MAX16050EVKIT [MAXIM]

Reverse-Sequencing Operation;
MAX16050EVKIT
型号: MAX16050EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Reverse-Sequencing Operation

文件: 总13页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4199; Rev 0; 7/08  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
General Description  
Features  
The MAX16050 evaluation kit (EV kit) is a complete, fully  
assembled and tested multivoltage sequencer circuit that  
demonstrates the capability of the 4-channel MAX16050  
and 5-channel MAX16051 sequencing ICs. The  
MAX16050 EV kit monitors up to nine DC-DC converter  
outputs and ensures proper power-up and power-down  
conditions for systems requiring voltage sequencing.  
Quick Demo Mode Evaluation Without DC-DC  
Converters  
Monitors and Sequences Up to Nine DC-DC  
Converter Outputs  
Reverse-Sequencing Operation  
Configurable Sequencing Order (MAX16050 Only)  
The EV kit features RESET output signals to indicate an  
undervoltage condition, or when SHDN or FAULT sig-  
nals are pulled low. Additionally, dedicated OV_OUT  
outputs indicate an overvoltage fault when any of the  
EV kit’s inputs go above the overvoltage threshold. The  
EV kit is capable of evaluating the MAX16050 and  
MAX16051 individually. The EV kit can be configured  
for daisy chaining these two devices together, which  
enables the user to sequence and monitor up to nine  
voltages across both devices. The MAX16050 EV kit  
also provides PCB pads for low-current MOSFETs that  
are controlled using the MAX16050 and MAX16051  
charge-pump outputs.  
Daisy-Chaining Operation of the MAX16050 and  
MAX16051  
Overvoltage and Power-Good Monitoring  
Fully Assembled and Tested  
Ordering Information  
PART  
TYPE  
MAX16050EVKIT+  
EV Kit  
+Denotes lead-free and RoHS compliant.  
The MAX16050 EV kit utilizes two power supplies, one  
for each IC. Each power supply can range from 2.7V to  
13.2V, allowing the user to operate directly from an  
intermediate bus voltage. The MAX16050 EV kit also  
requires an additional 2.2V to 5.5V power supply for the  
pullup resistors’ open-drain logic outputs.  
Component List  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
Not installed, ceramic capacitors  
(1206)  
2200pF 5ꢀ, 50V C0G ceramic  
capacitors (0805)  
C1, C2, C12  
0
C11, C21  
2
Murata GRM2165C1H222J  
Not installed, ceramic capacitors  
(0805)  
C3, C13  
C4, C15  
0
2
GND (3)  
GND (2)  
J1  
3
2
1
1
4
PC large black test points  
PC mini black test points  
2 x 16 header  
0.1μF 10ꢀ, 25V X7R ceramic  
capacitors (0805)  
Murata GRM21BR71E104K  
J2  
2 x 20 header  
J3–J6  
2-pin headers  
1μF 10ꢀ, 25V X7R ceramic  
capacitors (0805)  
Murata GRM21BR71E105K  
JU1–JU7, JU10,  
JU11, JU12, JU15  
C5, C14  
2
9
2
11 3-pin headers  
JU8, JU9, JU13,  
JU14  
0.01μF 10ꢀ, 25V X7R ceramic  
capacitors (0805)  
Murata GRM21BR71E103K  
4
0
2-pin headers  
C6–C9, C16-C19,  
C22  
Not installed, n-channel  
MOSFETs (3 SOT23)  
N1, N2  
1200pF 5ꢀ, 50V C0G ceramic  
capacitors (0805)  
Murata GRM2195C1H122J  
C10, C20  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX16050 Evaluation Kit  
Component List (continued)  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
20.5kΩ 1ꢀ resistor (0805)  
4-position DIP switch  
OUTPUT1,  
OUTPUT2,  
U1_CP_OUT,  
U1_EN,  
R35  
SW1  
SW2  
1
1
1
10-position DIP switch  
U1_VCC, U2_VCC,  
VPULLUP  
U1_OV_OUT,  
U1_REM,  
U1_RESET,  
U2_CP_OUT,  
U2_EN,  
U2_OV_OUT,  
U2_REM,  
U2_RESET  
3
PC large red test points  
12 PC mini red test points  
4-channel voltage sequencer  
(28 TQFN-EP*)  
Maxim MAX16050ETI+  
U1  
U2  
1
5-channel voltage sequencer  
(28 TQFN-EP*)  
1
Maxim MAX16051ETI+  
R1, R12, R20, R32  
4
9
86.6kΩ 1ꢀ resistors (0805)  
16.5kΩ 1ꢀ resistors (0805)  
32 Shunts (J1, J2, JU1–JU15)  
PCB: MAX16050 Evaluation Kit+  
R2, R4, R10, R13,  
R22, R24, R30,  
R33, R36  
1
*EP = Exposed pad.  
R3, R23  
2
7
30.1kΩ 1ꢀ resistors (0805)  
10kΩ 1ꢀ resistors (0805)  
R5, R11, R14, R25,  
R31, R34, R37  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
R6, R26  
R7, R27  
R8, R28  
R9, R29  
2
2
2
2
634kΩ 1ꢀ resistors (0805)  
261kΩ 1ꢀ resistors (0805)  
698kΩ 1ꢀ resistors (0805)  
61.9kΩ 1ꢀ resistors (0805)  
Murata  
Electronics  
North  
770-436-1300 www.murata-northamerica.com  
America, Inc.  
Not installed, resistors—short  
(0805)  
Note: Indicate that you are using the MAX16050 or MAX16051  
when contacting these component suppliers.  
R15, R21  
0
8
R16–R19,  
R38–R41  
Evluates:/MAX6051  
10kΩ 5ꢀ resistor (0805)  
3) Connect the positive terminal of the 3.5V power  
supply to the U1_VCC and U2_VCC test points.  
Connect the ground terminal of this power supply to  
the respective GND test points.  
Quick Start  
Required Equipment  
Before beginning, the following equipment is needed:  
4) Connect the positive terminal of a 5V power supply  
to the VPULLUP test point. Connect the ground ter-  
minal of this power supply to the GND test point.  
MAX16050 EV kit  
DC power supplies: 3.5V/100mA, 5V/50mA  
2-channel oscilloscope  
5) Connect oscilloscope channels 1 and 2 to the  
U1_RESET and U2_RESET test points, respectively.  
Connect the ground leads to the nearby black GND  
test points.  
Procedure  
The MAX16050 EV kit is a fully assembled and tested  
surface-mount board. Follow the steps below to verify  
board operation. Caution: Do not turn on the power  
supplies until all connections are completed.  
6) Turn on the VCC power supply and adjust the volt-  
age to 3.5V.  
7) Turn on the VPULLUP power supply and adjust the  
voltage to 5V.  
1) Verify that headers J1 and J2 and jumpers  
JU1–JU14 are configured for demo mode configu-  
ration (see Table 1).  
8) Verify that both U1_RESET and U2_RESET signals  
are high.  
2) Verify that switches SW1 and SW2 are set to the off  
position.  
9) The EV kit is ready for further testing.  
2
_______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Table 1. MAX16050/MAX16051 EV Kit Jumper Description  
JUMPER  
SHUNT  
POSITION  
SIGNAL  
EV kit operation  
OUT_  
FUNCTION  
MAX16050  
MAX16051  
1-2*, 2-3  
2-3 only  
1-2  
Demo mode (see Figure 1)  
J1  
J2  
DC-DC mode (see Figure 1)  
OUT_ connects to VCC through resistor  
OUT_ connects to VPULLUP through resistor  
Controllers enabled at U1_VCC/U2_VCC > 3.2V  
Controllers disabled  
JU1  
JU2  
JU10  
JU11  
2-3*  
1-2*  
EN  
2-3  
1-2  
Connects to CP_OUT through resistor  
JU3  
JU12  
OUT3  
Connection dependent on jumpers JU1 and JU10  
configuration  
2-3*  
JU4  
JU5  
JU6  
SEQ1  
SEQ2  
SEQ3  
Not installed*  
Not installed* Sequence order: OUT1, OUT2, OUT3, OUT4  
Not installed*  
1-2*  
2-3  
Normal operation of EN and SHDN functions  
Ignores high-to-low transitions at SHDN and EN  
JU7  
JU15  
EN_HOLD  
Not installed* Controller enabled or externally driven  
Controllers disabled. Reverse power-down sequencing.  
RESET asserts low.  
Not installed* Normal operation  
Disables controller. Initiates simultaneous power-down of  
JU8  
JU13  
SHDN  
Installed  
JU9  
JU14  
FAULT  
Installed  
OUT. RESET asserts low.  
*Default position (demo mode operation).  
provides test points OUTPUT1 and OUTPUT2 for low-cur-  
rent n-channel MOSFETs N1 and N2, respectively, which  
are controlled by the MAX16050 and MAX16051 charge-  
pump outputs. Refer to the MAX16050/MAX16051 IC  
data sheet for additional information on selecting appro-  
priate MOSFETs when driving external MOSFETs using  
the charge-pump outputs.  
Detailed Description of Hardware  
The MAX16050 evaluation kit (EV kit) evaluates the 4-  
channel MAX16050 and 5-channel MAX16051 power-  
supply sequencing ICs. The MAX16050 EV kit monitors  
up to nine DC-DC converter outputs, thus ensuring  
proper power-up and power-down conditions for sys-  
tems requiring voltage sequencing. During power-  
down, the outputs can be reverse-sequenced by  
driving SHDN low. The MAX16050 EV kit’s VCC power-  
supply inputs require 2.7V to 13.2V and VPULLUP  
requires 2.2V to 5.5V.  
Power-Supply Connections  
(U1_VCC, U2_VCC, VPULLUP)  
The MAX16050 EV kit requires input voltages of 2.7V to  
13.2V connected at the U1_VCC and U2_VCC test  
points to power the MAX16050 and MAX16051 con-  
trollers, respectively. The power supplies must provide  
at least 50mA of current. VPULLUP requires an input  
voltage of 2.2V to 5.5V connected to the VPULLUP test  
point and supplies power to the EV kit’s pullup resistor  
open-drain outputs. The VPULLUP power supply must  
provide at least 50mA of current. Additional surface-  
mount 1206 PCB pads are provided for adding addition-  
al bulk capacitance at C1, C2, and C12 for the EV kit  
power-supply inputs. Header pins J3–J6 are available to  
use as ground reference for signal and voltage probing.  
The MAX16050 EV kit can operate in DC-DC mode or in  
demo mode. DC-DC mode uses the MAX16050 and  
MAX16051 to control external DC-DC converters, and  
without demo mode facilitates stand-alone evaluation  
without external DC-DC converters.  
The EV kit features RESET output signals to indicate an  
undervoltage condition, or when shunts are installed  
across the jumpers labeled SHDN or FAULT.  
Additionally, dedicated OV_OUT outputs indicate over-  
voltage faults when any of the monitored EV kit IN inputs  
go above their overvoltage thresholds. The EV kit also  
_______________________________________________________________________________________  
3
MAX16050 Evaluation Kit  
DC-DC Mode  
For DC-DC mode operation, connect the DC-DC con-  
verter outputs and EN/SHDN inputs to the EV kit’s IN_  
and OUT_ header pins, respectively, and place shunts  
across pins 2-3 of headers J1 and J2. Header J1 drives  
the U1_IN1–U1_IN4 MAX16050 inputs and header J2  
drives the U2_IN1–U2_IN5 MAX16051 inputs. See  
Table 1 and Figure 1 for headers J1 and J2 configura-  
tion for DC-DC and demo modes of operation. By  
default, the input-voltage thresholds are set according  
to Table 2.  
Table 2. Input Channel Threshold Voltages  
INPUT  
THRESHOLD  
VOLTAGE (V)  
INPUT CHANNEL  
RESISTORS  
U1_IN1, U2_IN1  
U1_IN2, U2_IN2  
U1_IN3, U2_IN3  
U1_IN4, U2_IN4  
U2_IN5  
3.13  
2.28  
1.71  
1.43  
1.14  
R12/R13, R32/R33  
R9/R10, R29/R30  
R6/R7, R26/R27  
R3/R4, R23/R24  
R35/R36  
The sequence delay between each of the OUT_ outputs  
is the time required for the external converter voltage to  
exceed the undervoltage threshold, the respective  
channel open-drain output OUT_ going high imped-  
ance, and the additional time delay set by external delay  
capacitors C10 and C20. As each IN_ voltage meets its  
respective threshold, the next OUT_ in the sequence  
goes high impedance (open-drain output), enabling the  
next power supply, which is then monitored by the next  
input stage. When all the voltages exceed their respec-  
tive thresholds, RESET goes high after the reset timeout  
period set by capacitors C11 and C21.  
Demo Mode  
The MAX16050 EV kit allows quick evaluation of the  
MAX16050 and MAX16051 ICs individually without inter-  
facing DC-DC converters to the kit’s IN and OUT header  
pins. Place shunts across pins 1-2 and pins 2-3 of head-  
ers J1 and J2 to operate the MAX16050 EV kit in demo  
mode. In demo mode, VCC or VPULLUP powers the  
inputs to the respective IN_ channels with the OUT_  
pullup voltage. Demo mode operation requires a mini-  
mum 3.5V applied at the VCC or VPULLUP PCB input  
pads. See Table 1 and Figure 1 for proper shunt place-  
ment when operating the MAX16050 EV kit in demo  
mode. Note that when operating the MAX16050 EV kit in  
demo mode, both OV_OUT signals will be asserted low.  
To daisy chain the MAX16050 and MAX16051 while  
operating the EV kit in demo mode, See the Configuring  
the MAX16050 EV Kit for Daisy-Chain Operation (SW1)  
section.  
Input Channel Threshold Voltages (IN_)  
The EV kit input-voltage thresholds are set to operate  
with 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V (MAX16051) volt-  
age systems. All input-voltage thresholds can be recon-  
figured by replacing the corresponding resistors, as  
shown in Table 2. Refer to the Resistor Value Selection  
section in the MAX16050/MAX16051 IC data sheet to  
calculate the new resistor values when reconfiguring  
the EV kit input thresholds.  
Evluates:/MAX6051  
OUT_ Pullup Voltage Selection (JU1, JU10)  
Jumpers JU1 and JU10 select the OUT_ open-drain  
pullup voltage. Place a shunt across pins 1-2 of  
jumpers JU1 and JU10 to select the respective power-  
supply inputs (U1_VCC, U2_VCC) as the OUT_ logic-  
high voltage. Place shunts across pins 2-3 of jumpers  
JU1 and JU10 to select VPULLUP as the OUT_ logic-  
high voltage. See Table 3 for proper jumper settings for  
OUT_’s logic-high voltage configuration.  
Figure 1. Headers J1/J2 Shunt Configurations for DC-DC and  
Demo Mode Operation  
4
_______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Caution: When operating the MAX16050 EV kit  
U1_VCC or U2_VCC inputs with power supplies greater  
than 5.5V, verify that shunts are installed across pins 2-3  
of jumpers JU1 and JU10 to prevent operating the open-  
drain logic outputs above the maximum voltage rating.  
where V  
is the desired VCC undervoltage threshold,  
EN  
0.5V is the MAX16050/MAX16051 EN threshold voltage,  
and R is the new resistor value for R1 or R20 in kilohms.  
A
Charge-Pump Outputs (CP_OUT)  
The EV kit features test points (U1_CP_OUT,  
U2_CP_OUT) to monitor the MAX16050 and MAX16051  
charge-pump outputs. PCB pads are also available for  
the installation of low-current SOT23 footprint n-channel  
MOSFETs at N1 and N2.  
Table 3. Jumpers JU1, JU10 Configuration  
SHUNT  
POSITION  
OUT_ PULLUP RESISTOR VOLTAGE  
SOURCE  
1-2  
2-3  
OUT_ connects to VCC through resistor  
The EV kit’s charge-pump outputs can also be used as  
the pullup voltages for open-drain output OUT3 using  
jumpers JU3 and JU12. See Table 5 for configuring  
OUT3 to the respective charge-pump outputs.  
OUT_ connects to VPULLUP through resistor  
EN Control (JU2, JU11)  
Jumpers JU2 and JU11 enable or disable the MAX16050  
and MAX16051, respectively, for power-up sequencing  
and simultaneous power-down operation. Install shunts  
across pins 1-2 of jumpers JU2 and JU11 to initiate a  
power-up sequence. Install a shunt across pins 2-3 to  
power down the channels and to assert RESET. See  
Table 4 for jumpers JU2 and JU11 configuration.  
Table 5. Jumpers JU3, JU12 Configuration  
SHUNT  
OUT3 PULLUP VOLTAGE  
POSITION  
1-2  
2-3  
Connects to CP_OUT through resistor  
Connection dependent on jumpers JU1/JU10  
configuration (see Table 3)  
Table 4. Jumpers JU2, JU11 Configuration  
MAX16050 Sequence Order  
(JU4, JU5, JU6)  
SHUNT  
EN INPUT SETTING  
POSITION  
Jumpers JU4, JU5, and JU6 configure the MAX16050  
sequencing order. The jumper settings allow up to 24  
different power-up combinations. The MAX16051 does  
not feature programmable power-supply sequencing  
and powers up in a fixed order from U2_OUT1–U2_  
OUT5. See Table 6 to configure the sequencing order  
for U1_OUT1–U1_OUT4.  
EN connected to resistor-divider (controllers  
enabled)  
1-2  
2-3  
EN = GND (controllers disabled)  
The voltage threshold of each analog EN input is config-  
ured to 3.17V using resistors R1/R2 (U1) and R20/R22  
(U2). Use the following equation to calculate a new R1 or  
R20 resistor value to change the enable threshold:  
V
0.5V  
EN  
R
= 16.5 x  
1  
A
Table 6. MAX16050 Sequencing Control (JU4, JU5, JU6)  
SHUNT POSITION  
SEQUENCE ORDER  
JU4  
JU5  
JU6  
1ST  
2ND  
3RD  
4TH  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
Not installed  
U1_OUT1  
U1_OUT1  
U1_OUT1  
U1_OUT1  
U1_OUT1  
U1_OUT1  
U1_OUT2  
U1_OUT2  
U1_OUT2  
U1_OUT2  
U1_OUT2  
U1_OUT3  
U1_OUT3  
U1_OUT4  
U1_OUT4  
U1_OUT1  
U1_OUT1  
U1_OUT3  
U1_OUT3  
U1_OUT4  
U1_OUT2  
U1_OUT4  
U1_OUT2  
U1_OUT3  
U1_OUT3  
U1_OUT4  
U1_OUT1  
U1_OUT4  
U1_OUT3  
U1_OUT4  
U1_OUT2  
U1_OUT3  
U1_OUT2  
U1_OUT4  
U1_OUT3  
U1_OUT4  
Not installed  
2-3  
Not installed  
1-2  
Not installed  
2-3  
2-3  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
Not installed  
2-3  
1-2  
_______________________________________________________________________________________  
5
MAX16050 Evaluation Kit  
Table 6. MAX16050 Sequencing Control (JU4, JU5, JU6) (continued)  
SHUNT POSITION  
SEQUENCE ORDER  
JU4  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
1-2  
1-2  
JU5  
Not installed  
Not installed  
Not installed  
2-3  
JU6  
1ST  
2ND  
3RD  
4TH  
Not installed  
U1_OUT2  
U1_OUT2  
U1_OUT2  
U1_OUT3  
U1_OUT3  
U1_OUT3  
U1_OUT3  
U1_OUT3  
U1_OUT3  
U1_OUT4  
U1_OUT4  
U1_OUT4  
U1_OUT4  
U1_OUT4  
U1_OUT4  
U1_OUT3  
U1_OUT4  
U1_OUT4  
U1_OUT1  
U1_OUT1  
U1_OUT2  
U1_OUT2  
U1_OUT4  
U1_OUT4  
U1_OUT1  
U1_OUT1  
U1_OUT2  
U1_OUT2  
U1_OUT3  
U1_OUT3  
U1_OUT4  
U1_OUT1  
U1_OUT3  
U1_OUT2  
U1_OUT4  
U1_OUT1  
U1_OUT4  
U1_OUT1  
U1_OUT2  
U1_OUT2  
U1_OUT3  
U1_OUT1  
U1_OUT3  
U1_OUT1  
U1_OUT2  
U1_OUT1  
U1_OUT3  
U1_OUT1  
U1_OUT4  
U1_OUT2  
U1_OUT4  
U1_OUT1  
U1_OUT2  
U1_OUT1  
U1_OUT3  
U1_OUT2  
U1_OUT3  
U1_OUT1  
U1_OUT2  
U1_OUT1  
2-3  
1-2  
Not installed  
2-3  
2-3  
2-3  
1-2  
1-2  
Not installed  
1-2  
2-3  
1-2  
1-2  
Not installed  
2-3  
Not installed  
Not installed  
Not installed  
2-3  
1-2  
Not installed  
2-3  
2-3  
2-3  
1-2  
level at pin 1 of jumpers JU8 or JU14. Connect the sig-  
nal ground to a convenient ground reference. See  
Table 9 for jumpers JU9 and JU14 configuration.  
EN_HOLD (JU7, JU15)  
Jumpers JU7 and JU15 configuration setting allows the  
MAX16050 and MAX16051 to ignore high-to-low transi-  
tions at the EN and SHDN inputs. Place a shunt across  
pins 1-2 for normal operation of the EN and SHDN fea-  
ture. Place a shunt across pins 2-3 to ignore high-to-low  
transitions at EN and SHDN. See Table 7 for jumpers  
JU7 and JU15 configuration.  
Table 7. Jumpers JU7, JU15 Configuration  
SHUNT  
EN_HOLD INPUT SETTING  
POSITION  
1-2  
2-3  
Normal operation of EN and SHDN functions  
Ignores high-to-low transitions at EN and SHDN  
Evluates:/MAX6051  
SHDN Control (JU8, JU13)  
Jumpers JU8 and JU13 initiate the MAX16050 and  
MAX16051 for a reverse-sequencing event. Install  
shunts on jumpers JU8 and JU13 to initiate a reverse-  
sequencing event. Remove the shunts at jumpers JU8  
and JU13 for proper power-up operation when EN =  
high. To drive SHDN externally, place a square-wave  
signal with a 2V to 5.5V logic-high level at pin 1 of  
jumpers JU8 or JU13. See Table 8 for jumpers JU8 and  
JU13 configuration.  
Table 8. Jumpers JU8, JU13 Configuration  
SHUNT  
SHDN INPUT SETTING  
POSITION  
Not  
Controller enabled or externally driven  
installed  
Reverse power-down sequencing. RESET  
asserts low.  
Installed  
FAULT Control (JU9, JU14)  
Jumpers JU9 and JU14 control the MAX16050 and  
MAX16051 input/output FAULT signal, respectively.  
FAULT asserts low when any of the monitored IN volt-  
ages fall below its SET voltage threshold. As an output,  
FAULT can be driven externally to initiate a simultane-  
ous power-down of the DC-DC controllers. Install a  
shunt across jumpers JU9 and JU14 to initiate a shut-  
down of the controllers. To drive FAULT externally,  
place a square-wave signal with a 2V to 5.5V logic-high  
Table 9. Jumpers JU9, JU14 Configuration  
SHUNT  
FAULT INPUT SETTING  
POSITION  
Not  
Normal operation  
installed  
Disables controller. Initiates simultaneous power  
Installed  
down of OUT_. RESET asserts low.  
6
_______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Sequence Delay Control  
The EV kit RESET signals assert low under the following  
Capacitors C10 or C20 set the t  
periods for U1  
conditions:  
DELAY  
and U2 to 644μs, respectively. Replace the capacitors  
1) Any monitored voltage falls below its input threshold.  
2) EN falls below the enable threshold.  
3) FAULT output is pulled low.  
with different values to adjust the t  
remove the capacitors to set the t  
periods, or  
periods to  
DELAY  
DELAY  
34μs. Use the following equation to calculate a new  
capacitor value when adjusting the t period:  
DELAY  
34μs  
4) SHDN is pulled low (note that when SHDN is pulled  
low, the controller initiates a reverse-sequence  
power-down).  
t
DELAY  
C =  
5
5 ×10 Ω  
where C is the capacitance of C10 or C20 in farads,  
and t is in seconds.  
DELAY  
Table 10. SW2 Channel Bypass  
Reset Timeout Control  
Capacitors C11 and C21 set the t period for U1  
SWITCH  
BYPASS CHANNEL  
U1_IN4  
TIMEOUT  
1
2
and U2 to 1.1ms, respectively. Replace the capacitors  
U1_IN3  
with a different value to adjust the t  
periods, or  
period to  
TIMEOUT  
3
U1_IN2  
remove the capacitors to set the t  
TIMEOUT  
34μs. Use the following equation to calculate new  
capacitor values when adjusting the t period:  
4
U1_IN1  
TIMEOUT  
5
U2_IN5  
t
34μs  
5 x 10 Ω  
TIMEOUT  
6
U2_IN4  
C =  
5
7
U2_IN3  
8
U2_IN2  
where C is the capacitance of C11 or C21 in farads,  
and t is in seconds.  
9
U2_IN1  
TIMEOUT  
10  
Not used  
Channel Bypassing (SW2)  
DIP switch SW2 allows the MAX16050 EV kit to bypass  
any unused channels and to power up successfully when  
using fewer than four or five DC-DC converters with the  
U1_IN1–U1_IN4 and U2_IN1–U2_IN5 inputs, respectively.  
To bypass a channel, remove the shunts connected  
across pins 1-2 and 2-3 of headers J1 or J2, and set the  
respective SW2 switch to the on position. See Table 10  
for the input channel assignment on switch SW2.  
Table 11. Input Overvoltage Thresholds  
INPUT OVERVOLTAGE  
INPUT CHANNEL  
THRESHOLD (V)  
_IN1  
3.43  
2.61  
1.89  
1.55  
1.23  
_IN2  
_IN3  
Logic Outputs (OV_OUT, RESET)  
The MAX16050 EV kit features test points U1_OV_OUT,  
U2_OV_OUT, U1_RESET, and U2_RESET to monitor  
fault conditions on each controller. U1_OV_OUT and  
U2_OV_OUT assert low when any of the monitored IN  
voltages rise above their overvoltage threshold. See  
Table 11 for the input channel overvoltage thresholds.  
_IN4  
IN5 (MAX16051 only)  
_______________________________________________________________________________________  
7
MAX16050 Evaluation Kit  
To initiate a reverse power-down sequence, install a  
shunt across jumper JU8 or JU13. When all the IN_ volt-  
ages monitored by U2 (U2_IN1–U2_IN5) have dropped  
below their undervoltage threshold, U2_REM output  
goes high, thereby allowing U1_OUT_ to commence  
sequencing down. U2_REM connects to  
U1_ EN_HOLD (through SW1-2) to force U1 controller  
to stay on even if U1_EN and U1_SHDN are pulled low  
during a daisy-chain operation.  
Configuring the MAX16050 EV Kit for  
Daisy-Chain Operation (SW1)  
The MAX16050 EV kit can be configured for daisy-  
chain operation of the MAX16050 (U1) and the  
MAX16051 (U2) by configuring DIP switch SW1 and  
various jumpers. See Tables 12 and 13 for switch SW1  
and the proper jumper configurations, respectively, to  
configure the EV kit for daisy-chain operation. For prop-  
er daisy-chain operation of U1 and U2, all of SW1  
switches should be set to the on position.  
Switch SW1-3 connects U1 and U2 open-drain FAULT  
outputs together, resulting in a fast power-down of all  
inputs when a fault condition occurs on any of the  
inputs or when FAULT is manually pulled low by  
installing a shunt across jumpers JU9 or JU14.  
To initiate a power-up sequence, install a shunt across  
pins 1-2 of jumper JU2 (U1_EN). U1_IN1–U1_IN4  
sequence according to the shunt configurations of  
jumpers JU4, JU5, and JU6 (Table 6). Upon U1_ inputs  
rising above their respective thresholds, the U1_RESET  
signal goes high and drives U2_EN input high (SW1-4)  
allowing sequencing to commence on the MAX16051.  
Upon U2 controller sequencing successfully,  
U2_RESET goes high.  
Table 12. SW1 Switch Functions  
SW1  
DESIGNATION  
SWITCH  
POSITION  
EV KIT OPERATION  
SHDN  
On  
U1 and U2 SHDN inputs connected and controlled by one signal.  
Connects U2_REM to U1_EN_HOLD. Reverse-sequence U2_OUT and then U1_OUT when a  
shunt is installed across jumper JU8 or JU13.  
REV_SEQ  
On  
Connects UI_FAULT and U2_FAULT. All outputs power down simultaneously during fault  
conditions.  
FAULT  
On  
On  
SEQ  
Connects U1_RESET to U2_EN. Sequences U1 OUT_ and then U2 OUT_.  
Evluates:/MAX6051  
Table 13. Jumper Configuration for Daisy-Chain Operation  
SHUNT  
POSITION  
JUMPER  
EV KIT OPERATION  
JU2  
JU7  
1-2  
U1 controllers enabled at U1_VCC = 3.3V (DC-DC mode)  
U1_EN_HOLD controlled by U2_REM  
U1_SHDN and U2_SHDN = high  
Not installed  
Not installed  
Not installed  
Not installed  
1-2  
JU8, JU13  
JU9, JU14  
JU11  
U1_FAULT and U2_FAULT connected together  
U2_EN controlled by switch SW1-4  
JU15  
U2_EN_HOLD = high  
8
_______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Figure 2a. MAX16050 EV Kit Schematic (Sheet 1 of 2)  
_______________________________________________________________________________________  
9
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Figure 2b. MAX16050 EV Kit Schematic (Sheet 2 of 2)  
10 ______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Figure 3. MAX16050 EV Kit Component Placement Guide—Component Side  
______________________________________________________________________________________ 11  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Figure 4. MAX16050 EV Kit PCB Layout—Component Side  
12 ______________________________________________________________________________________  
MAX16050 Evaluation Kit  
Evluates:/MAX6051  
Figure 5. MAX16050 EV Kit PCB Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16050EVKIT+

Reverse-Sequencing Operation
MAXIM

MAX16050_08

Voltage Monitors/Sequencer Circuits with Reverse-Sequencing Capability
MAXIM

MAX16051

Reverse-Sequencing Operation
MAXIM

MAX16051ETI+

Voltage Monitors/Sequencer Circuits with Reverse-Sequencing Capability
MAXIM

MAX16052

High-Voltage, Adjustable Sequencing/Supervisory Circuits
MAXIM

MAX16052AUT+

暂无描述
MAXIM

MAX16052AUT+T

High-Voltage, Adjustable Sequencing/Supervisory Circuits
MAXIM

MAX16052_10

High-Voltage, Adjustable Sequencing/Supervisory Circuits
MAXIM

MAX16053

High-Voltage, Adjustable Sequencing/Supervisory Circuits
MAXIM

MAX16053AUT+

Power Management Circuit, Fixed, +0.5VV, BICMOS, PDSO6,
MAXIM

MAX16053AUT+T

High-Voltage, Adjustable Sequencing/Supervisory Circuits
MAXIM