MAX1648ESE-T [MAXIM]

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16;
MAX1648ESE-T
型号: MAX1648ESE-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16

光电二极管
文件: 总25页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1158; Rev 1; 12/02  
Chemistry-Independent Battery Chargers  
_______________General Description  
____________________________Features  
The MAX1647/MAX1648 provide the power control neces-  
sary to charge batteries of any chemistry. In the MAX1647,  
all charging functions are controlled through the Intel  
System Management Bus (SMBus™) interface. The  
SMBus 2-wire serial interface sets the charge voltage and  
current, and provides thermal status information. The  
MAX1647 functions as a level 2 charger, compliant with  
the Duracell/Intel Smart Battery Charger Specification. The  
MAX1648 omits the SMBus serial interface, and instead  
sets the charge voltage and current proportional to the  
voltage applied to external control pins.  
Charges Any Battery Chemistry:  
Li-Ion, NiCd, NiMH, Lead Acid, etc.  
Intel SMBus 2-Wire Serial Interface (MAX1647)  
Intel/Duracell Level 2 Smart Battery Compliant  
(MAX1647)  
4A, 2A, or 1A Maximum Battery-Charge Current  
11-Bit Control of Charge Current  
Up to 18V Battery Voltage  
In addition to the feature set required for a level 2 charger,  
the MAX1647 generates interrupts to signal the host when  
power is applied to the charger or a battery is installed or  
removed. Additional status bits allow the host to check  
whether the charger has enough input voltage, and  
whether the voltage on or current into the battery is being  
regulated. This allows the host to determine when lithium-  
ion batteries have completed charge without interrogating  
the battery.  
10-Bit Control of Voltage  
0.75% Voltage Accuracy with External 0.1%  
Reference  
Up to 28V Input Voltage  
Battery Thermistor Fail-Safe Protection  
The MAX1647 is available in a 20-pin SSOP with a 2mm  
profile height. The MAX1648 is available in a 16-pin SO  
package.  
______________Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
20 SSOP  
________________________Applications  
MAX1647EAP  
MAX1648ESE  
Notebook Computers  
Personal Digital Assistants  
Charger Base Stations  
Phones  
16 Narrow SO  
__________________________________________________________Pin Configurations  
TOP VIEW  
IOUT  
DCIN  
VL  
1
2
3
4
5
6
7
8
9
20 BST  
19 LX  
DCIN  
VL  
1
2
3
4
5
6
7
8
16 BST  
LX  
15  
18 DHI  
14 DHI  
13 DLO  
CCV  
CCI  
CCV  
CCI  
17  
DLO  
16 PGND  
MAX1648  
MAX1647  
CS  
PGND  
12  
SEL  
CS  
15  
14  
13  
DACV  
SDA  
11 SETV  
BATT  
REF  
SETI  
THM  
10  
9
SCL  
BATT  
REF  
AGND  
12 THM  
11 INT  
AGND 10  
SO  
SSOP  
SMBus is a trademark of Intel Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Chemistry-Independent Battery Chargers  
ABSOLUTE MAXIMUM RATINGS  
DCIN to AGND..........................................................-0.3V to 30V  
DCIN to IOUT...........................................................-0.3V to 7.5V  
BST to AGND............................................................-0.3V to 36V  
BST, DHI to LX............................................................-0.3V to 6V  
LX to AGND ..............................................................-0.3V to 30V  
THM, CCI, CCV, DACV, REF,  
PGND to AGND.....................................................-0.3V to +0.3V  
SDA, INT Current ................................................................50mA  
VL Current...........................................................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin SO (derate 8.7mW/°C above +70°C).................696mW  
20-Pin SSOP (derate 8mW/°C above +70°C) ...............640mW  
Operating Temperature Range  
MAX1647EAP, MAX1648ESE ...........................-40°C to +85°C  
Storage Temperature.........................................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DLO to AGND................................................-0.3V to (VL + 0.3V)  
VL, SEL, INT, SDA, SCL to AGND (MAX1647) ...........-0.3V to 6V  
SETV, SETI to AGND (MAX1648)................................-0.3V to 6V  
BATT, CS+ to AGND.................................................-0.3V to 20V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 18V, V  
= 4.096V, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
DCIN  
REF  
A
A
PARAMETER  
CONDITIONS  
MIN  
7.5  
TYP  
MAX  
UNITS  
SUPPLY AND REFERENCE  
DCIN Input Voltage Range  
DCIN Quiescent Current  
VL Output Voltage  
28.0  
6
V
mA  
V
7.5V < V  
7.5V < V  
< 28V, logic inputs = VL  
< 28V, no load  
4
DCIN  
DCIN  
5.15  
5.4  
5.65  
100  
5.15  
4.07  
700  
VL Load Regulation  
I
= 10mA  
mV  
V
LOAD  
VL AC_PRESENT Trip Point  
REF Output Voltage  
MAX1647  
0µA < I  
3.20  
3.74  
4
< 500µA  
3.9  
V
SOURCE  
REF Overdrive Input Current  
SWITCHING REGULATOR  
Oscillator Frequency  
µA  
200  
89  
250  
93  
4
300  
kHz  
%
DHI Maximum Duty Cycle  
DHI On-Resistance  
High or low  
High or low  
VL < 3.2V, V  
7
14  
5
DLO On-Resistance  
6
= 12V  
1
BATT  
BATT Input Current (Note 1)  
CS Input Current (Note 1)  
µA  
VL < 5.15V, V  
= 12V  
350  
1
500  
5
BATT  
VL < 3.2V, V = 12V  
CS  
µA  
V
VL < 5.15V, V = 12V  
CS  
170  
400  
19  
BATT, CS Input Voltage Range  
0
CS to BATT Single-Count  
Current-Sense Voltage  
MAX1647, SEL = open,  
ChargingCurrent( ) = 0x0020  
2.94  
185  
mV  
MAX1647, SEL = open,  
ChargingCurrent( ) = 0x07F0;  
CS to BATT Full-Scale  
Current-Sense Voltage  
170  
200  
mV  
%
MAX1648, V  
= 1.024V  
SETI  
MAX1647, ChargingVoltage( ) = 0x1060,  
ChargingVoltage( ) = 0x3130; MAX1648,  
Voltage Accuracy  
-0.65  
+0.65  
V
SETV  
= 3.15V, V  
= 1.05V  
SETV  
2
_______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 18V, V  
= 4.096V, T = 0°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.)  
DCIN  
REF  
A
A
PARAMETER  
ERROR AMPLIFIERS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GMV Amplifier Transconductance  
GMI Amplifier Transconductance  
1.4  
0.2  
mA/V  
mA/V  
GMV Amplifier Maximum  
Output Current  
80  
200  
80  
µA  
µA  
GMI Amplifier Maximum  
Output Current  
CCI Clamp Voltage with  
Respect to CCV  
1.1V < V  
1.1V < V  
< 3.5V  
25  
25  
200  
200  
mV  
mV  
CCV  
CCI  
CCV Clamp Voltage with  
Respect to CCI  
< 3.5V  
80  
TRIP POINTS AND LINEAR CURRENT SOURCES  
% of  
BATT POWER_FAIL Trip Point  
MAX1647  
MAX1647  
86.5  
89.5  
74  
89  
91  
91.5  
92.5  
77  
V
DCIN  
THM THERMISTOR_OR  
Over-Range Trip Point  
% of  
V
REF  
THM THERMISTOR_COLD  
Trip Point  
% of  
75.5  
23.5  
V
REF  
THM THERMISTOR_HOT  
Trip Point  
% of  
22  
25  
V
REF  
THM THERMISTOR_UR  
Under-Range Trip Point  
% of  
MAX1647  
MAX1647,  
3
4.5  
31  
6
V
REF  
ChargingCurrent( ) = 0x001F  
ChargingCurrent( ) = 0x0000  
25  
38  
mA  
IOUT Output Current  
V
DCIN  
V
IOUT  
= 7.5V,  
= 0V  
10  
µA  
V
IOUT Operating Voltage Range  
With respect to DCIN voltage  
-7.5  
-1.0  
CURRENT- AND VOLTAGE-SETTING DACs (MAX1647)  
CDAC Current-Setting DAC Resolution Guaranteed monotonic  
VDAC Voltage-Setting DAC Resolution Guaranteed monotonic  
SETV, SETI (MAX1648)  
6
Bits  
Bits  
10  
SETV Input Bias Current  
1
5
µA  
µA  
V
SETI Input Bias Current  
SETV Input Voltage Range  
0
0
4.2  
1.024  
SETI Input Voltage Range  
V
LOGIC LEVELS (MAX1647)  
SDA, SCL Input Low Voltage  
0.8  
+1  
V
V
SDA, SCL Input High Voltage  
2.8  
-1  
6
SDA, SCL Input Bias Current  
µA  
mA  
SDA Output Low Sink Current  
V
SDA  
= 0.6V  
Note 1: When DCIN is less than 4V, VL is less than 3.2V, causing the battery current to be typically 2µA (CS plus BATT input  
current).  
_______________________________________________________________________________________  
3
Chemistry-Independent Battery Chargers  
ELECTRICAL CHARACTERISTICS  
(V  
= 18V, V  
= 4.096V, T = -40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted. Limits over this  
REF A A  
DCIN  
temperature range are guaranteed by design.)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY AND REFERENCE  
DCIN Quiescent Current  
VL Output Voltage  
7.5V < V  
< 28V, logic inputs = VL  
< 28V, no load  
4
6
mA  
V
DCIN  
DCIN  
7.5V < V  
5.15  
3.74  
5.4  
3.9  
5.65  
4.07  
REF Output Voltage  
SWITCHING REGULATOR  
Oscillator Frequency  
DHI Maximum Duty Cycle  
DHI On-Resistance  
DLO On-Resistance  
BATT Input Current  
CS Input Current  
0µA < I  
< 500µA  
V
SOURCE  
200  
89  
250  
310  
kHz  
%
High or low  
High or low  
VL < 3.2V, V  
4
6
7
14  
5
= 12V  
µA  
µA  
BATT  
VL < 3.2V, V = 12V  
CS  
5
MAX1647, SEL = open,  
ChargingCurrent( ) = 0x07F0;  
CS to BATT Full-Scale  
Current-Sense Voltage  
160  
185  
200  
mV  
%
MAX1648, V  
= 1.024V  
SETI  
MAX1647, ChargingVoltage( ) = 0x1060,  
ChargingVoltage( ) = 0x3130; MAX1648,  
Voltage Accuracy  
-0.65  
+0.65  
V
SETV  
= 3.15V, V  
= 1.05V  
SETV  
ERROR AMPLIFIERS  
GMV Amplifier Transconductance  
GMI Amplifier Transconductance  
1.4  
0.2  
mA/V  
mA/V  
GMV Amplifier Maximum  
Output Current  
130  
320  
µA  
µA  
GMI Amplifier Maximum  
Output Current  
TRIP POINTS AND LINEAR CURRENT SOURCES  
THM THERMISTOR_OR  
MAX1647  
% of  
89.5  
74  
22  
3
91  
92.5  
77  
25  
6
V
REF  
Over-Range Trip Point  
THM THERMISTOR_COLD  
Trip Point  
% of  
75.5  
23.5  
4.5  
V
REF  
THM THERMISTOR_HOT  
Trip Point  
% of  
V
REF  
THM THERMISTOR_UR  
MAX1647  
% of  
V
REF  
Under-Range Trip Point  
SETV, SETI (MAX1648)  
SETV Input Bias Current  
1
5
µA  
µA  
SETI Input Bias Current  
LOGIC LEVELS (MAX1647)  
SDA, SCL Input Low Voltage  
SDA, SCL Input High Voltage  
SDA, SCL Input Bias Current  
0.8  
+1  
V
V
2.8  
-1  
6
µA  
mA  
SDA Output Low Sink Current  
V
SDA  
= 0.6V  
4
_______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
TIMING CHARACTERISTICS—MAX1647  
(T = 0°C to +85°C, unless otherwise noted.)  
A
PARAMETER  
SCL Serial-Clock High Period  
SCL Serial-Clock Low Period  
Start-Condition Setup Time  
Start-Condition Hold Time  
SYMBOL  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
µs  
t
HIGH  
t
4.7  
4.7  
4
µs  
LOW  
t
µs  
SU:STA  
HD:STA  
t
µs  
SDA Valid to SCL Rising-Edge  
Setup Time, Slave Clocking in Data  
t
250  
0
ns  
ns  
µs  
SU:DAT  
HD:DAT  
SCL Falling Edge to SDA Transition  
t
SCL Falling Edge to SDA Valid,  
Master Clocking in Data  
t
1
DV  
TIMING CHARACTERISTICS—MAX1647  
(T = -40°C to +85°C, unless otherwise noted. Limits over this temperature range are guaranteed by design.)  
A
PARAMETER  
SCL Serial-Clock High Period  
SCL Serial-Clock Low Period  
Start-Condition Setup Time  
Start-Condition Hold Time  
SYMBOL  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
µs  
t
HIGH  
t
4.7  
4.7  
4
µs  
LOW  
t
µs  
SU:STA  
HD:STA  
t
µs  
SDA Valid to SCL Rising-Edge  
Setup Time, Slave Clocking in Data  
t
250  
0
ns  
ns  
µs  
SU:DAT  
HD:DAT  
SCL Falling Edge to SDA Transition  
t
SCL Falling Edge to SDA Valid,  
Master Clocking in Data  
t
1
DV  
_______________________________________________________________________________________  
5
Chemistry-Independent Battery Chargers  
__________________________________________Typical Operating Characteristics  
(Circuit of Figure 3, T = +25°C, unless otherwise noted.)  
A
MAX1647  
BATT LOAD TRANSIENT  
MAX1647  
BATT LOAD TRANSIENT  
MAX1647/48-02  
MAX1647/48-01  
1.1A TO 0.9A TO 1.1A  
CCI  
CCV  
CCI  
CCI  
V
V
CCV  
CCI  
100mV/div  
2.3V  
12V  
CCV  
CCV  
CCV  
V
V
CCI  
CCV  
200mV/div  
2.4V  
12V  
CCI  
CCI  
CCV  
V
BATT  
1V/div  
V
BATT  
5V/div  
0.9A TO 1.9A TO 0.9A  
1ms/div  
2ms/div  
ChargingVoltage( ) = 0x2EE0 = 12000mV  
ChargingCurrent( ) = 0x03E8 = 1000mA  
ACDCIN = 18.0V, SEL = OPEN, C1 = 68µF,  
C2 = 0.1µF, C3 = 47nF, R1 = 0.1Ω  
ChargingVoltage( ) = 0x2EE0 = 12000mV  
ChargingCurrent( ) = 0xFFFF = MAX VALUE  
ACDCIN = 18.0V, SEL = OPEN, R1 = 0.1Ω  
R2 = 10k, C1 = 68µF, C2 = 0.1µF, C3 = 47nF  
R2 = 10k, L1 = 22µH, V  
= 4.096V  
L1 = 22µH, V  
= 4.096V  
REF  
REF  
VL VOLTAGE vs. LOAD CURRENT  
INTERNAL REFERENCE VOLTAGE  
5.5  
5.0  
3.86  
3.84  
3.82  
3.80  
3.78  
3.76  
3.74  
3.72  
3.70  
4.5  
4.0  
3.5  
CIRCUIT OF FIGURE 3  
DCIN  
V
= 6.6V  
0
0
10  
20  
30  
40  
50  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
MAX1647  
OUTPUT V-I CHARACTERISTIC  
OUTPUT VOLTAGE ERROR  
INPUT AND OUTPUT POWER  
0.001  
0.01  
0.8  
0.6  
0.4  
0.2  
0
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 28V  
DCIN  
BATT  
BATT NO-LOAD  
= 12.6V  
OUTPUT VOLTAGE = 16.384V  
ChargingCurrent( ) = 0xFFFF  
ChargingVoltage( ) = 0xFFFF  
3mA LOAD  
0.1  
1
POWER INTO  
CIRCUIT  
300mA LOAD  
10  
V
= 28V, V  
= 4.096V  
REF  
POWER TO BATT  
DCIN  
-0.2  
-0.4  
ChargingVoltage( ) = 0xFFFF  
ChargingCurrent( ) = 0xFFFF  
100  
0
0
500  
1000  
1500  
2000 2500  
4500  
8500  
12,500  
16,500  
PROGRAMMED VOLTAGE CODE IN DECIMAL  
500  
CURRENT INTO BATT (mA)  
0
1000  
1500  
2000  
2500  
LOAD CURRENT (mA)  
6
_______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
MAX1647  
MAX1648  
1
2
3
4
5
1
IOUT  
DCIN  
VL  
Linear Current-Source Output  
Input Voltage for Powering Charger  
2
Chip Power Supply. 5.4V linear regulator output from DCIN.  
Voltage-Regulation-Loop Compensation Point  
Current-Regulation-Loop Compensation Point  
3
CCV  
CCI  
4
Current-Range Selector. Tying SEL to VL sets a 4A full-scale current. Leaving SEL open  
sets a 2A full-scale current. Tying SEL to AGND sets a 1A full-scale current.  
6
SEL  
7
5
CS  
BATT  
REF  
Current-Sense Positive Input  
8
6
Battery Voltage Input and Current-Sense Negative Input  
3.9V Reference Voltage Output or External Reference Input  
Analog Ground  
9
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
AGND  
SETI  
INT  
10  
11  
9
Current-Regulation-Loop Set Point  
Open-Drain Interrupt Output  
SETV  
THM  
SCL  
Voltage-Regulation-Loop Set Point  
Thermistor Sense Voltage Input  
Serial Clock  
12  
13  
14  
15  
16  
SDA  
DACV  
PGND  
DLO  
DHI  
Serial Data  
Voltage DAC Output  
Power Ground  
Low-Side Power MOSFET Driver Output  
High-Side Power MOSFET Driver Output  
Power Connection for the High-Side Power MOSFET Driver  
Power Connection for the High-Side Power MOSFET Driver  
LX  
BST  
_______________________________________________________________________________________  
7
Chemistry-Independent Battery Chargers  
MOST SIGNIFICANT  
ADDRESS BIT (A6)  
CLOCKED INTO SLAVE  
A5 CLOCKED  
INTO SLAVE  
A4 CLOCKED  
INTO SLAVE  
A3 CLOCKED  
INTO SLAVE  
START  
CONDITION  
SCL  
t
t
HIGH  
LOW  
t
HD:STA  
SDA  
t
t
t
HD:DAT  
t
t
SU:STA  
HD:DAT  
SU:DAT  
SU:DAT  
Figure 1. SMBus Serial Interface Timing—Address  
MOST SIGNIFICANT BIT  
OF DATA CLOCKED  
INTO MASTER  
ACKNOWLEDGE  
BIT CLOCKED  
INTO MASTER  
RW BIT  
CLOCKED  
INTO SLAVE  
SCL  
SLAVE PULLING  
SDA LOW  
SDA  
t
t
DV  
DV  
Figure 2. SMBus Serial Interface Timing—Acknowledge  
_______________________________________________________________________________________  
8
Chemistry-Independent Battery Chargers  
4
6
GND  
2
VIN  
MAX874  
VOUT  
D5  
10  
9
1
Q1  
AGND  
REF  
IOUT  
C9  
2
C4  
DCIN  
SEL  
VL  
6
3
N.C.  
R6  
R7  
D6  
R3  
R5  
C5  
D4*  
R4  
(NOTE 2)  
12  
5
C6  
THM  
CCI  
MAX1647  
D2  
20  
18  
BST  
DHI  
DC SOURCE  
M1  
C3  
C7  
7.5V–28V  
19  
17  
LX  
L1  
D1  
M2  
DLO  
4
CCV  
16  
7
D3  
PGND  
CS  
(NOTE 1)  
C1  
R2  
C2  
R1A  
R1B  
8
15  
BATT  
SCL  
DACV  
13  
C8  
14  
11  
SDA  
INT  
= HIGH-CURRENT TRACES (8A MAX)  
-
T
D
C
+
NOTE 1: C6, M2, D1, AND C1 GROUNDS MUST CONNECT TO  
THE SAME RECTANGULAR PAD ON THE LAYOUT.  
NOTE 2: C5 MUST BE PLACED WITHIN 0.5cm OF THE MAX1647,  
WITH TRACES NO LONGER THAN 1cm CONNECTING  
VL AND PGND.  
SMART BATTERY  
STANDARD CONNECTOR  
HOST AND LOAD  
*OPTIONAL (SEE NEGATIVE INPUT VOLTAGE PROTECTION SECTION).  
Figure 3. MAX1647 Typical Application Circuit  
_______________________________________________________________________________________  
9
Chemistry-Independent Battery Chargers  
Table 1a. Component Selection for Figure 3 Circuit (Also Use for Figure 4)  
DESIGNATION  
QTY  
UNITS  
NOTES  
SOURCE/TYPE  
Sprague, 595D476X0020D7T, D case  
AVX, TPSE476M020R0150, E case  
C1  
47  
µF  
20V, ESR at 250kHz 0.4Ω  
C2, C4, C7, C9  
0.1  
47  
1
22  
22  
µF  
nF  
µF  
µF  
nF  
C3  
C5  
C6  
C8  
10V, ceramic or low ESR  
35V  
10V  
NIEC, NSQ03A04, FLAT-PAK (SMC)  
NIEC, 30VQ04F, TO-252AA (SMD)  
Motorola, MBRS340T3, SMC  
Motorola, MBRD340T4, DPAK  
Diodes Inc., SK33, SMC  
3A I , 30V Schottky diode,  
DC  
D1, D3, D4  
P
D
> 0.8W, 1N5821 equivalent  
IR, 30BQ040, SMC  
50mA I , 40V fast-recovery diode,  
DC  
1N4150 equivalent  
D2, D5  
D6  
4.3V zener diode,  
1N4731 or equivalent  
Sumida, RCH-110/220M, 10mm x 10mm x 10mm  
Coiltronics, UP2-220, 0.541" x 0.345" x 0.231"  
Coilcraft, DO3340P-223, 0.510" x 0.370" x 0.450"  
Coilcraft, DO5022P-223, 0.730" x 0.600" x 0.280"  
20%, 3A I  
Note: size in L x W x H  
SAT  
L1  
22  
µH  
Motorola, MMSF5N03HD, SO-8  
Motorola, MMDF3N03HD, SO-8  
Motorola, MTD20N03HDL, DPAK  
IR, IRF7201, SO-8  
R
0.1, V  
30V,  
DSS  
DS, ON  
M1  
P
D
> 0.5W, logic level, N-channel  
IR, IRF7303, SO-8  
power MOSFET  
IR, IRF7603, Micro8  
Siliconix, Si9410DY, SO-8  
Siliconix, Si9936DY, SO-8  
Siliconix, Si6954DQ, TSSOP-8  
Motorola, 2N7002LT1, SOT23  
Motorola, MMBF170LT1, SOT23  
Diodes Inc., 2N7002, SOT23  
Diodes Inc., BS870, SOT23  
Zetex, ZVN3306F, SOT23  
Central Semiconductor, 2N7002, SOT23  
R
10, V  
30V,  
DSS  
DS, ON  
M2  
Q1  
logic level, N-channel power  
MOSFET, 2N7002 equivalent  
V
-30V, 50mA I  
,
CE, MAX  
C, CONT  
2N3906 equivalent  
IRC, CHP1100R100F13, 2512  
IRC, LR251201R100F, 2512  
Dale, WSL-2512/0.1/ 1%, 2512  
R1A  
R1B  
100  
1
mΩ  
1%, 1W  
5%, 1/8W  
R2, R4  
R3  
10  
10  
10  
10  
kΩ  
kΩ  
5%, 1/16W  
1%, 1/16W  
5%, 1/16W  
5%, 1/8W  
R5, R7  
R6  
kΩ  
10 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
_______________Detailed Description  
Table 1b. Component Suppliers  
MANUFACTURER  
AVX  
PHONE  
FAX  
Output Characteristics  
The MAX1647/MAX1648 contain both a voltage-  
regulation loop and a current-regulation loop. Both  
loops operate independently of each other. The volt-  
age-regulation loop monitors BATT to ensure that its  
voltage never exceeds the voltage set point (V0). The  
current-regulation loop monitors current delivered to  
BATT to ensure that it never exceeds the current-limit  
set point (I0). The current-regulation loop is in control  
as long as BATT voltage is below V0. When BATT volt-  
age reaches V0, the current loop no longer regulates,  
and the voltage-regulation loop takes over. Figure 5  
shows the V-I characteristic at the BATT pin.  
803-946-0690  
516-435-1110  
847-639-6400  
561-241-7876  
605-668-4131  
310-322-3331  
512-992-7900  
805-867-2555  
408-988-8000  
603-224-1961  
847-956-0666  
516-543-7100  
803-626-3123  
516-435-1824  
847-639-1469  
561-241-9339  
605-665-1627  
310-322-3332  
512-992-3377  
805-867-2698  
408-970-3950  
603-224-1430  
847-956-0702  
516-864-7630  
Central Semiconductor  
Coilcraft  
Coiltronics  
Dale  
IR  
IRC  
NIEC  
Siliconix  
Sprague  
Sumida  
Zetex  
C4  
C5  
R3  
REF  
VL  
R4  
THM  
R5  
D2  
MAX1648  
CCI  
C3  
DCIN  
D4  
C6  
M1  
DC SOURCE  
7.5V28V  
DHI  
BST  
L1  
C7  
CCV  
LX  
D3  
D1  
R2  
M2  
DLO  
C2  
PGND  
CS  
R8  
SETI  
R1  
BATT  
R10  
R9  
C1  
SETV  
AGND  
BATTERY  
R11  
T
Figure 4. MAX1648 Typical Operating Circuit  
______________________________________________________________________________________ 11  
Chemistry-Independent Battery Chargers  
Whether the MAX1647 is controlling the voltage or cur-  
rent at any time depends on the battery’s state. If the  
battery has been discharged, the MAX1647’s output  
reaches the current-regulation limit before the voltage  
limit, causing the system to regulate current. As the bat-  
tery charges, the voltage rises until the voltage limit is  
reached, and the charger switches to regulating voltage.  
The transition from current to voltage regulation is done  
by the charger, and need not be controlled by the host.  
BATT  
VOLTAGE  
V0  
V0 = VOLTAGE SET POINT  
I0 = CURRENT-LIMIT SET POINT  
Voltage Control  
The internal GMV amplifier controls the MAX1647’s out-  
put voltage. The voltage at the amplifier’s noninverting  
input amplifier is set by a 10-bit DAC, which is controlled  
by a ChargingVoltage( ) command on the SMBus (see  
the MAX1647 Logic section for more information). The  
battery voltage is fed to the GMV amplifier through a 4:1  
resistive voltage divider. With an external 4.096V refer-  
ence, the set voltage ranges between 0 and 16.38V with  
16mV resolution.  
AVERAGE CURRENT  
THROUGH THE RESISTOR  
BETWEEN CS AND BATT  
I0  
Figure 5. Output V-I Characteristic  
This poses a challenge for charging four lithium-ion  
cells in series: because the lithium-ion battery’s typical  
per-cell voltage is 4.2V maximum, 16.8V is required. A  
larger reference voltage can be used to circumvent  
this. Under this condition, the maximum battery voltage  
no longer matches the programmed voltage. The solu-  
tion is to use a 4.2V reference and host software.  
Contact Maxim’s applications department for more  
information.  
Setting V0 and I0 (MAX1647)  
Set the MAX1647’s voltage and current-limit set points  
through the Intel System Management Bus (SMBus) 2-  
wire serial interface. The MAX1647’s logic interprets the  
serial-data stream from the SMBus interface to set inter-  
nal digital-to-analog converters (DACs) appropriately.  
See the MAX1647 Logic section for more information.  
Setting V0 and I0 (MAX1648)  
Set the MAX1648’s voltage- and current-limit set points  
(V0 and I0, respectively) using external resistive dividers.  
Figure 6b is the MAX1648 block diagram. V0 equals four  
times the voltage on the SETV pin. I0 equals the voltage  
on SETI divided by 5.5, divided by R1 (Figure 4).  
The GMV amplifier’s output is connected to the CCV  
pin, which compensates the voltage-regulation loop.  
Typically, a series-resistor/capacitor combination can  
be used to form a pole-zero couplet. The pole intro-  
duced rolls off the gain starting at low frequencies. The  
zero of the couplet provides sufficient AC gain at mid-  
frequencies. The output capacitor then rolls off the mid-  
frequency gain to below 1, to guarantee stability before  
encountering the zero introduced by the output capaci-  
tor’s equivalent series resistance (ESR). The GMV  
amplifier’s output is internally clamped to between one-  
fourth and three-fourths of the voltage at REF.  
_____________________Analog Section  
The MAX1647/MAX1648 analog section consists of a  
current-mode PWM controller and two transconduc-  
tance error amplifiers: one for regulating current and  
the other for regulating voltage. The MAX1647 uses  
DACs to set the current and voltage level, which are  
controlled through the SMBus interface. The MAX1648  
eliminates the DACs and controls the error amplifiers  
directly from SETI (for current) and SETV (for voltage).  
Since separate amplifiers are used for voltage and cur-  
rent control, both control loops can be compensated  
separately for optimum stability and response in each  
state. The following discussion relates to the MAX1647;  
however, MAX1648 operation can easily be inferred  
from the MAX1647.  
Current Control  
The internal GMI amplifier and an internal current  
source control the battery current while the charger is  
regulating current. Since the regulator current’s accura-  
cy is not adequate to ensure full 11-bit accuracy, an  
internal linear current source is used in conjunction with  
the PWM regulator to set the battery current. The cur-  
rent-control DAC’s five least significant bits set the  
12 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
REF  
DCIN  
10k  
10kΩ  
10kΩ  
10kΩ  
16mA  
5
8mA  
4mA  
2mA  
1mA  
THERMISTOR_OR  
THERMISTOR_COLD  
THERMISTOR_HOT  
THERMISTOR_UR  
IOUT  
THERM_SHUT  
SEL  
THERMAL  
SHUTDOWN  
LOGIC  
BLOCK  
THM  
SCL  
SDA  
INT  
DCIN  
VL  
AC_PRESENT  
5.4V LINEAR  
REGULATOR  
INTERNAL 3.9V  
REFERENCE  
REF  
30kΩ  
3kΩ  
100kΩ  
500Ω  
AGND  
CCV  
AGND  
CCV_LOW  
3R  
REF  
CS  
CURRENT-SENSE  
LEVEL SHIFT AND  
GAIN OF 5.5  
R
AGND  
BATT  
REF  
3/8 REF = ZERO CURRENT  
NOTE: APPROX. REF/4 + V  
BST  
FROM LOGIC  
BLOCK  
6
THRESH  
THRESH  
6-BIT DAC  
TO 3/4 REF + V  
CCI  
LEVEL  
SHIFT  
R
R
DRIVER  
DHI  
GMI  
NOTE: REF/4 TO 3/4 REF  
LX  
SUMMING  
COMPARATOR  
BLOCK  
R
R
FROM LOGIC BLOCK  
BATT  
MIN  
VOLTAGE_INREG  
CURRENT_INREG  
VL  
TO LOGIC BLOCK  
TO LOGIC BLOCK  
AGND  
CLAMP  
TO REF  
(MAX)  
CLAMP  
R
DRIVER  
DLO  
FROM LOGIC  
BLOCK  
AGND  
GMV  
PGND  
R
R
R
CCV  
REF  
10-BIT DAC  
AGND  
AGND  
FROM LOGIC BLOCK  
10  
DACV  
POWER_FAIL  
TO LOGIC BLOCK  
DCIN/4.5  
Figure 6a. MAX1647 Block Diagram  
______________________________________________________________________________________ 13  
Chemistry-Independent Battery Chargers  
REF  
10kΩ  
10kΩ  
THERMISTOR_COLD  
THERMISTOR_HOT  
THM  
30kΩ  
3kΩ  
AGND  
DCIN  
VL  
AC_PRESENT  
5.4V LINEAR  
REGULATOR  
INTERNAL 3.9V  
REFERENCE  
REF  
CS  
CURRENT-SENSE  
LEVEL SHIFT AND  
GAIN OF 5.5  
BATT  
AGND  
ON  
BST  
LEVEL  
SHIFT  
DRIVER  
DHI  
CCI  
GMI  
LX  
SETI  
REF / 2 =  
ZERO CURRENT  
SUMMING  
COMPARATOR  
BLOCK  
BATT  
MIN  
ON  
CLAMP  
VL  
R
R
DRIVER  
DLO  
AC_PRESENT AND  
NOT (THERMISTOR_HOT  
OR THERMISTOR_COLD)  
GMV  
PGND  
R
R
CCV  
AGND  
SETV  
Figure 6b. MAX1648 Block Diagram  
14 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
internal current sources’ state, and the six most signifi-  
The PWM comparator compares the current-sense  
amplifier’s output to the higher output voltage of either  
the GMV or the GMI amplifier (the error voltage). This  
current-mode feedback corrects the duty ratio of the  
switched voltage, regulating the peak battery current  
and keeping it proportional to the error voltage. Since  
the average battery current is nearly the same as the  
peak current, the controller acts as a transconductance  
amplifier, reducing the effect of the inductor on the out-  
put filter LC formed by the output inductor and the bat-  
tery’s parasitic capacitance. This makes stabilizing the  
circuit easy, since the output filter changes from a com-  
plex second-order RLC to a first-order RC. To preserve  
the inner current-control loop’s stability, slope compen-  
sation is also fed into the comparator. This damps out  
perturbations in the pulse width at duty ratios greater  
than 50%.  
cant bits control the switching regulator’s current. The  
internal current source supplies 1mA resolution to the  
battery to comply with the smart-battery specification.  
When the current is set to a number greater than 32,  
the internal current source remains at 31mA. This guar-  
antees that battery-current setting is monotonic regard-  
less of current-sense resistor choice and current-sense  
amplifier offset.  
The GMI amplifier’s noninverting input is driven by a 4:1  
resistive voltage divider, which is driven by the 6-bit  
DAC. If an external 4.096V reference is used, this input  
is approximately 1.0V at full scale, and the resolution is  
16mV. The current-sense amplifier drives the inverting  
input to the GMI amplifier. It measures the voltage  
across the current-sense resistor (R  
) (which is  
SEN  
between the CS and BATT pins), amplifies it by approx-  
imately 5.45, and level shifts it to ground. The full-scale  
At heavy loads, the PWM controller switches at a fixed  
frequency and modulates the duty cycle to control the  
battery voltage or current. At light loads, the DC current  
through the inductor is not sufficient to prevent the cur-  
rent from going negative through the synchronous recti-  
fier (Figure 3, M2). The controller monitors the current  
current is approximately 0.2V / R  
, and the resolution  
SEN  
is 3.2mV / R  
.
SEN  
The current-regulation-loop is compensated by adding  
a capacitor to the CCI pin. This capacitor sets the cur-  
rent-feedback loop’s dominant pole. The GMI amplifier’s  
output is clamped to between approximately one-fourth  
and three-fourths of the REF voltage. While the current is  
in regulation, the CCV voltage is clamped to within  
80mV of the CCI voltage. This prevents the battery volt-  
age from overshooting when the DAC voltage setting is  
updated. The converse is true when the voltage is in  
regulation and the current is not at the current DAC set-  
ting. Since the linear range of CCI or CCV is about 1.5V  
to 3.5V or about 2V, the 80mV clamp results in a rela-  
tively negligible overshoot when the loop switches from  
voltage to current regulation or vice versa.  
through the sense resistor R  
; when it drops to zero,  
SEN  
the synchronous rectifier turns off to prevent negative  
current flow.  
MOSFET Drivers  
The MAX1647 drives external N-channel MOSFETs to  
regulate battery voltage or current. Since the high-side  
N-channel MOSFET’s gate must be driven to a voltage  
higher than the input source voltage, a charge pump is  
used to generate such a voltage. The capacitor C7  
(Figure 3) charges to approximately 5V through D2  
when the synchronous rectifier turns on. Since one side  
of C7 is connected to the LX pin (the source of M1), the  
high-side driver (DHI) can drive the gate up to the volt-  
age at BST, which is greater than the input voltage,  
when the high-side MOSFET turns on.  
PWM Controller  
The battery voltage or current is controlled by the cur-  
rent-mode, pulse-width-modulated (PWM), DC-DC con-  
verter controller. This controller drives two external  
N-channel MOSFETs, which switch the voltage from the  
input source. This switched voltage feeds an inductor,  
which filters the switched rectangular wave. The con-  
troller sets the pulse width of the switched voltage so that  
it supplies the desired voltage or current to the battery.  
The synchronous rectifier behaves like a diode, but with  
a smaller voltage drop to improve efficiency. A small  
dead time is added between the time that the high-side  
MOSFET turns off and the synchronous rectifier turns  
on, and vice versa. This prevents crowbar currents (cur-  
rents that flow through both MOSFETS during the brief  
time that one is turning on and the other is turning off).  
Connect a Schottky rectifier from ground to LX (across  
the source and drain of M2) to prevent the synchronous  
rectifier’s body diode from conducting. The body diode  
typically has slower switching-recovery times, so allow-  
ing it to conduct would degrade efficiency.  
The heart of the PWM controller is the multi-input com-  
parator. This comparator sums three input signals to  
determine the pulse width of the switched signal, set-  
ting the battery voltage or current. The three signals are  
the current-sense amplifier’s output, the GMV or GMI  
error amplifier’s output, and a slope-compensation sig-  
nal, which ensures that the controller’s internal current-  
control loop is stable.  
______________________________________________________________________________________ 15  
Chemistry-Independent Battery Chargers  
The synchronous rectifier may not be completely  
replaced by a diode because the BST capacitor  
charges while the synchronous rectifier is turned on.  
Without the synchronous rectifier, the BST capacitor  
may not fully charge, leaving the high-side MOSFET  
with insufficient gate drive to turn on. However, the  
synchronous rectifier can be replaced with a small  
MOSFET, such as a 2N7002, to guarantee that the BST  
capacitor is allowed to charge. In this case, most of the  
current at high currents is carried by the diode and not  
by the synchronous rectifier.  
BOLD LINE INDICATES THAT  
ACK  
THE MAX1647 PULLS SDA LOW  
D8  
D9  
ChargingMode( ) = 0 x 12  
ChargingVoltage( ) = 0 x 15  
ChargingCurrent( ) = 0 x 14  
AlarmWarning( ) = 0 x 16  
ChargerStatus( ) = 0 x 13  
D10  
D11  
D12  
D13  
D14  
D15  
ACK  
Internal Regulator and Reference  
The MAX1647 uses an internal low-dropout linear regula-  
tor to create a 5.4V power supply (VL), which powers its  
internal circuitry. VL can supply up to 20mA. A portion of  
this current powers the internal circuitry, but the remain-  
ing current can power the external circuitry. The current  
used to drive the MOSFETs comes from this supply,  
which must be considered when calculating how much  
power can be drawn. To estimate the current required to  
drive the MOSFETs, multiply the total gate charge of  
each MOSFET by the switching frequency (typically  
250kHz). The internal circuitry requires as much as 6mA  
from the VL supply. To ensure VL stability, bypass the VL  
pin with a 1µF or greater capacitor.  
ACK  
D0  
D1  
THERMISTOR_OR  
THERMISTOR_COLD  
D2  
D3  
THERMISTOR_HOT  
THERMISTOR_UR  
D4  
D5  
D6  
D7  
ALARM_INHIBITED  
POWER_FAIL  
BATTERY_PRESENT  
AC_PRESENT  
ACK  
ACK  
1
ACK  
CMD0  
CHARGE_INHIBITED  
The MAX1647 has an internal 2% accurate 3.9V refer-  
ence voltage. An external reference can be used to  
increase the charger’s accuracy. Use a 4.096V reference,  
such as the MAX874, for compliance with the Intel/  
Duracell smart-battery specification. Voltage-setting  
accuracy is 0.65%, so the total voltage accuracy is the  
accuracy added to the reference accuracy. For 1% total  
voltage accuracy, use a reference with 0.35% or greater  
accuracy. If the internal reference is used, bypass it with  
a 0.1µF or greater capacitor.  
CMD1  
CMD2  
CMD3  
1
0
0
MASTER_MODE  
VOLTAGE_NOTREG  
CURRENT_NOTREG  
CMD4  
CMD5  
CMD6  
1
0
0
LEVEL_2  
LEVEL_3  
CURRENT_OR  
CMD7  
0
ACK  
W
VOLTAGE_OR  
ACK  
W
1
ACK  
R
MAX1647 Logic  
The MAX1647 uses serial data to control its operation. The  
serial interface complies with the SMBus specification (see  
System Management Bus Specification, from Intel  
Architecture Labs; http://www.intel.com/IAL/power-  
mgm.html; Intel Architecture Labs: 800-253-3696).  
Charger functionality complies with the Intel/Duracell  
Smart Charger Specification for a level 2 charger.  
1
1
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
The MAX1647 uses the SMBus Read-Word and Write-  
Word protocols to communicate with the battery it is  
charging, as well as with any host system that monitors  
the battery to charger communications. The MAX1647  
never initiates communication on the bus; it only  
receives commands and responds to queries for status  
information. Figure 7 shows examples of the SMBus  
Write-Word and Read-Word protocols.  
START  
START  
REPEATED  
START  
Figure 7. Write-Word and Read-Word Examples  
16 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
Each communication with the MAX1647 begins with a  
ChargingVoltage( )  
The ChargingVoltage( ) command uses Write-Word  
protocol. The command code for ChargingVoltage( ) is  
0x15; thus, the CMD7–CMD0 bits in Write-Word proto-  
col should be 0b00010101. The 16-bit binary number  
formed by D15–D0 represents the voltage set point  
(V0) in millivolts; however, since the MAX1647 has only  
16mV resolution in setting V0, the D0, D1, D2, and D3  
bits are ignored. For D15 = D14 = 0:  
start condition that is defined as a falling edge on SDA  
with SCL high. The device address follows the start  
condition. The MAX1647 device address is 0b0001001  
(0b indicates a binary number), which may also be  
denoted as 0x12 (0x indicates a hexadecimal number)  
for Write-Word commands, or 0x13 in hexadecimal for  
Read-Word commands (note that the address is only  
seven bits, and the hexadecimal representation uses  
R/W as its least significant bit).  
VDAC  
210  
VOLTAGE_OR = 0 and V0 in Volts = 4 x REF x  
(
)
ChargerMode( )  
The ChargerMode( ) command uses Write-Word proto-  
col. The command code for ChargerMode( ) is 0x12;  
thus the CMD7–CMD0 bits in Write-Word protocol  
should be 0b00010010. Table 2 describes the functions  
of the 16 different data bits (D0–D15). Bit 0 refers to the  
D0 bit in the Write-Word protocol (Figure 7).  
In equation 1, VDAC is the decimal equivalent of the  
binary number represented by bits D13, D12, D11,  
D10, D9, D8, D7, D6, D5, and D4 programmed with the  
ChargingVoltage( ) command. For example, if D4–D13  
are all set, VDAC is the decimal equivalent of  
0b1111111111 (1023). If either D15 or D14, or both  
D15 and D14, are set, all the bits in the voltage DAC  
(Figure 6a) are set, regardless of D13–D0, and the  
status register’s VOLTAGE_OR bit is set. For D15 = 1  
and/or D14 = 1:  
Whenever the BATTERY_PRESENT status bit is clear,  
the HOT_STOP bit is set, regardless of any previous  
ChargerMode( ) command. To charge a battery that  
has a thermistor impedance in the HOT range (i.e.,  
THERMISTOR_HOT = 1 and THERMISTOR_UR = 0),  
the host must use the ChargerMode( ) command to  
clear HOT_STOP after the battery is inserted. The  
HOT_STOP bit returns to its default power-up condition  
(‘1’) whenever the battery is removed.  
210 -1  
210  
VOLTAGE_OR = 1 and V0 in Volts = 4 x REF x  
(
)
Table 2. ChargerMode( ) Bit Functions  
BIT  
POSITION*  
POR  
VALUE**  
BIT NAME  
FUNCTION  
0 = Allow normal operation; clear the CHG_INHIBITED status bit.  
1 = Turn the charger off; set the CHG_INHIBITED status bit.  
INHIBIT_CHARGE  
ENABLE_POLLING  
0
1
0
Not implemented. Write 0 into this bit.  
0 = No change in any non-ChargerMode( ) settings.  
POR_RESET  
2
1 = Change the voltage and current settings to 0xFFFF and 0x00C0  
respectively; clear the THERMISTOR_HOT and ALARM_INHIBITED bits.  
RESET_TO_ZERO  
N/A  
3
Not implemented. Write 0 into this bit.  
4, 7, 8, 9,  
11–15  
Not implemented. Write 1 into this bit.  
0 = Interrupt on either edge of the BATTERY_PRESENT status bit.  
1 = Do not interrupt because of a BATTERY_PRESENT bit change.  
BATTERY_PRESENT_MASK  
POWER_FAIL_MASK  
HOT_STOP  
5
6
0
1
1
0 = Interrupt on either edge of the POWER_FAIL status bit.  
1 = Do not interrupt because of a POWER_FAIL bit change.  
0 = The THERMISTOR_HOT status bit does not turn the charger off.  
1 = THERMISTOR_HOT turns the charger off.  
10  
*Bit position in the D15–D0 data.  
**Power-on reset value.  
N/A = Not available.  
______________________________________________________________________________________ 17  
Chemistry-Independent Battery Chargers  
Figure 8 shows the mapping between V0 (the voltage-  
regulation-loop set point) and the ChargingVoltage( )  
data.  
ChargingCurrent( )  
The ChargingCurrent( ) command uses Write-Word  
protocol. The command code for ChargingCurrent( ) is  
0x14; thus, the CMD7–CMD0 bits in Write-Word proto-  
col should be 0b00010100. The 16-bit binary number  
formed by D15–D0 represents the current-limit set point  
(I0) in milliamps. Tying SEL to AGND selects a 1.023A  
maximum setting for I0. Leaving SEL open selects a  
2.047A maximum setting for I0. Tying SEL to VL selects  
a 4.095A maximum setting for I0.  
The power-on reset value for the ChargingVoltage( )  
register is 0xFFF0; thus, the first time a MAX1647 is  
powered on, the BATT voltage regulates to 16.368V  
with V  
= 4.096V. Any time the BATTERY_PRESENT  
REF  
status bit is clear, the ChargingVoltage( ) register  
returns to its power-on reset state.  
16.368  
V
= 4.096V  
REF  
12.592  
8.400  
4.192  
0
0b000100000110xxxx  
0x106x  
0b001111111111xxxx  
0x3FFx  
0b000000000000xxxx  
0x000x  
0b001000001101xxxx 0b001100010011xxxx  
0x20Dx 0x313x  
0b111111111111xxxx  
0xFFFx  
ChargingVoltage( ) D15–D0 DATA  
Figure 8. ChargingVoltage( ) Data to Voltage Mapping  
18 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
Two sources of current in the MAX1647 charge the bat-  
ChargingCurrent( ) command and IOUT source current.  
The CCV_LOW comparator checks to see if the output  
voltage is too high by comparing CCV to REF / 4. If  
CCV_LOW = 1 (when CCV < REF / 4), IOUT shuts off,  
preventing the output voltage from exceeding the voltage  
set point specified by the ChargingVoltage( ) register.  
VOLTAGE_NOTREG = 1 whenever the internal clamp  
pulls down on CCV. (The internal clamp pulls down on  
CCV to keep its voltage close to CCI’s voltage.)  
tery: a binary-weighted linear current source sources  
from IOUT, and a switching regulator controls the current  
flowing through the current-sense resistor (R1). IOUT  
provides a small maintenance charge current to com-  
pensate for battery self-discharge, while the switching  
regulator provides large currents for fast charging.  
IOUT sources from 1mA to 31mA. Table 3 shows the  
relationship between the value programmed with the  
Table 3. Relationship Between IOUT Source Current and ChargingCurrent( ) Value  
IOUT  
OUTPUT  
CURRENT  
CHARGE_  
INHIBITED  
ALARM_  
INHIBITED  
VOLTAGE_  
NOTREG  
(NOTE 1)  
ChargingVoltage( ) ChargingCurrent( ) CCV_LOW  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
x
1
x
0
0
0
0
0
0
0
0
1
x
x
0x0010–0xFFFF  
0x0001–0x001F  
0
1
1
0
1
1
x
x
x
x
x
x
0
1
x
0
1
x
x
x
x
x
1mA–31mA  
0mA  
0x0010–0xFFFF  
0x0001–0x001F  
0x0010–0xFFFF  
0x0001–0x001F  
1mA–31mA  
31mA  
0mA  
0x0010–0xFFFF  
0x0020–0xFFFF  
0x0010–0xFFFF  
0x0020–0xFFFF  
0x0010–0xFFFF  
0x0020–0xFFFF  
31mA  
0mA  
x
0x0000  
0x0000–0x000F  
x
x
x
x
0mA  
x
x
x
0mA  
0mA  
0mA  
Note 1: Logical AND of THERMISTOR_HOT, HOT_STOP, NOT(THERMISTOR_UR).  
185  
SEL = OPEN OR SEL = VL  
94  
2.94  
0b000001  
0b100000  
0b111111  
CURRENT DAC CODE, DA5DA0 BITS  
Figure 9. Average Voltage Between CS and BATT vs. Current DAC Code  
______________________________________________________________________________________ 19  
Chemistry-Independent Battery Chargers  
Table 4. Relationship Between Current DAC Code and the ChargingCurrent( ) Value  
CURRENT  
DAC  
CODE  
CHARGE_  
INHIBITED  
ALARM_  
INHIBITED  
SW REG  
ON?  
(NOTE 1)  
ChargingVoltage( )  
SEL  
ChargingCurrent( )  
(NOTE 2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
x
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
0x0010–0xFFFF  
x
0V  
0V  
0x0001–0x001F  
0x0020–0x003F  
0x0040–0x03DF  
0x03E0–0x03FF  
0x0400–0xFFFF  
0x0001–0x001F  
0x0020–0x003F  
0x0040–0x07DF  
0x07E0–0x07FF  
0x0800–0xFFFF  
0x0001–0x001F  
0x0020–0x003F  
0x0040–0x007F  
0x0080–0x0F9F  
0x0FA0–0x0FBF  
0x0FC0–0x0FFF  
0x0001–0xFFFF  
0x0000  
0
2
No  
Yes  
Yes  
Yes  
Yes  
No  
0
0
0V  
4–60  
62  
62  
0
0
0V  
0
0V  
1
open  
open  
open  
open  
open  
VL  
0
1
Yes  
Yes  
Yes  
Yes  
No  
0
2–62  
63  
63  
0
0
0
1
0
VL  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
0
VL  
1
0
VL  
2–62  
63  
63  
63  
0
0
VL  
0
VL  
0
VL  
1
x
0
0x0010–0xFFFF  
x
x
x
N/C  
N/C  
N/C  
N/C  
No  
N/C  
N/C  
N/C  
N/C  
x
x
No  
1
x
x
x
x
No  
x
x
x
x
No  
Note 1: Logical AND of THERMISTOR_HOT, HOT_STOP, NOT(THERMISTOR_UR).  
Note 2: Value of CURRENT_OR bit in the ChargerStatus( ) register.  
N/C = No change.  
Table 5. Effect of SEL Pin-Strapping on the ChargingCurrent( ) Data Bits  
R1  
(m)  
SEL  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AGND 181  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DA5 DA4 DA3 DA2 DA1  
I4  
I4  
I4  
I3  
I3  
I3  
I2  
I2  
I2  
I1  
I1  
I1  
I0  
I0  
I0  
Open  
VL  
90  
45  
DA5 DA4 DA3 DA2 DA1 DA0  
DA5 DA4 DA3 DA2 DA1 DA0  
*
*When SEL = VL, D5 = 1 forces DA0 to be 1 regardless of the D6 bit value.  
With the switching regulator on, the current through R1  
(Figure 3) is regulated by sensing the average voltage  
between CS and BATT. A 6-bit current DAC controls  
the current-limit set point. DA5–DA0 denote the bits in  
the current DAC code. Figure 9 shows the relationship  
between the current DAC code and the average volt-  
age between CS and BATT.  
When the switching regulator is off, DHI is forced to  
LX and DLO is forced to ground. This prevents current  
from flowing through inductor L1. Table 4 shows the  
relationship between the ChargingCurrent( ) register  
value and the switching regulator current DAC code.  
20 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
With SEL = AGND, R1 should be as close as possible to  
protocol returns D15–D0 (Figure 7). Table 7 describes  
the meaning of the individual bits. The latched bits,  
THERMISTOR_HOT and ALARM_INHIBITED, are  
cleared whenever BATTERY_PRESENT = 0 or  
ChargerMode( ) is written with POR_RESET = 1.  
0.185 / 1.023 = 181mto ensure that the actual output  
current matches the data value programmed with the  
ChargingCurrent( ) command. With SEL = open, R1  
should be as close as possible to 90m. With SEL = VL,  
R1 should be as close as possible to 45m. Table 5 sum-  
marizes how SEL affects the R1 value and the meaning of  
data bits D15–D0 in the ChargingCurrent( ) command.  
DA5–DA0 denote the current DAC code bits, and I4–I0  
denote the IOUT linear-current source binary weighting  
bits. Note that whenever any current DAC bits are set, the  
linear-current source is set to full scale (31mA).  
Interrupts and the Alert-Response  
Address  
An interrupt is triggered (INT goes low) whenever power  
is applied to DCIN, the BATTERY_PRESENT bit changes,  
or the POWER_FAIL bit changes. BATTERY_PRESENT  
and POWER_FAIL have interrupt masks that can be set  
or cleared via the ChargerMode( ) command. INT stays  
low until the interrupt is cleared. There are two methods  
for clearing the interrupt: issuing a ChargerStatus( ) com-  
mand, and using the Receive Byte protocol with a 0x19  
Alert-Response address. The MAX1647 responds to the  
Alert-Response address with the 0x89 byte.  
The power-on reset value for the ChargingCurrent( )  
register is 0x000C. Irrespective of the SEL pin setting,  
the MAX1647 powers on with I0 set to 12mA (i.e.,  
DA5–DA0, I1, and I0 all equal to zero, and only I3 and  
I2 set). Anytime the BATTERY_PRESENT status bit is  
clear (battery removed), the ChargingCurrent( ) register  
returns to its power-on reset state. This ensures that  
upon insertion of a battery, the initial charging current is  
12mA.  
__________Applications Information  
Using the MAX1647  
with Duracell Smart Batteries  
AlarmWarning( )  
The AlarmWarning( ) command uses Write-Word protocol.  
The command code for AlarmWarning( ) is 0x16; thus the  
CMD7–CMD0 in Write-Word protocol should be  
0b00010110. The AlarmWarning( ) command sets the  
ALARM_INHIBITED status bit in the MAX1647 if D15, D14,  
or D12 of the Write-Word protocol data equals 1. Table 6  
summarizes the AlarmWarning( ) command’s function.  
The ALARM_INHIBITED status bit remains set until  
BATTERY_PRESENT = 0 (battery removed) or a  
ChargerMode() command is written with the POR_RESET  
bit set. As long as ALARM_INHIBITED = 1, the MAX1647  
switching regulator and IOUT current source remain off.  
The following pseudo-code describes an interrupt rou-  
tine that is triggered by the MAX1647 INT output going  
low. This interrupt routine keeps the host informed of  
any changes in battery-charger status, such as DCIN  
power detection, or battery removal and insertion.  
DOMAX1647:  
{ This is the beginning of the routine that handles  
MAX1647 interrupts. }  
{ Check the status of the MAX1647. }  
TEMPWORD = ReadWord( SMBADDR = 0b00010011  
= 0x13, COMMAND = 0x13 )  
{ Check for the normal power-up case without a battery  
installed. THERMISTOR_OR = 1, BATTERY_PRESENT =  
0. Use 0b1011111011111111 = 0xBEFF as the mask. }  
IF (TEMPWORD OR 0xBEFF) = 0xBFFF THEN GOTO  
NOBATT:  
ChargerStatus( )  
The ChargerStatus( ) command uses Read-Word proto-  
col. The command code for ChargerStatus( ) is 0x13;  
thus, the CMD7–CMD0 bits in Write-Word protocol  
should be 0b00010011. The ChargerStatus( ) com-  
mand returns information about thermistor impedance  
and the MAX1647’s internal state. The Read-Word  
{ Check to see if the battery is installed. BATTERY_  
PRESENT = 1. Use 0b1011111111111111 = 0xBFFF as  
the mask. }  
Table 6. Effect of the AlarmWarning( ) Command  
AlarmWarning( ) WRITE-WORD PROTOCOL DATA  
RESULT  
D15 D14 D13 D12 D11 D10  
D9  
x
D8  
x
D7  
x
D6  
x
D5  
x
D4 D3 D2 D1 D0  
1
x
x
x
1
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Set ALARM_INHIBITED  
Set ALARM_INHIBITED  
Set ALARM_INHIBITED  
x
x
x
x
x
x
x
x
x
x
______________________________________________________________________________________ 21  
Chemistry-Independent Battery Chargers  
IF (TEMPWORD OR 0xBEFF) = 0xFFFF THEN GOTO  
HAVEBATT:  
Negative Input Voltage Protection  
In most portable equipment, the DC power to charge  
batteries enters via a two-conductor cylindrical power  
jack. It is easy for the end user to add an adapter to  
switch the DC power’s polarity. Polarized capacitor C6  
would be destroyed if a negative voltage were applied.  
Diode D4 in Figure 3 prevents this from happening.  
GOTO ENDINT:  
HAVEBATT:  
{ A battery is installed. Turn the battery’s broadcast  
mode off to monitor the charging process. Using the  
BatteryMode( ) command, make sure the CHARGER_  
MODE bit is set. }  
If reverse-polarity protection for the DC input power is  
not necessary, diode D4 can be omitted. This eliminates  
the power lost due to the voltage drop on diode D4.  
WriteWord(SMBADDR = 0b00010110 = 0x16,  
COMMAND = 0X03, DATA = 0x4000)  
GOTO ENDINT:  
NOBATT:  
Selecting External Components for the  
MAX1647 4A Application  
{ Notify the system that AC power is present, but no bat-  
tery is present. }  
The MAX1647 can be configured to charge at a maxi-  
mum current of 4A (instead of 2A, as shown in Figure 3)  
by changing the external power components and tying  
SEL to REF. The following paragraphs discuss the selec-  
tion requirements for each component in Figure 3 that  
must be changed to accommodate the 4A application.  
GOTO ENDINT:  
ENDINT:  
{ This is the end of the interrupt routine. }  
The following pseudo-code describes a polling routine  
that queries the battery for its desired charge voltage and  
charge current, checks to make sure that the requested  
charge current and charge voltage are valid, and  
instructs the MAX1647 to comply with the request.  
DOPOLLING:  
{ This is the beginning of the polling routine. }  
{ Ask the battery what voltage it wants using the bat-  
tery’s ChargingVoltage( ) command. }  
TEMPVOLTAGE = ReadWord( SMBADDR =  
0b00010111 = 0x17, COMMAND = 0x15 )  
{ Ask the battery what current it wants using the bat-  
tery’s ChargingCurrent( ) command. }  
TEMPCURRENT = ReadWord( SMBADDR =  
0b00010111 = 0x17, COMMAND = 0x14 )  
{ Now the routine can check that the TEMPVOLTAGE  
and TEMPCURRENT values make sense and that the  
battery is not malfunctioning. }  
{ With valid TEMPVOLTAGE and TEMPCURRENT val-  
ues, instruct the MAX1647 to comply with the request. }  
WriteWord( SMBADDR = 0b00010010 = 0x12 ,  
COMMAND = 0x15, DATA = TEMPVOLTAGE )  
Diode D4 in Figure 3 has to support both the charge  
current and the current required to operate the host  
load (i.e., what the batteries normally power when not  
charging). This means that the continuous current flow-  
ing through D4 exceeds 4A. One possible choice for  
D4 is the Motorola MBRD835L 8A Schottky barrier  
diode in a DPAK surface-mount package. Care must  
be taken in thermal management of the circuit board  
when using the 4A application circuit, by mounting D4  
on a three-square-inch piece of copper.  
Motorola’s MBRD835L can also be used for D3. The  
Siliconix Si4410DY is a good choice for M1 and M2 in the  
4A application. Changing M2 from a 2N7002 (Table 1) to  
a Si4410DY increases the power dissipated by the  
MAX1647’s 20-pin SSOP.  
High-current inductors are difficult to find in surface-mount  
packages. Low-cost solutions use toroidal powdered-iron  
cores with exposed windings of heavy-gauge wire. The  
Coiltronics CTX20-5-52 20µH 5A inductor provides a high-  
efficiency solution.  
WriteWord( SMBADDR = 0b00010010 = 0x12 ,  
COMMAND = 0x14, DATA = TEMPCURRENT )  
ENDPOL:  
R1A must also dissipate more power in the 4A applica-  
tion circuit than in the circuit of Figure 3. R1A’s value  
decreases to 50min the 4A application. IRC’s  
LR2512-01-R050-F meets this requirement with a 1W  
maximum power-dissipation rating.  
{ This is the end of the polling routine. }  
22 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
Table 7. ChargerStatus( ) Bit Descriptions  
BIT  
POSITION  
NAME  
LATCHED?  
DESCRIPTION  
0 = Ready to charge a smart battery  
1 = Charger is off; IOUT current = 0mA; DLO = PGND; DHI = LX  
Always returns ‘0’  
CHARGE_INHIBITED  
MASTER_MODE  
0
1
2
Yes  
N/A  
No  
0 = BATT voltage is limited at the voltage set point (BATT = V0).  
1 = BATT voltage is less than the voltage set point (BATT < V0).  
VOLTAGE_NOTREG  
0 = Current through R1 is at its limit (I  
1 = Current through R1 is less than its limit (I  
= I0).  
BATT  
BATT  
CURRENT_NOTREG  
3
No  
< I0).  
LEVEL_2  
LEVEL_3  
4
5
N/A  
N/A  
Always returns 1  
Always returns 0  
0 = ChargingCurrent( ) value is valid for MAX1647.  
1 = ChargingCurrent( ) value exceeds what MAX1647 can actually deliver.  
CURRENT_OR  
6
7
8
9
No  
No  
No  
No  
0 = ChargingVoltage( ) value is valid for MAX1647.  
1 = ChargingVoltage( ) value exceeds what MAX1647 can actually deliver.  
VOLTAGE_OR  
0 = THM voltage < 91% of REF voltage  
1 = THM voltage > 91% of REF voltage  
THERMISTOR_OR  
THERMISTOR_COLD  
0 = THM voltage < 75% of REF voltage  
1 = THM voltage > 75% of REF voltage  
This bit reports the state of an internal SR flip-flop (denoted THERMISTOR_HOT  
flip-flop). The THERMISTOR_HOT flip-flop is set whenever THM is below 23%  
of REF. It is cleared whenever BATTERY_PRESENT = 0 or ChargerMode( ) is  
written with POR_RESET = 1.  
THERMISTOR_HOT  
THERMISTOR_UR  
10  
11  
Yes  
No  
0 = THM voltage > 5% of REF voltage  
1 = THM voltage < 5% of REF voltage  
This bit reports the state of an internal SR flip-flop (denoted ALARM_INHIBITED  
flip-flop). The ALARM_INHIBITED flip-flop is set whenever the AlarmWarning( )  
command is written with D15, D14, or D12 set. The ALARM_INHIBITED flip-flop  
is cleared whenever BATTERY_PRESENT = 0 or ChargerMode( ) is written with  
POR_RESET = 1.  
ALARM_INHIBITED  
12  
Yes  
0 = BATT voltage < 89% of DCIN voltage  
1 = BATT voltage > 89% of DCIN voltage  
POWER_FAIL  
13  
14  
15  
No  
No  
No  
0 = No battery is present (THERMISTOR_OR = 1).  
1 = A battery is present (THERMISTOR_OR = 0).  
BATTERY_PRESENT  
AC_PRESENT  
0 = VL voltage < 4V  
1 = VL voltage > 4V  
*Bit position in the D15-D0 data.  
N/A = Not applicable.  
___________________Chip Information  
TRANSISTOR COUNT: 3612  
SUBSTRATE CONNECTED TO AGND  
______________________________________________________________________________________ 23  
Chemistry-Independent Battery Chargers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
2
1
INCHES  
MILLIMETERS  
DIM  
A
MIN  
0.068  
MAX  
MIN  
1.73  
0.05  
0.25  
0.09  
MAX  
1.99  
0.21  
0.38  
0.20  
INCHES  
MAX  
MILLIMETERS  
MAX  
6.33  
6.33  
7.33  
MIN  
MIN  
6.07  
6.07  
7.07  
8.07  
N
0.078  
14L  
16L  
20L  
A1  
B
D
D
D
D
D
0.239 0.249  
0.239 0.249  
0.278 0.289  
0.317 0.328  
0.002 0.008  
0.010 0.015  
0.004 0.008  
C
8.33 24L  
E
H
SEE VARIATIONS  
0.205 0.212 5.20  
0.0256 BSC  
D
0.397 0.407 10.07 10.33  
28L  
E
5.38  
e
0.65 BSC  
H
0.301 0.311 7.65  
0.025 0.037 0.63  
7.90  
0.95  
8∞  
L
0∞  
8∞  
0∞  
N
A
C
B
L
e
A1  
D
NOTES:  
1. D&E DO NOT INCLUDE MOLD FLASH.  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").  
3. CONTROLLING DIMENSION: MILLIMETERS.  
4. MEETS JEDEC MO150.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, SSOP, 5.3 MM  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.  
1
21-0056  
C
1
24 ______________________________________________________________________________________  
Chemistry-Independent Battery Chargers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.157  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H0.2440.228  
0.016  
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1649

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649/MAX1651

5V/3.3V or Adjustable High-Efficiency Low-Drop-Out Step-Down
MAXIM

MAX1649C/D

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649CPA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649CPA

SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ROCHESTER

MAX1649CSA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649CSA+

Switching Controller, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, SOP-8
MAXIM

MAX1649CSA+T

Switching Controller, Current-mode, 1.5A, 300kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, SOP-8
MAXIM

MAX1649CSA-T

暂无描述
MAXIM

MAX1649EPA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649ESA

5V/3.3V or Adjustable, High-Efficiency, Low-Dropout, Step-Down DC-DC Controllers
MAXIM

MAX1649ESA

SWITCHING CONTROLLER, 300 kHz SWITCHING FREQ-MAX, PDSO8, 0.150 INCH, SOP-8
ROCHESTER