MAX1600EAI+ [MAXIM]

Power Supply Management Circuit, Fixed, 2 Channel, PDSO28, 0.200 INCH, SSOP-28;
MAX1600EAI+
型号: MAX1600EAI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 2 Channel, PDSO28, 0.200 INCH, SSOP-28

开关 电源开关 PC
文件: 总16页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1388; Rev 0; 11/98  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX157/MAX159 low-power, 10-bit analog-to-digi-  
tal converters (ADCs) are available in 8-pin µMAX and  
DIP p a c ka g e s . Both d e vic e s op e ra te with a s ing le  
+2.7V to +5.25V supply and feature a 7.4µs succes-  
sive-approximation ADC, automatic power-down, fast  
wake-up (2.5µs), an on-chip clock, and a high-speed,  
3-wire serial interface.  
Single-Supply Operation (+2.7V to +5.25V)  
Two Single-Ended Channels (MAX157)  
Single Pseudo-Differential Channel (MAX159)  
Low Power  
0.9mA (at 108ksps, +3V)  
100µA (at 10ksps, +3V)  
10µA (at 1ksps, +3V)  
<0.2µA (power-down mode)  
Power consumption is only 3.2mW (V = +3.6V) at the  
DD  
maximum sampling rate of 108ksps. At slower through-  
p ut ra te s , the 0.2µA a utoma tic s hutd own furthe r  
reduces power consumption.  
Internal Track/Hold  
The MAX157 provides 2-channel, single-ended opera-  
108ksps Sampling Rate  
tion and accepts input signals from 0 to V  
. The  
REF  
SPI/QSPI/MICROWIRE-Compatible 3-Wire  
MAX159 accepts pseudo-differential inputs ranging  
from 0 to V . An e xte rna l c loc k a c c e s s e s d a ta  
Serial Interface  
REF  
throug h the 3-wire s e ria l inte rfa c e , whic h is SPI™,  
QSPI™, and MICROWIRE™ compatible.  
Space-Saving 8-Pin µMAX Package  
Pin-Compatible 12-Bit Upgrades Available  
Excellent dynamic performance and low power, com-  
bined with ease of use and a small package size, make  
these converters ideal for battery-powered and data  
a c q uis ition a p p lic a tions , or for othe r c irc uits with  
demanding power-consumption and space require-  
ments. For pin-compatible 12-bit upgrades, see the  
MAX144/MAX145 data sheet.  
Ord e rin g In fo rm a t io n  
TEMP.  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
Ap p lic a t io n s  
MAX157ACUA  
MAX157BCUA  
MAX157ACPA  
MAX157BCPA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
±0.5  
±1  
Battery-Powered Systems  
Portable Data Logging  
Instrumentation  
8 µMAX  
Test Equipment  
8 Plastic DIP  
8 Plastic DIP  
8 µMAX  
±0.5  
±1  
Isolated Data Acquisition  
Process-Control Monitoring  
Medical Instruments  
System Supervision  
MAX157AEUA -40°C to +85°C  
MAX157BEUA -40°C to +85°C  
MAX157AEPA -40°C to +85°C  
MAX157BEPA -40°C to +85°C  
±0.5  
±1  
8 µMAX  
8 Plastic DIP  
8 Plastic DIP  
±0.5  
±1  
P in Co n fig u ra t io n  
MAX157AMJA -55°C to +125°C 8 CERDIP*  
MAX157BMJA -55°C to +125°C 8 CERDIP*  
±0.5  
±1  
TOP VIEW  
MAX159ACUA  
MAX159BCUA  
MAX159ACPA  
MAX159BCPA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
±0.5  
±1  
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CS/SHDN  
REF  
DD  
8 µMAX  
8 Plastic DIP  
8 Plastic DIP  
8 µMAX  
±0.5  
±1  
CH0 (CH+)  
CH1 (CH-)  
GND  
MAX157  
MAX159  
MAX159AEUA -40°C to +85°C  
MAX159BEUA -40°C to +85°C  
MAX159AEPA -40°C to +85°C  
MAX159BEPA -40°C to +85°C  
±0.5  
±1  
8 µMAX  
8 Plastic DIP  
8 Plastic DIP  
±0.5  
±1  
µMAX/DIP  
MAX159AMJA -55°C to +125°C 8 CERDIP*  
MAX159BMJA -55°C to +125°C 8 CERDIP*  
±0.5  
±1  
( ) ARE FOR MAX159 ONLY.  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
*Contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
CH0, CH1 (CH+, CH-) to GND...................-0.3V to (V + 0.3V)  
REF to GND................................................-0.3V to (V + 0.3V)  
DD  
Digital Inputs to GND ...............................................-0.3V to +6V  
DOUT to GND.............................................-0.3V to (V + 0.3V)  
DD  
MAX157/MAX159_C_A .......................................0°C to +70°C  
MAX157/MAX159_E_A ....................................-40°C to +85°C  
MAX157/MAX159_MJA................................. -55°C to +125°C  
Storage Temperature Range .............................-60°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
DOUT Sink Current ............................................................ 25mA  
Continuous Power Dissipation (T = +70°C)  
A
µMAX (derate 4.1mW/°C above +70°C) ......................330mW  
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
7/MAX159  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
REF  
SCLK  
CH- = GND for MAX159, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
10  
Bits  
MAX15_A  
MAX15_B  
±0.5  
±1  
Relative Accuracy (Note 2)  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
±0.5  
±2  
LSB  
LSB  
Gain Error (Note 3)  
Gain Temperature Coefficient  
±2  
LSB  
External reference, V  
= 2.5V  
±0.8  
ppm/°C  
REF  
Channel-to-Channel Offset  
Matching  
±0.02  
LSB  
LSB  
Channel-to-Channel Gain  
Matching  
±0.02  
DYNAMIC SPECIFICATIONS (f (sine wave) = 10kHz, V = 2.5Vp-p, 108ksps, external f  
= 2.17MHz, CH- = GND for MAX159)  
IN  
IN  
SCLK  
Signal-to-Noise Ratio plus  
Distortion  
SINAD  
66  
dB  
dB  
Total Harmonic Distortion  
(including 5th-order harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SFDR  
70  
-75  
2.25  
1.0  
dB  
dB  
f
= 65kHz, V = 2.5Vp-p (Note 4)  
IN  
IN  
-3dB rolloff  
MHz  
MHz  
Full-Power Bandwidth  
2
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
DD  
REF  
SCLK  
CH- = GND for MAX159, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
External clock, f  
cycles per conversion  
= 2.17MHz, 16 clock  
SCLK  
7.4  
5
Conversion Time (Note 5)  
t
µs  
CONV  
Internal clock  
7
T/H Acquisition Time  
Aperture Delay  
Aperture Jitter  
t
2.5  
µs  
ns  
ps  
ACQ  
25  
<50  
External clock mode  
0.1  
0
2.17  
5
MHz  
Serial Clock Frequency  
f
SCLK  
Internal clock mode, for data transfer only  
ANALOG INPUTS  
Analog Input Voltage Range  
(Note 6)  
V
IN  
0
V
REF  
V
Multiplexer Leakage Current  
Input Capacitance  
On/off-leakage current, V = 0 to V  
±0.01  
16  
±1  
µA  
µA  
IN  
DD  
C
IN  
EXTERNAL REFERENCE  
Input Voltage Range (Note 7)  
Input Current  
V
REF  
0
V
+ 50mV  
140  
V
DD  
V
REF  
= 2.5V  
100  
25  
µA  
kΩ  
µA  
Input Resistance  
18  
Shutdown REF Input Current  
0.01  
10  
DIGITAL INPUTS (CS/SHDN, SCLK) AND DIGITAL OUTPUT (DOUT)  
V
3.6V  
2.0  
3.0  
DD  
Input High Voltage  
V
IH  
V
V
DD  
> 3.6V  
Input Low Voltage  
Input Hysteresis  
V
0.8  
V
V
IL  
V
HYS  
0.2  
0.5  
Input Leakage Current  
Input Capacitance  
I
IN  
V
= 0 or V  
DD  
±1  
15  
µA  
pF  
IN  
C
(Note 8)  
= 5mA  
IN  
I
0.4  
SINK  
Output Low Voltage  
Output High Voltage  
V
OL  
V
V
I
= 16mA  
SINK  
V
OH  
I
= 0.5mA  
V
DD  
- 0.5  
SOURCE  
Three-State Output Leakage  
Current  
±10  
15  
µA  
pF  
CS/SHDN = V  
DD  
Three-State Output Capacitance  
C
OUT  
CS/SHDN = V (Note 8)  
DD  
_______________________________________________________________________________________  
3
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
DD  
REF  
SCLK  
CH- = GND for MAX159, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
POWER REQUIREMENTS  
Positive Supply Voltage  
Positive Supply Current  
Positive Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
+2.7  
+5.25  
2.0  
5
V
I
DD  
Operating mode  
Shutdown, CS/SHDN = GND  
0.9  
0.2  
mA  
µA  
I
DD  
Power-Supply Rejection  
(Note 9)  
PSR  
V
DD  
= 2.7V to 5.25V, full-scale input  
±0.15  
mV  
TIMING CHARACTERISTICS (Figure 7)  
(V  
= +2.7V to +5.25V, V  
= 2.5V, 0.1µF c a p a c itor a t REF, f  
= 2.17MHz, 16 c loc ks /c onve rs ion c yc le (108ks p s ),  
DD  
REF  
SCLK  
7/MAX159  
CH- = GND for MAX159, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
Wake-Up Time  
t
2.5  
WAKE  
t
C
C
C
= 100pF (Figure 1)  
120  
120  
ns  
CS/SHDN Fall to Output Enable  
DV  
L
L
L
CS/SHDN Rise to Output  
Disable  
t
= 100pF (Figure 1)  
ns  
ns  
TR  
SCLK Fall to Output Data Valid  
SCLK Clock Frequency  
t
= 100pF  
20  
0.1  
0
120  
2.17  
5
DO  
External clock  
f
MHz  
SCLK  
Internal clock, SCLK for data transfer only  
External clock  
215  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
ns  
ns  
CH  
Internal clock, SCLK for data transfer only  
(Note 8)  
50  
215  
50  
External clock  
t
CL  
Internal clock, SCLK for data transfer only  
(Note 8)  
t
60  
60  
ns  
ns  
SCLK to CS/SHDN Setup  
CS/SHDN Pulse Width  
SCLKS  
t
CS  
Note 1: Tested at V = +2.7V.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after full-scale range has been  
calibrated.  
Note 3: Offset nulled.  
Note 4: The on channel is grounded; the sine wave is applied to off channel (MAX157 only).  
Note 5: Conversion time is defined as the number of clock cycles times the clock period; clock has 50% duty cycle.  
Note 6: The common-mode range for the analog inputs is from GND to V (MAX159 only).  
DD  
Note 7: ADC performance is limited by the converters noise floor, typically 300µVp-p.  
Note 8: Guaranteed by design. Not subject to production testing.  
Note 9: Measured as V (2.7V) - V (5.25V).  
FS  
FS  
4
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= 2.17MHz, 16 clocks/conversion cycle (108ksps); CH- = GND for  
(V = +3.0V, V  
= 2.5V, 0.1µF capacitor at REF, f  
DD  
REF  
SCLK  
MAX159; T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1500  
vs. TEMPERATURE  
vs. SAMPLING RATE  
1500  
1250  
1000  
750  
10,000  
V
REF  
= V  
DD  
V
= V  
DD  
V
REF  
= V  
DD  
REF  
CODE = 1010101000  
R = ∞  
R = ∞  
L
L
C = 50pF  
L
1300  
1100  
900  
1000  
100  
10  
C = 50pF  
CODE = 1010101000  
C = 50pF  
L
L
CODE = 1010101000  
700  
1
500  
500  
0.1  
-60 -40 -20  
0
20 40 60 80 100 120 140  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
V
SAMPLING RATE (sps)  
DD  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
V
REF  
= V  
DD  
V
REF  
= V  
DD  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-60 -40 -20  
0
20 40 60 80 100 120 140  
V
TEMPERATURE (°C)  
DD  
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
-60 -35 -10 15 40 65 90 115 140  
TEMPERATURE (°C)  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
_______________________________________________________________________________________  
5
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +3.0V, V  
= 2.5V, 0.1µF capacitor at REF, f  
= 2.17MHz, 16 clocks/conversion cycle (108ksps); CH- = GND for  
DD  
REF  
SCLK  
MAX159; T = +25°C, unless otherwise noted.)  
A
GAIN ERROR  
vs. SUPPLY VOLTAGE  
0.2  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
GAIN ERROR  
vs. TEMPERATURE  
0.03  
0.02  
0.01  
0
0.2  
0.1  
0
0.1  
0
-0.1  
-0.2  
-0.01  
-0.02  
-0.03  
-0.1  
-0.2  
7/MAX159  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-60 -35 -10 15 40 65 90 115 140  
TEMPERATURE (°C)  
0
250  
500  
750  
1000  
V
OUTPUT CODE  
DD  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
0.20  
0.20  
0.15  
0.10  
0.05  
0
0.15  
0.10  
0.05  
0
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-60 -35 -10 15 40 65 90 115 140  
TEMPERATURE (°C)  
V
DD  
6
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage, +2.7V to +5.25V  
2
CH0 (CH+)  
CH1 (CH-)  
GND  
Analog Input, MAX157: Single-Ended (CH0); MAX159: Differential (CH+).  
Analog Input, MAX157: Single-Ended (CH1); MAX159: Differential (CH-).  
Analog and Digital Ground  
3
4
External Reference Voltage Input. Sets analog voltage range. Bypass with a 100nF capacitor close to the  
part.  
5
6
REF  
Active-Low Chip-Select Input, Active-High Shutdown Input. Pulling CS/SHDN high puts chip into  
shutdown with a maximum current of 5µA.  
CS/SHDN  
7
8
DOUT  
SCLK  
Serial Data Output. Data changes state at SCLK’s falling edge. High impedance when CS/SHDN is high.  
Serial Clock Input. DOUT changes on the falling edge of SCLK.  
V
DD  
DOUT  
6k  
DOUT  
6k  
C
L
C
L
GND  
a) HIGH-Z TO V , V TO V , AND V TO HIGH-Z  
GND  
b) HIGH-Z TO V , V TO V , AND V TO HIGH-Z  
0H 0L  
0H  
OH  
0L 0H  
0L  
OL  
Figure 1. Load Circuits for Enable and Disable Time  
the same channel by toggling CS/SHDN twice between  
conversions. If only one channel is required, CH0 and  
CH1 may be connected together; however the output  
d a ta will s till c onta in the c ha nne l id e ntific a tion b it  
(before the MSB).  
De t a ile d De s c rip t io n  
The MAX157/MAX159 a na log -to-d ig ita l c onve rte rs  
(ADCs) use a successive-approximation conversion  
(SAR) technique and on-chip track/hold (T/H) structure  
to convert an analog signal to a serial, 10-bit digital out-  
put data stream.  
For the MAX159, the input channels form a single differ-  
ential channel pair (CH+, CH-). This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side IN- must remain stable  
within ± 0.5LSB (± 0.1LSB for op timum re s ults ) with  
respect to GND during a conversion. To accomplish  
this, connect a 0.1µF capacitor from IN- to GND.  
This flexible serial interface provides easy interface to  
microprocessors (µPs). Figure 2 shows a simplified  
functional diagram of the internal architecture for both  
the MAX157 (2 c ha nne ls , s ing le -e nd e d ) a nd the  
MAX159 (1 channel, pseudo-differential).  
S in g le -En d e d (MAX1 5 7 ) a n d P s e u d o -  
Diffe re n t ia l (MAX1 5 9 ) An a lo g In p u t s  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the equivalent input circuit in  
Figure 3. In single-ended mode (MAX157), both chan-  
nels CH0 and CH1 are referred to GND and can be  
connected to two different signal sources. Following the  
power-on reset, the ADC is set to convert CH0. After  
CH0 has been converted, CH1 will be converted, and  
the c onve rs ions will c ontinue to a lte rna te b e twe e n  
channels. Channel switching is performed by toggling  
the CS/SHDN pin. Conversions can be performed on  
acquisition interval spans from when CS/SHDN falls to  
the falling edge of the second clock cycle (external  
clock mode) or from when CS/SHDN falls to the first  
falling edge of SCLK (internal clock mode). At the end  
of the acquisition interval, the T/H switch opens, retain-  
ing charge on C  
as a sample of the signal at IN+.  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). This unbalances node ZERO at the  
comparators positive input.  
_______________________________________________________________________________________  
7
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
The c a p a c itive d ig ita l-to-a na log c onve rte r (DAC)  
adjusts during the remainder of the conversion cycle  
to restore node ZERO to 0V within the limits of 10-bit  
resolution. This action is equivalent to transferring a  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Together with the input impedance, this capacitor forms  
an RC filter, limiting the ADCs signal bandwidth.  
16pF · [(V +) - (V -)] charge from C  
ry-weighted capacitive DAC, which in turn forms a digi-  
tal representation of the analog input signal.  
to the bina-  
IN  
IN  
HOLD  
In p u t Ba n d w id t h  
The MAX157/MAX159 T/H stage offers both a 2.25MHz  
small-signal and a 1MHz full-power bandwidth, which  
makes it possible to use the parts for digitizing high-  
speed transients and measuring periodic signals with  
bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended. Most  
aliasing problems can be fixed easily with an external  
resistor and a capacitor. However, if DC precision is  
re q uire d , it is us ua lly b e s t to c hoos e a c ontinuous  
or switched-capacitor filter, such as the MAX7410/  
MAX7414 (Figure 4). Their Butterworth characteristic  
generally provides the best compromise (with regard to  
rolloff and attenuation) in filter configurations, is easy to  
design, and provides a maximally flat passband re-  
sponse.  
Tra c k /Ho ld  
The ADCs T/H stage enters its tracking mode on the  
fa lling e d g e of CS/SHDN. For the MAX157 (s ing le -  
ended inputs), IN- is connected to GND and the con-  
verter samples the positive (“+) input. For the MAX159  
(pseudo-differential inputs), IN- connects to the nega-  
tive input (-”), and the difference of [(V +) - (V -)] is  
sampled. At the end of the conversion, the positive  
IN  
IN  
input connects back to IN+ and C  
input signal.  
charges to the  
HOLD  
7/MAX159  
The time required for the T/H stage to acquire an input  
signal is a function of how fast its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time,  
t
, is the maximum time the device takes to acquire  
ACQ  
An a lo g In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog  
the signal, and is also the minimum time required for  
the signal to be acquired. Calculate this with the follow-  
ing equation:  
input to V  
and GND, allow each input channel to  
DD  
swing within GND - 300mV to V  
+ 300mV without  
DD  
d a ma g e . Howe ve r, for a c c ura te c onve rs ions b oth  
inputs must not exceed V + 50mV or be less than  
GND - 50mV.  
t
= 7(R + R )C  
S IN IN  
ACQ  
DD  
where R is the source impedance of the input signal,  
S
R
(9k) is the input resistance, and C (16pF) is the  
IN  
IN  
If an off-channel analog input voltage exceeds the  
supplies, limit the input current to 4mA.  
input capacitance of the ADC. Source impedances  
below 4khave no significant impact on the AC perfor-  
mance of the MAX157/MAX159.  
CAPACITIVE DAC  
REF  
CS/SHDN  
SCLK  
COMPARATOR  
INPUT  
MUX  
INTERNAL  
CLOCK  
ZERO  
+
CH1  
(CH-)  
C
16pF  
DOUT  
HOLD  
CONTROL  
LOGIC  
OUTPUT  
REGISTER  
R
9k  
TO SAR  
IN  
CH0  
(CH+)  
C
SWITCH  
CH0  
(CH+)  
HOLD  
SCLK  
TRACK  
T/H  
ANALOG  
INPUT  
10+2 BIT  
T/H  
SAR  
ADC  
IN  
OUT  
MAX157  
MAX159  
CH1  
(CH-)  
MUX  
(2 CHANNEL)  
CONTROL  
LOGIC  
GND  
REF  
SINGLE-ENDED MODE: CHO, CH1 = IN+; GND = IN-  
DIFFERENTIAL MODE: CH+ = IN+; CH- = IN-  
( ) ARE FOR MAX159  
( ) ARE FOR MAX159  
Figure 2. MAX157/MAX159 Simplified Functional Diagram  
Figure 3. Analog Input Channel Structure  
8
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
S e le c t in g Clo c k Mo d e  
To s ta rt the c onve rs ion p roc e s s on the MAX157/  
MAX159, p ull CS/SHDN low. At CS/SHDNs fa lling  
edge, the part wakes up, the internal T/H enters track  
mode, and a conversion begins. In addition, the state of  
SCLK at CS/SHDNs falling edge selects internal (SCLK  
= high) or external (SCLK = low) clock mode.  
ing SCLK high during a high/low transition of CS/SHDN.  
The first SCLK falling edge samples the data and initi-  
ates a conversion using the integrated on-chip oscilla-  
tor. After the conversion, the oscillator shuts off and  
DOUT g oe s hig h, s ig na ling the e nd of c onve rs ion  
(EOC). Data can then be read out with SCLK.  
External Clock (f  
= 100kHz to 2.17MHz)  
SCLK  
Internal Clock (f  
< 100kHz or f  
> 2.17MHz)  
External clock mode (Figure 6) is selected by transition-  
ing CS/SHDN from high to low while SCLK is low. The  
external clock signal not only shifts data out, but also  
drives the analog-to-digital conversion. The input is  
sampled and conversion begins on the falling edge of  
the second clock pulse. Conversion must be completed  
within 140µs to prevent degradation in the conversion  
results caused by droop on the T/H capacitors. External  
clock mode provides the best throughput for clock fre-  
quencies between 100kHz and 2.17MHz.  
SCLK  
SCLK  
In internal clock mode, the MAX157/MAX159 run from  
an internal, laser-trimmed oscillator to within 20% of the  
2MHz specified clock rate. This releases the system  
microprocessor from running the SAR conversion clock  
and allows the conversion results to be read back at the  
processors convenience, at any clock rate from 0 to  
5MHz. Operating the MAX157/MAX159 in internal clock  
mode is necessary for serial interfaces operating with  
clock frequencies lower than 100kHz or greater than  
2.17MHz. Select internal clock mode (Figure 5) by hold-  
V
DD  
1
4
5
V
DD  
7
V
DD  
2
EXTERNAL  
REFERENCE  
0.1µF  
CH0  
SHDN  
REF  
470Ω  
5
8
OUT  
CLK  
MAX7410  
MAX7414  
MAX157  
2
3
8
7
6
IN  
CH1  
DOUT  
f
= 15kHz  
CORNER  
0.01µF  
CS/SHDN  
SCLK  
µP/µC  
COM  
OS  
GND  
GND  
4
1
6
3
1.5MHz  
CLOCK  
0.01µF  
Figure 4. Analog Input with Anti-Aliasing Filter Structure  
ACTIVE POWER ACTIVE  
DOWN  
t
t
CONV  
WAKE  
t
CS  
(t  
)
ACQ  
CS/SHDN  
SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
HIGH-Z  
EOC  
1
1 CHID MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 S1 S0  
DOUT  
HIGH-Z  
SAMPLING INSTANT  
Figure 5. Internal Clock Mode Timing  
_______________________________________________________________________________________  
9
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
Ou t p u t Da t a Fo rm a t  
Table 1 illustrates the 16-bit, serial data-stream output  
format for both the MAX157 and MAX159. The first three  
bits are always logic high (including the EOC bit for  
internal clock mode), followed by the channel identifica-  
tion (CHID = 0 for CH0, CHID = 1 for CH1, CHID = 1 for  
MAX159), the 10 bits of data in MSB first format, and  
two sub-LSB bits (S1 and S0). After the last bit has been  
read out, additional SCLK pulses will clock out trailing  
zeros. DOUT transitions on the falling edge of SCLK.  
The output remains high impedance when CS/SHDN is  
high.  
Au t o m a t ic P o w e r-Do w n Mo d e  
Whe ne ve r the MAX157/MAX159 a re not s e le c te d  
(CS/SHDN = V ), the parts enter their shutdown mode.  
DD  
In shutdown all internal circuitry is turned off, which  
reduces the supply current to typically less than 0.2µA.  
With an external reference stable to within 1LSB, the  
wake-up time is 2.5µs. If the external reference is not sta-  
ble within 1LSB, the wake-up time must be increased to  
allow the reference to stabilize.  
Ap p lic a t io n s In fo rm a t io n  
S ig n a l-t o -No is e Ra t io (S NR)  
For a waveform perfectly reconstructed from digital  
samples, SNR is the ratio of full-scale analog input  
(RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum analog-to-digital  
noise is caused by quantization error only and results  
directly from the ADCs resolution (N bits):  
Ex t e rn a l Re fe re n c e  
An external reference is required for both the MAX157  
and MAX159. At REF, the DC input resistance is a mini-  
mum of 18k. During a conversion, a reference must  
be able to deliver 250µA of DC load current and have  
a n outp ut imp e d a nc e of 10or le s s . Us e a 0.1µF  
bypass capacitor for best performance. The reference  
7/MAX159  
SNR  
= (6.02 · N + 1.76)dB  
(MAX)  
input structure allows a voltage range of 0 to (V  
+
DD  
50mV) although noise levels will decrease effective res-  
olution at lower reference voltages.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
ACTIVE POWER ACTIVE  
DOWN  
SAMPLING INSTANT  
t
WAKE  
t
CS  
(t  
)
ACQ  
CS/SHDN  
SCLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
HIGH-Z  
HIGH-Z  
CHID MSB D8 D7 D6 D5 D4 D3 D2 D1 D0 S1 S0  
DOUT  
Figure 6. External Clock Mode Timing  
• • •  
CS/SHDN  
t
CH  
t
CS  
t
SCLKS  
t
CL  
SCLK  
• • •  
t
DV  
t
DO  
t
TR  
HIGH-Z  
HIGH-Z  
DOUT  
• • •  
Figure 7. Detailed Serial-Interface Timing Sequence  
10 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
Table 1. Serial Output Data Stream for Internal and External Clock Mode  
SCLK CYCLE  
DOUT (Internal Clock)  
DOUT (External Clock)  
1
EOC  
1
2
1
1
3
1
1
4
5
6
7
8
9
10  
D4  
D4  
11  
D3  
D3  
12  
D2  
D2  
13  
D1  
D1  
14  
D0  
D0  
15  
S1  
S1  
16  
S0  
S0  
CHID D9  
CHID D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
etc. Therefore, SNR is computed by taking the ratio of  
the RMS signal to the RMS noise (which includes all  
spectral components minus the fundamental), the first  
five harmonics, and the DC offset.  
serial clock for the MAX157/MAX159. Select a clock fre-  
quency from 100kHz to 2.17MHz (external clock mode).  
1) Use a general-purpose I/O line on the CPU to pull  
CS/SHDN low while SCLK is low.  
2) Wait for the minimum wake-up time (t  
fied before activating SCLK.  
) speci-  
S ig n a l-t o -No is e P lu s Dis t o rt io n (S INAD)  
Signal-to-noise plus distortion is the ratio of the funda-  
mental input frequencys RMS amplitude to RMS equiv-  
alent of all other ADC output signals:  
WAKE  
3) Activate SCLK for a minimum of 16 clock cycles. The  
first falling clock edge will generate a serial data-  
stream of three leading ones, followed by the chan-  
ne l id e ntific a tion, the MSB of the d ig itize d inp ut  
s ig na l, a nd two s ub -b its . DOUT tra ns itions on  
SCLK’s falling edge and is available in MSB-first for-  
mat. Observe the SCLK to DOUT valid timing char-  
acteristic. Data should be clocked into the µP on  
SCLK’s rising edge.  
SignalRMS  
SINAD(dB) = 20 log  
(Noise + Distortion)RMS  
Effe c t ive Nu m b e r o f Bit s (ENOB)  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADCs error consists of quantization noise only. With an  
input range equal to the full-scale range of the ADC,  
calculate the effective number of bits as follows:  
4) Pull CS/SHDN high at or after the 16th falling clock  
edge. If CS/SHDN remains low, trailing zeros will be  
clocked out after the sub-bits.  
ENOB = (SINAD - 1.76) / 6.02  
5) With CS/SHDN high, wait at least 60ns (t ), before  
CS  
starting a new conversion by pulling CS/SHDN low.  
A conversion can be aborted by pulling CS/SHDN  
high before the conversion ends; wait at least 60ns  
before starting a new conversion.  
To t a l Ha rm o n ic Dis t o rt io n (THD)  
THD is the ratio of the RMS sum of the first five harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
Data can be output either in two 8-bit sequences or  
continuously. The bytes will contain the result of the  
conversion padded with three leading ones, the chan-  
nel identification before the MSB, and two trailing sub-  
bits. If the serial clock hasnt been idled after the last  
sub-bit (S0) and CS/SHDN is kept low, DOUT sends  
trailing zeros.  
2
2
2
2
V
+ V + V + V  
2
3
4
5
(
)
THD = 20 log  
2
V
1
where V is the fundamental amplitude and V through  
1
2
S P I a n d MICROWIRE In t e rfa c e  
When using SPI (Figure 8a) or MICROWIRE (Figure 8b)  
interfaces, set CPOL = 0 and CPHA = 0. Conversion  
begins with a falling edge on CS/SHDN (Figure 8c). Two  
consecutive 8-bit readings are necessary to obtain the  
entire 10-bit result from the ADC. DOUT data transitions  
on the serial clocks falling edge and is clocked into the  
µP on SCLK’s rising edge. The first 8-bit data stream  
contains three leading ones, followed by channel identi-  
fication and the first four data bits starting with the MSB.  
The second 8-bit data stream contains the remaining  
bits, D5 through D0, and the sub-bits S1 and S0.  
V are the amplitudes of the 2nd through 5th-order har-  
monics.  
5
S p u rio u s -Fre e Dyn a m ic Ra n g e (S FDR)  
SFDR is the ratio of RMS amplitude of the fundamental  
(maximum signal component) to the RMS value of the  
next largest spurious component, excluding DC offset.  
Co n n e c t io n t o S t a n d a rd In t e rfa c e s  
The MAX157/MAX159 interface is fully compatible with  
SPI/QSPI and MICROWIRE standard serial interfaces.  
If a serial interface is available, establish the CPUs seri-  
al interface as master so that the CPU generates the  
______________________________________________________________________________________ 11  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
I/O  
SCK  
CS/SHDN  
SCLK  
I/O  
SK  
SI  
CS/SHDN  
SCLK  
MISO  
DOUT  
DOUT  
V
DD  
SPI  
MICROWIRE  
MAX157  
MAX159  
MAX157  
MAX159  
SS  
Figure 8a. SPI Connections  
Figure 8b. MICROWIRE Connections  
1ST BYTE READ  
2ND BYTE READ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
7/MAX159  
CS/SHDN  
HIGH-Z  
CHID D9  
MSB  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
S1  
S0  
DOUT*  
SAMPLING  
INSTANT  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH -Z  
Figure 8c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
QS P I In t e rfa c e  
Using the high-speed QSPI interface with CPOL = 0  
and CPHA = 0, the MAX157/MAX159 supports a maxi-  
CS  
SCK  
CS/SHDN  
SCLK  
mum f  
of 2.17MHz. The QSPI circuit in Figure 9a  
SCLK  
can be programmed to perform a conversion on each  
of the two channels for the MAX157.  
MISO  
DOUT  
V
DD  
QSPI  
Figure 9b shows the QSPI interface timing.  
MAX157  
MAX159  
P IC1 6 w it h S S P Mo d u le  
a n d P IC1 7 In t e rfa c e  
SS  
The MAX157/MAX159 are compatible with a PIC16/  
PIC17 microcontroller (µC), using the synchronous seri-  
al port (SSP) module.  
Figure 9a. QSPI Connections  
To establish SPI communication, connect the controller  
as shown in Figure 10a and configure the PIC16/PIC17  
as system master by initializing its synchronous serial  
port control register (SSPCON) and synchronous serial  
port status register (SSPSTAT) to the bit patterns shown  
in Tables 2 and 3.  
three leading ones, the channel identification, and the  
first four data bits starting with the MSB. The second 8-  
bit data stream contains the remaining bits, D5 through  
D0, and the two sub-bits S1 and S0.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For b e s t p e rforma nc e us e p rinte d c irc uit b oa rd s  
(PCBs), wire-wrap configurations are not recommend-  
ed, since the layout should ensure proper separation of  
analog and digital traces. Run analog and digital lines  
anti-parallel to each other, and dont layout digital sig-  
nal paths underneath the ADC package. Use separate  
analog and digital PCB ground sections with only one  
In SPI mode, the PIC16/PIC17 µCs allow eight bits of  
data to be synchronously transmitted and received  
simultaneously. Two consecutive 8-bit readings (Figure  
10b) are necessary to obtain the entire 10-bit result  
from the ADC. DOUT d a ta tra ns itions on the s e ria l  
c loc ks fa lling e d g e a nd is c loc ke d into the µC on  
SCLK’s rising edge. The first 8-bit data stream contains  
12 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS/SHDN  
HIGH-Z  
CHID D9  
SAMPLING INSTANT MSB  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH - Z  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
S1  
S0  
DOUT  
Figure 9b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
star-point (Figure 11) connecting the two ground sys-  
tems (analog and digital). For lowest-noise operation,  
ensure the ground return to the star grounds power  
supply is low impedance and as short as possible.  
Route digital signals far away from sensitive analog and  
reference inputs.  
V
V
DD  
DD  
SCLK  
DOUT  
SCK  
SDI  
I/O  
CS/SHDN  
High-frequency noise in the power supply (V ) could  
DD  
influence the proper operation of the ADCs fast com-  
MAX157  
MAX159  
PIC16/PIC17  
parator. Bypass V  
to the star ground with a network  
DD  
of two parallel capacitors, 0.1µF and 1µF, located as  
c los e a s p os s ib le to the p owe r s up p ly p in of the  
MAX157/MAX159. Minimize capacitor lead length for  
best supply-noise rejection and add an attenuation  
resistor (10) if the power supply is extremely noisy.  
GND  
GND  
Figure 10a. SPI Interface Connection for a PIC16/PIC17  
Controller  
1ST BYTE READ  
2ND BYTE READ  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS/SHDN  
HIGH-Z  
CHID D9  
SAMPLING INSTANT  
*WHEN CS/SHDN IS HIGH, DOUT = HIGH - Z  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
S1  
S0  
DOUT*  
MSB  
Figure 10b. SPI Interface Timing Sequence with PIC16/17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3–SSPM0 = 0001)  
POWER SUPPLIES  
+3V  
+3V  
GND  
R* = 10Ω  
1µF  
0.1µF  
GND  
V
DD  
+3V DGND  
DIGITAL  
CIRCUITRY  
MAX157  
MAX159  
* OPTIONAL FILTER RESISTOR  
Figure 11. Power-Supply Bypassing and Grounding  
______________________________________________________________________________________ 13  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
Table 2. Detailed SSPCON Register Content  
MAX157/MAX159  
CONTROL BIT  
SYNCHRONOUS SERIAL PORT CONTROL REGISTER (SSPCON)  
SETTINGS  
WCOL  
Bit 7  
Bit 6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detect Bit  
Synchronous Serial Port Enable Bit  
SSPEN  
Bit 5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO and SCI pins as serial port pins.  
CKP  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial Port Mode Select Bit. Sets SPI master mode and selects  
f
= f  
/ 16.  
CLK  
OSC  
7/MAX159  
X = Dont care  
Table 3. Detailed SSPSTAT Register Content  
MAX157/MAX159  
CONTROL BIT  
SYNCHRONOUS SERIAL STATUS REGISTER (SSPSTAT)  
SETTINGS  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output  
time.  
SMP  
Bit 7  
0
CKE  
D/A  
P
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
SPI Clock Edge Select Bit. Data will be transmitted on the rising edge of the serial clock.  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
X = Dont care  
14 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
7/MAX159  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2,058  
SUBSTRATE CONNECTED TO GND  
P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
+2 .7 V, Lo w -P o w e r, 2 -Ch a n n e l,  
1 0 8 k s p s , S e ria l 1 0 -Bit ADCs in 8 -P in µMAX  
P a c k a g e In fo rm a t io n (c o n t in u e d )  
7/MAX159  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY