MAX1682EUK-T [MAXIM]

Switched-Capacitor Voltage Doublers; 开关电容电压倍增器
MAX1682EUK-T
型号: MAX1682EUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched-Capacitor Voltage Doublers
开关电容电压倍增器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总8页 (文件大小:85K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1305; Rev 1; 8/98  
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
2/MAX1683  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
5-Pin SOT23 Package  
The ultra-small MAX1682/MAX1683 monolithic, CMOS  
charge-pump voltage doublers accept input voltages  
ranging from +2.0V to +5.5V. Their high voltage-con-  
version efficiency (over 98%) and low operating current  
(110µA for MAX1682) make these devices ideal for  
both battery-powered and board-level voltage-doubler  
applications.  
+2.0V to +5.5V Input Voltage Range  
98% Voltage-Conversion Efficiency  
110µA Quiescent Current (MAX1682)  
Requires Only Two Capacitors  
Up to 45mA Output Current  
Oscillator control circuitry and four power MOSFET  
switches are included on-chip. The MAX1682 operates  
at 12kHz and the MAX1683 operates at 35kHz. A typi-  
c a l a pp lic a tion inc lud e s ge ne ra ting a 6V supp ly to  
power an LCD display in a hand-held PDA. Both parts  
are available in a 5-pin SOT23 package and can deliver  
30mA with a typical voltage drop of 600mV.  
Ord e rin g In fo rm a t io n  
________________________Ap p lic a t io n s  
Small LCD Panels  
TEMP.  
RANGE  
PIN-  
SOT  
PART  
PACKAGE TOP MARK  
Cell Phones  
MAX1682C/D  
0°C to +70°C Dice*  
ACLL  
Handy-Terminals  
PDAs  
MAX1682EUK-T -40°C to +85°C 5 SOT23-5  
MAX1683C/D 0°C to +70°C Dice*  
MAX1683EUK-T -40°C to +85°C 5 SOT23-5  
ACCM  
Note: These parts are available in tape-and-reel only. Minimum  
order quantity is 2500 pieces.  
*Dice are tested at T = +25°C.  
A
Typ ic a l Op e ra t in g Circ u it  
INPUT  
SUPPLY  
VOLTAGE  
5
4
V
IN  
IN  
C1+  
P in Co n fig u ra t io n  
C1  
MAX1682  
MAX1683  
TOP VIEW  
3
1
C1-  
GND  
OUT  
C1-  
1
2
3
5
4
C1+  
IN  
OUTPUT  
VOLTAGE  
2
OUT  
MAX1682  
MAX1683  
2 x V  
IN  
C2  
GND  
SOT23-5  
VOLTAGE DOUBLER  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
ABSOLUTE MAXIMUM RATINGS  
IN to GND.................................................................+6V to -0.3V  
Operating Temperature Range  
OUT to GND.......................................................+12V, V - 0.3V  
OUT Output Current............................................................50mA  
Output Short-Circuit Duration .................................1sec (Note 1)  
MAX1682EUK/MAX1683EUK ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
IN  
Continuous Power Dissipation (T = +70°C)  
A
SOT23-5 (derate 7.1mW/°C above +70°C)...................571mW  
Note 1: Avoid shorting OUT to GND, as it may damage the device. For temperatures above +85°C, shorting OUT to GND even  
instantaneously will damage the device.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5.0V, capacitor values from Table 2, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
A
A
PARAMETER  
CONDITIONS  
MAX1682  
MAX1683  
MIN  
TYP  
MAX UNITS  
110  
230  
1.7  
1.8  
1
145  
µA  
2/MAX1683  
No-Load Supply Current  
T = +25°C  
A
310  
T
A
= +25°C  
2.0  
2.1  
5.5  
V
Supply Voltage Range  
Minimum Operating Voltage  
Oscillator Frequency  
R
= 10k  
LOAD  
T
A
= 0°C to +85°C  
5.5  
(Note 2)  
= +25°C  
V
MAX1682  
MAX1683  
8.4  
12  
15.6  
kHz  
45.5  
T
A
24.5  
35  
T
= +25°C  
20  
50  
A
Output Resistance  
I
= 5mA  
OUT  
T
A
= 0°C to +85°C  
65  
Voltage Conversion Efficiency  
I
= 0mA, T = +25°C  
98  
99.9  
%
OUT  
A
Note 2: Once started, the MAX1682/MAX1683 typically operate down to 1V.  
ELECTRICAL CHARACTERISTICS  
(V = +5.0V, capacitor values from Table 2, T = -40°C to +85°C, unless otherwise noted.) (Note 3)  
IN  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
MAX1682  
MAX1683  
160  
µA  
No-Load Supply Current  
Supply-Voltage Range  
Oscillator Frequency  
350  
R
= 10kΩ  
2.3  
6.6  
5.5  
18.6  
57.8  
65  
V
LOAD  
MAX1682  
MAX1683  
kHz  
17.5  
Output Resistance  
I
= 5mA  
= 0mA  
OUT  
Voltage Conversion Efficiency  
I
97  
%
OUT  
Note 3: Specifications at -40°C to +85°C are guaranteed by design.  
2
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
2/MAX1683  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(Typical Operating Circuit, V = +5V, C1 = C2 = 10µF for the MAX1682 and 3.3µF for the MAX1683, T = +25°C, unless otherwise  
IN  
A
noted.)  
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
MAX1682 OUTPUT RESISTANCE  
vs. TEMPERATURE  
MAX1683 OUTPUT RESISTANCE  
vs. TEMPERATURE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
IN  
= 2V  
V
V
= 2V  
IN  
MAX1683, C1 = C2 = 3.3µF  
MAX1682, C1 = C2 = 10µF  
V
IN  
= 3.3V  
= 3.3V  
IN  
V
= 5V  
IN  
V
= 5V  
IN  
I
= 5mA  
LOAD  
MAX1683, C1 = C2 = 10µF  
I
= 5mA  
LOAD  
0
0
-40  
-20  
0
20  
40  
60  
80  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
V
IN  
(V)  
TEMPERATURE (°C)  
MAX1682  
MAX1682 OUTPUT RESISTANCE  
vs. CAPACITANCE  
OUTPUT VOLTAGE RIPPLE  
vs. OUTPUT CURRENT  
MAX1683 OUTPUT RESISTANCE  
vs. CAPITANCE  
800  
700  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
60  
40  
20  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
IN  
= 2V  
C1 = C2 = 3.3µF  
V
IN  
= 3.3V  
V
IN  
= 2V  
C1 = C2 = 10µF  
C1 = C2 = 33µF  
V
IN  
= 5V  
V
= 5V  
V
= 3.3V  
30  
IN  
IN  
0
0
5
10  
15  
20  
25  
35  
0
5
10  
15  
20  
25  
30  
35  
0
5
10 15 20 25 30 35 40  
(mA)  
CAPACITANCE (µF)  
CAPACITANCE (µF)  
I
OUT  
MAX1683  
OUTPUT VOLTAGE RIPPLE  
vs. OUTPUT CURRENT  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
C1 = C2 =1µF  
MAX1683  
C1 = C2 = 3.3µF  
C1 = C2 = 10µF  
MAX1682  
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
I
(mA)  
OUT  
_______________________________________________________________________________________  
3
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(Typical Operating Circuit, V = +5V, C1 = C2 = 10µF for the MAX1682 and 3.3µF for the MAX1683, T = +25°C, unless otherwise  
IN  
A
noted.)  
MAX1682 OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
MAX1682 OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
MAX1683 OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
12.5  
40  
38  
36  
34  
32  
30  
28  
V
IN  
= 5V  
V
IN  
= 5V  
V
IN  
= 5V  
12.0  
V
IN  
= 3.3V  
V
IN  
= 3.3V  
V
IN  
= 2V  
11.5  
V
IN  
= 3.3V  
V
IN  
= 2V  
60  
V
IN  
= 2V  
0
11.0  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
-40  
-20  
20  
40  
60  
80  
-40  
-20  
0
20  
40  
80  
2/MAX1683  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX1683 EFFICIENCY vs.  
LOAD CURRENT  
MAX1683 OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
MAX1682 EFFICIENCY vs.  
LOAD CURRENT  
10  
9
8
7
6
5
4
3
2
1
0
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
V
IN  
= 5V  
V
IN  
= 5V  
V
IN  
= 5V  
V
IN  
= 3.3V  
V = 2V  
IN  
V
IN  
= 2V  
V
IN  
= 3.3V  
V
IN  
= 3.3V  
V
IN  
= 2V  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1683  
OUTPUT RIPPLE  
MAX1682  
OUTPUT RIPPLE  
START-UP VOLTAGE  
vs. RESISTIVE LOAD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX1683  
V
V
OUT  
OUT  
20mV/div  
20mV/div  
MAX1682  
20µs/div  
20µs/div  
700 300 100 70 30 10  
7
3
1
0.7 0.3  
R
LOAD  
(k)  
I
= 5mA, V = 5V, C1 = C2 = 10µF  
I
= 5mA, V = 5V, C1 = 3.3µF, C2 = 10µF  
LOAD  
IN  
LOAD IN  
4
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
2/MAX1683  
Effic ie n c y Co n s id e ra t io n s  
_____________________P in De s c rip t io n  
The power efficiency of a switched-capacitor voltage  
converter is affected by three factors: the internal losses  
in the converter IC, the resistive losses of the capacitors,  
a nd the c onve rs ion los s e s d uring c ha rg e tra ns fe r  
between the capacitors. The total power loss is:  
PIN  
NAME  
FUNCTION  
1
GND  
Ground  
Doubled Output Voltage. Connect C2  
between OUT and GND.  
2
OUT  
ΣP  
= P  
INTERNAL LOSSES  
LOSS  
Negative Terminal of the Flying  
Capacitor  
+ P  
PUMP CAPACITOR LOSSES  
CONVERSION LOSSES  
3
4
5
C1-  
IN  
+ P  
Input Supply  
The internal losses are associated with the ICs internal  
functions, such as driving the switches, oscillator, etc.  
These losses are affected by operating conditions such  
as input voltage, temperature, and frequency.  
Positive Terminal of the Flying  
Capacitor  
C1+  
_______________De t a ile d De s c rip t io n  
The next two losses are associated with the voltage  
converter circuit’s output resistance. Switch losses  
occur because of the on-resistance of the MOSFET  
s witc he s in the IC. Cha rg e -p ump c a p a c itor los s e s  
occur because of their ESR. The relationship between  
these losses and the output resistance is as follows:  
The MAX1682/MAX1683 c a p a c itive c ha rg e p ump s  
d oub le the volta g e a p p lie d to the ir inp ut. Fig ure 1  
shows a simplified functional diagram of an ideal volt-  
age doubler. During the first half-cycle, switches S1  
and S2 close, and capacitor C1 charges to V . During  
IN  
the second half cycle, S1 and S2 open, S3 and S4  
P
+ P  
=
PUMP CAPACITOR LOSSES  
SWITCH LOSSES  
close, and C1 is level shifted upward by V volts. This  
IN  
connects C1 to the reservoir capacitor C2, allowing  
energy to be delivered to the output as necessary. The  
2
I
x R  
OUT  
OUT  
1
a c tua l volta g e is s lig htly lowe r tha n 2 x V , s inc e  
switches S1–S4 have resistance and the load drains  
charge from C2.  
IN  
R
+ 2R  
+ 4ESR  
SWITCHES C1  
OUT  
f
x C1  
(
)
C2  
OSC  
+ ESR  
Ch a rg e -P u m p Ou t p u t  
The MAX1682/MAX1683 have a finite output resistance  
of about 20(Table 2). As the load current increases,  
where f  
is the oscillator frequency. The first term is  
the e ffe c tive re s is ta nc e from a n id e a l s witc he d -  
capacitor circuit (Figures 2a and 2b).  
OSC  
the devices’ output voltage (V ) droops. The droop  
OUT  
equals the current drawn from V  
times the circuit’s  
OUT  
f
output impedance (R ), as follows:  
S
V
= I  
x R  
V+  
DROOP  
OUT  
S
V
OUT  
V
OUT  
= 2 x V - V  
IN  
DROOP  
C2  
R
L
C1  
S1  
S3  
V
IN  
Figure 2a. Switched-Capacitor Model  
C1  
V
OUT  
R
EQUIV  
C2  
V+  
V
OUT  
S2  
S4  
1
R
EQUIV  
=
C2  
f × C1  
R
L
V
IN  
Figure 2b. Equivalent Circuit  
Figure 1. Simplified Functional Diagram of Ideal Voltage  
Doubler  
_______________________________________________________________________________________  
5
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
Conversion losses occur during the charge transfer  
between C1 and C2 when there is a voltage difference  
between them. The power loss is:  
Us ing a la rg e r flying c a p a c itor re d uc e s the outp ut  
impedance and improves efficiency (see the Efficiency  
Considerations section). Above a certain point, increas-  
ing C1s capacitance has a negligible effect because  
the output resistance becomes dominated by the inter-  
na l s witc h re s is ta nc e a nd c a p a c itor ESR (s e e the  
Outp ut Re s is ta nc e vs . Ca p a c ita nc e g ra p h in the  
Typical Operating Characteristics). Table 2 lists the  
most desirable capacitor valuesthose that produce a  
low output resistance. But when space is a constraint, it  
may be necessary to sacrifice low output resistance for  
the sake of small capacitor size. Table 3 demonstrates  
how the capacitor affects output resistance.  
2
2
P
=
1/ C1 4V  
IN  
V  
OUT  
+
CONVERSION LOSS  
2
2
1/ C2 2V  
V
V  
x f  
OSC  
RIPPLE  
2
OUT RIPPLE  
where V  
is the peak-to-peak output voltage ripple  
RIPPLE  
determined by the output capacitor and load current  
(see Output Capacitor section). Choose capacitor val-  
ues that decrease the output resistance (see Flying  
Capacitor section).  
Ou t p u t Ca p a c it o r (C2 )  
Increasing the output capacitance reduces the output  
ripple voltage. Decreasing its ESR reduces both output  
resistance and ripple. Smaller capacitance values can  
be used with light loads. Use the following equation to  
calculate the peak-to-peak ripple:  
Ap p lic a t io n s In fo rm a t io n  
Flyin g Ca p a c it o r (C1 )  
To maintain the lowest output resistance, use capaci-  
tors with low ESR. Suitable capacitor manufacturers are  
listed in Table 1. The charge-pump output resistance is  
a function of C1 and C2s ESR and the internal switch  
2/MAX1683  
V
= I  
/ (f  
x C2) + 2 x I x ESR  
OUT C2  
RIPPLE  
OUT  
OSC  
In p u t Byp a s s Ca p a c it o r  
resistance, as shown in the equation for R  
Efficiency Considerations section.  
in the  
OUT  
Bypass the incoming supply to reduce its AC imped-  
a nc e a nd the imp a c t of the MAX1682/MAX1683s  
switching noise. When loaded, the circuit draws a con-  
Minimizing the charge-pump capacitors ESR mini-  
mizes the total resistance. Suggested values are listed  
in Tables 2 and 3.  
tinuous current of 2 x I . A 0.1µF bypass capacitor is  
OUT  
sufficient.  
Table 1. Recommended Capacitor Manufacturers  
PRODUCTION METHOD  
MANUFACTURER  
SERIES  
PHONE  
FAX  
AVX  
Matsuo  
Sprague  
AVX  
TPS  
267  
803-946-0690  
714-969-2491  
603-224-1961  
803-946-0590  
714-969-2491  
803-448-2170  
714-960-6492  
603-224-1430  
803-626-3123  
714-960-6492  
Surface-Mount Tantalum  
593D, 595D  
X7R  
Surface-Mount Ceramic  
Matsuo  
X7R  
Table 3. Suggested Capacitor Values for  
Minimum Size  
Table 2. Suggested Capacitor Values for  
Low Output Resistance  
FREQUENCY CAPACITOR  
TYPICAL  
FREQUENCY CAPACITOR  
TYPICAL  
PART  
PART  
(kHz)  
VALUE (µF)  
R
OUT  
()  
(kHz)  
VALUE (µF)  
R
OUT  
()  
MAX1682  
MAX1683  
12  
35  
10  
20  
MAX1682  
MAX1683  
12  
35  
3.3  
1
35  
3.3  
20  
35  
6
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
2/MAX1683  
Ca s c a d in g De vic e s  
Devices can be cascaded to produce an even larger  
voltage (Figure 3). The unloaded output voltage is nom-  
P a ra lle lin g De vic e s  
Paralleling multiple MAX1682 or MAX1683s reduces  
the output resistance. Each device requires its own  
pump capacitor (C1), but the reservoir capacitor (C2)  
serves all devices (Figure 4). Increase C2s value by a  
factor of n, where n is the number of parallel devices.  
Fig ure 4 shows the e qua tion for c a lc ula ting output  
resistance.  
inally (n + 1) x V , where n is the number of voltage  
IN  
doublers used. This voltage is reduced by the output  
resistance of the first device multiplied by the quiescent  
current of the second. The output resistance increases  
when devices are cascaded. Using a two-stage dou-  
bler as an example, output resistance can be approxi-  
La yo u t a n d Gro u n d in g  
Good layout is important, primarily for good noise per-  
formance. To ensure good layout, mount all compo-  
nents as close together as possible, keep traces short  
to minimize parasitic inductance and capacitance, and  
use a ground plane.  
mated as R  
the output resistance of the first stage and R  
output resistance of the second stage. A typical value  
for a two-stage voltage doubler is 60(with C1 at 10µF  
for MAX1682 and 3.3µF for MAX1683). For n stages  
with the same C1 value, R  
= 2 x R  
+ R  
, where R  
is  
is the  
OUT  
OUT1  
OUT2  
OUT1  
OUT2  
n
= (2 - 1) x R  
.
OUT  
OUT1  
INPUT  
SUPPLY  
VOLTAGE  
INPUT  
SUPPLY  
VOLTAGE  
C1+  
IN  
IN  
C1+  
IN  
IN  
C1+  
C1+  
MAX1682  
MAX1683  
MAX1682  
MAX1683  
MAX1682  
MAX1683  
MAX1682  
MAX1683  
GND  
GND  
C1-  
GND  
GND  
C1  
C1  
C1  
C1  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
OUT  
C1-  
OUT  
C1-  
OUT  
C2  
C1-  
OUT  
C2  
R
OF SINGLE DEVICE  
OUT  
R
OUT  
=
C2  
NUMBER OF DEVICES  
Figure 3. Cascading Devices  
Figure 4. Paralleling Devices  
_______________________________________________________________________________________  
7
S w it c h e d -Ca p a c it o r Vo lt a g e Do u b le rs  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 97  
SUBSTRATE CONNECTED TO OUT  
________________________________________________________P a c k a g e In fo rm a t io n  
2/MAX1683  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1683

3.3V/5V.High-Efficiency.Step-Up DC-DC Converters[MAX756/MAX757/MAX756/MAX757/MAX756/MAX757/MAX756C/D/MAX756CPA/MAX756CSA/MAX756CSA-T/MAX756EPA/MAX756ESA/MAX756ESA-T/MAX756EVKIT-SO/MAX757C/D/MAX757CPA/MAX757CSA/MAX757CSA-T/MAX757EPA/MAX757ESA/MAX757ESA-T ]
MAXIM

MAX16831

High-Voltage, High-Power LED Driver with Analog and PWM Dimming Control
MAXIM

MAX16831ATJ+

High-Voltage, High-Power LED Driver with Analog and PWM Dimming Control
MAXIM

MAX16831_09

High-Voltage, High-Power LED Driver with Analog and PWM Dimming Control
MAXIM

MAX16832A

2MHz、高亮度LED驱动器,集成MOSFET和高边电流检测
MAXIM

MAX16832A/MAX16832C

MAX16832A允许10%的电流纹波,而MAX16832C 允许30%的电流纹波
ETC

MAX16832AASA

2MHz, High-Brightness LED Drivers with Integrated MOSFET and High-Side Current Sense
MAXIM

MAX16832AASA+

2MHz, High-Brightness LED Drivers with Integrated MOSFET and High-Side Current Sense
MAXIM

MAX16832AASA+T

LED Driver, BICMOS, PDSO8,
MAXIM

MAX16832AASA/V

2MHz, High-Brightness LED Drivers with Integrated MOSFET and High-Side Current Sense
MAXIM

MAX16832AASA/V+T

LED Driver,
MAXIM

MAX16832A_10

2MHz, High-Brightness LED Drivers with Integrated MOSFET and High-Side Current Sense
MAXIM