MAX1760|MAX1760H [MAXIM]

0.8A. Low-Noise. 1MHz. Step-Up DC-DC Converter ; 0.8A 。低噪声。 1MHz的。升压型DC- DC转换器\n
MAX1760|MAX1760H
型号: MAX1760|MAX1760H
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

0.8A. Low-Noise. 1MHz. Step-Up DC-DC Converter
0.8A 。低噪声。 1MHz的。升压型DC- DC转换器\n

转换器
文件: 总14页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1660; Rev 2; 1/04  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
General Description  
Features  
Up to 94% Efficiency  
0.7V to 5.5V Input Range  
The MAX1760/MAX1760H are high-efficiency, low-noise,  
step-up DC-DC converters intended for use in battery-  
powered wireless applications. They combine low quies-  
cent supply current (100µA) with a high 1MHz operating  
frequency. Small external components and tiny 10-pin  
TDFN and µMAX packages make this device an excel-  
lent choice for small hand-held applications. The  
MAX1760 is activated by a logic-low ON signal while the  
MAX1760H is activated by a logic-high ON input.  
Up to 800mA Output  
Fixed 3.3V Output (or Adjustable from 2.5V to 5.5V)  
PWM Synchronous-Rectified Topology  
Low-Noise, Constant-Frequency Operation (1MHz)  
0.1µA Logic-Controlled Shutdown  
Synchronizable Switching Frequency  
Adjustable Current Limit  
Both devices use a synchronous-rectified pulse-width-  
modulation (PWM) boost topology to generate 2.5V to  
5.5V outputs from a wide range of inputs, such as 1 to 3  
alkaline or NiCd/NiMH cells or a single lithium-ion (Li+)  
cell. Proprietary Idle-Mode™ circuitry significantly  
improves light-load efficiency and smoothly transitions to  
fixed-frequency PWM operation at higher load currents.  
Adjustable Soft-Start  
10-Pin µMAX Package  
Low-noise, forced-PWM mode is available for applica-  
tions requiring constant-frequency operation at all load  
currents. PWM operation can also be synchronized to  
an external clock to protect sensitive frequency bands  
in communications equipment. Analog soft-start and  
adjustable current limit permit optimization of efficiency,  
external component size, and output voltage ripple.  
10-Pin 3mm x 3mm TDFN Package  
Ordering Information  
ON  
LOGIC  
PART  
TEMP RANGE PIN-PACKAGE  
MAX1760ETB  
-40°C to +85°C  
-40°C to +85°C  
10 TDFN  
10 µMAX  
10 TDFN  
10 µMAX  
Low  
Low  
High  
High  
Applications  
PCS Phones  
MAX1760EUB  
Digital Cordless Phones  
Wireless Handsets  
Palmtop Computers  
Two-Way Pagers  
MAX1760HETB -40°C to +85°C  
MAX1760HEUB -40°C to +85°C  
Hand-Held Instruments  
Personal Communicators  
Typical Operating Circuit  
Pin Configurations  
INPUT = 0.7V  
TO V  
TOP VIEW  
OUT  
MAX1760  
ISET  
REF  
GND  
FB  
1
2
3
4
5
10 ON (ON)  
ISET  
1
2
3
4
5
10 ON (ON)  
ON  
LX  
9
8
7
6
POUT  
LX  
REF  
GND  
FB  
9
8
7
6
POUT  
LX  
V
= 3.3V,  
OUT  
CLK/SEL  
POUT  
MAX1760  
MAX1760H  
MAX1760  
MAX1760H  
800mA  
PGND  
CLK/SEL  
PGND  
CLK/SEL  
ISET  
REF  
FB  
OUT  
OUT  
OUT  
µMAX  
TDFN  
(3mm x 3mm)  
GND PGND  
(ON) FOR MAX1760H  
Idle Mode is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
ABSOLUTE MAXIMUM RATINGS  
Continuous Power Dissipation (T = +70°C)  
A
ON, ON, OUT, CLK/SEL to GND..............................-0.3V to +6V  
10-Pin µMAX (derate 5.6mW/°C above +70°C)...........444mW  
10-Pin TDFN (derate 24.4mV°C above +70°C) .........1951mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
PGND to GND..................................................................... 0.3V  
LX to PGND ............................................-0.3V to (V  
+ 0.3V)  
POUT  
POUT to OUT...................................................................... 0.3V  
REF, FB, ISET, POUT to GND...................-0.3V to (V + 0.3V)  
OUT  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(CLK/SEL = FB = PGND = GND, ISET = REF, OUT = POUT, V  
unless otherwise noted.)  
= 3.6V, T = 0°C to +85°C. Typical values are at T = +25°C,  
A A  
OUT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC-DC CONVERTER  
Input Voltage Range  
(Note 1)  
0.7  
0.9  
-2.3  
500  
1
5.5  
1.1  
V
V
Minimum Startup Voltage  
I
I
< 1mA, T = +25°C (Note 2)  
A
LOAD  
LOAD  
Temperature Coefficient of Startup Voltage  
Frequency in Startup Mode  
Internal Oscillator Frequency  
Oscillator Maximum Duty Cycle  
External Clock Frequency Range  
< 1mA  
= 1.5V  
mV/°C  
kHz  
MHz  
%
V
125  
0.8  
80  
1000  
1.2  
90  
OUT  
CLK/SEL = OUT  
(Note 3)  
86  
0.5  
1.2  
MHz  
V
< 0.1V, CLK/SEL = OUT, includes load  
FB  
Output Voltage  
3.17  
3.3  
1.240  
0.01  
-1.5  
3.38  
1.270  
100  
V
V
regulation for 0 < I < 0.55A  
LX  
Adjustable output, CLK/SEL = OUT, includes  
load regulation for 0 < I < 0.55A  
FB Regulation Voltage  
FB Input Leakage Current  
Load Regulation  
1.215  
LX  
V
= 1.35V (T = +25°C, MAX1760ETB,  
A
FB  
nA  
%
MAX1760HETB)  
CLK/SEL = OUT, no load to full load  
(0 < I < 1.0A)  
LX  
Output Voltage Adjust Range  
2.5  
5.5  
V
V
Output Voltage Lockout Threshold  
Rising edge (Note 4)  
2.00  
2.15  
0.01  
2.30  
V
= 1.25V (T = +25°C, MAX1760ETB,  
A
ISET  
ISET Input Leakage Current  
50  
nA  
MAX1760HETB)  
Supply Current in Shutdown  
No-Load Supply Current  
V
= 3.6V, V  
= 0V  
ON  
0.1  
100  
2.5  
5
µA  
µA  
ON  
CLK/SEL = GND (Note 5)  
185  
No-Load Supply Current Forced-PWM Mode CLK/SEL = OUT  
mA  
DC-DC SWITCHES  
V
= 0, V  
= 5.5V (T = +25°C,  
LX  
OUT A  
POUT Leakage Current  
LX Leakage Current  
0.1  
0.1  
10  
10  
µA  
µA  
MAX1760ETB, MAX1760HETB)  
= V = 5.5V, in shutdown (T =  
A
V
LX  
OUT  
+25°C, MAX1760ETB, MAX1760HETB)  
2
_______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(CLK/SEL = FB = PGND = GND, ISET = REF, OUT = POUT, V  
unless otherwise noted.)  
= 3.6V, T = 0°C to +85°C. Typical values are at T = +25°C,  
A A  
OUT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.15  
0.25  
1.25  
60  
MAX  
UNITS  
N-channel  
0.28  
0.45  
1.6  
Switch On-Resistance  
P-channel  
N-Channel Current Limit  
1.0  
20  
A
P-Channel Turn-Off Current  
REFERENCES  
CLK/SEL = GND  
120  
mA  
Reference Output Voltage  
Reference Load Regulation  
Reference Supply Rejection  
LOGIC INPUTS  
I
= 0  
1.230  
1.250  
5
1.270  
15  
V
REF  
-1µA < IREF < +50µA  
mV  
mV  
2.5V < V  
< 5V  
0.2  
5
OUT  
0.2 x  
CLK/SEL Input Low Level  
2.5V V  
2.5V V  
5.5V  
5.5V  
V
V
V
OUT  
OUT  
V
OUT  
0.8 x  
CLK/SEL Input High Level  
ON, ON Input Low Level (Note 6)  
V
OUT  
1.1V V  
1.8V V  
1.8V  
5.5V  
0.2  
0.4  
OUT  
OUT  
V
- 0.2  
OUT  
1.1V V  
1.8V  
5.5V  
OUT  
OUT  
ON, ON Input High Level (Note 6)  
V
1.8V V  
1.6  
CLK/SEL, ON, ON (T = +25°C,  
MAX1760ETB, MAX1760HETB)  
A
Input Leakage Current  
0.01  
1
µA  
Minimum CLK/SEL Pulse Width  
Maximum CLK/SEL Rise/Fall Time  
200  
100  
ns  
ns  
ELECTRICAL CHARACTERISTICS  
(CLK/SEL = FB = PGND = GND, ISET = REF, OUT = POUT, V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted.) (Note 7)  
A
OUT  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
DC-DC CONVERTER  
V
< 0.1V, CLK/SEL = OUT, includes load  
FB  
Output Voltage  
3.17  
3.38  
V
V
regulation for 0 < I < 0.55A  
LX  
Adjustable output, CLK/SEL = OUT, includes  
load regulation for 0 < I < 0.55A  
LX  
FB Regulation Voltage  
1.215  
1.270  
Internal Oscillator Frequency  
Oscillator Maximum Duty Cycle  
Output Voltage Lockout Threshold  
Supply Current in Shutdown  
No-Load Supply Current  
CLK/SEL = OUT  
(Note 3)  
0.75  
80  
1.2  
90  
MHz  
%
Rising edge (Note 4)  
2.00  
2.30  
5
V
V
= 3.6V  
µA  
µA  
ON  
CLK/SEL = GND (Note 5)  
185  
DC-DC SWITCHES  
N-channel  
P-channel  
0.28  
0.45  
Switch On-Resistance  
_______________________________________________________________________________________  
3
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(CLK/SEL = FB = PGND = GND, ISET = REF, OUT = POUT, V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted.) (Note 7)  
A
OUT  
PARAMETER  
N-Channel Current Limit  
REFERENCE  
CONDITIONS  
MIN  
MAX  
UNITS  
1.0  
1.6  
A
Reference Output Voltage  
I
= 0  
1.230  
0.8 x  
1.270  
V
REF  
LOGIC INPUTS  
0.2 x  
CLK/SEL Input Low Level  
2.5V V  
2.5V V  
5.5V  
5.5V  
V
V
V
OUT  
OUT  
V
OUT  
CLK/SEL Input High Level  
ON, ON Input Low Level (Note 6)  
V
OUT  
1.1V V  
1.8V V  
1.1V V  
1.8V V  
1.8V  
5.5V  
1.8V  
5.5V  
0.2  
0.4  
OUT  
OUT  
OUT  
OUT  
V
+ 0.2  
OUT  
1.6  
ON, ON Input High Level (Note 6)  
V
Input Leakage Current  
CLK/SEL, ON, ON  
1
µA  
Note 1: Operating voltage—since the regulator is bootstrapped to the output, once started, the MAX1760 operates down  
to 0.7V input.  
Note 2: Startup is tested with the circuit shown in Figure 6.  
Note 3: Defines maximum step-up ratio.  
Note 4: The regulator is in startup mode until this voltage is reached. Do not apply full load current until the output exceeds 2.3V.  
Note 5: Supply current into the OUT pin. This current correlates directly to the actual battery-supply current, but is reduced in  
value according to the step-up ratio and efficiency.  
Note 6: ON (MAX1760) and ON (MAX1760H) have a hysteresis of approximately 0.15 × V  
Note 7: Specifications to -40°C are guaranteed by design and not production tested.  
.
OUT  
Typical Operating Characteristics  
(Circuit of Figure 2, V = 2.4V, V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
IN  
OUT  
MAXIMUM OUTPUT CURRENT  
vs. INPUT VOLTAGE  
EFFICIENCY vs. OUTPUT CURRENT  
= 5V  
EFFICIENCY vs. OUTPUT CURRENT  
= 3.3V  
V
V
OUT  
OUT  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
A
B
V
OUT  
= 3.3V  
C
B
C
V
OUT  
= 5V  
= AUTO MODE  
= FPWM MODE  
= AUTO MODE  
= FPWM MODE  
A: V = 3.6V  
A: V = 2.4V  
IN  
IN  
B: V = 2.4V  
B: V = 1.2V  
IN  
IN  
C: V = 1.2V  
C: V = 0.9V  
IN  
IN  
0.0001  
0.001  
0.01  
0.1  
1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
INPUT VOLTAGE (V)  
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4
_______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, V = 2.4V, V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
IN  
OUT  
NO-LOAD BATTERY CURRENT  
vs. INPUT VOLTAGE  
TOTAL SHUTDOWN CURRENT  
(I + I ) vs. INPUT VOLTAGE  
INTERNAL OSCILLATOR  
FREQUENCY vs. TEMPERATURE  
LX OUT  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
1
V
OUT  
= 5V  
V
= 3.3V  
1
OUT  
0.1  
0
1
2
3
4
5
6
0
2
3
4
5
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
STARTUP VOLTAGE  
vs. OUTPUT CURRENT  
PEAK INDUCTOR CURRENT vs. V  
HEAVY-LOAD SWITCHING WAVEFORMS  
ISET  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
A = +85°C  
B = +25°C  
C = -40°C  
A
B
C
B
A
C
0V  
CIRCUIT OF FIGURE 6  
0.001 0.01  
OUTPUT CURRENT (A)  
0.1  
1
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
A = LX PIN, 5V/div  
B = INDUCTOR CURRENT, 200mA/div  
C = OUTPUT RIPPLE, 50mV/div AC-COUPLED  
t = 400ns/div  
V
(V)  
ISET  
LOAD-TRANSIENT RESPONSE  
LIGHT-LOAD SWITCHING WAVEFORMS  
LINE-TRANSIENT RESPONSE  
A
B
A
B
A
B
C
t = 200ms/div  
400µs/div  
t = 400ns/div  
V
= 1.1V, V = 3.3V, I = 0 AND 0.2A  
OUT  
OUT  
V
IN = 2.4V TO 1.4V, IOUT = 70mA  
IN  
A = LX PIN, 5V/div  
B = INDUCTOR CURRENT, 200mA/div  
C = OUTPUT RIPPLE, 50mV/div, AC-COUPLED  
IN  
OUT  
OUT  
A = I , 100mA/div  
B = V , 50mV/div, AC-COUPLED  
A = V , 1V/div  
B = V , 5mA/div, AC-COUPLED  
OUT  
_______________________________________________________________________________________  
5
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Typical Operating Characteristics (continued)  
(Circuit of Figure 2, V = 2.4V, V  
IN  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
OUT  
TURN-ON WAVEFORMS  
NO SOFT-START COMPONENTS  
SOFT-START WAVEFORMS  
NOISE SPECTRUM  
R
SS  
= 500k, C = 0.1µF  
SS  
16  
A
B
A
B
12  
8
4
C
0
C
0V  
OV  
0.1  
1
10  
t = 2ms/div  
A = ON, 5V/div  
2.00ms/div  
FREQUENCY (MHz)  
A = ON, 5V/div  
B = INPUT CURRENT, 100mA/div  
B = INPUT CURRENT, 500mA/div  
C = V , 2V/div  
C = V , 2V/div  
OUT  
OUT  
Pin Description  
PIN  
NAME  
FUNCTION  
N-Channel Current-Limit Control. For maximum current limit, connect to REF. To reduce current, supply a  
voltage between REF and GND by means of a resistive voltage-divider. If soft-start is desired, connect a  
1
ISET  
capacitor from ISET to GND. When ON = high, or V  
<80% of nominal value, an on-chip 100kswitched  
REF  
resistor discharges this pin to GND.  
1.250V Voltage Reference Bypass. Connect a 0.22µF ceramic bypass capacitor to GND. Up to 50µA of  
external load current is allowed.  
2
3
4
REF  
GND  
FB  
Ground. Connect to PGND with short trace.  
DC-DC Converter Feedback Input. To set fixed output voltage of +3.3V, connect FB to ground. For  
adjustable output of 2.5V to 5.5V, connect to a resistive divider from OUT to GND. FB set point = 1.24V.  
IC Power, Supplied from the Output. Bypass to GND with a 0.68µF ceramic capacitor, and connect to POUT  
with a series 4.7resistor (Figure 2).  
5
OUT  
Clock Input for the DC-DC Converter. Also serves to program operating mode of switcher as follows:  
CLK/SEL = LO: Normal operation—operates at a fixed frequency, automatically switching to low-power  
mode if load is minimized.  
CLK/SEL = HI: Forced-PWM mode—operates in low-noise, constant-frequency mode at all loads.  
CLK/SEL = Clocked: Forced-PWM mode with the internal oscillator synchronized to CLK in 500kHz to  
1200kHz range.  
6
CLK/SEL  
7
8
9
PGND  
LX  
Source of N-Channel Power MOSFET Switch  
Inductor Connection  
POUT  
ON  
Power Output. P-channel synchronous-rectifier source.  
MAX1760 Enable Input. When ON is low, the IC is on. Connect to GND for normal operation.  
MAX1760H Enable Input. When ON is high, the IC is on. Connect to OUT for normal operation.  
10  
ON  
6
_______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
UNDERVOLTAGE LOCKOUT  
OUT  
IC POWER  
2.15V  
CONTROLLER  
POUT  
STARTUP  
OSCILLATOR  
PCH  
NCH  
D
EN  
Q
ON  
(MAX1760H)  
ON  
(MAX1760)  
LX  
ON  
RDY  
EN  
REFERENCE  
EN  
OSC  
OSC  
1.25V  
REF  
REF GND  
OSCILLATOR  
1MHz  
GND  
MODE  
FB  
MODE  
CLK/SEL  
PGND  
CLK/SEL  
FB  
ISET  
ISET  
MAX1760  
Figure 1. Functional Diagram  
Detailed Description  
The MAX1760 is a highly efficient, low-noise power sup-  
ply for portable RF and hand-held instruments. It com-  
bines a boost switching regulator, N-channel power  
MOSFET, P-channel synchronous rectifier, precision  
reference, and shutdown control (Figure 1).  
3.3µH  
V
IN  
= 2.4V  
33µF  
ON  
LX  
CLK/SEL  
MAX1760  
The DC-DC converter boosts a 1-cell to 3-cell battery  
voltage input to a fixed 3.3V or adjustable voltage  
between 2.5V and 5.5V. An external Schottky diode is  
required for output voltages greater than 4V. The  
MAX1760 guarantees startup with an input voltage as  
low as 1.1V and remains operational down to an input  
of just 0.7V. It is optimized for use in cellular phones  
and other applications requiring low noise and low qui-  
escent current for maximum battery life. It features  
fixed-frequency operation at medium and heavy loads,  
but at light loads, switches only as needed for optimum  
efficiency. This device is also capable of constant-fre-  
quency (1MHz), low-noise PWM operation at all load  
currents, or frequency-synchronized PWM operation  
when connected to an external clock. Table 1 lists  
some typical outputs. Shutdown reduces quiescent cur-  
rent to just 1µA. Figure 2 shows the standard applica-  
tion circuit for the MAX1760.  
V
= 3.3V,  
OUT  
POUT  
800mA  
ISET  
REF  
4.7Ω  
100µF  
OUT  
0.68µF  
0.22µF  
FB  
GND PGND  
Figure 2. Standard Application Circuit  
Step-Up Converter  
During DC-DC converter operation, the internal N-chan-  
nel MOSFET switch turns on for the first part of each  
cycle, allowing current to ramp up in the inductor and  
store energy in a magnetic field. During the second  
part of each cycle, the MOSFET turns off and inductor  
current flows through the synchronous rectifier to the  
_______________________________________________________________________________________  
7
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Table 1. Typical Available Output Current  
NUMBER OF NiCd/NiMH  
CELLS  
INPUT VOLTAGE  
(V)  
OUTPUT VOLTAGE  
(V)  
OUTPUT CURRENT  
(mA)  
1
2
3
1.2  
2.4  
2.4  
3.6  
3.3  
3.3  
5.0  
5.0  
350  
800  
500  
750  
Table 2. Selecting the Operating Mode  
CLK/SEL  
MODE  
FEATURES  
0
1
Normal operation  
Forced PWM  
High efficiency at all loads. Fixed frequency at all but light loads.  
Low noise, fixed frequency at all loads.  
External clock  
500kHz to 1.2MHz  
Synchronized PWM  
Low noise, fixed frequency at all loads.  
output filter capacitor and the load. As the energy  
stored in the inductor is depleted, the current ramps  
down and the synchronous rectifier turns off. At light  
loads, the device operates at fixed frequency or only as  
needed to maintain regulation, depending on the  
CLK/SEL setting (Table 2).  
Synchronous Rectifier  
The MAX1760 features an internal, P-channel synchro-  
nous rectifier to enhance efficiency. Synchronous recti-  
fication provides 5% improved efficiency over similar  
nonsynchronous boost regulators. In PWM mode, the  
synchronous rectifier is turned on during the second  
half of each switching cycle. In low-power mode, an  
internal comparator turns on the synchronous rectifier  
when the voltage at LX exceeds the boost regulator  
output, and turns it off when the inductor current drops  
below 60mA. When setting output voltages greater than  
4V, an external 0.5A Schottky diode must be connected  
in parallel with the on-chip synchronous rectifier.  
Normal Operation  
Pulling CLK/SEL low selects the MAX1760’s normal  
operating mode. In this mode, the device operates in  
PWM when driving medium-to-heavy loads, and auto-  
matically switches to PFM if the load requires less  
power. PFM operation allows higher efficiency than  
PWM under light-load conditions.  
Low-Voltage Startup Oscillator  
The MAX1760 uses a CMOS, low-voltage startup oscil-  
lator for a 1.1V guaranteed minimum startup input volt-  
age. At startup, the low-voltage oscillator switches the  
N-channel MOSFET until the output voltage reaches  
2.15V. Above this level, the normal boost-converter  
feedback and control circuitry take over. Once the  
device is in regulation, it can operate down to 0.7V  
input since internal power for the IC is bootstrapped  
from the output through OUT. Do not apply full load  
until the output exceeds 2.3V.  
Forced-PWM Operation  
When CLK/SEL is high, the MAX1760 operates in a low-  
noise PWM-only mode. During forced-PWM operation,  
the MAX1760 switches at a constant frequency (1MHz)  
and modulates the MOSFET switch pulse width to con-  
trol the power transferred per cycle to regulate the out-  
put voltage. Switching harmonics generated by  
fixed-frequency operation are consistent and easily fil-  
tered. See the Noise Spectrum plot in the Typical  
Operating Characteristics.  
Synchronized-PWM Operation  
The MAX1760 can be synchronized in PWM mode to an  
external frequency of 500kHz to 1.2MHz by applying an  
external clock signal to CLK/SEL. This allows interfer-  
ence to be minimized in wireless applications. The syn-  
chronous rectifier is active during synchronized-PWM  
operation.  
Shutdown  
The MAX1760 has a shutdown mode that reduces qui-  
escent current to 0.1µA. During shutdown (ON = high  
on MAX1760, ON = low on MAX1760H), the reference  
and all feedback and control circuitry are off. During  
shutdown, the output voltage is one diode drop below  
the input voltage.  
8
_______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
3.3µH  
V
= 2.4V  
IN  
33µF  
CLK/SEL  
ON  
LX  
MAX1760  
POUT  
V
OUT  
100µF  
ISET  
REF  
4.7  
OUT  
FB  
0.68µF  
0.22µF  
PGND GND  
R1  
R2  
V
OUT  
-
1
R1 = R2  
(V )  
FB  
= 1.24V  
V
FB  
Figure 3. Connecting Resistors for External Feedback  
REF  
REF  
R
SS2  
I
= 1.25A  
LIM  
0.22µF  
0.22µF  
I
= 1.25A  
(R )  
+ R  
LIM  
SS1  
SS2  
R
SS1  
R
SS  
t
SS  
= R C  
SS SS  
MAX1760  
MAX1760  
t
SS  
= (R  
R ) C  
SS2 SS  
SS1  
II  
ISET  
ISET  
R
SS2  
C
SS  
C
SS  
R
SS1  
470kΩ  
R
SS  
470kΩ  
Figure 4. Soft-Start with Maximum Switch Limit Current  
Figure 5. Soft-Start with Reduced Switch Current Limit  
Reference  
The MAX1760 has an internal 1.250V 1% reference.  
Connect a 0.22µF ceramic bypass capacitor from REF  
to GND within 0.2in (5mm) of the REF pin. REF can  
source up to 50µA of external load current.  
where V , the boost-regulator feedback set point, is  
FB  
1.24V.  
Setting the Switch Current Limit  
and Soft-Start  
The ISET pin adjusts the inductor current limit and  
implements soft-start. With ISET connected to REF, the  
inductor current limits at 1.25A. With ISET connected to  
a resistive divider set from REF to GND, the current limit  
is reduced according to:  
Design Procedure  
Setting the Output Voltages  
For a fixed 3.3V output, connect FB to GND. To set  
other output voltages between 2.5V and 5.5V, connect  
a resistor voltage-divider to FB from OUT to GND  
(Figure 3). The input bias current into FB is <20nA,  
allowing large-value divider resistors without sacrificing  
accuracy. Connect the resistor voltage-divider as close  
to the IC as possible, within 0.2in (5mm) of FB. Choose  
R2 of 270kor less, then calculate R1 using:  
V
ISET  
ILIM = 1.25A  
1.25V  
Implement soft-start by placing a resistor from ISET to  
REF and a capacitor from ISET to GND. In shutdown,  
ISET is discharged to GND through an on-chip 100kΩ  
resistor. At power-up, ISET is 0V and the LX current is  
zero. As the capacitor voltage rises, the current  
increases and the output voltage rises. The soft-start  
VOUT  
VFB  
R1 = R2  
1  
_______________________________________________________________________________________  
9
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Table 3. Component Selection Guide  
PRODUCTION METHOD  
INDUCTORS  
CAPACITORS  
AVX TPS series  
Kemet T510 series  
Sanyo POSCAP series  
DIODES  
TOKO type D52LC  
TOKO type D518LC  
Sumida CDRH5D18  
Sumida CDRH4D28  
EIC SB series  
Motorola MBR0520L  
Surface mount  
External Diode  
Table 4. Component Suppliers  
For output voltages greater than 4V, an external  
Schottky diode must be connected from LX to POUT, in  
parallel with the on-chip synchronous rectifier (Figure  
6). The diode should be rated for 0.5A. Representative  
devices are Motorola MBR0520L, Nihon EP05Q03L, or  
generic 1N5817. This external diode is also recom-  
mended for applications that must start with input volt-  
ages at or below 1.8V. The Schottky diode carries  
current during startup and after the synchronous rectifi-  
er turns off; thus, its current rating only needs to be  
500mA. Connect the diode as close to the IC as possi-  
ble. Do not use ordinary rectifier diodes; their slow  
switching speeds and long reverse-recovery times ren-  
der them unacceptable. For circuits that do not require  
startup with inputs below 1.8V and have an output of 4V  
or less, no external diode is needed.  
SUPPLIER  
PHONE  
AVX  
EIC  
USA: 843-448-9411  
USA: 916-941-0712  
USA: 810-287-2536  
Kemet  
USA: 408-629-4789  
Japan: 81-45-474-7030  
Motorola  
USA: 847-956-0666  
Japan: 011-81-3-3667-3302  
Sumida  
TOKO  
USA: 847-297-0070  
Note: Please indicate that you are using the MAX1760 when  
contacting these component suppliers.  
time constant is:  
Input and Output Filter Capacitors  
tSS = RSSCSS  
Choose input and output filter capacitors that will ser-  
vice the input and output peak currents with accept-  
able voltage ripple. Choose input capacitors with  
working voltage ratings over the maximum input volt-  
where R 470k.  
SS  
Placing a capacitor across the lower resistor of the cur-  
rent-limiting resistive divider provides both current-limit  
and soft-start features simultaneously (Figures 4 and 5).  
Inductor Selection  
The MAX1760’s high switching frequency allows the  
use of a small 3.3µH surface-mount inductor. The cho-  
sen inductor should generally have a saturation current  
rating exceeding the N-channel switch current limit;  
however, it is acceptable to bias the inductor current  
into saturation by as much as 20% if a slight reduction  
in efficiency is acceptable. Lower current-rated induc-  
tors may be used if ISET is employed to reduce the  
peak inductor current (see the Setting the Switch  
Current Limit and Soft-Start section). For high efficien-  
cy, choose an inductor with a high-frequency ferrite  
core material to reduce core losses. To minimize radiat-  
ed noise, use a toroid or shielded inductor. See Table 3  
for suggested components and Table 4 for a list of  
component suppliers. Connect the inductor from the  
battery to the LX pin as close to the IC as possible.  
3.3µH  
V
= 0.7V  
IN  
TO VOUT  
33µF  
CLK/SEL  
ON  
MRB0520L  
LX  
V
OUT  
100µF  
MAX1760  
POUT  
ISET  
REF  
4.7  
OUT  
FB  
0.68µF  
0.22µF  
PGND GND  
Figure 6. Connection with External Schottky Diode for Output  
Voltages Greater than 4V, or to Assist Low-Voltage Startup  
10 ______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
age, and output capacitors with working voltage ratings  
higher than the output.  
bypass OUT to GND with a 0.68µF ceramic capacitor,  
and connect OUT to POUT with a 4.7resistor. Each of  
these components should be placed as close to its  
respective IC pins as possible, within 0.2in (5mm).  
Table 4 lists suggested suppliers.  
The input filter capacitor reduces peak currents drawn  
from the input source and also reduces input switching  
noise. The input voltage source impedance determines  
the required value of the input capacitor. When operat-  
ing directly from one or two NiMH cells placed close to  
the MAX1760, use a single 33µF low-ESR input filter  
capacitor. With higher impedance batteries, such as  
alkaline and Li+, a higher value input capacitor may  
improve efficiency.  
Layout Considerations  
High switching frequencies and large peak currents  
make PC board layout a critical part of design. Poor  
design causes excessive EMI and ground bounce,  
both of which can cause instability or regulation errors  
by corrupting the voltage and current feedback signals.  
The output filter capacitor reduces output ripple voltage  
and provides the load with transient peak currents  
when necessary. For the output, a 100µF, low-equiva-  
lent-series-resistance (ESR) capacitor is recommended  
for most applications.  
Power components—such as the inductor, converter IC,  
filter capacitors, and output diode—should be placed  
as close together as possible, and their traces should  
be kept short, direct, and wide. Keep the voltage feed-  
back network very close to the IC, within 0.2in (5mm) of  
the FB pin. Keep noisy traces, such as those from the  
LX pin, away from the voltage feedback network and  
guarded from them using grounded copper. Refer to the  
MAX1760 evaluation kit for a full PC board example.  
Sanyo POSCAP, Panasonic SP/CB, and Kemet T510  
are good low-ESR capacitors. Low-ESR tantalum  
capacitors offer a good tradeoff between price and  
performance. Do not exceed the ripple current ratings  
of tantalum capacitors. Avoid aluminum electrolytic  
capacitors; their high ESR typically results in higher  
output ripple voltage.  
Chip Information  
TRANSISTOR COUNT: 1361  
Other External Components  
Two ceramic bypass capacitors are required for proper  
operation. Bypass REF to GND with 0.22µF. Also,  
______________________________________________________________________________________ 11  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
DIM MIN  
MAX  
MILLIMETERS  
MIN  
-
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50±0.1  
0.6±0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.090  
0.270  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6±0.1  
c
0.0035 0.0078  
0.0196 REF  
0.200  
BOTTOM VIEW  
0.498 REF  
S
TOP VIEW  
α
0  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
12 ______________________________________________________________________________________  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
L
A
D2  
D
A2  
PIN 1 ID  
1
N
1
C0.35  
b
[(N/2)-1] x e  
REF.  
E
E2  
PIN 1  
INDEX  
AREA  
DETAIL A  
e
k
A1  
C
L
C
L
L
L
e
e
A
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
1
2
21-0137  
D
______________________________________________________________________________________ 13  
0.8A, Low-Noise, 1MHz,  
Step-Up DC-DC Converter  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
2.00 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.30±0.05  
T833-1  
8
T1033-1  
10  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
2
21-0137  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1761

Small, Dual, High-Efficiency Buck Controller for Notebooks
MAXIM

MAX17610

4.5V to 60V, 1A Current Limiter with OV, UV, and Reverse Protection
MAXIM

MAX17610ATC+T

Power Supply Support Circuit,
MAXIM

MAX17612A

4.5V to 60V, 250mA Current-Limiter with OV, UV, and Reverse Protection
MAXIM

MAX17612AATB+T

4.5V to 60V, 250mA Current-Limiter with OV, UV, and Reverse Protection
MAXIM

MAX17612BATB+T

4.5V to 60V, 250mA Current-Limiter with OV, UV, and Reverse Protection
MAXIM

MAX17612CATB+T

4.5V to 60V, 250mA Current-Limiter with OV, UV, and Reverse Protection
MAXIM

MAX17613A

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection
MAXIM

MAX17613AATPT

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection
MAXIM

MAX17613B

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection
MAXIM

MAX17613BATPT

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection
MAXIM

MAX17613C

4.5V to 60V, 3A Current-Limiter with OV, UV and Reverse Protection
MAXIM