MAX17021EVKIT [MAXIM]

High Speed, Accuracy, and Efficiency;
MAX17021EVKIT
型号: MAX17021EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High Speed, Accuracy, and Efficiency

文件: 总15页 (文件大小:1142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4511; Rev 0; 3/09  
MAX17021 Evaluation Kit  
Evluates:  
General Description  
Features  
o Dual-Phase, Fast-Response Interleaved,  
The MAX17021 evaluation kit (EV kit) demonstrates the  
high-power, dynamically adjustable, multiphase  
IMVP-6.5+ notebook CPU application circuit. This  
DC-DC converter steps down high-voltage batteries  
and/or AC adapters, generating a precision, low-volt-  
Quick-PWM  
o Intel IMVP-6+ Code-Set Compliant  
(Montevina Socket Configuration)  
o Dynamic Phase Selection Optimizes  
age CPU core V  
rail. The MAX17021 EV kit meets the  
CC  
Active/Sleep Efficiency  
Intel mobile IMVP-6+ CPU’s transient voltage specifica-  
tion, power-good signaling, voltage regulator thermal  
monitoring (VRHOT), and power-good output  
(PWRGD). The MAX17021 kit consists of the MAX17021  
2-phase interleaved Quick-PWM™ step-down con-  
troller. The MAX17021 kit includes active voltage posi-  
tioning with adjustable gain, reducing power dissipation  
and bulk output capacitance requirements. A slew-rate  
controller allows controlled transitions between VID  
codes, controlled soft-start and shutdown, and con-  
trolled exit suspend voltage. Precision slew-rate control  
provides “just-in-time” arrival at the new DAC setting,  
minimizing surge currents to and from the battery.  
o Transient Phase Overlap Reduces Output  
Capacitance  
o Active Voltage Positioning with Adjustable Gain  
o High Speed, Accuracy, and Efficiency  
MAX7021  
o Low-Bulk Output Capacitor Count  
o 7V to 24V Input-Voltage Range  
o 0 to 1.5000V Output-Voltage Range (7-Bit DAC)  
o 60A Peak Load-Current Capability (30A Each Phase)  
o Accurate Current Balance and Current Limit  
o 300kHz Switching Frequency (per Phase)  
Two dedicated system inputs (PSI and DPRSLPVR)  
dynamically select the operating mode and number of  
active phases, optimizing the overall efficiency during  
the CPU’s active and sleep states.  
o Power-Good (PWRGD) and Phase-Good  
(PHASEGD) Outputs and Indicators  
o Clock Enable (CLKEN) and Thermal Fault (VRHOT)  
Outputs and Indicators  
The MAX17021 includes latched output undervoltage-  
fault protection, overvoltage-fault protection, and ther-  
mal-overload protection. It also includes a voltage regu-  
lator power-good (PWRGD) output, a clock enable  
(CLKEN) output, and a phase-good (PHASEGD) output.  
o Output Overvoltage and Undervoltage Fault  
Protections  
o 40-Pin Thin QFN Package with Exposed Pad  
o Lead(Pb)-Free and RoHS Compliant  
o Fully Assembled and Tested  
This fully assembled and tested circuit board provides  
a digitally adjustable 0 to 1.5000V output voltage (7-bit  
on-board DAC) from a 7V to 24V battery input range.  
Each phase is designed for a 20A thermal design cur-  
rent, and delivers up to 30A peak output current for a  
total of 60A. The EV kit operates at 300kHz switching  
frequency (per phase) and has superior line- and load-  
transient response.  
Ordering Information  
PART  
TYPE  
MAX17021EVKIT+  
EV Kit  
+Denotes lead(Pb)-free and RoHS compliant.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
10µF ±±0%, ±5V X5R ceramic  
capacitors (1±10)  
Murata GRM3±DR61E106KA1±L  
TDK C3±±5X7R1E106M  
AVX 1±103D106M  
CLKEN,  
DPRSLPVR,  
GND_SENSE,  
PGDIN,  
PHASEGD, PSI,  
PWRGD, V3P3,  
VOUT_SENSE,  
VRHOT, VR_ON  
C1–C4  
4
11 Test points  
Taiyo Yuden TMK3±5BJ106MM  
KEMET C1±10C106M3RAC  
Quick-PWM is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For information on other Maxim products, visit Maxim’s website at www.maxim-ic.com.  
MAX17021 Evaluation Kit  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
0.36µH, 36A, 0.8±mpower  
inductors  
330µF, ±V, 4.5mlow-ESR polymer  
capacitors (D case)  
L1, L±  
±
Panasonic ETQP4LR36ZFJ  
NEC TOKIN MPC1055LR36  
TOKO FDUE1040D-R36M  
C5–C8  
C9  
4
0
±
Panasonic EEFSX0D331E4 or  
NEC TOKIN PSGV0E337M4.5  
KEMET T5±0V337M±R5ATE4R5  
n-channel MOSFETs (PowerPAK 8 SO)  
Fairchild FDS6±98 (8 SO)  
Vishay (Siliconix) SI4386DY  
Not installed, ceramic capacitor  
(0805)  
N1, N±  
N3–N6  
±
4
MAX7021  
1µF ±10%, 16V X5R ceramic  
capacitors (0603)  
TDK C1608X5R1C105K  
Taiyo Yuden EMK107BJ683MA  
Murata GRM188R61C105K  
n-channel MOSFETs (PowerPAK 8 SO)  
Fairchild FDS8670 (8 SO)  
Vishay (Siliconix) SI46±6ADY  
C10, C11  
Not installed, n-channel MOSFET  
(D-PAK)  
N7  
0
0
5
Not installed, ceramic capacitors  
(0603)  
C1±, C±0–C±6 are open; C±7 is  
short (PC trace)  
Not installed, n-channel MOSFETs  
(PowerPAK 8 SO)  
N8, N9  
C1±, C±0–C±7  
0
6
R1, R15, R16,  
R43, R44  
10±5% resistors (0603)  
Evluates:  
0.±±µF ±±0%, 10V X7R ceramic  
capacitors (0603)  
Murata GRM188R71A±±4K  
Taiyo Yuden LMK107BJ±±4MA  
TDK C1608X7R1C±±4M  
AVX 06033D±±4KAT  
R±  
1
1
1
±
±
±
±
59k±1% resistor (0603)  
1±.1k±1% resistor (0603)  
±00k±1% resistor (0603)  
0resistors (0603)  
C13–C16, C±8,  
C±9  
R3  
R4  
R5, R6  
R7, R11  
R8, R1±  
R9, R13  
1.±1k±1% resistors (0603)  
1.50k±1% resistors (0603)  
±0k±1% resistors (0603)  
1000pF ±10%, 50V X7R ceramic  
capacitors (0603)  
TDK C1608X7R1H10±K or  
Murata GRM188R71H10±K or  
equivalent  
C17, C18, C19  
3
10k±1% NTC thermistors,  
ß = 3380 (0603)  
Murata NCP18XH103F03RB  
TDK NTCG163JH103F  
R10, R14  
±
10µF ±±0%, 6.3V X5R ceramic  
capacitors (0805)  
C30–C39,  
C6±–C65  
14 TDK C±01±X5R0J106M or  
Taiyo Yuden AMK±1±BJ106MG  
AVX 08056D106MAT  
R17  
1
0
4.3±k±1% resistor (0603)  
Not installed, resistors (0603)  
R18, R±4, and R33 are open; R34  
and R35 are short (PC trace)  
R18, R±4, R33,  
R34, R35,  
±±µF, 6.3V X5R ceramic capacitors  
R19  
R±0  
1
0
51±5% resistor (0603)  
(0805)  
TDK C±01±X5R0J±±6MT  
Taiyo Yuden JMK±1±BJ±±6MG  
C40–C49  
D1, D±  
10  
Not installed, 1W resistor (±51±)  
R±1, R±±, R±3,  
R30  
4
1
1k±5% resistors (0603)  
13k±1% resistor (0603)  
3A, 30V Schottky diodes  
Nihon EC31QS03L  
Central Semi CMSH3-40M  
±
R±5  
100k±5% NTC thermistor,  
ß = 4±50 (0603)  
Murata NCP18WF104J03RB  
TDK NTCG163JF104J (040±) or  
Panasonic ERT-J1VR104J  
LEDs, green clear SMD (0805)  
LITE-ON Electronics LTST-C170GKT  
Digi-Key 160-1179-1-ND  
D3–D6  
JU1  
4
0
R±6  
1
Not installed, 3-pin header  
2
_______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
R±7, R±8, R±9,  
Dual-phase, Quick-PWM VID  
controller (40 TQFN-EP*)  
Maxim MAX170±1GTL+  
R31, R3±,  
R36–R4±  
1± 100k±5% resistors (0603)  
U1  
1
R45, R46  
SW1  
±
1
1
±±5% resistors (0603)  
U±  
1
1
CPU socket MPGA479  
7-position low-profile DIP switch  
5-position low-profile DIP switch  
PCB: MAX170±1 Evaluation Kit+  
SW±  
*EP = Exposed pad.  
MAX7021  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
AVX Corporation  
843-946-0238  
631-435-1110  
800-344-4539  
www.avxcorp.com  
www.centralsemi.com  
www.digikey.com  
Central Semiconductor Corp.  
Digi-Key Corp.  
Fairchild Semiconductor  
KEMET Corp.  
888-522-5372  
864-963-6300  
www.fairchildsemi.com  
www.kemet.com  
Murata Electronics North America, Inc.  
NEC TOKIN America, Inc.  
Nihon Inter Electronics Corp.  
Panasonic Corp.  
770-436-1300  
408-324-1790  
847-843-7500  
800-344-2112  
800-348-2496  
847-803-6100  
847-297-0070  
402-563-6866  
www.murata-northamerica.com  
www.nec-tokinamerica.com  
www.niec.co.jp  
www.panasonic.com  
www.t-yuden.com  
Taiyo Yuden  
TDK Corp.  
www.component.tdk.com  
www.tokoam.com  
TOKO America, Inc.  
Vishay  
www.vishay.com  
Note: Indicate that you are using the MAX17021 when contacting these component suppliers.  
and SW1 (7, 8) to the on positions. The output voltage  
Quick Start  
Recommended Equipment  
is set for 1.050V.  
3) Turn on the battery power before turning on the 5V  
bias power.  
MAX17021 EV kit  
7V to 24V, > 100W power supply, battery, or note-  
book AC adapter  
4) Observe the 1.050V output voltage with the DMM  
and/or oscilloscope. Look at the LX switching nodes  
and MOSFET gate-drive signals while varying the  
load current.  
DC bias power supply, 5V at 1A  
Dummy load capable of sinking 60A  
Digital multimeters (DMMs)  
Detailed Description of Hardware  
This 60A peak multiphase buck-regulator design is  
optimized for a 300kHz switching frequency (per  
100MHz dual-trace oscilloscope  
Procedure  
phase) and output-voltage settings around 1V. At V  
OUT  
The MAX17021 EV kit is fully assembled and tested.  
Follow the steps below to verify board operation:  
= 1V and V = 12V, the inductor ripple is approximate-  
IN  
ly 35% (LIR = 0.35). The MAX17021 controller inter-  
leaves all the active phases, resulting in out-of-phase  
operation that minimizes the input and output filtering  
requirements. The multiphase controller shares the cur-  
rent between two phases that operate 180° out-of-  
phase, supplying up to 30A per phase.  
1) Ensure that the circuit is connected correctly to the  
supplies and dummy load prior to applying any power.  
2) Verify that all positions of switch SW2 are off. The DAC  
code settings (D6–D0) are set by switch SW1. Set  
SW1 (1, 14), SW1 (2, 13), SW1 (4, 11), SW1 (5, 10),  
_______________________________________________________________________________________  
3
MAX17021 Evaluation Kit  
1) Drive the external VID0–VID6 inputs (all SW1  
positions are off). The output voltage is set by dri-  
ving VID0–VID6 with open-drain drivers (pullup  
resistors are included on the board) or 3V/5V CMOS  
output logic levels.  
Setting the Output Voltage  
The MAX17021 has an internal digital-to-analog con-  
verter (DAC) that programs the output voltage. The out-  
put voltage can be digitally set from 0 to 1.5000V  
(Table 2) from the D0–D6 pins. There are two different  
ways of setting the output voltage:  
Table 1. MAX17021 Operating Mode Truth Table  
INPUTS  
MAX7021  
PHASE  
OPERATION*  
SHDN DPRSTP DPRSLPVR  
PSI  
SW2  
(3, 8)  
OPERATING MODE  
SW2  
SW2  
(5, 6)  
SW2  
(2, 9)  
(1, 10)  
Low-Power Shutdown Mode. DL1 and DL± are forced low and the  
controller is disabled. The supply current drops to 1µA (max).  
GND  
X
X
X
Disabled  
Multiphase  
Pulse Skipping  
Startup/Boot. When SHDN is pulled high, the MAX170±1 begins the  
startup sequence. The controller enables the PWM controller and  
ramps the output voltage up to the boot voltage.  
Rising  
X
X
X
1/8 R  
TIME  
Slew Rate  
Evluates:  
Multiphase  
Forced-PWM  
Full Power. The no-load output voltage is determined by the selected  
VID DAC code (D0–D6, Table ±).  
High  
High  
High  
High  
Low  
Low  
High  
Low  
Normal R  
TIME  
Slew Rate  
1-Phase  
Forced-PWM  
Intermediate Power. The no-load output voltage is determined by the  
selected VID DAC code (D0–D6, Table ±). When PSI is pulled low, the  
MAX170±1 immediately disables phase ±. DH± and DL± are pulled low.  
Normal R  
TIME  
Slew Rate  
Deeper Sleep Mode. The no-load output voltage is determined by the  
selected VID DAC code (D0–D6, Table ±). When DPRSLPVR is pulled  
high, the MAX170±1 immediately enters 1-phase pulse-skipping  
operation allowing automatic PWM/PFM switchover under light loads.  
The PWRGD and CLKEN upper thresholds are blanked during  
downward transitions. DH± and DL± are pulled low.  
1-Phase Pulse  
Skipping  
High  
High  
Low  
High  
High  
X
X
Normal R  
TIME  
Slew Rate  
Deeper Sleep Slow Exit Mode. The no-load output voltage is  
determined by the selected VID DAC code (D0–D6, Table ±).  
When DPRSTP is pulled high while DPRSLPVR is already high, the  
MAX170±1 remains in one-phase pulse-skipping operation, allowing  
automatic PWM/PFM switchover under light loads, but reduces its  
slew rate to 1/4 of normal.  
1-Phase Pulse  
Skipping  
High  
1/4 R  
Slew  
TIME  
Rate  
Shutdown. When SHDN is pulled low, the MAX170±1 immediately  
pulls PWRGD and PHASEGD low, CLKEN becomes high impedance,  
all enabled phases are activated, and the output voltage is ramped  
down to ground. Once the output reaches 0V, the controller enters the  
low-power shutdown state.  
Multiphase  
Forced-PWM  
Falling  
High  
X
X
X
X
X
X
1/8 R  
TIME  
Slew Rate  
Fault Mode. The fault latch has been set by the MAX170±1 UVP or  
thermal-shutdown protection, or by the OVP protection. The controller  
Disabled  
remains in fault mode until V power is cycled or SHDN toggled.  
CC  
*Multiphase operation = All enabled phases active.  
X = Don’t care.  
4
_______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
Table 2. MAX17021 IMVP-6.5+ Output-Voltage VID DAC Codes  
OUTPUT  
VOLTAGE (V)  
OUTPUT  
VOLTAGE (V)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.46±5  
1.4500  
1.4375  
1.4±50  
1.41±5  
1.4000  
1.3875  
1.3750  
1.36±5  
1.3500  
1.3375  
1.3±50  
1.31±5  
1.3000  
1.±875  
1.±750  
1.±6±5  
1.±500  
1.±375  
1.±±50  
1.±1±5  
1.±000  
1.1875  
1.1750  
1.16±5  
1.1500  
1.1375  
1.1±50  
1.11±5  
1.1000  
1.0875  
1.0750  
1.06±5  
1.0500  
1.0375  
1.0±50  
1.01±5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.7000  
0.6875  
0.6750  
0.66±5  
0.6500  
0.6375  
0.6±50  
0.61±5  
0.6000  
0.5875  
0.5750  
0.56±5  
0.5500  
0.5375  
0.5±50  
0.51±5  
0.5000  
0.4875  
0.4750  
0.46±5  
0.4500  
0.4375  
0.4±50  
0.41±5  
0.4000  
0.3875  
0.3750  
0.36±5  
0.3500  
0.3375  
0.3±50  
0.31±5  
0.3000  
0.±875  
0.±750  
0.±6±5  
0.±500  
0.±375  
0.±±50  
0.±1±5  
MAX7021  
_______________________________________________________________________________________  
5
MAX17021 Evaluation Kit  
Table 2. MAX17021 IMVP-6.5+ Output-Voltage VID DAC Codes (continued)  
OUTPUT  
VOLTAGE (V)  
OUTPUT  
VOLTAGE (V)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.0000  
0.9875  
0.9750  
0.96±5  
0.9500  
0.9375  
0.9±50  
0.91±5  
0.9000  
0.8875  
0.8750  
0.86±5  
0.8500  
0.8375  
0.8±50  
0.81±5  
0.8000  
0.7875  
0.7750  
0.76±5  
0.7500  
0.7375  
0.7±50  
0.71±5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.±000  
0.1875  
0.1750  
0.16±5  
0.1500  
0.1375  
0.1±50  
0.11±5  
0.1000  
0.0875  
0.0750  
0.06±5  
0.0500  
0.0375  
0.0±50  
0.01±5  
0
MAX7021  
Evluates:  
0
0
0
0
0
0
0
2) Switch SW1. When SW1 positions are off, the  
MAX17021’s D0–D6 inputs are at logic 1 (connect-  
ed to VDD). When SW1 positions are on, D0–D6  
inputs are at logic 0 (connected to GND). The out-  
put voltage can be changed during operation by  
activating SW1 on and off. As shipped, the EV kit is  
configured with SW1 positions set for 1.050V output  
(Table 2). Refer to the MAX17021 IC data sheet for  
more information.  
input (FBAC), so the resistance between FBAC and V  
OUT  
(R17) determines the voltage-positioning gain. Resistor  
R17 (4.32k) provides a -2.1mV/A voltage-positioning  
slope at the output when all phases are active. Remote  
output and ground sensing eliminate any additional  
PCB voltage drops.  
Dynamic Output-Voltage  
Transition Experiment  
This MAX17021 EV kit is set to transition the output volt-  
age at 12.6mV/µs. The speed of the transition is altered  
by scaling resistors R2 and R3.  
Reduced Power-Dissipation  
Voltage Positioning  
The MAX17021 includes a transconductance amplifier for  
adding gain to the voltage-positioning sense path. The  
amplifier’s input is generated by summing the current-  
sense inputs, which differentially sense the voltage  
across the inductor’s DCR. The transconductance ampli-  
fier’s output connects to the voltage-positioned feedback  
During the voltage transition, watch the inductor current by  
looking at the current-sense inputs with a differential scope  
probe. Observe the low, well-controlled inductor current  
that accompanies the voltage transition. Slew-rate control  
during shutdown and startup results in well-controlled  
currents in to and out of the battery (input source).  
6
_______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
There are two methods to create an output-voltage  
transition. Select D0–D6 (SW1). Then either manually  
change the SW1 settings to a new VID code setting  
(Table 2), or disable all SW1 settings and drive the  
VID0–VID6 PCB test points externally to the desired  
code settings.  
heat stress in the MOSFET. Vary the high-level output  
voltage of the pulse generator to vary the load current.  
To determine the load current, you might expect to  
insert a meter in the load path, but this method is pro-  
hibited here by the need for low resistance and induc-  
tance in the path of the dummy-load MOSFET. To  
determine how much load current a particular pulse-  
generator amplitude is causing, observe the current  
through inductor L1. In the buck topology, the load cur-  
rent is approximately equal to the average value of the  
inductor current.  
Load-Transient Experiment  
One interesting experiment is to subject the output to  
large, fast load transients and observe the output with  
an oscilloscope. Accurate measurement of output rip-  
ple and load-transient response invariably requires that  
ground clip leads be completely avoided and the  
probe removed to expose the GND shield, so the probe  
can be directly grounded with as short a wire as possi-  
ble to the board. Otherwise, EMI and noise pickup cor-  
rupt the waveforms.  
MAX7021  
Note: The CPU socket is based on the Montevina plat-  
form pin configuration.  
Switch SW2 Settings  
Shutdown SW2 (1, 10)  
When SHDN goes low (SW2 (1, 10) = on), the  
MAX17021 enters low-power shutdown mode. PWRGD  
is pulled low immediately and the output voltage ramps  
down at 1/8 the slew rate set by R2 and R3 (71.1k).  
When the controller reaches the 0V target, the drivers are  
disabled (DL1 and DL2 driven low), the reference is  
turned off, and the IC supply currents drop to 1µA (max).  
Most benchtop electronic loads intended for power-  
supply testing lack the ability to subject the DC-DC  
converter to ultra-fast load transients. Emulating the  
supply current (di/dt) at the IMVP-6.5+ VCORE pins  
requires at least 500A/µs load transients. An easy  
method for generating such an abusive load transient is  
to install a power MOSFET at the N7 location and install  
resistor R20 between 5mand 10mto monitor the  
transient current. Then drive its gate (TP1) with a strong  
pulse generator at a low-duty cycle (< 5%) to minimize  
When a fault condition activates the shutdown  
sequence (output undervoltage lockout or thermal shut-  
Table 3. Shutdown Mode (SHDN)  
SW2 (1, 10)  
SHDN PIN  
MAX17021 OUTPUT  
Off*  
On  
Connected to VDD  
Connected to GND  
Output enabled—V  
is selected by VID DAC code (D0–D6) settings  
= 0V  
OUT  
Shutdown mode, V  
OUT  
*Default position.  
Table 4. DPRSLPVR, PSI  
DPRSLPVR  
SW2 (2, 9)  
PSI  
SW2 (3, 8)  
POWER LEVEL  
OPERATING MODE  
On (VDD)  
Off (GND)  
Off (GND)*  
X
Low current  
Intermediate  
Full  
1-phase pulse-skipping mode  
On (GND)  
Off (VDD)*  
1-phase forced-PWM mode  
Normal operation—all phases are active, forced-PWM mode  
*Default position.  
X = Don’t care.  
Table 5. DPRSTP  
SW2 (5, 6)  
DPRSTP PIN  
MAX17021  
Off  
On*  
Connected to VDD  
Connected to GND  
1/4 of nominal slew rate is set by R2 and R3 if DPRSLPVR is also high  
Nominal slew rate  
*Default position.  
_______________________________________________________________________________________  
7
MAX17021 Evaluation Kit  
down), the protection circuitry sets the fault latch to  
prevent the controller from restarting. To clear the fault  
latch and reactivate the MAX17021, toggle SHDN or  
DPRSLPVR are forced high, the slew rate is reduced to  
a quarter of the nominal slew rate.  
PGDIN, SW2 (4, 7)  
PGDIN indicates the power status of other system rails  
and is used for power-supply sequencing. After power-  
up to the boot voltage, the output voltage remains at  
cycle V  
power.  
DD  
DPRSLPVR SW2 (2, 9), PSI SW2 (3, 8)  
DPRSLPVR and PSI together determine the operating  
mode, as shown in Table 4. The MAX17021 will be  
forced into full-phase pulse-skipping mode during start-  
up and while in boot mode, and forced into full-phase  
PWM mode during the transition from boot mode to VID  
mode and during soft-shutdown.  
V , CLKEN remains high, and PWRGD remains low  
BOOT  
as long as the PGDIN stays low. When PGDIN is pulled  
high, the output transitions to selected VID voltage, and  
CLKEN is pulled low. If the system pulls PGDIN low  
during normal operation, the MAX17021 immediately  
drives CLKEN high, pulls PWRGD low, and slews the  
output to the boot voltage (using 2-phase pulse-skip-  
ping mode). The controller remains at the boot voltage  
until PGDIN goes high again, SHDN is toggled, or the  
MAX7021  
DPRSTP, SW2 (5, 6)  
This 1V logic input signal together with the DPRSLPVR  
signal selects between the nominal and “slow” (quarter  
of nominal rate) slew rates. When DPRSTP and  
V
DD  
is cycled.  
Table 6. PGDIN  
SW2 (4, 7)  
PGDIN PIN  
MAX17021 OUTPUT  
Evluates:  
VOUT remains at the boot voltage. CLKEN remains high, and PWRGD  
remains low.  
Off  
Connected to GND  
Connected to VDD  
On*  
VOUT transitions to selected VID voltage, and CLKEN is pulled low.  
*Default position.  
8
_______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
MAX7021  
Figure 1a. MAX17021 EV Kit Schematic (Sheet 1 of 2)  
_______________________________________________________________________________________  
9
MAX17021 Evaluation Kit  
MAX7021  
Evluates:  
Figure 1b. MAX17021 EV Kit Schematic (Sheet 2 of 2)  
10 ______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
MAX7021  
Figure 2. MAX17021 EV Kit Component Placement Guide—  
Component Side  
Figure 3. MAX17021 EV Kit PCB Layout—Component Side  
______________________________________________________________________________________ 11  
MAX17021 Evaluation Kit  
MAX7021  
Evluates:  
Figure 4. MAX17021 EV Kit PCB Layout—Internal Layer 2  
(VBATT/PGND Plane)  
Figure 5. MAX17021 EV Kit PCB Layout—Internal Layer 3  
(Signal Layer)  
12 ______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
MAX7021  
Figure 6. MAX17021 EV Kit PCB Layout—Internal Layer 4  
(PGND Layer)  
Figure 7. MAX17021 EV Kit PCB Layout —Internal Layer 5  
(AGND/PGND Layer)  
______________________________________________________________________________________ 13  
MAX17021 Evaluation Kit  
MAX7021  
Evluates:  
Figure 8. MAX17021 EV Kit PCB Layout—Internal Layer 6  
(Signal Layer)  
Figure 9. MAX17021 EV Kit PCB Layout—Internal Layer 7  
(PGND Layer)  
14 ______________________________________________________________________________________  
MAX17021 Evaluation Kit  
Evluates:  
MAX7021  
Figure 10. MAX17021 EV Kit PCB Layout—Solder Side  
Figure 11. MAX17021 EV Kit Component Placement Guide—  
Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  
SPRINGER  

相关型号:

MAX17021EVKIT+

High Speed, Accuracy, and Efficiency
MAXIM

MAX17021GTL+

Dual-Phase, Quick-PWM Controllers for IMVP-6+/IMVP-6.5 CPU Core Power Supplies
MAXIM

MAX17021GTL+T

Switching Regulator/Controller, Current-mode, 800kHz Switching Freq-Max, BICMOS, PQCC40,
MAXIM

MAX17024

Single Quick-PWM Step-Down Controller with Dynamic REFIN
MAXIM

MAX17024ETD

Single Quick-PWM Step-Down Controller with Dynamic REFIN
MAXIM

MAX1702B

Triple-Output Power-Management IC for Microprocessor-Based Systems
MAXIM

MAX1702BEGX

Triple-Output Power-Management IC for Microprocessor-Based Systems
MAXIM

MAX1702BETX

Triple-Output Power-Management IC for Microprocessor-Based Systems
MAXIM

MAX1702BETX+

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 6 X 6 MM, 0.8 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-36
MAXIM

MAX1702BETX+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, 6 X 6 MM, 0.8 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-36
MAXIM

MAX1702EVKIT

Evaluation Kit for the MAX1702B
MAXIM

MAX1703

1-Cell to 3-Cell, High-Power 1.5A, Low-Noise, Step-Up DC-DC Converter
MAXIM