MAX1733EUK [MAXIM]

Low-Voltage, Step-Down DC-DC Converters in SOT23; 低电压,降压型DC -DC转换器,SOT23封装
MAX1733EUK
型号: MAX1733EUK
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage, Step-Down DC-DC Converters in SOT23
低电压,降压型DC -DC转换器,SOT23封装

转换器
文件: 总8页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1586; Rev 0; 7/00  
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
General Description  
Features  
The MAX1733/MAX1734 step-down DC-DC converters  
deliver over 250mA to outputs as low as 1.25V. These  
converters use a unique proprietary current-limited con-  
trol scheme that achieves over 90% efficiency. These  
devices maintain extremely low quiescent supply cur-  
rent (40µA), and their high 1.2MHz (max) operating fre-  
quency permits small, low-cost external components.  
This combination of features makes the MAX1733/  
MAX1734 excellent high-efficiency alternatives to linear  
regulators in space-constrained applications.  
250mA Guaranteed Output Current  
Synchronous Rectifier for Over 90% Efficiency  
Tiny 5-Pin SOT23 Package  
40µA Quiescent Supply Current  
0.01µA Logic-Controlled Shutdown  
Up to 1.2MHz Switching Frequency  
Fixed 1.8V or 1.5V Outputs (MAX1734)  
Adjustable Output Voltage (MAX1733)  
Internal synchronous rectification greatly improves effi-  
ciency and eliminates the external Schottky diode  
required in conventional step-down converters. Both  
devices also include internal digital soft-start to limit  
input current upon startup and reduce input capacitor  
requirements.  
1.5% ꢀnitial Accuracy  
2.7V to 5.5V ꢀnput Range  
Soft-Start Limits Startup Current  
The MAX1733 provides an adjustable output voltage  
(1.25V to 2.0V). The MAX1734 provides factory-preset  
output voltages (see Selector Guide). Both are avail-  
able in space-saving 5-pin SOT23 packages.  
Ordering Information  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PꢀN-PACKAGE  
5 SOT23-5  
MAX1733EUK-T  
MAX1734EUK_ _-T  
5 SOT23-5  
Note: The MAX1734 offers two output voltages. See the Selector  
Guide, then insert the proper designator into the blanks above to  
complete the part number.  
Applications  
Cellular, PCS, and Cordless Telephones  
PDAs, Palmtops, and Handy-Terminals  
Battery-Powered Equipment  
Selector Guide  
PART  
V
(V)  
TOP MARK  
ADKY  
OUT  
MAX1733EUK  
MAX1734EUK18  
MAX1734EUK15  
Adjustable  
1.8  
ADKW  
1.5  
ADKX  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
INPUT  
+2.7V TO +5.5V  
V
AT  
OUT  
250mA  
10µH  
IN  
LX  
IN  
1
2
3
5
4
LX  
2.2µF  
22µF  
MAX1734  
MAX1733  
MAX1734  
GND  
SHDN  
OUT  
SHDN  
OUT (FB)  
GND  
SOT23-5  
( ) ARE FOR MAX1733 ONLY.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
ABSOLUTE MAXꢀMUM RATꢀNGS  
IN, SHDN to GND.....................................................-0.3V to +6V  
OUT, FB, LX to GND....................................-0.3V to (V + 0.3V)  
OUT Short Circuit to GND ..........................................Continuous  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
Continuous Power Dissipation (T = +70°C)  
A
5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRꢀCAL CHARACTERꢀSTꢀCS  
(V = +2.7V to +5.5V, SHDN = IN, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
IN  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
Input Voltage Range  
Startup Voltage  
V
2.7  
V
V
IN  
V
2.0  
START  
V
V
rising  
falling  
1.85  
1.65  
200  
1.95  
IN  
IN  
UVLO Threshold  
V
V
UVLO  
1.55  
UVLO Hysteresis  
mV  
µA  
No switching, no load (FB/OUT above trip  
point)  
Quiescent Supply Current  
I
40  
70  
IN  
Shutdown Supply Current  
I
SHDN = GND  
0.01  
4
µA  
SHDN  
Output Voltage Range (MAX1733)  
V
1.25  
-1.5  
-3  
2.0  
+1.5  
+3  
V
OUT  
I
I
I
= 0, T = +25°C  
OUT  
OUT  
OUT  
A
Output Voltage Accuracy  
(MAX1734)  
%
= 0 to 250mA  
= 0 to 250mA  
= 2.7V to 5.5V  
Load Regulation  
0
0
%/mA  
%/V  
µA  
Line Regulation  
V
V
IN  
OUT Sense Current (MAX1734)  
= V , V = V = 5V  
REG IN SHDN  
4
8
OUT  
T
= +25°C, V = 3.6V  
1.231  
1.220  
1.250  
1.269  
1.280  
0.2  
A
IN  
FB Feedback Threshold  
(MAX1733)  
V
V
FB  
V
V
= 3.6V  
= 1.5V  
IN  
FB Leakage Current (MAX1733)  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Leakage Current  
High-Side Current Limit  
Low-Side Current Limit  
I
FB  
0.001  
µA  
V
FB  
V
2.7V < V < 5.5V  
1.6  
IH  
IN  
V
IL  
SHDN  
2.7V < V < 5.5V  
IN  
0.4  
1
V
I
SHDN = GND or IN  
0.001  
425  
325  
0.7  
0.5  
1.0  
0.8  
40  
µA  
mA  
mA  
I
300  
200  
535  
430  
1.4  
1.1  
2
LIMP  
I
LIMN  
I
LX  
I
LX  
I
LX  
I
LX  
= -50mA, V = 3.0V  
IN  
High-Side On-Resistance  
Rectifier On-Resistance  
R
ONP  
ONN  
= -50mA, V = 5.5V  
IN  
= -50mA, V = 3.0V  
IN  
R
= -50mA, V = 5.5V  
1.6  
IN  
Rectifier Off-Current Threshold  
LX Leakage Current  
I
mA  
µA  
µA  
µs  
LXOFF  
I
V
= 5.5V, V = 0 to V  
IN  
0.1  
0.1  
0.4  
0.4  
5
LXLEAK  
IN  
LX  
LX Reverse Leakage Current  
Minimum On-Time  
I
IN unconnected, V = 5.5V, SHDN = GND  
5
LXLK,R  
LX  
t
t
V
V
= 3.6V  
= 3.6V  
0.28  
0.28  
0.5  
0.5  
ON(MIN)  
IN  
IN  
Minimum Off-Time  
µs  
OFF(MIN)  
2
_______________________________________________________________________________________  
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +5.5V, SHDN = IN, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
5.5  
UNITS  
Input Voltage Range  
Startup Voltage  
V
2.7  
V
V
IN  
V
2.0  
START  
V
V
rising, 200mV typical hysteresis  
falling  
1.95  
IN  
IN  
UVLO Threshold  
V
V
UVLO  
1.55  
Quiescent Supply Current  
Shutdown Supply Current  
Output Voltage Range (MAX1733)  
I
No switching (FB/OUT above trip point)  
70  
4
µA  
µA  
V
IN  
I
SHDN = GND  
SHDN  
V
1.25  
-3  
2.0  
OUT  
Output Voltage Accuracy  
(MAX1734)  
I
= 0 to 250mA  
+3  
8
%
µA  
V
OUT  
OUT Sense Current (MAX1734)  
I
V
V
V
= V  
, V = V  
REG IN  
= 5V  
SHDN  
OUT  
OUT  
FB Feedback Threshold  
(MAX1733)  
V
= 3.6V  
1.210  
1.6  
1.280  
0.2  
FB  
IN  
FB Leakage Current (MAX1733)  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Leakage Current  
High-Side Current Limit  
Low-Side Current Limit  
I
= 1.5V  
µA  
V
FB  
FB  
V
2.7V < V < 5.5V  
IN  
IH  
V
IL  
SHDN  
2.7V < V < 5.5V  
IN  
0.4  
1
V
I
SHDN = GND or IN  
µA  
mA  
mA  
I
300  
200  
565  
430  
1.4  
1.1  
2
LIMP  
I
LIMN  
I
LX  
I
LX  
I
LX  
I
LX  
= -50mA, V = 3.0V  
IN  
High-Side On-Resistance  
Rectifier On-Resistance  
R
ONP  
ONN  
= -50mA, V = 5.5V  
IN  
= -50mA, V = 3.0V  
IN  
R
= -50mA, V = 5.5V  
1.6  
5
IN  
LX Leakage Current  
LX Reverse Leakage Current  
Minimum On-Time  
I
V
= 5.5V, V = 0 to V  
IN  
µA  
µA  
µs  
µs  
LXLEAK  
IN  
LX  
I
IN unconnected, V = 5.5V, SHDN = GND  
5
LXLK,R  
LX  
t
t
0.25  
0.25  
0.55  
0.55  
ON(MIN)  
Minimum Off-Time  
OFF(MIN)  
Note 1: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
_______________________________________________________________________________________  
3
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
Typical Operating Characteristics  
(C = 2.2µF ceramic, C  
= 22µF tantalum, L = 10µH, unless otherwise noted.)  
IN  
OUT  
EFFICIENCY vs.  
NO-LOAD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
LOAD CURRENT (V  
= 1.5V)  
OUT  
100  
90  
100  
90  
62  
60  
58  
56  
54  
52  
50  
48  
46  
V
IN  
= 2.7V  
V
IN  
= 2.7V  
V
= 1.8V, T = +85°C  
OUT A  
V
= 1.8V, T = +25°C  
A
80  
70  
60  
OUT  
80  
70  
60  
V
= 5.0V  
IN  
V
= 5.0V  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
50  
40  
30  
50  
40  
30  
V
OUT  
= 1.5V, T = +25°C  
A
V
= 1.5V, T = -40°C  
A
OUT  
0.1  
1
10  
LOAD CURRENT (mA)  
100  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
OUTPUT ACCURACY vs.  
LOAD CURRENT (V = 1.5V)  
SWITCHING FREQUENCY  
vs. SUPPLY VOLTAGE  
OUTPUT ACCURACY vs.  
LOAD CURRENT (V = 1.8V)  
OUT  
OUT  
3.0  
2.0  
1.0  
0
3.0  
2.0  
1.0  
0
1.50  
1.25  
1.00  
0.75  
0.50  
I
= 50mA TO 250mA  
LOAD  
V
IN  
= 3.6V, T = +85°C  
A
V
IN  
= 3.6V, T = +85°C  
A
V
IN  
= 5.0V, T = +25°C  
A
V
IN  
= 2.7V, T = +25°C  
A
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
V
= 1.8V  
3.3  
OUT  
V
OUT  
= 1.5V  
V
= 2.7V, T = +25°C  
A
IN  
V
= 5.0V, T = +25°C  
A
IN  
V
IN  
= 3.6V, T = -40°C  
A
V
IN  
= 3.6V, T = -40°C  
A
0.1  
1
10  
100  
1000  
2.7  
3.0  
3.6  
3.9  
4.2  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
LIGHT-LOAD SWITCHING WAVEFORMS  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX1733/4-07  
MAX1733/4-08  
V
IN  
= 3.6V, V  
= 1.8V, I  
= 20mA  
OUT  
LOAD  
V
IN  
= 3.6V, V  
= 1.8V, I  
= 200mA  
OUT  
LOAD  
V
OUT  
AC-COUPLED  
V
OUT  
AC-COUPLED  
20mV/div  
20mV/div  
V
LX  
2V/div  
V
LX  
2V/div  
400ns/div  
400ns/div  
4
_______________________________________________________________________________________  
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
Typical Operating Characteristics (continued)  
(C = 2.2µF ceramic, C  
= 22µF tantalum, L = 10µH, unless otherwise noted.)  
IN  
OUT  
LOAD-TRANSIENT RESPONSE  
SOFT-START AND SHUTDOWN RESPONSE  
MAX1733/4-12  
MAX1733/4-09  
V
IN  
= 3.6V, V  
= 1.8V, I  
= 20mA TO 200mA  
V
IN  
= 3.6V, V  
= 1.8V, R  
= 7  
OUT  
LOAD  
OUT  
LOAD  
V
OUT  
1V/div  
V
OUT  
AC-COUPLED  
50mV/div  
I
IN  
100mA/div  
I
LOAD  
100mA/div  
V
SHDN  
5V/div  
4µs/div  
200µs/div  
HEAVY-LOAD LINE-TRANSIENT RESPONSE  
LIGHT-LOAD LINE-TRANSIENT RESPONSE  
MAX1733/4-11  
MAX1733/4-10  
V
IN  
= 3.4V TO 3.8V, V  
= 1.8V, I  
= 200mA  
LOAD  
V
IN  
= 3.4V TO 3.8V, V  
= 1.8V, I  
= 20mA  
OUT  
OUT  
LOAD  
V
V
OUT  
AC-COUPLED  
OUT  
AC-COUPLED  
50mV/div  
50mV/div  
V
IN  
V
IN  
AC-COUPLED  
AC-COUPLED  
200mV/div  
200mV/div  
4µs/div  
4µs/div  
Pin Description  
PIN  
1
NAME  
IN  
FUNCTION  
Supply Voltage Input. Input range from +2.7V to +5.5V. Bypass with a 2.2µF ceramic capacitor to  
GND.  
2
GND  
SHDN  
Ground  
Active-Low Shutdown Input. Connect SHDN to IN for normal operation. In shutdown, LX becomes  
high impedance and quiescent current drops to 0.01µA.  
3
MAX1733 Voltage Feedback Input. FB regulates to 1.25V nominal. Connect FB to an external  
voltage-divider between the output voltage and GND.  
FB  
4
5
OUT  
LX  
MAX1734 Voltage Sense Input. OUT is connected to an internal voltage-divider.  
Inductor Connection  
_______________________________________________________________________________________  
5
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
L1  
10µH  
INPUT  
IN  
V
OUT  
+2.7V TO +5.5V  
IN  
LX  
FB  
C1  
2.2µF  
C2  
22µF  
MAX1733  
MAX1733  
MAX1734  
CURRENT  
LIMIT  
R1  
R2  
SHDN  
GND  
DIGITAL  
SOFT-START  
P
CONTROL  
LOGIC  
LX  
N
Figure 1. MAX1733 Typical Application Circuit  
SHUTDOWN  
CONTROL  
SHDN  
OUT (FB)  
Detailed Description  
The MAX1733/MAX1734 step-down DC-DC converters  
deliver over 250mA to outputs as low as 1.25V. They  
use a unique proprietary current-limited control scheme  
that maintains extremely low quiescent supply current  
(40µA), and their high 1.2MHz (max) operating frequen-  
cy permits small, low-cost external components. Figure  
2 is a simplified functional diagram.  
V
REF  
GND  
( ) ARE FOR MAX1733 ONLY.  
Figure 2. Simplified Functional Diagram  
Control Scheme  
The MAX1733/MAX1734 use a proprietary, current-lim-  
ited control scheme to ensure high-efficiency, fast tran-  
sient response, and physically small external  
components. This control scheme is simple: when the  
output voltage is out of regulation, the error comparator  
begins a switching cycle by turning on the high-side  
switch. This switch remains on until the minimum on-  
time of 400ns expires and the output voltage regulates  
or the current-limit threshold is exceeded. Once off, the  
high-side switch remains off until the minimum off-time  
of 400ns expires and the output voltage falls out of reg-  
ulation. During this period, the low-side synchronous  
rectifier turns on and remains on until either the high-  
side switch turns on again or the inductor current  
approaches zero. The internal synchronous rectifier  
eliminates the need for an external Schottky diode.  
nearly constant frequency operation with high efficien-  
cy and low output voltage ripple.  
Shutdown Mode  
Connecting SHDN to GND places the MAX1733/  
MAX1734 in shutdown mode and reduces supply cur-  
rent to 0.01µA. In shutdown, the control circuitry, inter-  
nal switching MOSFET, and synchronous rectifier turn  
off and LX goes high impedance. Connect SHDN to IN  
for normal operation.  
Soft-Start  
The MAX1733/MAX1734 have internal soft-start circuitry  
that limits current draw at startup, reducing transients on  
the input source. Soft-start is particularly useful for higher  
impedance input sources, such as Li+ and alkaline cells.  
Soft-start is implemented by starting with the current limit  
at 25% of its full current value and gradually increasing it  
in 25% steps until the full current limit is reached. See  
Soft-Start and Shutdown Response in the Typical  
Operating Characteristics section.  
This control scheme allows the MAX1733/MAX1734 to  
provide excellent performance throughout the entire  
load-current range. When delivering light loads, the  
high-side switch turns off after the minimum on-time to  
reduce peak inductor current, resulting in increased  
efficiency and reduced output voltage ripple. When  
delivering medium and higher output currents, the  
MAX1733/MAX1734 extend either the on-time or the off-  
time, as necessary to maintain regulation, resulting in  
Design Information  
Setting the Output Voltage (MAX1733)  
Select an output voltage for the MAX1733 by connect-  
ing FB to a resistive divider between the output and  
6
_______________________________________________________________________________________  
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
Table 1. Suggested Inductors  
Table 3. Component Suppliers  
COMPANY  
PHONE  
FAX  
INDUCTOR VALUE  
(µH)  
PART  
NUMBER  
MANUFACTURER  
AVX  
843-946-0238  
847-639-6400  
408-986-0424  
814-237-1431  
847-956-0666  
81-3-3607-5111  
408-573-4150  
843-626-3123  
847-639-1469  
408-986-1442  
814-238-0490  
847-956-0702  
81-3-3607-5144  
408-573-4159  
Coilcraft  
Kemet  
CR43-100  
10  
10  
Sumida  
Coilcraft  
CDRH4D18-100  
DT1608C-103  
Murata  
USA  
Sumida  
Japan  
Table 2. Suggested Capacitors  
Taiyo Yuden  
CAPACITOR  
MANUFACTURER  
TYPE  
PART  
NUMBER  
1/2  
Tantalum  
(22µF)  
I
V
V
OUT  
Taiyo Yuden  
AVX  
LMK212BJ225MG  
TAJA226M006R  
OUT OUT  
(
IN  
)
I
=
RMS  
V
Ceramic  
(2.2µF)  
IN  
Tables 2 and 3 list some suggested capacitors and  
suppliers.  
Using Ceramic C  
with MAX1733  
OUT  
GND (Figure 1). Choose R2 to be less than 50k:  
The circuit of Figure 3 is designed to allow the use of  
ceramic output capacitors with the MAX1733.  
Feedback is derived from the LX pin instead of the out-  
put to remove the effects of phase lag in the feedback  
loop. Compared to the standard applications circuit,  
there are three benefits: 1) availability of ceramic vs.  
tantalum; 2) size of 2.2µF 0805 vs. 22µF A-case; 3) out-  
put ripple less than 10mVp-p vs. greater than 30mVp-p.  
Increase the output capacitance to 4.7µF to further  
reduce the output ripple. Note that this circuit exhibits  
load regulation equal to the series resistance of the  
inductor multiplied by the load current. This small  
amount of load regulation is helpful in reducing over-  
shoot of the output voltage during load transients.  
V
OUT  
R1 = R2 ×  
1  
V
REF  
where V  
= 1.25V.  
REF  
Inductor Selection  
The MAX1733/MAX1734 are optimized to use a 10µH  
inductor over the entire operating range. A 300mA  
rated inductor is enough to prevent saturation for out-  
put currents up to 250mA. Saturation occurs when the  
inductors magnetic flux density reaches the maximum  
level the core can support and inductance falls.  
Choose a low DC-resistance inductor to improve effi-  
ciency. Tables 1 and 3 list some suggested inductors  
and suppliers.  
OUTPUT  
1.8V at 250mA  
10µH  
IN  
LX  
FB  
Capacitor Selection  
The MAX1733/MAX1734 require output voltage ripple  
(approximately 30mVp-p) for stable switching behavior.  
Use a 10µF to 47µF tantalum output capacitor with  
about 200mto 300mESR to provide stable switch-  
ing while minimizing output ripple. Choose input and  
output capacitors to filter inductor currents for accept-  
able voltage ripple. The input capacitor reduces peak  
currents and noise at the voltage source. Input capaci-  
tors must meet the input ripple requirements and volt-  
age rating. Use the following equation to calculate the  
maximum RMS input current:  
2.2µF  
X7R  
Li+  
2.2µF  
X7R  
MAX1733  
30k  
2.7V TO 4.2V  
GND  
1000pF  
ON OFF  
SHDN  
68k  
Figure 3. Using a Ceramic Output Capacitor with the MAX1733  
_______________________________________________________________________________________  
7
Low-Voltage, Step-Down DC-DC Converters  
in SOT23  
age-feedback network; also keep them separate, using  
grounded copper. The MAX1733/MAX1734 evaluation  
kit data sheet includes a proper PC board layout and  
routing scheme.  
Layout Considerations  
High switching frequencies make PC board layout a  
very important part of design. Good design minimizes  
excessive EMI on the feedback paths and voltage gra-  
dients in the ground plane, both of which can result in  
instability or regulation errors. Connect the inductor,  
input filter capacitor, and output filter capacitor as  
close to the device as possible, and keep their traces  
short, direct, and wide. Connect their ground pins at a  
single common node in a star ground configuration.  
The external voltage-feedback network should be very  
close to the FB pin, within 0.2 inches (5mm). Keep  
noisy traces, such as the LX trace, away from the volt-  
Chip Information  
TRANSISTOR COUNT: 1190  
PROCESS: BiCMOS  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1733EUK+

Switching Regulator, Voltage-mode, 0.565A, 1200kHz Switching Freq-Max, BICMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
MAXIM

MAX1733EUK-T

Low-Voltage, Step-Down DC-DC Converters in SOT23
MAXIM

MAX1733EUK-TG05

Switching Regulator, 0.565A, 1200kHz Switching Freq-Max, BICMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1734

Evaluation Kit for the MAX3510[MAX3510EVKIT ]
MAXIM

MAX1734EUK15

Low-Voltage, Step-Down DC-DC Converters in SOT23
MAXIM

MAX1734EUK15+

暂无描述
MAXIM

MAX1734EUK15+T

暂无描述
MAXIM
MAXIM

MAX1734EUK18

Low-Voltage, Step-Down DC-DC Converters in SOT23
MAXIM

MAX1734EUK18+

Switching Regulator, 0.565A, 1200kHz Switching Freq-Max, BICMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
MAXIM
MAXIM

MAX1734EUK__-T

Low-Voltage, Step-Down DC-DC Converters in SOT23
MAXIM