MAX16998AAUA/V+T [MAXIM]

Timer or RTC, CMOS,;
MAX16998AAUA/V+T
型号: MAX16998AAUA/V+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Timer or RTC, CMOS,

高压
文件: 总16页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4000; Rev 1; 4/09  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
General Description  
Features  
The MAX16997/MAX16998 are microprocessor (µP)  
supervisory circuits for high-input-voltage and low-qui-  
escent-current applications. These devices detect  
downstream circuit failures and provide switchover to  
redundant circuitry. See the Selector Guide for the dif-  
ferent versions of this product family.  
o Wide 5V to 40V Input Voltage Range  
o 18µA Quiescent Current (Typical at +125°C)  
o Capacitor-Adjustable Timeout Period for  
Watchdog and Reset  
o Windowed Watchdog Timer Options  
The MAX16997/MAX16998 family has four independent  
inputs for reset and watchdog functions. SWT and SRT  
inputs independently set the timeout periods of watch-  
dog and reset timers through external capacitors.  
RESETIN/EN monitor voltages at respective inputs. A  
resistive voltage-divider sets the reset threshold.  
(MAX16998B/D)  
o External Voltage Monitoring (RESETIN for the  
MAX16998A/B/D and EN for the MAX16997A)  
o Car Battery-Compatible EN Input  
o TTL- and CMOS-Compatible Open-Drain Outputs  
o 18V Maximum Open-Drain Reset Output Voltage  
o 28V Maximum Open-Drain Enable Output Voltage  
The MAX16998A/B/D generate two output signals,  
RESET and ENABLE. RESET asserts whenever  
RESETIN drops below its threshold voltage or when the  
watchdog timer detects a timing fault at WDI. Once  
asserted, and after all reset conditions are removed,  
o Power-On/Power-Off Reset Functionality  
RESET remains low for the reset timeout period, t  
,
RESET  
(MAX16998A/B/D Only)  
and then goes high. The MAX16997A generates one  
output signal (ENABLE) based on the voltage level at  
EN and the signal at WDI.  
o AECQ-100 Qualified  
o -40°C to +125°C Operating Temperature Range  
o Small (3mm x 3mm) µMAX Package  
o WDI Narrow Pulse Immunity  
The MAX16997A does not have a RESET output. The  
watchdog is disabled if the voltage at EN is below its  
threshold. The MAX16997A watchdog timer starts tim-  
ing when the voltage at EN becomes higher than the  
preset threshold voltage level. Each time EN rises  
above the preset threshold voltage, the initial watchdog  
timeout period is 8 times the normal watchdog timeout  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
period (t ).  
WP  
MAX16997AAUA+  
MAX16998AAUA+  
MAX16998BAUA+  
MAX16998DAUA+  
8 µMAX  
The MAX16997/MAX16998 are available in 8-pin lead-  
®
free µMAX packages and are fully specified over the  
8 µMAX  
-40°C to +125°C automotive temperature range.  
8 µMAX  
8 µMAX  
Applications  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Automotive  
Industrial  
Selector Guide  
WATCHDOG  
WINDOW SIZE (%)  
PART  
ENABLE  
RESET  
EN  
RESETIN  
MAX16997A  
MAX16998A  
MAX16998B  
MAX16998D  
100  
100  
50  
75  
Pin Configurations appear at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
ABSOLUTE MAXIMUM RATINGS  
(All pins referenced to GND, unless otherwise noted.)  
Junction-to-Case Thermal Resistance (θ ) (Note 1)......42°C/W  
JC  
IN, ENABLE ............................................................-0.3V to +45V  
WDI, RESET, EN.....................................................-0.3V to +20V  
RESETIN.................................................................-0.3V to +20V  
SRT, SWT................................................................-0.3V to +12V  
Maximum Current (all pins).................................................30mA  
Junction-to-Ambient Thermal Resistance (θ ) (Note 1).....206.3°C/W  
JA  
Operating Temperature Range (T )..................-40°C to +125°C  
A
Junction Temperature (T )...............................................+150°C  
J
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µMAX (derate 4.8mW/°C above +70°C)..........387.8mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 14V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
IN  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
40.0  
30  
UNITS  
7/MAX1698  
Operating Voltage Range  
V
5.0  
V
IN  
T
T
= -40°C to +85°C  
18  
18  
A
Supply Current  
I
µA  
IN  
= -40°C to +125°C  
60  
A
SWT Ramp Current  
SRT Ramp Current  
I
V
V
= 1.0V  
= 1.0V  
450  
410  
500  
500  
550  
600  
nA  
nA  
RAMP_SWT  
SWT  
SRT  
I
RAMP_SRT  
SWT/SRT Ramp Threshold  
Voltage  
V
1.115  
1.235  
1.363  
V
RAMP  
RESET TIMER  
V
V
V
rising  
falling  
= 2V  
1.135  
1.115  
1.255  
1.235  
0.1  
1.383  
1.363  
Power-On Reset Input Threshold  
Voltage  
RESETIN  
RESETIN  
RESETIN  
V
V
PON  
RESETIN Input Leakage Current  
I
µA  
LPON  
RESET asserted, I  
= 1mA  
0.9  
0.4  
0.4  
SINK  
RESET Output Low Voltage  
V
V
V
= 1.1V, I  
= 160µA, RESET asserted  
OLRST  
IN  
SINK  
RESET asserted, I  
= 0.4mA  
SINK  
RESET Leakage Current  
ENABLE Output Low Voltage  
ENABLE Leakage Current  
Minimum Reset Timeout Period  
Reset Timeout Period  
I
V
= 20V, RESET not asserted  
RESET  
0.1  
µA  
V
LKGR  
V
ENABLE asserted, I  
= 5mA  
SINK  
0.4  
OLEN  
LKGE  
I
V
= 14V, ENABLE not asserted  
= 390pF (Note 3)  
= 2000pF (Note 3)  
= 47nF  
0.1  
1
µA  
ms  
ms  
ms  
µs  
ENABLE  
t
C
C
C
RESETmin  
SRT  
SRT  
SRT  
t
5
RESET  
Maximum Reset Time Period  
RESET to ENABLE Delay  
t
116.09  
1.5  
RESETmax  
t
REDL  
RESETIN falling below V  
falling edge  
to RESET  
PON  
RESETIN to RESET Delay  
t
1
µs  
RRDL  
2
_______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 14V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
IN  
A
J
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
WATCHDOG TIMER  
V
2.25  
IH  
WDI Input Threshold  
V
V
0.9  
IL  
WDI Input Hysteresis  
WDI  
200  
mV  
µs  
HYST  
WDI Minimum Pulse Width  
WDI Input Current  
t
(Note 4)  
6.5  
WDImin  
I
WDI = 0 or 14V  
0.1  
6.8  
µA  
ms  
ms  
ms  
WDI  
Minimum Watchdog Timeout  
t
C
C
C
= 680pF (Note 3)  
WPmin  
SWT  
SWT  
SWT  
Watchdog Timeout Period  
t
= 1200pF (Note 3)  
= 22nF  
12  
WP  
Maximum Watchdog Timeout  
t
217.36  
50  
WPmax  
MAX16998B  
45  
55  
Watchdog Window  
D
%t  
WP  
WDI  
MAX16998D  
67.5  
75  
82.5  
WDI to ENABLE Output Delay  
Start from WDI third wrong trigger  
100  
µs  
RESET Pullup Resistor Supply  
Voltage  
(Note 5)  
(Note 5)  
2.25  
2.25  
2.5  
18.00  
28.00  
V
V
ENABLE Pullup Resistor Supply  
Voltage  
2.5  
Note 2: R  
and R  
are external pullup resistors for open-drain outputs. Connect R  
and R  
to a minimum 2.5V  
RESET  
ENABLE  
RESET  
ENABLE  
voltage. Connect R  
to a maximum voltage of 18V and connect R  
to a maximum voltage of 28V.  
RESET  
ENABLE  
Note 3: Calculated based on V  
= 1.235V and I  
= 500nA.  
RAMP  
RAMP  
Note 4: WDI pulses narrower than 1µs will be ignored. WDI pulses wider than 6.5µs will be recognized.  
Note 5: Not production tested, guaranteed by design.  
Typical Operating Characteristics  
(C  
= C  
= 1500pF, T = +25°C, unless otherwise noted.)  
SRT A  
SWT  
WATCHDOG TIMEOUT PERIOD  
RESET TIMEOUT PERIOD  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
vs. C  
vs. C  
SWT  
SRT  
10,000  
1000  
100  
10  
10,000  
1000  
100  
10  
26  
24  
22  
20  
18  
16  
14  
12  
10  
I = 500nA  
RAMP  
I
= 500nA  
RAMP  
RESET AND ENABLE NOT  
ASSERTED  
1
1
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
(nF)  
100  
1000  
0
10  
20  
30  
40  
50  
C
(nF)  
C
SUPPLY VOLTAGE (V)  
SWT  
SRT  
_______________________________________________________________________________________  
3
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
Typical Operating Characteristics (continued)  
(C  
= C  
= 1500pF, T = +25°C, unless otherwise noted.)  
SWT  
SRT  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
RESETIN/EN THRESHOLD VOLTAGE  
vs. TEMPERATURE  
RESETIN/EN THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
1.35  
1.33  
1.30  
1.28  
1.25  
1.23  
1.20  
1.18  
1.15  
1.13  
1.10  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
RESET AND ENABLE NOT  
ASSERTED  
RISING  
RISING  
FALLING  
FALLING  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
4
8
12 16 20 24 28 32 36 40  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
7/MAX1698  
RESETIN TO RESET DELAY  
vs. TEMPERATURE  
RESETIN/WATCHDOG PERIOD  
vs. SUPPLY VOLTAGE  
RESETIN/WATCHDOG PERIOD  
vs. SUPPLY VOLTAGE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
8
7
6
5
4
3
2
1
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
RESETIN FROM 2V TO 0V  
100mV OVERDRIVE  
WATCHDOG TIMEOUT  
WATCHDOG TIMEOUT  
PERIOD (C  
= 10nF)  
SWT  
PERIOD (C  
= 680pF)  
SWT  
RESET TIMEOUT  
PERIOD (C = 680pF)  
SRT  
RESET TIMEOUT  
50mV OVERDRIVE  
PERIOD (C = 10nF)  
SRT  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
4
8
12 16 20 24 28 32 36 40  
SUPPLY VOLTAGE (V)  
4
8
12 16 20 24 28 32 36 40  
SUPPLY VOLTAGE (V)  
I
RESET OUTPUT VOLTAGE  
vs. SINK CURRENT  
ENABLE OUTPUT VOLTAGE  
vs. SINK CURRENT  
RAMP  
vs. TEMPERATURE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
520  
515  
510  
505  
500  
495  
490  
485  
480  
475  
470  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
5
10  
15  
20  
25  
30  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SINK CURRENT (mA)  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
4
_______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
Pin Description  
PIN  
NAME  
IN  
FUNCTION  
MAX16997A MAX16998A/B/D  
1
1
Power-Supply Input. Bypass IN to GND with a 0.1µF capacitor.  
High-Impedance Input to the Enable Comparator. Depending on the voltage level  
at EN, the internal watchdog timer is turned on or off (see the EN Input section).  
2
EN  
3, 7  
N.C.  
No Connection. Not internally connected.  
Watchdog Timeout Adjustment Input. Connect a capacitor between SWT and GND  
to set the basic watchdog timeout period. Connect SWT to ground to disable the  
watchdog timer function. See the Selecting the Watchdog Timeout Capacitor  
section.  
4
5
4
5
SWT  
GND  
Ground  
Watchdog Input.  
MAX16997A/MAX16998A (Timeout Watchdog): Two consecutive WDI falling  
edges must occur at WDI within the watchdog timeout period or RESET asserts.  
The watchdog timer clears when a falling edge occurs on WDI or whenever RESET  
is asserted. ENABLE asserts if three consecutive watchdog timeout periods have  
expired without a falling edge at WDI. WDI is a high-impedance input. Leaving  
WDI unconnected will cause improper operation of the watchdog timer.  
MAX16998B/D (Window Watchdog): WDI falling transitions within periods shorter  
than the closed window width or longer than the basic watchdog timeout period  
force RESET to assert low for the reset timeout period. The watchdog timer begins  
to count after RESET is deasserted. The watchdog timer clears when a WDI falling  
edge occurs or whenever RESET is asserted. ENABLE asserts if three consecutive  
watchdog timeout periods have expired without a falling edge at WDI. WDI is a  
high-impedance input. Leaving WDI unconnected will cause improper operation of  
the watchdog timer.  
6
6
WDI  
Open-Drain Enable Output. ENABLE asserts when three consecutive WDI faults  
occur. ENABLE remains low until three consecutive good WDI falling edges occur.  
ENABLE does not assert if the voltage at RESETIN (EN) is below its threshold.  
These devices are guaranteed to be in correct ENABLE output logic state when  
8
8
ENABLE  
V
remains greater than 1.1V.  
IN  
Reset Input. High-impedance input to the reset comparator. When V  
falls  
RESETIN  
below 1.235V, RESET asserts. RESET remains asserted as long as V  
RESETIN  
RESETIN and for the reset timeout period after RESETIN goes high. Connect V  
RESETIN  
is low  
to the  
2
3
7
center point of an external resistive divider to set the threshold for the externally  
monitored voltage. Connect RESETIN to a defined voltage logic-level.  
Reset Timeout Adjustment Input. Connect a capacitor between SRT and GND to  
set the reset timeout period. See the Selecting the Reset Timeout Capacitor  
section.  
SRT  
Open-Drain Reset Output. RESET asserts whenever RESETIN drops below the  
selected reset threshold voltage (V  
). RESET remains low for the reset timeout  
PON  
RESET  
period after all reset conditions are removed, and then goes high. RESET asserts  
for a period of t whenever a WDI fault occurs. Connect RESET to a pullup  
RESET  
resistor connected to a voltage higher than 2.5V (typ).  
_______________________________________________________________________________________  
5
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
Functional Diagram  
IN  
MAX16997/MAX16998  
PREG  
RESET  
V
BG  
RESETIN (MAX16998)  
EN (MAX16997)  
WDI  
BUFFER  
ENABLE  
MAX16997A/  
MAX16998A/B/D  
LOGIC  
I
RAMP  
7/MAX1698  
V
BG  
SRT  
(MAX16998)  
I
RAMP  
V
BG  
SWT  
GND  
6
_______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
Timing Diagrams  
V
EN  
V
HYST  
V
PON  
t
WP  
t
WD  
t
WDI  
t
t
t
t
t
t
WDI  
t
t
WP  
WP  
WP  
WP  
WDI  
WDI  
WP INITIAL  
WDI  
1
3
1
2
2
3
ENABLE  
t
= WATCHDOG TIMEOUT PERIOD x 8  
t
= WATCHDOG TIMEOUT PERIOD  
t
= WDI TRIGGER PERIOD  
WDI  
WP INITIAL  
WP  
3 CONSECUTIVE t WITHOUT TRIGGER ENABLE GOES LOW  
3 CONSECUTIVE WATCHDOG TRIGGER (WDI) ENABLE GOES ACTIVE HIGH  
WP  
Figure 1. MAX16997A Timing Diagram  
V
RESETIN  
V
HYST  
V
PON  
t
t
t
WDI  
t
t
t
t
t
WP  
WDI  
WDI  
RESET  
WDI  
WP  
WP  
WDI  
t
WP  
1
3
2
1
2
3
RESET  
ENABLE  
t
= RESET TIMEOUT PERIOD  
t
= WATCHDOG TIMEOUT PERIOD  
t
= WDI TRIGGER PERIOD  
WDI  
RESET  
WP  
3 CONSECUTIVE RESETS ENABLE GOES ACTIVE LOW  
3 CONSECUTIVE WATCHDOG TRIGGER (WDI) ENABLE GOES ACTIVE HIGH  
Figure 2. MAX16998A Timing Diagram  
_______________________________________________________________________________________  
7
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
Timing Diagrams (continued)  
V
RESETIN  
V
HYST  
V
PON  
PROPER WATCHDOG TRIGGER RESETS THE INTERNAL ENABLE COUNTER  
t
t
t
t
t
t
t
t
t
t
WDI  
RESET  
OW  
WDI  
CW  
WP  
WP  
WP  
WDI  
WDI  
WDI  
t
WP  
1
2
3
1
3
2
RESET  
ENABLE  
7/MAX1698  
t
= RESET TIMEOUT PERIOD  
t
= T OPEN WINDOW  
t
= T CLOSED WINDOW  
t = t + t  
WP CW OW  
t
= WDI TRIGGER PERIOD  
WDI  
RESET  
OW  
CW  
3 CONSECUTIVE RESETS ENABLE GOES ACTIVE LOW  
3 CONSECUTIVE WATCHDOG TRIGGER (WDI) ENABLE GOES ACTIVE HIGH  
Figure 3. MAX16998B/D Timing Diagram  
V
RESETIN  
V
HYST  
V
PON  
t
t
t
RESET  
RESET  
RESET  
t
RRDL  
RESET  
V
= ENABLE  
1.1V  
IN  
t
WP  
t
t t  
CW WDI WP  
ENABLE DOES NOT GET ASSERTED IF THE VOLTAGE  
AT RESETIN IS BELOW ITS THRESHOLD.  
t
WDI  
t
WDI  
t
t
t
t
t
t
WDI WDI WDI WDI WDI WDI  
WDI  
THE WATCHDOG TIMER CLEARS  
WHENEVER RESET IS ASSERTED.  
t
t t  
CW WDI WP  
t
t
WP  
CW  
t = 0  
t
OW  
Figure 4. RESETIN, RESET, V , ENABLE, and WDI Voltage Monitoring  
IN  
8
_______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
For the MAX16998A/B/D, RESET asserts whenever  
Detailed Description  
RESETIN drops below the selected reset threshold volt-  
The MAX16997/MAX16998 are µP supervisory circuits  
for high-input-voltage and low-quiescent-current appli-  
cations. These devices improve system reliability by  
monitoring the sub-system for software code execution  
errors. The MAX16997A/MAX16998A/B/D detect down-  
stream circuit failures, and provide switchover to  
redundant circuitry. These devices provide complete  
adjustability for reset and watchdog functions.  
age (V  
). RESET remains low for the reset timeout  
PON  
period after RESETIN exceeds the selected threshold  
voltage, and then goes high.  
The MAX16998A asserts RESET for a period of t  
RESET  
when two consecutive WDI falling edges do not occur  
within the adjusted watchdog timeout period. The  
MAX16998B/D also assert RESET for a period of t  
RESET  
when a WDI falling edge does not occur within the  
open window period.  
The MAX16998A/B/D generate two output signals,  
RESET and ENABLE, that depend on the voltage level  
at RESETIN and the signal at WDI. RESET asserts  
whenever RESETIN drops below the selected reset  
threshold voltage. RESET remains low for the reset  
timeout period after all reset conditions are deasserted,  
and then goes high. RESET also asserts for a period of  
Anytime reset asserts, the watchdog timer clears. At  
the end of the reset timeout period, RESET goes high,  
and the watchdog timer is restarted from zero (see the  
Selecting the Watchdog Timeout Capacitor section).  
Enable Output (ENABLE)  
If the µC fails to operate correctly (e.g., the software  
execution is stuck in a loop), WDI does not trigger any  
more and RESET pulls low, resetting the µC. If the µC  
does not work properly in the next loop either, the  
device asserts RESET again. After three watchdog  
timeout periods elapse with no falling edges at WDI,  
ENABLE asserts and flags a backup circuit that can  
take over the operation.  
t
whenever a WDI fault occurs. The MAX16997A  
RESET  
generates one output signal (ENABLE) based on the  
voltage level at EN and the signal at WDI.  
The MAX16997A/MAX16998A provide watchdog time-  
out adjustability with an external capacitor. The  
MAX16998A asserts RESET when two consecutive WDI  
falling edges do not occur within the watchdog timeout  
period. This device also asserts ENABLE if three con-  
secutive watchdog timeout periods have elapsed with-  
out a falling edge at WDI. ENABLE remains low until  
three consecutive good WDI falling edges occur.  
ENABLE does not assert if the voltage at RESETIN (EN)  
is below its threshold. For the MAX16997A, the watch-  
dog timer starts timing if the voltage at EN is higher  
than a preset threshold level. Each time the voltage at  
EN rises from below to above the preset threshold volt-  
age, the initial watchdog timeout period is 8 times the  
ENABLE remains low until three consecutive WDI  
falling edges with periods shorter than the watchdog  
timeout occur. ENABLE does not assert if the voltage at  
RESETIN (EN) is below its threshold. These devices are  
guaranteed to be in correct ENABLE output logic state  
when V remains greater than 1.1V.  
IN  
Power-On/Power-Off Sequence  
Figure 5 shows the power-up and power-down  
sequence for RESET and ENABLE  for the  
MAX16998A/B/D.  
normal watchdog timeout period (t ). Other than  
WP  
described above, the MAX16997A behaves the same  
as the MAX16998A.  
On power-up, once V reaches 1.1V, RESET goes  
IN  
The MAX16998B/MAX16998D contain a window watch-  
dog timer that looks for activity outside an expected  
window of operation. The window size is factory-set to  
50% (MAX16998B) or 75% (MAX16998D) of the adjust-  
ed watchdog timeout period.  
logic-low. As RESETIN rises, RESET remains low. When  
RESETIN rises above V , the reset timer starts and  
PON  
RESET remains low. When the reset timeout period  
ends, RESET goes high.  
On power-down, once RESETIN goes below V  
,
PON  
RESET goes low and remains low until V drops below  
Reset Output (RESET) (MAX16998A/B/D)  
The reset output is typically connected to the reset  
input of the µC to start or restart it in a known state. The  
MAX16998A/B/D provide an active-low open-drain  
reset logic to prevent code execution errors.  
IN  
1.1V. Figure 6 shows the detailed power-up sequence  
for the MAX16998A/B/D.  
_______________________________________________________________________________________  
9
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
V
IN  
V
= 1.1V  
IN  
V
RESETIN  
V
HYST  
V
PON  
t
RESET  
t
RESET  
t
t
RESET  
RESET  
RESET  
ENABLE  
t
t
t
WP  
WP  
WP  
t
t t  
CW WDI WP  
t
t
t
t
t
t
t
t
WDI  
WDI WDI WDI WDI WDI WDI  
WDI WDI  
THE THREE CONSECUTIVE RESET COULD BE CAUSED BY THREE  
TIMEOUTS AS SHOWN HERE OR BY THREE WDI FALLING EDGE  
OUTSIDE THE OPEN WINDOW, OR A COMBINATION OF ANY RESET  
t
t t  
CW WDI WP  
t
t
CONDITIONS EXCEPT V  
DROPS TOO LOW.  
CW  
WP  
RESETIN  
7/MAX1698  
t
OW  
t = 0  
RESET  
WDI  
WDT CLEARS AND  
STARTS COUNTING  
FROM O  
Figure 5. Power-On Reset and Power-Down Reset for the MAX16998A/B/D  
V
= V  
ENABLE  
IN  
V
= 1.1V  
IN  
V
V
PON  
HYST  
V
RESETIN  
t
RESET  
V
RESET  
Figure 6. Detailed Power-Up Sequence for the MAX16998A/B/D  
10 ______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
RESETIN Input (MAX16998A/B/D)  
V
IN  
The MAX16998A/B/D monitor the voltage at RESETIN  
using an adjustable reset threshold, set with an external  
resistive divider (see Figure 7). RESET asserts when  
V
CC  
V
is below 1.235V.  
RESETIN  
MAX16998A/B/D  
Use the following equations to calculate the externally  
monitored voltage (V ).  
R1  
R2  
CC  
RESETIN  
R
1
V
= V  
+1  
TH  
PON  
R
2
where V  
PON  
is the desired reset threshold voltage, and  
TH  
V
= 1.235V. To simplify the resistor selection,  
Figure 7. Setting RESETIN Voltage for the MAX16998A/B/D  
choose a value for R (< than 1M) and calculate R .  
2
1
V
MAX16998A  
TH  
R = R  
1  
1
2
The MAX16998A asserts RESET when two consecutive  
V
PON  
WDI falling edges do not occur within the adjusted  
watchdog timeout period (t ). RESET remains assert-  
WP  
EN Input  
ed for the reset timeout period (t  
) and then goes  
RESET  
The MAX16997A provides a high-impedance input (EN)  
to the enable comparator. Based on the voltage level at  
EN, the watchdog timer is turned on or off. The watch-  
dog timer starts timing if the voltage level at EN is high-  
high. This device also asserts ENABLE if three consec-  
utive watchdog timeout periods have elapsed without a  
falling edge at WDI. ENABLE remains low until three  
consecutive WDI falling edges with periods shorter  
than the watchdog timeout period occur (see Figure 2).  
er than a preset threshold voltage (V  
). Each time  
PON  
the voltage at EN rises from below to above the preset  
threshold voltage, the initial watchdog timeout period is  
The internal watchdog timer is cleared by a RESET ris-  
ing edge or by a falling edge at WDI. The watchdog  
timer remains cleared while RESET is asserted; as soon  
as RESET is released, the timer starts counting. WDI  
falling edges are ignored when RESET is low. If no WDI  
falling edge occurs within the watchdog timeout period,  
RESET immediately goes low and stays low for the  
adjusted reset timeout period.  
8 times the normal watchdog timeout period (t ).  
WP  
Watchdog Timer  
MAX16997A  
The watchdog circuit monitors the µC’s activity. For the  
MAX16997A, the watchdog timer starts timing once the  
voltage at EN is higher than a preset threshold voltage.  
ENABLE asserts if three consecutive watchdog timeout  
periods have elapsed without a falling edge at WDI.  
ENABLE remains low until three consecutive WDI falling  
edges with periods shorter than the watchdog timeout  
period occur.  
MAX16998B/D  
The MAX16998B/D have a windowed watchdog timer.  
The watchdog timeout period (t ) is the sum of a  
WP  
closed window period (t ) and an open window period  
CW  
(t ). If the µC issues a WDI falling edge within the open  
OW  
window period, RESET stays high. Once a WDI falling  
edge occurs within the closed window period, RESET  
immediately goes low and stays low for the adjusted  
reset timeout period (see Figure 3). If no WDI falling  
edge occurs within the watchdog timeout period, RESET  
immediately goes low and stays low for the adjusted  
reset timeout period. The open window size is factory-set  
to 50% of the watchdog timeout period for the  
MAX16998B and 75% for the MAX16998D.  
Each time the voltage at EN rises from below to above  
the preset threshold voltage, the first watchdog timeout  
period extends by a factor of 8 (8 x t ). If a WDI falling  
WP  
edge occurs during that time, then the watchdog time-  
out period is immediately switched over to a single t  
.
WP  
If no watchdog falling edge occurs during this pro-  
longed watchdog timeout period, ENABLE goes low at  
the end of this period and stays low. After this, the first  
falling edge at WDI switches the watchdog timeout  
period to a single t . See Figure 1. The MAX16997A  
WP  
Figure 8 shows a WDI falling edge identified as a good or  
a bad WDI signal edge. In case 1, the WDI falling edge  
occurs within the closed window period and is considered  
a bad WDI falling edge (early fault); therefore, it asserts  
RESET. Case 2 also shows another fault. In this case, no  
watchdog timeout period (t ) is adjustable by a single  
WP  
capacitor at SWT.  
______________________________________________________________________________________ 11  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
WDI falling edge occurs within the watchdog timeout  
Leakage currents and stray capacitance (e.g., a scope  
period (t ) and is considered a late fault that asserts  
WP  
probe, which induces both) at SRT may cause errors in  
the reset timeout period. If precise time control is  
required, use capacitors with low leakage current and  
high stability.  
RESET. In case 3, the WDI falling edge occurs within the  
open window period and is considered a good WDI sig-  
nal falling edge. In this case, RESET stays high. In case  
4, the WDI falling edge occurs within the indeterminate  
region. In this case, the RESET state is indeterminate.  
Selecting the Watchdog  
Timeout Capacitor  
These devices assert ENABLE after three consecutive  
bad WDI falling edges. ENABLE returns high after three  
consecutive good WDI signal falling edges (see Figure 3).  
The watchdog timeout period is adjustable to accom-  
modate a variety of µP applications. With this feature,  
the watchdog timeout can be optimized for software  
execution. The programmer determines how often the  
watchdog timer should be serviced. Adjust the watch-  
Either a rising edge at RESET or a falling edge at WDI  
clears the internal watchdog timer. The watchdog timer  
remains cleared while RESET is asserted. The watch-  
dog timer begins counting when RESET goes high.  
WDI falling edges are ignored when RESET is low.  
dog timeout period (t ) by connecting a capacitor  
WP  
(C  
) between SWT and GND. For normal mode  
SWT  
operation, calculate the watchdog timeout capacitance  
using the following equation:  
Applications Information  
Selecting the Reset Timeout Capacitor  
The reset timeout period is adjustable to accommodate a  
variety of µP applications. Adjust the reset timeout period  
I
RAMP  
C
= t  
×
SWT  
WP  
4 × V  
RAMP  
where V  
is in volts, t  
is in seconds, I  
is in nA,  
RAMP  
WP  
RAMP  
7/MAX1698  
(t  
) by connecting a capacitor (C  
) between SRT  
RESET  
SRT  
and C  
is in nF. See the Watchdog Timeout Period vs.  
SWT  
and ground. See the Reset Timeout Period vs. C  
SRT  
C
graph in the Typical Operating Characteristics.  
SWT  
graph in the Typical Operating Characteristics. Calculate  
the reset timeout capacitance using the equation below:  
For the MAX16998B/MAX16998D, the open window size  
is factory-set to 50% (MAX16998B) or 75% (MAX16998D)  
of the watchdog period. Leakage currents and stray  
capacitance (e.g., a scope probe, which induces both) at  
SWT may cause errors in the watchdog timeout period. If  
precise time control is required, use capacitors with low  
leakage current and high stability. To disable the watch-  
dog timer function, connect SWT to ground and connect  
WDI to either the high- or low-logic state.  
I
V
RAMP  
C
= t  
×
RESET  
SRT  
RAMP  
where V  
is in volts, t  
is in nF.  
is in seconds, I  
is  
RAMP  
RESET  
RAMP  
in nA, and C  
SRT  
(50% or 75%) x t  
WDImin  
WP  
t
RESET RISING EDGE  
t
t
WP  
WDImax  
CLOSED WINDOW  
INDETERMINATE  
OPEN WINDOW  
CASE 1 (FAST FAULT)  
CASE 2 (SLOW FAULT)  
CASE 3 (GOOD WDI)  
CASE 4 (INDETERMINATE)  
Figure 8. The MAX16998B/D Window Watchdog Diagram  
12 ______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
RESETIN is a high-impedance input and a high-imped-  
ance resistive divider (e.g., 100kto 1M) sets the  
threshold level. Minimize coupling to transient signals  
by keeping the connections to this input short. Any DC  
leakage current at RESETIN (e.g., a scope probe)  
causes errors in the programmed reset threshold.  
Interfacing to Other Voltages for  
Logic Compatibility  
As shown in Figure 9, the open-drain RESET output can  
operate in the 2.5V to 18V range. This allows the device  
to interface a µP with other logic levels.  
WDI Glitch Immunity  
For additional glitch immunity, connect an RC lowpass  
filter as close as possible to WDI (see Figure 10).  
Typical Operating Circuits  
RESET remains asserted as long as RESETIN is below  
the regulated voltage and for the reset timeout period  
after RESETIN goes high to assure that the monitored  
LDO voltage is settled. Then, the µC starts operating  
and triggers WDI.  
For example, for glitches with duration of 1µs, a 12kΩ  
resistor and a 47pF capacitor will provide immunity.  
Layout Considerations  
SRT and SWT are connected to internal precision cur-  
rent sources. When developing the layout for the appli-  
cation, minimize stray capacitance attached to SRT  
and SWT as well as leakage currents that can reach  
those nodes. SRT and SWT traces should be as short  
as possible. Route traces carrying high-speed digital  
signals and traces with large voltage potentials as far  
from SRT and SWT as possible. Leakage currents and  
stray capacitance (e.g., a scope probe, which induces  
both) at these pins may cause errors in the reset and/or  
watchdog timeout period. When evaluating these parts,  
use clean prototype boards to ensure accurate reset  
and watchdog timeout periods.  
If the µC fails to operate correctly (e.g., the software  
execution is stuck in a loop), the WDI signal does not  
trigger the watchdog timer any more, and RESET is  
pulled low, resetting the µC. If the µC does not work  
properly in the next loop either, the device asserts  
RESET again. After three watchdog timeout periods  
with no WDI falling edges, ENABLE asserts and flags  
backup or safety circuits that take over the operation.  
5V TO 40V  
2.5V TO 18V  
IN  
IN  
10k  
V
CC  
MAX16998A/B/D  
V
CC  
MAX16998A/B/D  
RESET  
RESET  
R
µP  
I/O  
WDI  
µP  
N
C
GND  
GND  
GND  
GND  
Figure 10. Additional WDI Glitch Immunity Circuit  
Figure 9. Interfacing to Other Voltage Levels  
______________________________________________________________________________________ 13  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
V
BATT  
IN  
SRT  
EN  
BACKUP CIRCUITRY,  
PERIPHERAL  
ENABLE  
V
CC  
5V  
REGULATOR  
MAX16998A/B/D  
V
CC  
R1  
RESET  
WDI  
RESET  
RESETIN  
SWT  
µC  
R2  
I/O  
GND  
GND  
7/MAX1698  
Figure 11. MAX16998A/B/D Switch Over to Backup Circuitry  
V
BATT  
BACKUP  
CIRCUITRY FLAGS  
IN  
BACKUP CIRCUITRY,  
PERIPHERAL  
ENABLE  
5V  
V
CC  
REGULATOR  
MAX16997A  
LDO  
R1  
EN  
µC  
R2  
RESET  
SWT  
WATCHDOG  
5V  
I/O  
WDI  
I/O  
GND  
GND  
SEPARATE  
WATCHDOG  
Figure 12. MAX16997A Application Diagram  
14 ______________________________________________________________________________________  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
7/MAX1698  
Pin Configurations  
TOP VIEW  
+
+
IN  
RESETIN  
SRT  
1
2
3
4
8
7
6
5
ENABLE  
RESET  
WDI  
IN  
EN  
1
2
3
4
8
7
6
5
ENABLE  
N.C.  
MAX16998A/B/D  
MAX16997A  
N.C.  
SWT  
WDI  
SWT  
GND  
GND  
µMAX  
µMAX  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
8 µMAX  
U8-1  
21-0036  
______________________________________________________________________________________ 15  
High-Voltage Watchdog Timers with  
Adjustable Timeout Delay  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2/08  
3/09  
Initial release  
Added bullet to Features section, revised Electrical Characteristics table.  
1, 2, 3  
7/MAX1698  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16998BAUA+

High-Voltage Watchdog Timers with Adjustable Timeout Delay
MAXIM

MAX16998DAUA+

High-Voltage Watchdog Timers with Adjustable Timeout Delay
MAXIM

MAX16998DAUA+T

Timer or RTC, CMOS
MAXIM

MAX16998DAUA/V+T

Timer or RTC, CMOS,
MAXIM

MAX16999

Ultra-Low Output Voltage, Low-Quiescent-Current Linear Regulator for High-Temperature Applications
MAXIM

MAX16999AUA05+

Fixed Positive LDO Regulator, 0.5V, 0.1V Dropout, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA06+

Fixed Positive LDO Regulator, 0.6V, 0.1V Dropout, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA07+

Fixed Positive LDO Regulator, 0.7V, 0.1V Dropout, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA08+T

Fixed Positive LDO Regulator, 0.8V, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA09+

Fixed Positive LDO Regulator, 0.9V, 0.1V Dropout, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA09+T

Fixed Positive LDO Regulator, 0.9V, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM

MAX16999AUA10+

Fixed Positive LDO Regulator, 1V, 0.1V Dropout, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8
MAXIM