MAX1725EUK-T [MAXIM]

12V, Ultra-Low IQ, Low-Dropout Linear Regulators; 12V ,超低IQ,低压差线性稳压器
MAX1725EUK-T
型号: MAX1725EUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
12V ,超低IQ,低压差线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总7页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1680; Rev 1; 2/03  
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
General Description  
Features  
The MAX1725/MAX1726 are ultra-low supply current,  
low-dropout linear regulators intended for low-power  
applications that demand the longest possible battery  
life. Unlike inferior PNP-based designs, the MAX1725/  
MAX1726s’ PMOS pass elements maintain an ultra-low  
2µA supply current throughout their entire operating  
range and in dropout. Despite their ultra-low power  
consumption, the MAX1725/MAX1726 have tight output  
accuracy (1.5%) and require just 1µF output capacitance  
to achieve good load-transient response.  
2µA Supply Current  
Reverse-Battery Protection  
+2.5V to +12V Input Voltage Range  
Fixed 1.8V, 2.5V, 3.3V, and 5V Output Voltages  
(MAX1726)  
Adjustable 1.5V to 5V Output Voltages (MAX1725)  
20mA Guaranteed Output Current  
1.5% Output Voltage Accuracy  
Small 1µF Output Capacitor  
Short-Circuit Protection  
These regulators have a wide input voltage range  
(+2.5V to +12V), making them excellent choices for  
systems powered from two lithium-ion (Li+) cells and 9V  
batteries. Other features include reverse-battery protec-  
tion, short-circuit protection, and thermal protection.  
Thermal Protection  
The MAX1725 provides an adjustable 1.5V to 5V output  
using an external resistor-divider. The MAX1726 pro-  
vides factory preset 1.8V, 2.5V, 3.3V, or 5V output volt-  
ages (see the Ordering Information). Both devices are  
available in a tiny 5-pin SOT23 package.  
Tiny 5-Pin SOT23 Package  
Ordering Information  
________________________Applications  
Smoke Detectors  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
Remote Transmitters  
MAX1725EUK-T  
-40°C to +85°C  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
5 SOT23-5  
ADNK  
ADNL  
ADNM  
ADNN  
ADNO  
Smart Battery Packs  
MAX1726EUK18-T -40°C to +85°C  
MAX1726EUK25-T -40°C to +85°C  
MAX1726EUK33-T -40°C to +85°C  
Industrial Control Systems  
Microcontroller Power  
Real-Time Clock Backup Power  
PDAs and Handy-Terminals  
Battery-Powered Alarms  
MAX1726EUK5-T  
-40°C to +85°C  
Note: See the Selector Guide for the MAX1725/MAX1726 output  
options as they relate to the part number suffix.  
Typical Operating Circuit  
Selector Guide  
OUTPUT VOLTAGE  
PART  
(V)  
V
OUTPUT  
1.5V TO 5V  
IN  
IN  
OUT  
2.5V TO 12V  
MAX1725EUK-T  
MAX1726EUK18-T  
MAX1726EUK25-T  
MAX1726EUK33-T  
MAX1726EUK50-T  
Adj 1.5 to 5.0  
Fixed 1.8  
Fixed 2.5  
Fixed 3.3  
Fixed 5.0  
MAX1726  
ON  
SHDN  
GND  
OFF  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
ABSOLUTE MAXIMUM RATINGS  
IN to GND................................................................-14V to +14V  
OUT Short Circuit...........................................................Indefinite  
SHDN to GND..............................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
5-Pin SOT23-5 (derate 7.1mW/°C above +70°C) ........571mW  
IN  
A
(-0.3V to + 0.3V when V < 0V)  
IN  
OUT, FB (MAX1725 only) to GND...................-0.3V to +6V when  
θ
...............................................................................+140°C/W  
JA  
V
>5.7V; -0.3V to (V + 0.3V) when 0V <  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
IN  
V
IN  
< 5.7V; -0.3V to +0.3V when V < 0V  
IN  
OUT Continuous Current...................................................200mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = V  
+ 1V, SHDN = IN, I  
= 1mA, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
OUT A  
IN  
OUT  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
12  
4.5  
2
UNITS  
Input Voltage Range  
Supply Current  
V
IN  
(Note 2)  
= 12V  
2.5  
V
µA  
µA  
V
I
V
IN  
2
IN  
IN(SHDN)  
Shutdown Supply Current  
OUT Voltage Range  
FB Voltage  
I
0.7  
SHDN = 0V, V = 12V, V  
= 0V  
OUT  
IN  
V
OUT  
MAX1725 only  
1.5  
5
V
FB  
MAX1725 only (Note 3)  
1.245  
V
T
T
T
= +25°C  
-1.5  
-2  
1.5  
+2  
+3  
0.3  
A
A
A
OUT Voltage Accuracy (Note 3)  
= 0°C to +85°C  
= -40°C to +85°C  
%
-3  
Line Regulation  
V  
V  
V
= 2.5V or (V + 0.5V) to 12V  
OUT  
0.01  
0.015  
80  
%/V  
%/mA  
mA  
LNR  
IN  
I
= 1mA to 20mA, V = (V + 1V)  
OUT  
OUT  
IN  
Load Regulation  
0.15  
LDR  
or 3V (min)  
Maximum OUT Current  
Dropout Voltage (Note 4)  
Foldback Current Limit  
SHDN Input Threshold  
I
V
= (V + 1V) or 3V (Note 4)  
OUT  
20  
OUT  
IN  
I
= 20mA for V  
2.5V, I = 10mA for  
OUT  
OUT  
OUT  
V  
300  
40  
600  
mV  
DO  
V
< 2.5V, not applicable for V  
< 1.9V  
OUT  
OUT  
I
V
= 12V, V = 0V  
OUT  
mA  
SC  
IN  
IN  
V
2
IH  
V
V
= 2.5V to 12V  
= 0V to 12V  
V
V
0.5  
IL  
T
T
T
T
= +25°C  
= +85°C  
= +25°C  
= +85°C  
-50  
-20  
+50  
A
A
A
A
I
nA  
nA  
SHDN Input Bias Current  
SHDN  
SHDN  
0.1  
2
+20  
10  
FB Input Bias Current  
(MAX1725 only)  
I
FB  
V
V
= 1.25V  
FB  
1.5  
0.01  
150  
15  
IN Reverse Leakage Current  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
= -12V, V  
= 0V  
µA  
°C  
°C  
IN  
SHDN  
Temperature rising  
2
_______________________________________________________________________________________  
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V  
+ 1V, SHDN = IN, I  
= 1mA, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
A
IN  
OUT  
OUT  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
0.25V, t = t = 5µs  
MIN  
TYP  
MAX  
UNITS  
OUT Line-Transient  
Overshoot/Undershoot  
V  
=
15  
mV  
IN  
R
F
OUT Load-Transient  
Overshoot/Undershoot  
I
from 1mA to 10mA, t = t = 1µs  
200  
350  
mV  
OUT  
R
F
OUT Noise  
e
n
f = 10Hz to 100kHz  
µV  
RMS  
Note 1: Limits are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Guaranteed by OUT line-regulation testing.  
Note 3: OUT accuracy from nominal voltage. The MAX1725 is tested at V  
= 1.5V, 2.5V, and 5V.  
OUT  
Note 4: When V  
falls to 4% below its value at V = V  
+ 1V.  
OUT  
IN  
OUT  
Typical Operating Characteristics  
(V  
= +3.3V, I  
= 1mA, T = +25°C, unless otherwise noted.)  
A
OUT  
OUT  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. LOAD CURRENT  
SUPPLY CURRENT vs. INPUT VOLTAGE  
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
V
= 5V  
V
= 5V  
IN  
IN  
-40  
-20  
0
20  
40  
60  
80  
4
5
6
7
8
9
10 11 12  
0
5
10  
15  
20  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
NORMALIZED OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
0
-0.2  
-0.4  
-0.6  
-0.8  
0.8  
0.6  
0.4  
0.2  
0
0.30  
0.20  
0.10  
0
NOMINAL OUTPUT = 3.3V  
NOMINAL OUTPUT = 3.3V  
V
= 4.5V  
IN  
I
= 1mA  
LOAD  
I
= 1mA  
OUT  
-0.2  
-0.10  
-0.20  
-0.30  
-1.0  
-1.2  
-0.4  
-0.6  
-0.8  
I
= 20mA  
9
LOAD  
8
-1.4  
0
2
4
6
8
10 12 14 16 18 20  
4
5
6
7
10 11 12  
-40  
-20  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
Typical Operating Characteristics (continued)  
= 1mA, T = +25°C, unless otherwise noted.)  
OUT A  
(V  
= +3.3V, I  
OUT  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
DROPOUT VOLTAGE vs. LOAD CURRENT  
LINE-TRANSIENT RESPONSE  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
C
OUT  
= 1µF  
V
V
L
= 5V  
OUT  
OUT  
= 1mA  
IN  
I
= 3.3V  
T
= +85°C  
A
R = 3.3kΩ  
250  
200  
150  
100  
50  
C
= 1µF  
OUT  
V
IN  
T
= +25°C  
A
200mV/div  
V
OUT  
20mV/div  
T
= -40°C  
A
0
0
5
10  
LOAD CURRENT (mA)  
15  
20  
100µs/div  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
LOAD TRANSIENT  
TURN-ON/TURN-OFF RESPONSE  
C
= 1µF  
C
I
= 1µF  
OUT  
= 1mA - 20mA  
OUT  
I
= 1mA  
OUT  
OUT  
I
OUT  
20mA/div  
V
SHDN  
2V/div  
V
OUT  
100mV/div  
V
OUT  
1V/div  
400µs/div  
4ms  
Detailed Description  
Pin Description  
The MAX1725/MAX1726 are low-dropout, low-quiescent-  
current linear regulators designed primarily for battery-  
powered applications (Figure 1). The MAX1725 provides  
an adjustable output voltage from 1.5V to 5V using an  
external resistor-divider. The MAX1726 supplies preset  
output voltages of 1.8V, 2.5V, 3.3V, or 5V. These devices  
consist of a +1.245V error amplifier, MOSFET driver,  
and P-channel pass transistor (Figure 2).  
PIN  
NAME  
FUNCTION  
MAX1725 MAX1726  
1
2
1
2
IN  
GND  
OUT  
FB  
Supply Voltage Input  
Ground  
3
3
Voltage Output  
4
4
Feedback Voltage Input  
Ground  
5
GND  
SHDN  
5
Active-Low Shutdown Input  
4
_______________________________________________________________________________________  
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
The error amplifier compares 1.245V to the selected  
pass to the output. The output voltage is fed back  
through either an internal resistor voltage-divider con-  
nected to OUT (MAX1726) or an external resistor net-  
work connected to FB (MAX1725). Additional features  
include an output current limiter, reverse-battery protec-  
tion, a thermal sensor, and shutdown logic.  
feedback voltage and amplifies the difference. If the  
feedback voltage is lower than 1.245V, the pass-tran-  
sistor gate is pulled lower, allowing more current to  
pass, and thus increasing the output voltage. If the  
feedback voltage is higher than 1.245V, the pass-tran-  
sistor gate is driven higher, allowing less current to  
Internal P-Channel Pass Transistor  
The MAX1725/MAX1726 feature a P-channel MOSFET  
pass transistor. This provides advantages over similar  
designs using PNP pass transistors, including longer  
battery life. The P-channel MOSFET requires no base  
drive, which reduces quiescent current considerably.  
PNP-based regulators waste considerable current in  
dropout when the pass transistor saturates; they also  
use high base-drive currents under large loads. The  
MAX1725/MAX1726 do not suffer from these prob-  
lems, and consume only 2µA of quiescent current  
throughout their load range (see the Typical Operating  
Characteristics).  
INPUT  
OUTPUT  
2.5V TO 12V  
1.5V TO 5V  
IN  
OUT  
FB  
C
C
IN  
OUT  
1µF  
1µF  
R1  
MAX1725  
ON  
SHDN  
GND  
OFF  
R2  
1.2MΩ  
Shutdown  
To enter shutdown, drive the SHDN pin below 0.5V.  
When the MAX1725/MAX1726 are shut down, the output  
Figure 1. Typical Application Circuit  
IN  
OUT  
MAX1725  
MAX1726  
1.245V  
BIAS  
CIRCUITRY  
THERMAL  
SHUTDOWN  
(MAX1726 ONLY)  
SHDN  
FB (MAX1725 ONLY)  
GND  
Figure 2. Functional Diagram  
_______________________________________________________________________________________  
5
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
pass transistor shuts off, the output falls to ground, and  
supply current drops from 2µA to 0.7µA. Connect SHDN  
to IN for normal operation. If reverse-battery protection  
is needed, drive SHDN through a 100kresistor.  
The MAX1725 features an adjustable output voltage  
from 1.5V to 5V, using two external resistors connected  
as a voltage-divider to FB (Figure 1). The MAX1725 is  
optimized for operation with R2 = 1.2M. The output  
voltage is set by the following equation:  
Thermal-Overload Protection  
Thermal-overload protection limits total power dissipa-  
tion in the MAX1725/MAX1726. When the junction tem-  
R1  
R2  
V
= V  
1 +  
OUT  
FB  
perature exceeds T = +150°C, the thermal sensor  
J
signals the shutdown logic, turning off the pass transistor  
and allowing the IC to cool. The thermal sensor turns  
the pass transistor on again after the IC’s junction tem-  
perature cools by 15°C, resulting in a pulsed output  
during continuous thermal-overload conditions.  
where typically V = 1.245V. To simplify resistor selec-  
FB  
tion:  
V
V
OUT  
R1 = R2  
1  
Thermal-overload protection is designed to protect the  
devices in the event of fault conditions. For continuous  
operation, do not exceed the absolute maximum junction  
FB  
Choose R2 = 1.2Mfor best accuracy.  
temperature rating of T = +150°C.  
J
Power-Supply Rejection and Operation  
from Sources Other than Batteries  
Foldback Current Limiting  
The MAX1725/MAX1726 also include a foldback current  
limiter. When the output is shorted to ground, the output  
PMOS drive is limited so that the output current does  
not exceed 40mA (typ). The output can be shorted to  
ground indefinitely without damaging the part.  
The MAX1725/MAX1726 are designed to deliver low  
dropout voltages and low quiescent currents in battery-  
powered systems. Power-supply rejection is 60dB at low  
frequencies and rolls off above 100Hz. At high frequen-  
cies, the output capacitor is the major contributor to the  
rejection of power-supply noise (see the Power-Supply  
Rejection Ratio vs. Frequency graph in the Typical  
Operating Characteristics).  
Reverse-Battery Protection  
The MAX1725/MAX1726 have a unique protection  
scheme that limits the reverse supply current to less  
When operating from sources other than batteries,  
improve supply-noise rejection and transient response  
by increasing the value of the input and output capaci-  
tors, and by using passive filtering techniques (see the  
Supply and Load Transient Response graph in the  
Typical Operating Characteristics).  
than 10µA when V is forced below ground. The cir-  
IN  
cuitry monitors the polarity of the input, disconnecting  
the internal circuitry and parasitic diodes when the battery  
is reversed. This feature prevents the device, battery,  
and load from overheating and electrical stress. For  
reverse-battery protection, drive SHDN through a  
100kresistor.  
Chip Information  
Applications Information  
TRANSISTOR COUNT: 112  
Capacitor Selection and  
Regulator Stability  
Pin Configuration  
For general purposes, use a 1µF capacitor on the  
MAX1725/MAX1726 input and output. Larger input  
capacitor values and lower ESR provide better supply-  
noise rejection and transient response. A higher-value  
input capacitor (10µF) may be necessary if large, fast  
transients are anticipated and the device is located sev-  
eral inches from the power source. For stable operation  
over the full temperature range, use a minimum of 1µF  
on the output.  
TOP VIEW  
IN  
GND  
OUT  
1
2
3
5
SHDN  
MAX1725  
MAX1726  
4
FB (GND)  
Output Voltage Selection  
For fixed 1.8V, 2.5V, 3.3V, or 5V output voltages, use  
the MAX1726.  
SOT23-5  
( ) ARE FOR MAX1726 ONLY.  
6
_______________________________________________________________________________________  
12V, Ultra-Low I , Low-Dropout  
Q
Linear Regulators  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________7  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1726

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX17263LETD+

Power Supply Support Circuit,
MAXIM

MAX1726EUK18-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK25+T

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1726EUK25-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK33+T

Fixed Positive LDO Regulator, 3.3V, 0.6V Dropout, CMOS, PDSO5, SOT-23, 5 PIN
MAXIM

MAX1726EUK33-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK5-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1726EUK50+T

Fixed Positive LDO Regulator, 5V, 0.6V Dropout, CMOS, PDSO5, MINIATURE, SOT-23, 5 PIN
MAXIM

MAX1726EUK50-T

12V, Ultra-Low IQ, Low-Dropout Linear Regulators
MAXIM

MAX1727

Serially Controlled.Clickless Audio/Video Switches[MAX4562/MAX4563/MAX4562CEE/MAX4562CEE-T/MAX4562EEE/MAX4562EEE-T/MAX4563CEE/MAX4563CEE-T/MAX4563EEE/MAX4563EEE-T ]
MAXIM

MAX17270

nanoPower Triple-Output, Single-Inductor, Multiple-Output (SIMO) Buck-Boost Regulator
MAXIM