  
GND AGND  
1m  
10m  
100m  
1
7
6
LOAD CURRENT (A)  
0.1µF  
Figure 9. 5V/1A Boost Converter  
___________________Ch ip To p o g ra p h y  
EXT  
V+  
CS  
0. 126"  
(3. 200mm)  
GND  
AGND  
FB  
SHDN  
REF  
0. 080"  
(2. 032mm)  
TRANSISTOR COUNT: 501  
SUBSTRATE CONNECTED TO V+  
______________________________________________________________________________________  
16  

相关型号:

MAX1771CPA

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
MAXIM

MAX1771CPA+

Switching Controller, Current-mode, 0.5A, 300kHz Switching Freq-Max, BICMOS, PDIP8, PLASTIC, DIP-8
MAXIM

MAX1771CSA

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
MAXIM

MAX1771EPA

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
MAXIM

MAX1771ESA

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
MAXIM

MAX1771ESA+T

暂无描述
MAXIM

MAX1771ESA-T

暂无描述
MAXIM

MAX1771EVKIT

Evaluation Kit for the MAX1771
MAXIM

MAX1771MJA

12V or Adjustable, High-Efficiency, Low IQ, Step-Up DC-DC Controller
MAXIM

MAX1772

Low-Cost, Multichemistry Battery- Charger Building Block
MAXIM

MAX1772EEI

Low-Cost, Multichemistry Battery- Charger Building Block
MAXIM

MAX1772EEI+

Low-Cost, Multichemistry Battery-Charger Building Block
MAXIM