MAX1651CSA [MAXIM]

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers; 5V / 3.3V或可调,高效率,低压差,降压型DC -DC控制器
MAX1651CSA
型号: MAX1651CSA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
5V / 3.3V或可调,高效率,低压差,降压型DC -DC控制器

开关 光电二极管 信息通信管理 控制器
文件: 总12页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0305; Rev 2; 9/95  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
More than 90% Efficiency (10mA to 1.5A Loads)  
More than 12.5W Output Power  
The MAX1649/MAX1651 BiCMOS, step-down, DC-DC  
switching controllers provide high efficiency over loads  
ranging from 1mA to more than 2.5A. A unique, current-  
limited pulse-frequency-modulated (PFM) control scheme  
gives these devices the benefits of pulse-width-modula-  
tion (PWM) converters (high efficiency at heavy loads),  
while using only 100µA of supply current (vs. 2mA to  
10mA for PWM converters). Dropout performance down  
to 300mV is provided by a high switch duty cycle (96.5%)  
and a low current-sense threshold (110mV).  
Less than 0.3V Dropout Voltage at 500mA  
100µA Max Quiescent Supply Current  
5µA Max Shutdown Supply Current  
16V Max Input Voltage  
5V (MAX1649), 3.3V (MAX1651), or Adjustable  
Output Voltage  
A high switching frequency (up to 300kHz) allows these  
devices to use miniature external components.  
Current-Limited Control Scheme  
Up to 300kHz Switching Frequency  
Up to 96.5% Duty Cycle  
The MAX1649/MAX1651 have dropout voltages less  
than 0.3V at 500mA and accept input voltages up to  
16V. Output voltages are preset at 5V (MAX1649), or  
3.3V (MAX1651). They can also be adjusted to any  
voltage from 1.5V to the input voltage by using two  
resistors.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX1649CPA  
MAX1649CSA  
MAX1649C/D  
MAX1649EPA  
MAX1649ESA  
MAX1651CPA  
MAX1651CSA  
MAX1651C/D  
MAX1651EPA  
MAX1651ESA  
These step-down controllers drive external P-channel  
MOSFETs at loads greater than 12.5W. If less power is  
required, use the MAX639/MAX640/MAX653 step-down  
c onve rte rs with on-c hip FETs , whic h a llow up to a  
225mA load current.  
Dice*  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
PDAs  
8 Plastic DIP  
8 SO  
Dice*  
High-Efficiency Step-Down Regulation  
5V-to-3.3V Green PC Applications  
Battery-Powered Applications  
8 Plastic DIP  
8 SO  
* Dice are tested at T = +25°C.  
A
__________Typ ic a l Op e ra t in g Circ u it  
__________________P in Co n fig u ra t io n  
INPUT  
3.6V TO 16V  
TOP VIEW  
V+  
OUT  
FB  
1
2
3
4
8
7
6
5
GND  
EXT  
CS  
MAX1651  
SHDN  
CS  
ON/OFF  
MAX1649  
MAX1651  
SHDN  
REF  
EXT  
P
OUTPUT  
3.3V  
V+  
OUT  
REF  
DIP/SO  
FB GND  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V+ to GND.......................................-0.3V, +17V  
Operating Temperature Ranges  
REF, SHDN, FB, CS, EXT, OUT.......................-0.3V, (V+ + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW  
SO (derate 5.88mW/°C above +70°C)..........................471mW  
MAX1649C_A, MAX1651C_A ..............................0°C to +70°C  
MAX1649E_A, MAX1651E_A............................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = 5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
16  
UNITS  
V+ Input Voltage Range  
V+  
V
OUT  
< V+  
3.0  
V
V+ = 16V, SHDN 0.4V (operating, switch off)  
V+ = 16V, SHDN 1.6V (shutdown)  
V+ = 10V, SHDN 1.6V (shutdown)  
MAX1649C, MAX1651C  
78  
2
100  
Supply Current  
I+  
µA  
49/MAX651  
1
5
1.470  
1.5  
1.5  
1.530  
1.5375  
±50  
FB Trip Point  
V
nA  
V
MAX1649E, MAX1651E  
1.4625  
MAX1649C, MAX1651C  
FB Input Current  
Output Voltage  
Reference Voltage  
I
FB  
MAX1649E, MAX1651E  
±70  
MAX1649, V+ = 5.5V to 16V  
MAX1651, V+ = 3.6V to 16V  
4.80  
3.17  
5.0  
3.3  
1.5  
1.5  
4
5.20  
3.43  
1.530  
1.5375  
10  
Circuit of  
Figure 1  
V
OUT  
MAX1649C, MAX1651C, I  
= 0µA  
= 0µA  
1.470  
1.4625  
REF  
REF  
V
REF  
V
MAX1649E, MAX1651E, I  
REF Load Regulation  
REF Line Regulation  
0µA I  
100µA, sourcing only  
mV  
REF  
3V V+ 16V  
40  
100  
µV/V  
MAX1649, 5.5V V+ 16V,  
= 1A  
2.6  
1.7  
-47  
-45  
90  
I
LOAD  
Output Voltage  
Line Regulation  
Circuit of  
Figure 1  
mV/V  
mV/A  
%
MAX1651, 3.6V V+ 16V,  
= 1A  
I
LOAD  
MAX1649, 0A I  
1.5A,  
LOAD  
V
IN  
= 10V  
Output Voltage  
Load Regulation  
Circuit of  
Figure 1  
MAX1651, 0A I  
= 5V  
1.5A,  
LOAD  
V
IN  
MAX1649, V+ = 10V,  
= 1A  
I
LOAD  
Circuit of  
Figure 1  
Efficiency  
MAX1651, V+ = 5V,  
= 1A  
90  
I
LOAD  
SHDN Input Current  
V+ = 16V, SHDN = 0V or V+  
3V V+ 16V  
1
µA  
V
SHDN Input Voltage High  
SHDN Input Voltage Low  
V
1.6  
IH  
V
IL  
3V V+ 16V  
0.4  
V
2
_______________________________________________________________________________________  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = 5V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current-Limit Trip Level  
(V+ to CS)  
V
3V V+ 16V  
3V V+ 16V  
80  
110  
140  
mV  
CS  
CS Input Current  
±1  
40  
µA  
µs  
µs  
ns  
ns  
Switch Maximum On-Time  
Switch Minimum Off-Time  
EXT Rise Time  
t
(max) V+ = 12V  
(min) V+ = 12V  
24  
32  
1.1  
25  
25  
ON  
t
0.8  
1.8  
OFF  
C
C
= 0.001µF, V+ = 12V  
EXT  
EXT  
EXT Fall Time  
= 0.001µF, V+ = 12V  
t
ON  
+ t  
OFF  
x 100%  
Maximum Duty Cycle  
95  
96.5  
%
t
ON  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SHUTDOWN CURRENT  
vs. TEMPERATURE  
EXT RISE AND FALL TIMES  
vs. TEMPERATURE (1nF)  
SUPPLY CURRENT vs. TEMPERATURE  
80  
4.0  
60  
55  
C
EXT  
= 1nF  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
78  
76  
74  
72  
70  
68  
V+ = 16V  
V+ = 10V  
50  
45  
V+ = 5V, t  
RISE  
V+ = 16V  
V+ = 8V  
40  
35  
V+ = 5V, t  
FALL  
30  
25  
V+ = 15V, t  
RISE  
V+ = 4V  
20  
15  
V+ = 15V, t  
FALL  
V+ = 4V  
-60 -40 -20 0 20 40 60 80 100 120 140  
66  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0 20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EXT RISE AND FALL TIMES  
vs. TEMPERATURE (5nF)  
EFFICIENCY  
vs. LOAD CURRENT (V = 5V)  
OUT  
EFFICIENCY  
vs. LOAD CURRENT (V = 3.3V)  
OUT  
240  
220  
200  
180  
160  
140  
120  
100  
80  
100  
90  
100  
90  
V
= 5V  
OUT  
V
= 3.3V  
C
= 5nF  
OUT  
EXT  
CIRCUIT OF  
FIGURE 1  
CIRCUIT OF  
FIGURE 1  
V+ = 5V, t  
RISE  
80  
80  
V+ = 5V, t  
FALL  
TOP TO  
70  
60  
TOP TO  
70  
60  
BOTTOM:  
BOTTOM:  
V
V
IN  
= 4.3V  
= 5V  
IN  
V+ = 15V, t  
RISE  
V
IN  
= 6V  
V
IN  
= 8V  
V
IN  
= 8V  
V
= 10V  
= 12V  
= 15V  
IN  
V
= 10V  
= 12V  
= 15V  
IN  
V
50  
40  
IN  
50  
40  
V
IN  
V
IN  
60  
V
IN  
V+ = 15V, t  
FALL  
40  
0.1  
1
10  
100  
1k  
10k  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0.1  
1
10  
100  
1k  
10k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
SWITCH ON-TIME  
vs. TEMPERATURE  
SWITCH OFF-TIME  
vs. TEMPERATURE  
MAXIMUM DUTY CYCLE  
vs. TEMPERATURE  
34.0  
1.5  
1.4  
100  
99  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
30.0  
1.3  
1.2  
98  
1.1  
1.0  
97  
96  
0.9  
0.8  
0.7  
0.6  
95  
94  
93  
0.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
49/MAX651  
DROPOUT VOLTAGE  
vs. LOAD CURRENT  
CS TRIP LEVEL  
vs. TEMPERATURE  
600  
500  
120  
115  
CIRCUIT OF  
FIGURE 1  
400  
300  
V
OUT  
= 4.80V  
110  
105  
100  
V
OUT  
= 3.17V  
200  
100  
0
95  
0
0.5  
1.0  
1.5  
2.0  
-60 -40 -20  
0
20 40 60 80 100 120 140  
LOAD CURRENT (A)  
TEMPERATURE (°C)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
REFERENCE OUTPUT RESISTANCE  
vs. TEMPERATURE  
1.506  
1.504  
1.502  
1.500  
1.498  
1.496  
1.494  
250  
I
= 10µA  
200  
150  
100  
50  
REF  
I
REF  
= 10µA  
I
REF  
= 50µA  
I
= 100µA  
REF  
1.492  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX1649  
MAX1649  
LOAD-TRANSIENT RESPONSE  
LINE-TRANSIENT RESPONSE  
A
B
A
B
16V  
6V  
1.6A  
0A  
200µs/div  
5ms/div  
CIRCUIT OF FIGURE 1, V+ = 10V  
A: V = 5V, 100mV/div, AC-COUPLED  
CIRCUIT OF FIGURE 1, I  
A: V = 5V, 100mV/div, AC-COUPLED  
OUT  
= 1A  
LOAD  
OUT  
B: I  
LOAD  
= 30mA TO 1.6A, 1A/div  
B: V+ = 6V TO 16V, 5V/div  
MAX1649  
SHDN RESPONSE TIME  
5V  
OUTPUT  
0V  
4V  
SHDN  
INPUT  
0V  
1ms/div  
CIRCUIT OF FIGURE 1, V+ = 10V, I  
LOAD  
= 1A  
_______________________________________________________________________________________  
5
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
______________________________________________________________P in De s c rip t io n  
PIN NAME  
FUNCTION  
Sense Input for fixed 5V or 3.3V output operation. OUT is internally connected to the on-chip voltage divider.  
Although it is connected to the output of the circuit, the OUT pin does not supply current. Leave OUT unconnected  
for adjustable-output operation.  
OUT  
1
Feedback Input. Connect to GND for fixed-output operation. Connect a resistor divider between OUT, FB, and  
GND for adjustable-output operation. See Setting the Output Voltage section.  
2
3
FB  
Active-High Shutdown Input. Part is placed in shutdown when SHDN is driven high. In shutdown mode, the refer-  
ence, output, and external MOSFET are turned off. Connect to GND for normal operation.  
SHDN  
4
5
REF  
V+  
1.5V Reference Output that can source 100µA. Bypass with 0.1µF.  
Positive Power-Supply Input  
Current-Sense Input. Connect current-sense resistor between V+ and CS. When the voltage across the resistor  
equals the current-limit trip level, the external MOSFET is turned off.  
6
CS  
7
8
EXT  
Gate Drive for External P-Channel MOSFET. EXT swings between V+ and GND.  
Ground  
GND  
49/MAX651  
The MAX1649/MAX1651 offer four main improvements  
over prior solutions:  
V
IN  
C4  
C1  
1) The converters operate with miniature surface-mount  
inductors, due to their 300kHz switching frequency.  
0.1µF 100µF  
5
V+  
2) The c urre nt-limite d PFM c ontrol s c he me a llows  
greater than 90% efficiencies over a wide range of  
load currents (10mA to 1.5A).  
R1  
0.05Ω  
MAX1649  
MAX1651  
6
CS  
3) Dropout volta ge ha s be e n re duc e d to le ss tha n  
300mV for many applications.  
P1  
Si9430*  
OUTPUT  
@ 1.5A  
3
4
7
1
SHDN  
EXT  
4) The quiescent supply current is only 100µA.  
L1  
47µH**  
P FM Co n t ro l S c h e m e  
The MAX1649/MAX1651 use a proprietary, current-limit-  
ed PFM control scheme. As with traditional PFM con-  
verters, the external power MOSFET is turned on when  
the voltage comparator senses that the output is out of  
regulation. However, unlike traditional PFM converters,  
switching is accomplished through the combination of a  
peak current limit and a pair of one-shots that set the  
maximum switch on-time (32µs) and minimum switch  
off-time (1.1µs). Once off, the off-time one-shot holds  
the switch off for 1.1µs. After this minimum time, the  
switch either 1) stays off if the output is in regulation, or  
2) turns on again if the output is out of regulation.  
REF  
OUT  
FB  
GND  
2
8
C3  
0.1µF  
D1  
NSQ03A02L  
C2  
330µF  
*SILICONIX SURFACE-MOUNT MOSFET  
**SUMIDA CDRH125-470  
Figure 1. Test Circuit  
_______________De t a ile d De s c rip t io n  
The MAX1649/MAX1651 a re BiCMOS, s te p -d own,  
s witc h-mod e p owe r-s up p ly c ontrolle rs tha t p rovid e  
adjustable and fixed outputs of 5V and 3.3V, respec-  
tive ly. The ir uniq ue c ontrol s c he me c omb ine s the  
advantages of pulse-frequency-modulation (low supply  
current) and pulse-width-modulation (high efficiency at  
high loads). An external P-channel power MOSFET  
allows peak currents in excess of 3A, increasing the  
output current capability over previous PFM devices.  
Figure 2 is the block diagram.  
The MAX1649/MAX1651 also limit the peak inductor cur-  
rent, which allows them to run in continuous-conduction  
mode and maintain high efficiency with heavy loads  
(Figure 3). This current-limiting feature is a key compo-  
nent of the control circuitry. Once turned on, the switch  
stays on until either 1) the maximum on-time one-shot  
turns it off (32µs later), or 2) the current limit is reached.  
EXT swings from V+ to GND and provides the drive out-  
put for an external P-channel power MOSFET.  
6
_______________________________________________________________________________________  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
V+  
FB  
DUAL-MODE™  
COMPARATOR  
MAX1649  
MAX1651  
50mV  
OUT  
SHDN  
REF  
ERROR  
COMPARATOR  
1.5V  
REFERENCE  
N
MINIMUM  
Q
OFF-TIME TRIG  
ONE-SHOT  
FROM V+  
EXT  
S
Q
F/F  
MAXIMUM  
TRIG ON-TIME  
ONE-SHOT  
Q
R
CURRENT  
COMPARATOR  
CS  
110mV  
FROM V+  
GND  
™ Dual-Mode is a trademark of Maxim Integrated Products  
Figure 2. Block Diagram  
S h u t d o w n Mo d e  
When SHDN is high, the MAX1649/MAX1651 enter shut-  
down mode. In this mode, the internal biasing circuitry is  
turned off (including the reference) and the supply cur-  
rent drops to less than 5µA. EXT goes high, turning off the  
external MOSFET. SHDN is a logic-level input. Connect  
SHDN to GND for normal operation.  
Qu ie s c e n t Cu rre n t  
In normal operation, the device's typical quiescent cur-  
rent is 78µA. In an actual application, even with no load,  
additional current is drawn to supply external feedback  
resistors (if used) and the diode and capacitor leakage  
currents. In the circuit of Figure 1, with V+ at 5V and  
V
OUT  
at 3.3V, typical no-load supply current for the  
entire circuit is 90µA.  
_______________________________________________________________________________________  
7
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
V
IN  
C4  
C1  
0.1µF 100µF  
5
V+  
R1  
0.05Ω  
MAX1649  
MAX1651  
6
CS  
1.5A  
1A  
P1  
Si9430  
L1  
47µH  
3
4
OUTPUT  
@ 1.5A  
7
SHDN  
EXT  
1
2
0A  
REF  
OUT  
FB  
R2  
GND  
8
C2  
330µF  
C3  
0.1µF  
2µs/div  
CIRCUIT OF FIGURE 1, R1 = 75mΩ  
D1  
1N5820  
V+ = 10V, I  
= 1.3A  
R3  
150k  
LOAD  
V
OUT  
49/MAX651  
R2 = R3  
– 1  
(
)
V
REF  
V
REF  
= 1.5V  
Figure 3. MAX1649 Continuous-Conduction Mode, Heavy  
Load-Current Waveform (500mA/div)  
Figure 4. Adjustable-Output Operation  
Mo d e s o f Op e ra t io n  
When delivering high output currents, the MAX1649/  
MAX1651 operate in continuous-conduction mode. In  
this mode, current always flows in the inductor, and  
the control circuit adjusts the switch duty cycle to main-  
tain regulation without exceeding the switch current  
capability (Figure 3). This provides excellent load-tran-  
sient response and high efficiency.  
__________________De s ig n P ro c e d u re  
S e t t in g t h e Ou t p u t Vo lt a g e  
The MAX1649/MAX1651 are preset for 5V and 3.3V out-  
put voltages, respectively; tie FB to GND for fixed-output  
operation. They may also be adjusted from 1.5V (the  
reference voltage) to the input voltage, using external  
resistors R2 and R3 configured as shown in Figure 4. For  
adjustable-output operation, 150kis recommended for  
resistor R3—high enough to avoid wasting energy, yet  
low enough to avoid RC delays caused by parasitic  
capacitance at FB. R2 is given by:  
In discontinuous-conduction mode, current through the  
ind uc tor s ta rts a t ze ro, ris e s to a p e a k va lue , the n  
ramps down to zero. Although efficiency is still excel-  
lent, the output ripple increases slightly, and the switch  
waveform exhibits ringing (at the inductor's self-reso-  
nant frequency). This ringing is to be expected and  
poses no operational problems.  
V
OUT  
——— -1  
R2 = R3 x  
(
)
V
REF  
where V  
= 1.5V.  
REF  
Dro p o u t  
The MAX1649/MAX1651 are in dropout when the input  
voltage (V+) is low enough that the output drops below  
the minimum outp ut volta g e s p e c ific a tion (s e e  
Electrical Characteristics). The dropout voltage is the  
difference between the input and output voltage when  
d rop out oc c urs . Se e the Typ ic a l Op e ra ting  
Cha ra c te ris tic s for the Drop out Volta g e vs . Loa d  
Current and Dropout Voltage vs. Temperature graphs.  
When using external resistors, it does no harm to con-  
nect OUT and the output together, or to leave OUT  
unconnected.  
Cu rre n t -S e n s e Re s is t o r S e le c t io n  
The current-sense resistor limits the peak switch cur-  
rent to 110mV/R  
, where R  
is the value of  
SENSE  
SENSE  
the current-sense resistor, and 110mV is the current-  
limit trip level (see Electrical Characteristics).  
8
_______________________________________________________________________________________  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
To maximize efficiency and reduce the size and cost  
of e xte rna l c omp one nts, minimize the pe a k c urre nt.  
However, since the available output current is a func -  
tion of the peak current, the peak current must not be  
too low.  
trollers’ high switching frequency. With a high inductor  
value, the MAX1649/MAX1651 will begin continuous-cur-  
rent operation (see Detailed Description) at a lower frac-  
tion of full-load current. In general, smaller values pro-  
duce higher ripple (see below) while larger values require  
larger size for a given current rating.  
To choose the proper current-sense resistor for a par-  
ticular output voltage, determine the minimum input  
voltage and the maximum load current. Next, refer-  
ring to Figures 5a or 5b, using the minimum input volt-  
age, find the curve with the largest sense resistor that  
provides sufficient output current. It is not necessary  
to perform worst-case calculations. These curves take  
into a c c ount the s e ns e -re s is tor (± 5%) a nd ind uc tor  
(47µH ± 10%) va lue s , the d iod e d rop (0.4), a nd the  
ICs current-sense trip level (85mV); an external MOS-  
In both the continuous and discontinuous modes, the  
lower limit of the inductor is important. With a too-small  
inductor value, the current rises faster and overshoots the  
desired peak current limit because the current-limit com-  
parator has a finite response time (300ns). This reduces  
efficiency and, more importantly, could cause the current  
rating of the external components to be exceeded.  
Calculate the minimum inductor value as follows:  
(V+(max) - V  
) x 0.3µs  
OUT  
FET on-resistance of 0.07is assumed for V = -5V.  
GS  
L(min) = ——————————––——  
I x I  
LIM  
Standard wire-wound and metal-film resistors have an  
ind uc ta nc e hig h e noug h to d e g ra d e p e rforma nc e .  
Surface-mount (chip) resistors have very little inductance  
and are well suited for use as current-sense resistors.  
A U-shaped wire resistor made by IRC works well in  
through-hole applications. Because this resistor is a  
band of metal shaped as a U”, its inductance is less  
than 10nH (an order of magnitude less than metal film  
resistors). Resistance values between 5mand 0.1Ω  
are available (see Table 1).  
whe re I is the ind uc tor-c urre nt ove rs hoot fa c tor,  
= V /R , and 0.3µs is the time it takes the com-  
I
LIM  
CS SENSE  
parator to switch. Set I = 0.1 for an overshoot of 10%.  
For highest efficiency, use a coil with low DC resis-  
tance; a value smaller than 0.1V/I  
works best. To  
LIM  
minimize ra d ia te d nois e , us e a toroid , p ot c ore , or  
shielded-bobbin inductor. Inductors with a ferrite core  
or equivalent are recommended. Make sure the induc-  
tors saturation-current rating is greater than I (max).  
LIM  
However, it is generally acceptable to bias the inductor  
into s a tura tion b y a b out 20% (the p oint whe re the  
inductance is 20% below its nominal value).  
In d u c t o r S e le c t io n  
The MAX1649/MAX1651 operate with a wide range of  
inductor values, although for most applications coils  
between 10µH and 68µH take best advantage of the con-  
3.0  
3.0  
V
OUT  
= 5V  
V
OUT  
= 3.3V  
r
r
r
= 0.030  
= 0.040  
= 0.050  
r
r
r
= 0.030  
= 0.040  
= 0.050  
s
s
s
s
s
s
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
r
r
= 0.060  
= 0.080  
r
r
= 0.060  
= 0.080  
s
s
s
s
r
s
= 0.100  
r
s
= 0.100  
5.0  
5.4  
5.8  
6.2  
6.6  
16.0  
3.0  
3.4  
3.8  
4.2  
4.6  
16.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 5a. MAX1649 Current-Sense Resistor Graph  
Figure 5b. MAX1651 Current-Sense Resistor Graph  
_______________________________________________________________________________________  
9
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
Table 1. Component Selection Guide  
PRODUCTION  
METHOD  
CURRENT-SENSE  
RESISTORS  
INDUCTORS  
CAPACITORS  
DIODES  
MOSFETS  
Sumida  
CDRH125-470 (1.8A) AVX  
CDRH125-220 (2.2A) TPS series  
Siliconix  
Little Foot series  
Motorola  
MBRS340T3  
Dale  
WSL Series  
Surface Mount  
Motorola  
medium-power  
surface-mount products  
CoilCraft  
DO3316-473 (1.6A)  
DO3340-473 (3.8A)  
Sprague  
595D series  
Nihon  
NSQ series  
IRC  
LRC series  
Sanyo  
Miniature  
Through-Hole  
Sumida  
OS-CON series  
IRC  
OAR series  
Motorola  
RCH875-470M (1.3A) low-ESR organic  
semiconductor  
Nichicon  
PL series  
low-ESR electrolytics  
Motorola  
1N5817 to  
1N5823  
Low-Cost  
Through-Hole  
CoilCraft  
PCH-45-473 (3.4A)  
Motorola  
TMOS power MOSFETs  
49/MAX651  
United Chemi-Con  
LXF series  
The peak current of Figure 1 is 2.35A for a 1.5A output.  
The inductor used in this circuit is specified to drop by  
10% at 2.2A (worst case); a curve provided by the  
manufacturer shows that the inductance typically drops  
by 20% at 2.7A. Using a slightly underrated inductor  
can sometimes reduce size and cost, with only a minor  
impact on efficiency.  
critical, but values should be less than 100nC for best  
efficiency. The MOSFET should be capable of handling  
the peak current and, for maximum efficiency, have a  
very low on-resistance at that current. Also, the on-  
resistance must be low for the minimum available V  
,
GS  
which equals V+(min). Select a transistor with an on-  
re s is ta nc e b e twe e n 50% a nd 100% of the c urre nt-  
sense resistor. The Si9430 transistor chosen for the  
Typical Operating Circuit has a drain-to-source rating  
of -20V and a typical on-resistance of 0.070at 2A with  
VGS = -4.5V. Tables 1 and 2 list suppliers of switching  
transistors suitable for use with these devices.  
Table 1 lists inductor types and suppliers for various  
applications. The efficiencies of the listed surface-  
mount inductors are nearly equivalent to those of the  
larger size through-hole versions.  
Dio d e S e le c t io n  
The MAX1649/MAX1651s high switching frequency  
demands a high-speed rectifier. Schottky diodes, such  
as the 1N5817 through 1N5823 (and their surface-  
mount e q uiva le nts ), a re re c omme nd e d . Choos e a  
diode with an average current rating equal to or greater  
Ca p a c it o r S e le c t io n  
Output Filter Capacitor  
The p rima ry c rite rion for s e le c ting the outp ut filte r  
capacitor is low equivalent series resistance (ESR),  
rather than high capacitance. An electrolytic capacitor  
with low e noug h ESR will a utoma tic a lly ha ve hig h  
enough capacitance. The product of the inductor-cur-  
re nt va ria tion a nd the outp ut filte r c a p a c itors ESR  
determines the amplitude of the high-frequency ripple  
s e e n on the outp ut volta g e . Whe n a 330µF, 10V  
Sprague surface-mount capacitor (595D series) with  
ESR = 0.15is used, 40mV of output ripple is typically  
observed when stepping down from 10V to 5V at 1A.  
The output filter capacitor's ESR also affects efficiency.  
Again, low-ESR capacitors perform best. Table 1 lists  
some suppliers of low-ESR capacitors.  
tha n I  
(ma x) a nd a volta g e ra ting hig he r tha n  
LIM  
V+(max).  
Ex t e rn a l S w it c h in g Tra n s is t o r  
The MAX1649/MAX1651 drive P-channel enhancement-  
mode MOSFET transistors only. The choice of power  
transistor is primarily dictated by the input voltage and  
the peak current. The transistors on-resistance, gate-  
source threshold, and gate charge must also be appro-  
p ria te ly c hos e n. The d ra in-to-s ourc e a nd g a te -to-  
source breakdown voltage ratings must be greater than  
V+. The total gate-charge specification is normally not  
10 ______________________________________________________________________________________  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
49/MAX651  
La yo u t Co n s id e ra t io n s  
Table 2. Component Suppliers  
Proper PC board layout is essential because of high  
current levels and fast switching waveforms that radi-  
ate noise. Minimize ground noise by connecting the  
a nod e of the re c tifie r, the inp ut b yp a s s c a p a c itor  
ground lead, and the output filter capacitor ground  
lead to a single point (“starground configuration). A  
ground plane is recommended. Also minimize lead  
lengths to reduce stray capacitance, trace resistance,  
and radiated noise. In particular, the traces connected  
to FB (if an external resistor divider is used) and EXT  
must be short. Place the 0.1µF ceramic bypass capac-  
itor as close as possible to the V+ and GND pins.  
COMPANY  
PHONE  
FAX  
(207) 282-5111  
or  
(800) 282-4975  
AVX  
USA  
(207) 283-1941  
Coiltronics  
CoilCraft  
Dale  
USA  
USA  
USA  
(407) 241-7876  
(708) 639-6400  
(402) 564-3131  
(407) 241-9339  
(708) 639-1469  
(402) 563-1841  
International  
Rectifier  
USA  
USA  
(310) 322-3331  
(310) 322-3332  
(512) 992-3377  
IRC  
(512) 992-7900  
(602) 244-3576  
or  
(602) 244-5303  
Motorola  
USA  
(602) 244-4015  
MAX1 6 4 9 /MAX1 6 5 1 vs . MAX6 4 9 /MAX6 5 1  
The MAX1649 and MAX1651 are pin compatible with  
the MAX649 and MAX651, but have been optimized for  
improved dropout performance and efficiencypartic-  
ularly with low input voltages. The MAX1649/MAX1651  
feature increased maximum switch duty cycle (96.5%)  
a nd re d uc e d c urre nt-limit s e ns e volta g e (110mV).  
Their predecessors, the MAX649/MAX651, use a high-  
er two-step (210mV/110mV) current-limit sense voltage  
to provide tighter current-sense accuracy and reduced  
inductor peak current at light loads.  
USA  
Japan  
(708) 843-7500  
81-7-5231-8461  
(708) 843-2798  
81-7-5256-4158  
Nichicon  
Nihon  
USA  
Japan  
(805) 867-2555  
81-3-3494-7411  
(805) 867-2556  
81-3-3494-7414  
USA  
Japan  
(619) 661-6835  
81-7-2070-6306  
(619) 661-1055  
81-7-2070-1174  
Sanyo  
(408) 988-8000  
or  
(800) 554-5565  
Siliconix  
USA  
USA  
(408) 970-3950  
Sprague  
Sumida  
(603) 224-1961  
(603) 224-1430  
USA  
Japan  
(708) 956-0666  
81-3-3607-5111  
(708) 956-0702  
81-3-3607-5144  
___________________Ch ip To p o g ra p h y  
United  
Chemi-Con  
USA  
(714) 255-9500  
(714) 255-9400  
GND  
OUT  
Input Bypass Capacitor  
The inp ut b yp a s s c a p a c itor re d uc e s p e a k c urre nts  
drawn from the voltage source, and also reduces the  
amount of noise at the voltage source caused by the  
switching action of the MAX1649/MAX1651. The input  
voltage source impedance determines the size of the  
capacitor required at the V+ input. As with the output fil-  
ter capacitor, a low-ESR capacitor is recommended.  
Bypass the IC separately with a 0.1µF ceramic capac-  
itor placed close to the V+ and GND pins.  
EXT  
FB  
0.106"  
(2.692mm)  
CS  
SHDN  
REF  
Reference Capacitor  
Bypass REF with a 0.1µF or larger capacitor.  
V+  
0. 081"  
(2. 057mm)  
TRANSISTOR COUNT: 428  
SUBSTRATE CONNECTED TO V+  
______________________________________________________________________________________ 11  
5 V/3 .3 V o r Ad ju s t a b le , Hig h -Effic ie n c y,  
Lo w -Dro p o u t , S t e p -Do w n DC-DC Co n t ro lle rs  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
E
A
A2  
A3  
E1  
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
1.27  
15.24  
13.34  
2.54  
15.24  
D
A
0.175  
0.080  
0.020  
0.065  
0.012  
0.090  
0.625  
0.575  
4.45  
2.03  
0.51  
1.65  
0.30  
2.29  
15.88  
14.61  
B
0.016  
B1 0.045  
0.008  
D1 0.050  
0.600  
E1 0.525  
0.100  
eA 0.600  
0°-15°  
C
A1  
e
C
L
E
eA  
eB  
B1  
B
e
D1  
eB  
L
0.700  
0.150  
17.78  
3.81  
0.120  
3.05  
Plastic DIP  
PLASTIC  
49/MAX651  
INCHES  
MILLIMETERS  
PKG. DIM PINS  
MIN  
MAX MIN MAX  
DUAL-IN-LINE  
PACKAGE  
(0.600 in.)  
P
P
P
D
D
D
24  
28  
40  
1.230 1.270 31.24 32.26  
1.430 1.470 36.32 37.34  
2.025 2.075 51.44 52.71  
21-0044A  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
21-0041A  
(0.150 in.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1651EPA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1651ESA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1651ESA+

Switching Controller, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, SOP-8
MAXIM

MAX1651ESA-T

Switching Controller, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX1651ESA-T

SWITCHING CONTROLLER, 300 kHz SWITCHING FREQ-MAX, PDSO8, 0.150 INCH, SOP-8
ROCHESTER

MAX1652

High-Efficiency, PWM, Step-Down DC-DC Controllers in 16-Pin QSOP
MAXIM

MAX1652-MAX1655

High-Efficiency PWM Step-Down DC-DC Controllers in 16-Pin QSOP
MAXIM

MAX1652/1655

High-Efficiency PWM Step-Down DC-DC Controllers in 16-Pin QSOP
MAXIM

MAX1652C/D

Switching Controller, Voltage-mode, 10A, 340kHz Switching Freq-Max
MAXIM

MAX1652EEE

High-Efficiency, PWM, Step-Down DC-DC Controllers in 16-Pin QSOP
MAXIM

MAX1652EEE+

Switching Controller, Current-mode, 350kHz Switching Freq-Max, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1652EEE+T

Switching Controller, Current-mode, 350kHz Switching Freq-Max, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM