MAX1559ETE [MAXIM]

5-Output Power-Management IC For Low-Cost PDAs; 5路输出电源管理IC,用于低成本PDA
MAX1559ETE
型号: MAX1559ETE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5-Output Power-Management IC For Low-Cost PDAs
5路输出电源管理IC,用于低成本PDA

电源电路 电源管理电路 光电二极管 信息通信管理
文件: 总14页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2962; Rev 1; 10/03  
5-Output Power-Management IC For  
Low-Cost PDAs  
General Description  
Features  
The MAX1559 is a complete power-management chip  
for low-cost personal digital assistants (PDAs) and  
portable devices operating from a 1-cell lithium-ion  
(Li+) or 3-cell NiMH battery. It includes all the regula-  
tors, outputs, and voltage monitors necessary for small  
PDAs while requiring a bare minimum of external com-  
ponents. Featured are four linear regulators, a DC-DC  
boost converter for LCD bias, a microprocessor reset  
output, and low-battery shutdown in a miniature QFN  
package. For a compatible Li+ charger for both USB  
and AC adapter inputs, refer to the MAX1551*.  
o Minimal External Components  
o 3.3V, 500mA MAIN LDO  
o 3.3V, 400mA SD Card Output  
o 1V, 250mA Core LDO  
o 1.8V, 30mA Second Core LDO  
o High-Efficiency LCD Boost  
o LCD 0V True Shutdown when Off  
o 50µA Quiescent Current  
The four linear regulators feature PMOS pass elements  
for efficient low-dropout operation. A MAIN LDO sup-  
plies 3.3V at 500mA. A signal-detect (SD) card-slot out-  
put supplies 3.3V at 400mA. The COR1 LDO outputs 1V  
at 250mA, and the COR2 LDO supplies 1.8V at 30mA.  
The SD output and COR2 LDO have pin-controlled  
shutdown. For other output-voltage combinations, con-  
tact Maxim.  
o 3.1V to 5.5V Input Range  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1559ETE  
-40°C to +85°C  
16 Thin QFN  
The DC-DC boost converter features an on-board MOSFET  
and True Shutdown™ when off. This means that during  
shutdown, input power is disconnected from the induc-  
tor so that the boost output falls to 0V rather than  
remaining one diode drop below the input voltage.  
Typical Operating Circuit  
INPUT  
3.1V TO 5.5V  
A µP reset output clears when the MAIN LDO achieves  
regulation to ensure an orderly start. Thermal shutdown  
protects the die from overheating.  
IN  
MAIN  
SDIG  
COR1  
COR2  
3.3V, 500mA  
3.3V, 400mA  
1.0V, 250mA  
1.8V, 30mA  
SWIN  
The MAX1559 operates from a 3.1V to 5.5V supply and  
consumes 50mA of no-load supply current. It is pack-  
aged in a 1.3W, 16-pin thin QFN with a power pad on  
the underside of the package. The MAX1559 is speci-  
fied for operation from -40°C to +85°C.  
MAX1559  
REF  
Applications  
PDAs  
ENSD  
ON  
ON  
SDIG  
COR2  
LCD  
OFF  
OFF  
Organizers  
ENC2  
SW  
LX  
Cellular and Cordless Phones  
MP3 Players  
ENLCD  
ON  
OFF  
LCD 20V,  
1mA  
D1  
Hand-Held Devices  
TO MAIN  
LFB  
RS  
RESET OUT  
True Shutdown is a trademark of Maxim Integrated Products, Inc.  
GND  
*Protected by U.S. Patent #6,507,172.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
5-Output Power-Management IC For  
Low-Cost PDAs  
ABSOLUTE MAXIMUM RATINGS  
IN, SWIN, ENSD, ENC2, ENLCD, RS,  
SDIG to GND.........................................................-0.3V to +6V  
LX to GND ..............................................................-0.3V to +30V  
MAIN, COR1, COR2, REF, LFB to GND ......-0.3V to (V + 0.3V)  
SWIN to IN.............................................................-0.3V to +0.3V  
Current into LX or SWIN .............................................300mA  
Current Out of SW ......................................................300mA  
Continuous Power Dissipation (T = +70°C)  
16-Pin Thin QFN (derate 16.9mW/°C above +70°C) ...1.349W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
A
IN  
RMS  
RMS  
Output Short-Circuit Duration.....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= V  
= V  
= 4.0V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
SWIN  
ENSD  
ENC2  
ENLCD  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
IN, SWIN Voltage Range  
Operating  
3.1  
5.5  
3.05  
3.69  
125  
110  
V
V
IN Complete Shutdown Threshold  
IN Restart Threshold  
V
V
V
falling  
rising  
2.95  
3.51  
3
IN  
IN  
3.6  
100  
90  
V
IN, SWIN Operating CurrentAll On  
= 1.3V  
µA  
µA  
LFB  
IN Operating CurrentAll On Except LCD  
ENLCD = GND  
ENLCD = ENC2 = ENSD = GND, LDO  
loads = 0µA  
IN Operating CurrentMAIN and COR1 On  
50  
65  
µA  
IN, SWIN Operating CurrentShut Down  
REF Output Voltage  
V
= V = 2.9V  
2
10  
µA  
V
SWIN  
IN  
I
= 0µA to 5µA  
1.235  
1.25  
1.265  
REF  
LDOs  
I
V
= 100µA to 300mA,  
= 3.6V to 5.5V  
LOAD  
MAIN Output Voltage  
3.2175  
3.093  
3.3  
3.3825  
3.252  
V
IN  
RS Deassert Threshold for MAIN Rising  
RS Assert Threshold MAIN Falling  
MAIN Current Limit  
3.173  
V
V
3.0100 3.094 3.1755  
630  
900  
1
1200  
mA  
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
MAIN Dropout Voltage  
(0.7typ)  
= 300mA  
= 500mA  
210  
350  
310  
525  
mV  
I
V
= 100µA to 200mA,  
= 3.6V to 5.5V  
LOAD  
SDIG Output Voltage  
SDIG Current Limit  
3.2175  
420  
3.3  
3.3825  
825  
V
IN  
630  
0.80  
170  
340  
7
mA  
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
SDIG Dropout Voltage  
(0.85typ) (Note 1)  
mV  
= 200mA  
= 400mA  
300  
600  
15  
SDIG Reverse Leakage Current  
COR1 Output Voltage  
V
= 5V, ENSD = V = GND  
IN  
µA  
V
SDIG  
I
V
= 100µA to 200mA,  
LOAD  
0.960  
250  
1
1.025  
750  
= 3.6V to 5.5V  
IN  
COR1 Current Limit  
450  
mA  
2
_______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= V  
= V  
= 4.0V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
IN  
SWIN  
ENSD  
ENC2  
ENLCD  
A
A
PARAMETER  
CONDITIONS  
= 100µA to 20mA,  
MIN  
1.755  
30  
TYP  
1.8  
50  
MAX  
1.845  
100  
UNITS  
V
I
V
LOAD  
COR2 Output Voltage  
= 3.6V to 5.5V  
IN  
COR2 Current Limit  
LCD  
mA  
LX Voltage Range  
LX Current Limit  
LX On-Resistance  
LX Leakage Current  
Maximum LX On-Time  
28  
V
mA  
L1 = 10µH  
210  
250  
1.7  
285  
V
= 28V  
2
µA  
µs  
LX  
8
11  
1
14  
V
V
> 1.1V  
0.8  
3.9  
1.23  
1.2  
6.0  
1.27  
100  
1
LFB  
LFB  
Minimum LX Off-Time  
µs  
< 0.8V (soft-start)  
5
LFB Feedback Threshold  
LFB Input Bias Current  
SW Off Leakage Current  
SW PMOS On-Resistance  
SW PMOS Peak Current Limit  
SW PMOS Ave Current Limit  
Soft-Start Time  
1.25  
5
V
V
= 1.3V  
nA  
µA  
LFB  
SW = GND, V  
= 5.5V, ENLCD = GND  
0.01  
1
SWIN  
1.75  
700  
300  
0.13  
mA  
mA  
ms  
C
= 1µF  
SW  
LOGIC IN AND OUT  
EN_ Input Low Level  
V
V
= 3.1V to 5.5V  
= 3.1V to 5.5V  
0.4  
V
V
IN  
IN  
EN_ Input High Level  
1.4  
EN_ Input Leakage Current  
RS, Output Low Level  
0.01  
0.25  
1
0.4  
1
µA  
V
Sinking 1mA, V = 2.5V  
IN  
RS, Output High Leakage  
THERMAL PROTECTION  
V
= 5.5V  
µA  
OUT  
Thermal-Shutdown Temperature  
Rising temperature  
+160  
°C  
_______________________________________________________________________________________  
3
5-Output Power-Management IC For  
Low-Cost PDAs  
ELECTRICAL CHARACTERISTICS  
(V = V  
= V  
= V  
= V = 4.0V, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
ENLCD A  
IN  
SWIN  
ENSD  
ENC2  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
GENERAL  
IN, SWIN Voltage Range  
Operating  
3.1  
5.5  
3.05  
3.69  
125  
110  
V
V
IN Complete Shutdown Threshold  
IN Restart Threshold  
V
V
V
falling  
rising  
2.95  
3.51  
IN  
IN  
V
IN, SWIN Operating CurrentAll On  
= 1.3V  
µA  
µA  
LFB  
IN Operating CurrentAll On Except LCD  
ENLCD = GND  
ENLCD = ENC2 = ENSD = GND, LDO  
loads = 0µA  
IN Operating CurrentMAIN and COR1 On  
65  
10  
µA  
µA  
IN, SWIN Operating CurrentShut Down  
V
= V = 2.9V  
IN  
SWIN  
LDOs  
I
V
= 100µA to 300mA,  
= 3.6V to 5.5V  
LOAD  
MAIN Output Voltage  
3.2175  
3.3825  
V
IN  
RS Deassert Threshold for MAIN Rising  
RS Assert Threshold MAIN Falling  
MAIN Current Limit  
3.093  
3.0100  
630  
3.252  
3.1755  
1200  
310  
V
V
mA  
I
I
I
= 300mA  
= 500mA  
LOAD  
LOAD  
MAIN Dropout Voltage  
(0.7typ) (Note 1)  
mV  
525  
= 100µA to 200mA,  
= 3.6V to 5.5V  
LOAD  
SDIG Output Voltage  
SDIG Current Limit  
3.2175  
420  
3.3825  
V
V
IN  
825  
800  
300  
600  
15  
mA  
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
SDIG Dropout Voltage (0.75typ)  
= 200mA  
= 400mA  
mV  
SDIG Reverse Leakage Current  
COR1 Output Voltage  
COR1 Current Limit  
V
= 5V, ENSD = V = GND  
IN  
µA  
V
SDIG  
I
V
= 100µA to 200mA,  
= 3.6V to 5.5V  
LOAD  
0.96  
250  
1.025  
750  
IN  
mA  
V
I
V
= 100µA to 20mA,  
= 3.6V to 5.5V  
LOAD  
COR2 Output Voltage  
1.755  
30  
1.845  
100  
IN  
COR2 Current Limit  
LCD  
mA  
LX Voltage Range  
LX Current Limit  
LX Leakage Current  
Maximum LX On-Time  
28  
285  
2
V
L1 = 10µH  
200  
mA  
µA  
µs  
V
= 28V  
LX  
8
14  
V
V
> 1.1V  
0.8  
1.2  
6.0  
1.270  
LFB  
LFB  
Minimum LX Off-Time  
µs  
V
< 0.8V (soft-start)  
3.9  
LFB Feedback Threshold  
1.220  
4
_______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
= V  
= V  
= V = 4.0V, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
ENLCD A  
IN  
SWIN  
ENSD  
ENC2  
PARAMETER  
CONDITIONS  
MIN  
MAX  
100  
1
UNITS  
nA  
LFB Input Bias Current  
SW Off-Leakage Current  
LOGIC IN AND OUT  
V
= 1.3V  
LFB  
SW = GND, V  
= 5.5V, ENLCD = GND  
µA  
SWIN  
EN_ Input Low Level  
V
V
= 3.1V to 5.5V  
= 3.1V to 5.5V  
0.4  
V
V
IN  
IN  
EN_ Input High Level  
EN_ Input Leakage Current  
RS, Output Low Level  
RS, Output High Leakage  
1.4  
1
0.4  
1
µA  
V
Sinking 1mA, V = 2.5V  
IN  
V
= 5.5V  
µA  
OUT  
Note 1: Specification is guaranteed by design, not production tested.  
Note 2: Specifications to -40°C are guaranteed by design, not production tested.  
Typical Operating Characteristics  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
MAIN DROPOUT VOLTAGE  
vs. LOAD CURRENT  
SDIG DROPOUT VOLTAGE  
vs. LOAD CURRENT  
MAIN OUTPUT VOLTAGE  
vs. LOAD CURRENT  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
0
0
100  
200  
300  
(mA)  
400  
500  
600  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
100 200 300 400 500 600 700 800 900  
I
I
I
(mA)  
LOAD  
LOAD  
LOAD  
_______________________________________________________________________________________  
5
5-Output Power-Management IC For  
Low-Cost PDAs  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
SDIG OUTPUT VOLTAGE  
vs. LOAD CURRENT  
COR1 OUTPUT VOLTAGE  
vs. LOAD CURRENT  
COR2 OUTPUT VOLTAGE  
vs. LOAD CURRENT  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.2  
1.0  
0.8  
0.6  
0.4  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0
100  
200 300 400 500 600  
(mA)  
0
100  
200  
300  
400  
0
10  
20  
30  
40  
50  
I
I
(mA)  
I (mA)  
LOAD  
LOAD  
LOAD  
LOAD STEP RESPONSE (MAIN)  
LOAD STEP RESPONSE (COR1)  
MAX1559 toc08  
MAX1559 toc07  
V
V
COR1  
AC-COUPLED  
20mV/div  
MAIN  
AC-COUPLED  
50mV/div  
0V  
0V  
I
I
LOAD  
100mA/div  
LOAD  
100mA/div  
0A  
0A  
40µs/div  
40µs/div  
INPUT CURRENT  
vs. INPUT VOLTAGE  
LCD SWITCH WAVEFORM  
MAX1559 toc10  
125  
100  
75  
50  
25  
0
V
RISING  
V
IN  
IN  
V
FALLING  
IN  
AC-COUPLED  
20mV/div  
0V  
L
X
0V  
0V  
10V/div  
LCD  
AC-COUPLED  
20mV/div  
0
1
2
3
4
5
2µs/div  
V
(V)  
IN  
6
_______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, T = +25°C, unless otherwise noted.)  
A
LCD EFFICIENCY vs. LOAD CURRENT  
ENABLE RESPONSE TO ENSD  
ENABLE RESPONSE TO LCD  
MAX1559 toc12  
MAX1559 toc11  
85  
80  
75  
70  
65  
60  
R = 30Ω  
L
C = 47µF  
L
ENSD  
5V/div  
ENSD  
V
= 18V  
V
= 15V  
LCD  
LCD  
0V  
0V  
0V  
0V  
2V/div  
LCD  
2V/div  
LCD BOOST  
SOFT-START  
SW  
TURN-ON  
SDIG  
1V/div  
0
1
2
3
4
5
200µs/div  
400µs/div  
I
(mA)  
LOAD  
LCD OUTPUT VOLTAGE  
vs. LOAD CURRENT  
POWER-ON TIMING FOR 3.3V  
MAIN AND RESET SIGNAL  
LCD OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
MAX1559 toc16  
19.00  
18.75  
18.50  
18.25  
18.00  
17.75  
17.50  
17.25  
17.00  
19.00  
18.75  
18.50  
18.25  
18.00  
17.75  
17.50  
17.25  
17.00  
V
IN  
4V  
1V/div  
MAIN  
1V/div  
2.6V  
3.3V MAIN ACTIVATED WHEN  
RISES TO 3.6V  
V
IN  
0V  
0V  
COR1  
1V/div  
RS  
1V/div  
RS EXTERNAL RC  
SET FOR 10ms DELAY  
FROM 1V GOOD  
0V  
10ms/div  
0
1
2
3
4
5
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
I
(mA)  
V
IN  
IN  
POWER-ON TIMING FOR 3.3V  
MAIN AND 1V CORE  
POWER-OFF TIMING FOR 3.3V  
MAIN, 1V CORE, AND RESET SIGNAL  
MAX1559 toc17  
MAX1559 toc18  
V
IN  
1V/div  
4V  
3.6V  
MAIN  
1V/div  
3.3V  
V
IN  
COR1  
1V/div  
DEACTIVATED  
AND RS LOW  
WHEN MAIN  
FALLS TO 3V  
3.3V MAIN DEACTIVATED  
COR1 NOT ACTIVATED  
UNTIL 3.3V IN  
WHEN V FALLS TO 3V  
IN  
REGULATION  
0V  
1V  
MAIN  
1V/div  
COR1  
1V/div  
COR1  
1V/div  
2.4V  
0V  
0V  
RS  
1V/div  
RS  
1V/div  
200µs/div  
4ms/div  
_______________________________________________________________________________________  
7
5-Output Power-Management IC For  
Low-Cost PDAs  
Pin Description  
PIN  
FUNCTION  
1
2
COR1  
IN  
1V, 250mA LDO Output for CPU Core. COR1 turns off when V < 3V or MAIN < 3.1V.  
IN  
Input Voltage to the Device. Bypass to GND with a 1µF capacitor.  
3.3V, 400mA LDO Output for Secure Digital Card Slot. SDIG has reverse current protection so SDIG  
3
SDIG  
can be biased when no power is present at IN. SDIG output turns off when V < 3V or when ENSD  
IN  
goes low.  
SDIG Enable Input. Drive ENSD low to turn off SDIG and high to turn on. SDIG cannot be activated  
when V < 3V.  
IN  
4
5
6
ENSD  
REF  
RS  
1.25V Reference. Bypass with 0.1µF to GND.  
Reset Output. RS is an active-low, open-drain output that goes low when V  
falls below 3.1V. RS  
MAIN  
deasserts when V  
Not Connected  
Ground  
goes above 3.2V. Connect a 1Mpullup resistor from RS to MAIN.  
MAIN  
7
8
9
N.C.  
GND  
LX  
LCD Boost Switch. Connect to a boost inductor and Schottky diode. See Figure 1.  
LCD True Shutdown Switch Output. SW is the power source for the boost inductor. SW turns on when  
ENLCD is high. For best efficiency, bypass SW with 4.7µF to GND.  
10  
11  
12  
13  
14  
SW  
SWIN  
LFB  
LCD True Shutdown Switch Input. The SWIN-to-SW switch turns off when ENLCD goes low or when  
V
< 3V. Connect SWIN to IN.  
IN  
LCD Feedback Input. Connect LFB to a resistor-divider network between the LCD output and GND.  
The feedback threshold is 1.25V.  
Enable Input for LCD (Boost Regulator). Drive ENLCD high to activate the LCD boost. Drive ENLCD  
low to shut down the LCD output. The LCD cannot be activated when V < 3V.  
IN  
ENLCD  
ENC2  
Enable Input for Secondary Core LDO (COR2). Drive ENC2 high to turn on COR2 and low to turn off.  
COR2 cannot be activated when V < 3V.  
IN  
15  
16  
COR2  
MAIN  
1.8V, 30mA LDO Output for Secondary Core. COR2 turns off when V < 3V or when ENC2 goes low.  
IN  
3.3V, 500mA LDO Output for Main Supply. MAIN output turns off when V < 3V.  
IN  
COR11V for CPU core guarantees 250mA and a  
Detailed Description  
typical current limit of 450mA.  
Linear Regulators  
COR21.8V for CODEC core guarantees 30mA and  
The MAX1559 contains all power blocks and voltage  
monitors for a small PDA. Power for logic and other  
subsystems are provided by four LDOs:  
a typical current limit of 50mA.  
Note that it may not be possible to draw the rated cur-  
rent of MAIN and SDIG at all operating input voltages  
due to the dropout limitations of those regulators. The  
typical dropout resistance of the MAIN regulator is 0.7  
(350mV drop at 500mA), and the typical dropout resis-  
tance of the SDIG regulator is 0.85(340mV drop at  
400mA).  
MAINProvides 3.3V at a guaranteed 500mA with a  
typical current limit of 900mA.  
SDIGProvides 3.3V at a guaranteed 400mA for  
secure digital cards with a typical current limit  
of 630mA.  
8
_______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
MAIN and COR1 regulators are always on as long as  
ESR and are commonly available in values up to 10µF.  
X7R and X5R dielectrics are recommended. Note that  
some ceramic dielectrics, such as Z5U and Y5V, exhib-  
it large capacitance and ESR variation with temperature  
and require larger than the recommended values to  
maintain stability over temperature.  
the IC is not in low-voltage shutdown (V < 3V). COR2  
IN  
and SDIG can be turned on and off independently by  
logic signals at ENC2 and ENSD, respectively, but can-  
not be activated if V < 3V.  
IN  
When SDIG is turned off, reverse current is blocked so  
the SDIG output can be biased with an external source  
when no power is present at IN. Leakage current is typ-  
ically 3µA with 3.3V at SDIG.  
LCD Boost Output  
Selecting an Inductor  
The LCD boost is designed to operate with a wide range  
of inductor values (4.7µH to 22µH). Smaller inductance  
values typically offer smaller size for a given series  
resistance or saturation current. Smaller values make LX  
switch more frequently for a given load and can reduce  
efficiency at low load currents. Larger values reduce  
switching losses due to less frequent switching for a  
given load, but higher resistance can then reduce effi-  
ciency. A 10µH inductor provides a good balance and  
works well for most applications. The inductors satura-  
tion current rating should be greater than the peak  
switching current (250mA); however, it is generally  
acceptable to bias some inductors into saturation by as  
much as 20%, although this slightly reduces efficiency.  
LCD DC-DC Boost  
In addition to the LDOs, the MAX1559 also includes a  
low-current, high-voltage DC-DC boost converter for  
LCD bias. This circuit can output at up to 28V and can  
be adjusted with either an analog or PWM control sig-  
nal using external components.  
SW provides an input-power disconnect for the LCD  
when ENLCD is low (off). The input-power disconnect  
function is ideal for applications that require the output  
voltage to fall to 0V in shutdown (True Shutdown). If True  
Shutdown is not required, the SW switch can be  
bypassed by connecting the boost inductor directly to IN  
and removing the bypass cap on SW (C9 in Figure 1).  
Selecting a Diode  
Schottky diodes rated at 250mA or more, such as the  
Motorola MBRS0530 or Nihon EP05Q03L are recom-  
mended. The diode reverse-breakdown voltage rating  
must be greater than the LCD output voltage.  
System Sleep  
All regulated outputs turn off when V falls below 3V.  
IN  
The MAX1559 resumes normal operation when V  
rises above 3.6V.  
IN  
Reset Output  
falls below 3.094V. RS  
Selecting Capacitors  
For most applications, use a small 1µF LCD output  
capacitor. This typically provides a peak-to-peak output  
ripple of 30mV. In addition, bypass IN with 1µF and SW  
with 4.7µF ceramic capacitors.  
Reset (RS) asserts when V  
MAIN  
is an open-drain, active-low output. Connect a 1MΩ  
resistor from RS to MAIN. To implement a reset  
deassertion delay, add a capacitor from RS to GND. An  
approximate 10ms delay can be generated with 1MΩ  
and 22nF. This results in a 22ms time constant, but  
assumes the input threshold of the CPU reset input is  
approximately 1V and is reached approximately 10ms  
after RS goes high impedance. Timing for RS, 3.3V  
MAIN, and 1V COR1 is shown in Figure 3.  
An LCD feed-forward capacitor, connected from the  
output to FB, improves stability over a wide range of  
battery voltages. A 10pF capacitor is sufficient for most  
applications; however, this value is also affected by PC  
board layout.  
Applications Information  
LDO Output Capacitors (MAIN, SDIG,  
COR1, and COR2)  
Setting the LCD Voltage  
Adjust the output voltage by connecting a voltage-  
divider from the output (V  
) to FB (Figure 1). Select  
OUT  
R2 between 10kand 200k. Calculate R1 with the fol-  
Capacitors are required at each output of the MAX1559  
for stable operation over the full load and temperature  
range. See Figure 1 for recommended capacitor values  
for each output. To reduce noise and improve load  
transients, large output capacitors at up to 10µF can be  
used. Surface-mount ceramic capacitors have very low  
lowing equation:  
R = R [(V / V ) - 1]  
OUT FB  
1
2
where V  
= 1.25V and V  
can range from V to  
FB  
OUT  
IN  
28V. The input bias current of FB is typically only 5nA,  
which allows large-value resistors to be used. For less  
_______________________________________________________________________________________  
9
5-Output Power-Management IC For  
Low-Cost PDAs  
AC ADAPTER  
INPUT  
MAX1559  
MAX1551  
3.5V TO 7V  
DC  
BATT  
MAIN  
SD  
IN  
3.3V, 500mA  
MAIN POWER  
C1  
1µF  
C2  
4.7µF  
1µF  
1µF  
SWIN  
3.3V, 400mA  
SD CARD SLOT  
C3  
4.7µF  
USB INPUT  
3.5V TO 6.0V  
TO MAIN  
USB  
COR1  
COR2  
1V, 250mA  
1µF  
CPU CORE 1  
C4  
POWER  
4.7µF  
PRESENT  
(EITHER DC  
OR USB)  
PG  
POK LOW WHEN  
EITHER USB OR DC  
IS ABOVE UV AND  
ABOVE BATT  
1.8V, 30mA  
CORE 2  
C5  
1µF  
LCD OFF  
SWITCH  
SW  
LX  
ENSD  
GND  
C6  
4.7µF  
L1  
ON  
ENC2  
10µH  
OFF  
MURATA  
LQH3C  
ENLCD  
LCD  
15V  
TO MAIN  
R1  
1.5MΩ  
C8  
47pF  
C7  
LCD  
BOOST  
R3  
1MΩ  
1µF  
LFB  
RESET OUT  
REF  
RS  
R2  
100kΩ  
C9  
22nF  
GND  
REF  
C10  
0.1µF  
CONNECTION FOR  
PWM-CONTROLLED  
LCD BIAS  
Figure 1. Typical Operating Circuit with Charger and External PWM LCD Control  
than 1% error, the current through R2 should be greater  
than 100 times the feedback input bias current (I ).  
FB  
voltage (V  
) can be calculated using the following  
DOUT  
formula:  
LCD Adjustment  
The LCD boost output can be digitally adjusted by  
either a DAC or PWM signal.  
1
R
R
(V  
V  
)R  
REF  
DOUT 1  
V
= V  
1+  
+
  
OUT  
REF  
R
2
D
DAC Adjustment  
Using a PWM Signal  
Adding a DAC and a resistor, R to the divider-circuit  
D,  
Many microprocessors have the ability to create PWM  
outputs. These are digital outputs, based on either 16-bit  
or 8-bit counters, with a programmable duty cycle. In  
many applications, they are suitable for adjusting the  
output of the MAX1559 as seen in Figure 1.  
(Figure 4) provides DAC adjustment of V  
. Ensure  
OUT  
that V  
does not exceed the LCD panel rating.  
OUT(MAX)  
The output voltage (V  
) as a function of the DAC  
OUT  
10 ______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
MAX1559  
3.3V, 500mA  
MAIN  
RS  
IN  
LDO  
CONTROL  
SWIN  
RESET  
OUTPUT  
REF  
LDO  
COR1  
SDIG  
1V, 250mA  
CONTROL  
LDO  
CONTROL  
3.3V, 400mA  
ENSD  
ENC2  
COR2  
SW  
LDO  
CONTROL  
ON  
1.8V, 30mA  
OFF  
ENLCD  
LCD OFF  
SWITCH  
LX  
LCD  
20V  
1mA  
LCD  
BOOST  
LFB  
BIAS  
CURRENT  
REF  
REF  
GND  
THSD  
Figure 2. Functional Diagram  
The circuit consists of the PWM source, capacitor C10,  
and resistors R and R . To analyze the transfer func-  
tion of the PWM circuit, it is easiest to first simplify it to  
its Thevenin equivalent. The Thevenin voltage can be  
calculated using the following formula:  
where D is the duty cycle of the PWM signal, V  
is the  
OH  
OL  
PWM output high level (often 3.3V), and V  
is the  
D
W
PWM output low level (usually 0V). For CMOS logic, this  
equation simplifies to:  
V
THEV  
= D V  
DD  
V
THEV  
= (D V ) + (1 - D) V  
OH OL  
______________________________________________________________________________________ 11  
5-Output Power-Management IC For  
Low-Cost PDAs  
where V  
is the I/O voltage of the PWM output. The  
DD  
Thevenin impedance is the sum of resistors R and R :  
W
D
R
= R + R  
D W  
THEV  
3.3V ACTIVATED  
3.3V DEACTIVATED  
V
IN  
WHEN V RISES  
WHEN V FALLS  
IN  
IN  
The output voltage (V  
) as a function of the PWM  
OUT  
TO 3.6V  
TO 3.0V  
average voltage (V  
) is:  
THEV  
3.3V  
COR1 NOT ACTIVATED  
R
(V  
V  
)×R  
1
REF  
THEV 1  
MAIN  
UNTIL 3.3V IN REGULATION  
V
= V  
× 1+  
+
OUT  
REF  
R
R
2
THEV  
COR1 DEACTIVATED AND  
RS LOW WHEN MAIN  
FALLS TO 3V  
1V  
COR1  
When using the PWM adjustment method, R isolates  
D
the capacitor from the feedback loop of the MAX1559.  
The cutoff frequency of the lowpass filter is defined as:  
RS  
OUTPUT  
1
f =  
RS EXTERNAL RC SET FOR  
10ms DELAY FROM 1V GOOD  
C
2× π ×R  
THEV  
The cutoff frequency should be at least 2 decades  
below the PWM frequency to minimize the induced AC  
ripple at the output.  
Figure 3. RS and Power-On, Power-Off Timing for 3.3V and 1V  
Core  
An important consideration is the turn-on transient cre-  
ated by the initial charge on the filter capacitor C10.  
Thermal Considerations  
In most applications, the circuit is located on a multilay-  
er board and full use of the four or more layers is rec-  
ommended. For heat dissipation, connect the exposed  
backside pad of the QFN package to a large analog  
ground plane, preferably on a surface of the board that  
receives good airflow. Typical applications use multiple  
ground planes to minimize thermal resistance. Avoid  
large AC currents through the analog ground plane.  
This capacitor forms a time constant with R  
, which  
THEV  
causes the output to initialize at a higher than intended  
voltage. This overshoot can be minimized by scaling  
R
as high as possible compared to R1 and R2.  
D
Alternately, the µP can briefly keep the LCD disabled  
until the PWM voltage has had time to stabilize.  
PC Board Layout and Grounding  
Careful PC board layout is important for minimizing  
ground bounce and noise. Keep the MAX1559s  
ground pin and the ground leads of the input and out-  
put capacitors less than 0.2in (5mm) apart. In addition,  
keep all connections to FB and LX as short as possible.  
In particular, external feedback resistors should be as  
close to FB as possible. To minimize output voltage rip-  
ple and to maximize output power and efficiency, use a  
ground plane and solder GND directly to the ground  
plane. Refer to the MAX1559 evaluation kit for a layout  
example.  
12 ______________________________________________________________________________________  
5-Output Power-Management IC For  
Low-Cost PDAs  
V
IN  
FEEDBACK  
RESISTORS  
SIMPLIFIED DC-DC CONVERTER  
R1  
AV  
DD  
i
i
1
2
R
D
ERROR AMP  
CONTROL  
V
DOUT  
DAC  
V
OUT  
(LCD BIAS)  
V
REF  
i
D
1.25V  
R2  
MAX1559  
Figure 4. Adjusting the Output Voltage with a DAC  
Chip Information  
Pin Configuration  
PROCESS: BiCMOS  
TOP VIEW  
TRANSISTOR COUNT: 1872  
16  
15  
14  
13  
COR1  
IN  
LFB  
SWIN  
SW  
1
2
3
4
12  
11  
10  
9
MAX1559  
SDIG  
ENSD  
LX  
5
6
7
8
THIN QFN  
______________________________________________________________________________________ 13  
5-Output Power-Management IC For  
Low-Cost PDAs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1559ETE+

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX1559ETE+T

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX1559ETE-T

Power Supply Support Circuit, Fixed, 1 Channel, 4 X 4 MM, 0.8 MM HEIGHT, MO-220-WGGC, TQFN-16
MAXIM

MAX155ACPI

8-/4-Channel ADCs with Simultaneous T/Hs and Reference
MAXIM

MAX155ACPI+

ADC, Successive Approximation, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDIP28, PLASTIC, DIP-28
MAXIM

MAX155ACWI

8-/4-Channel ADCs with Simultaneous T/Hs and Reference
MAXIM

MAX155ACWI+

ADC, Successive Approximation, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, SOIC-28
MAXIM

MAX155ACWI+T

ADC, Successive Approximation, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, SOIC-28
MAXIM

MAX155AEPI

8-/4-Channel ADCs with Simultaneous T/Hs and Reference
MAXIM

MAX155AEPI+

ADC, Successive Approximation, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDIP28, PLASTIC, DIP-28
MAXIM

MAX155AEWI

8-/4-Channel ADCs with Simultaneous T/Hs and Reference
MAXIM

MAX155AEWI+

ADC, Successive Approximation, 8-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, 0.300 INCH, SOIC-28
MAXIM