MAX15500 [MAXIM]

Industrial Analog Current/ Voltage-Output Conditioners; 工业级模拟电流/电压输出调理
MAX15500
型号: MAX15500
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Industrial Analog Current/ Voltage-Output Conditioners
工业级模拟电流/电压输出调理

文件: 总28页 (文件大小:3367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4602; Rev 1; 2/11  
Industrial Analog Current/  
Voltage-Output Conditioners  
General Description  
Features  
S Supply Voltage Up to Q32.5V  
S Output Protected Up to Q35V  
The MAX15500/MAX15501 analog output conditioners  
provide a programmable current up to Q24mA, or a volt-  
age up to Q12V proportional to a control voltage signal.  
The control voltage is typically supplied by an external  
DAC with an output voltage range of 0 to 4.096V for the  
MAX15500 and 0 to 2.5V for the MAX15501. The output  
current and voltage are selectable as either unipolar or  
bipolar. In the unipolar configuration, a control voltage  
of 5% full-scale (FS) produces a nominal output of 0A or  
0V to achieve underrange capability. A control voltage  
of 100%FS produces one of two programmable levels  
(105%FS or 120%FS) to achieve overrange capability.  
The outputs of the MAX15500/MAX15501 are protected  
against overcurrent conditions and a short to ground or  
supply voltages up to Q35V. The devices also monitor for  
overtemperature and supply brownout conditions. The  
supply brownout threshold is programmable.  
S Programmable Output (Plus Overrange)  
1ꢀV  
ꢀ to 1ꢀV  
ꢀ to 5V  
2ꢀmꢁ  
ꢀ to 2ꢀmꢁ  
4 to 2ꢀmꢁ  
S Current Output Drives ꢀ to 1kI  
S Voltage Output Drives Loads Down to 1kI  
S HꢁRT Compliant  
S 2ppm Gain Error Drift Over Temperature  
S SPI Interface, with Daisy-Chain Capability  
S Supports +4.ꢀ96V (MꢁX155ꢀꢀ) or +2.5V  
(MꢁX155ꢀ1) Full-Scale Input Signals  
S Extensive Error Reporting  
Short-Circuit and Overcurrent Protection  
Open-Circuit Detection  
The MAX15500/MAX15501 are programmed through an  
SPIK interface capable of daisy-chained operation. The  
MAX15500/MAX15501 provide extensive error reporting  
through the SPI interface and an additional open-drain  
interrupt output. The devices include an analog output to  
monitor load conditions.  
Brownout Detection  
Overtemperature Protection  
S Fast, 4ꢀµs Settling Time  
Ordering Information  
PꢁRT  
PIN-PꢁCKꢁGE  
32 TQFN-EP*  
32 TQFN-EP*  
REFERENCE  
MꢁX155ꢀꢀGTJ+  
MꢁX155ꢀ1GTJ+  
+4.096V  
The MAX15500/MAX15501 operate over the -40NC to  
+105NC temperature range. The devices are available in  
a 32-pin, 5mm x 5mm TQFN package.  
+2.5V  
Note: All devices are specified over the -40NC to +105NC oper-  
ating temperature range.  
Applications  
Programmable Logic Controllers (PLCs)  
Distributed I/Os  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
SPI is a trademark of Motorola, Inc.  
Embedded Systems  
Industrial Control and Automation  
Pin Configuration  
TOP VIEW  
Simplified Block Diagram  
24 23 22 21 20 19 18 17  
AVDD  
DVDD  
AVDDO  
16  
15  
SENSEVP 25  
AVDD 26  
N.C.  
AGND  
SCLK  
DIN  
DOUT  
CS1  
MAX15500  
MAX15501  
14 AIN  
27  
28  
29  
30  
31  
32  
AGND  
AVSS  
MON  
CS1  
SENSERN  
SPI  
INTERFACE  
REFIN  
AGND  
13  
12  
BIDIRECTIONAL  
SENSERP  
COMP  
OUT  
MAX15500  
MAX15501  
CURRENT  
DRIVER  
CS2  
READY  
AIN  
OVER-  
CURRENT  
11 FSMODE  
10 FSSEL  
ERROR  
HANDLING  
PROTECTION  
EP*  
7
CS2  
+
BIDIRECTIONAL  
VOLTAGE  
9
ERROR  
MON  
OUTDIS  
N.C.  
SENSEVP  
SENSEVN  
ERROR  
HANDLING  
1
2
3
4
5
6
8
DRIVER  
REFIN  
AVSS  
AVSSO  
AGND  
DGND  
FSMODE  
FSSEL  
OUTDIS  
TQFN  
*EXPOSED PAD.  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Industrial Analog Current/  
Voltage-Output Conditioners  
ꢁBSOLUTE MꢁXIMUM RꢁTINGS  
AVDD to AGND .....................................................-0.3V to +35V  
AVSS to AGND......................................................-35V to +0.3V  
AVDD to AVSS............................................................. 0 to +70V  
AVDD to AVDDO........................................................... 0 to +4V  
AVSS to AVSSO............................................................ -4V to 0V  
DGND to AGND ...................................................-0.3V to +0.3V  
AVDD to DVDD.........................................................-6V to +35V  
DVDD to DGND....................................................-0.3V to +6.0V  
CS1, CS2, SCLK, DIN, DOUT, READY, ERROR, FSMODE,  
MON, OUTDIS, FSSEL to DGND......................-0.3V to +6.0V  
AIN, REFIN to AGND............................................-0.3V to +6.0V  
SENSEVP, SENSEVN, SENSERP,  
SENSERN to AGND the higher of -35V and (V  
- 0.3V) to  
AVSS  
the lower of (V  
+ 0.3V) and +35V  
AVDD  
OUT, COMP to AGND.. the higher of -35V and (V  
- 0.3V) to  
AVSS  
the lower of (V  
+ 0.3V) and +35V  
AVDD  
Maximum Current on Pin............................................... 100mA  
Continuous Power Dissipation (derate 34.5mW/NC above +70NC)  
32-Pin TQFN (T = +70NC, multilayer board).........2758.6mW  
A
Operating Temperature Range........................ -40NC to +105NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICꢁL CHꢁRꢁCTERISTICS  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
POWER SUPPLY (Note 1)  
5% overrange (FSMODE = DVDD)  
20% overrange (FSMODE = DGND)  
5% overrange (FSMODE = DVDD)  
20% overrange (FSMODE = DGND)  
15  
24  
24  
32.5  
32.5  
-15  
Analog Positive Supply Voltage  
V
V
V
V
V
AVDD  
18.5  
-32.5  
-32.5  
-24  
-24  
Analog Negative Supply  
Voltage  
V
AVSS  
-18.5  
AVDD to AVDDO Voltage  
Difference  
V
(Note 1)  
(Note 1)  
2.5  
2.5  
AVDDO  
AVSS to AVSSO Voltage  
Difference  
V
AVSSO  
Digital Supply Voltage  
V
2.7  
-7  
5.25  
7
V
DVDD  
Analog Positive Supply Current  
Analog Negative Supply Current  
Digital Supply Current  
I
I
I
= I  
+ I , I  
= 0A  
= 0A  
5
mA  
mA  
mA  
AP  
AN  
AP  
AVDD  
AVDDO LOAD  
I
= I  
DVDD  
STBYP  
+ I  
, I  
-4.5  
0.1  
AN  
AVSS  
AVSSO LOAD  
I
V
= 5V  
0.4  
DVDD  
I
= I  
+ I  
, OUTDIS =  
AVDD  
AVDDO  
Analog Positive Standby Current  
Analog Negative Standby Current  
I
1
mA  
mA  
STBYP  
DGND or software standby mode  
I
= I + I , OUTDIS =  
STBYN  
AVSS  
AVSSO  
I
-0.5  
STBYN  
DGND or software standby mode  
ꢁNꢁLOG INPUT (ꢁIN, REFIN)  
Input Impedance  
R
C
10  
10  
kI  
IN  
Input Capacitance  
pF  
IN  
FSSEL = DVDD, MAX15500  
FSSEL = DGND, MAX15501  
FSSEL = DVDD, MAX15500  
FSSEL = DGND, MAX15501  
4.0  
2.4  
4.0  
2.4  
4.096  
2.5  
4.2  
2.6  
4.2  
2.6  
Analog Input Full Scale  
REFIN Full-Scale Input  
V
V
V
AIN  
4.096  
2.5  
V
REFIN  
2
______________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
CURRENT OUTPUT (Note 2)  
V
V
= +24V, V = -24V  
750  
1000  
15  
AVDD  
AVDD  
AVSS  
Maximum Load Resistance  
R
I
LOAD  
= +32.5V, V  
= -32.5V  
AVSS  
Maximum Load Inductance  
Maximum Load Capacitance  
L
C
= 100nF (Note 3)  
= 4.7nF  
mH  
LOAD  
COMP  
COMP  
C
C
100  
FF  
LOAD  
To 0.1% accuracy,  
L
= 20FH,  
40  
LOAD  
C
COMP  
= 0nF  
To 0.1% accuracy,  
L
= 1mH,  
500  
LOAD  
C
COMP  
= 0.15nF  
Full-scale step  
from 0 to 20mA or  
-20mA to + 20mA,  
To 0.1% accuracy,  
L
= 10mH,  
= 0.15nF  
500  
60  
LOAD  
C
COMP  
R
= 750I  
LOAD  
To 0.01% accuracy,  
L
= 20FH,  
LOAD  
C
COMP  
= 0nF  
To 0.01% accuracy,  
L
C
= 10mH,  
= 0.15nF  
600  
20  
LOAD  
COMP  
Maximum Settling Time  
Fs  
To 0.1% accuracy,  
L
= 20FH,  
LOAD  
C
COMP  
= 0nF  
To 0.1% accuracy,  
L
= 1mH,  
100  
LOAD  
C
COMP  
= 0.15nF  
To 0.1% accuracy,  
1% full-scale step,  
L
LOAD  
= 10mH,  
= 0.15nF  
100  
R
LOAD  
= 750I  
C
COMP  
To 0.01% accuracy,  
L
= 20FH,  
40  
LOAD  
C
COMP  
= 0nF  
To 0.01% accuracy,  
L
C
= 10mH,  
= 0.15nF  
200  
LOAD  
COMP  
V
V
= V  
= V  
Q21  
Q24  
FSMODE  
DVDD  
Full-Scale Output Current  
I
mA  
OUT  
FSMODE  
DGND  
_______________________________________________________________________________________  
3
Industrial Analog Current/  
Voltage-Output Conditioners  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
Offset Error  
SYMBOL  
CONDITIONS  
= 5% of V (unipolar mode),  
MIN  
TYP  
Q0.1  
Q5  
MꢁX  
UNITS  
%FS  
V
V
AIN  
REFIN  
Q0.5  
= 50% of V  
(bipolar mode)  
AIN  
REFIN  
Offset-Error Drift  
ppm/NC  
0.01% precision  
, tested  
according to the  
ideal transfer  
functions shown in  
Table 8  
R
MAX15500  
MAX15501  
Q0.1  
Q0.1  
Q0.51  
Q0.5  
SENSE  
Gain Error  
GE  
%FS  
Gain-Error Drift  
No R  
drift  
Q2  
ppm/NC  
SENSE  
Integral Nonlinearity Error  
INL  
0.05  
%FS  
(dI  
/dV  
), I  
= 24mA, R  
=
OUT  
OUT OUT  
LOAD  
Output Conductance  
750Ito 0I, FSMODE = DGND, unipolar  
mode  
1.0  
1.6  
FA/V  
At DC, V  
= +24V to +32.5V, V  
AVSS  
AVDD  
Power-Supply Rejection Ratio  
PSRR  
= -24V to -32.5V, V  
= V , unipolar  
REFIN  
FA/V  
AIN  
mode, FSMODE = DVDD  
Overcurrent Limit  
R
shorted  
25  
30  
20  
40  
mA  
SENSE  
0.1Hz to 10Hz  
At 1kHz  
nA  
RMS  
Output Current Noise  
2.6  
1.5  
30  
nA/Hz  
mA/Fs  
kHz  
Output Slew Rate  
Small-Signal Bandwidth  
Maximum OUT Voltage to  
AVDDO  
V
V
- V  
2.0  
2.0  
V
V
AVDDO  
OUT  
Minimum OUT Voltage to  
AVSSO  
- V  
OUT  
AVSSO  
VOLTꢁGE OUTPUT (R  
= 1kI)  
LOꢁD  
Minimum Resistive Load  
Maximum Capacitive Load  
R
C
1
kI  
FF  
LOAD  
C
COMP  
= 4.7nF  
100  
LOAD  
To 0.1% accuracy, load = 1kIin parallel  
with 1nF, C = 0nF  
20  
1000  
30  
COMP  
To 0.1% accuracy, load = 1kIin parallel  
with 1FF, C = 4.7nF  
COMP  
Maximum Settling Time (Full-  
Scale Step)  
Fs  
To 0.01% accuracy, load = 1kIin parallel  
with 1nF, C = 0nF  
COMP  
To 0.01% accuracy, load = 1kIin parallel  
with 1FF, C = 4.7nF  
1300  
COMP  
4
______________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
To 0.1% accuracy, load = 1kIin parallel  
with 1nF, C = 0nF  
MIN  
TYP  
MꢁX  
UNITS  
10  
COMP  
To 0.1% accuracy, load = 1kIin parallel  
with 1FF, C = 4.7nF  
300  
20  
COMP  
Maximum Settling Time  
(1% Full-Scale Step)  
Fs  
To 0.01% accuracy, load = 1kIin parallel  
with 1nF, C = 0nF  
COMP  
To 0.01% accuracy, load = 1kIin parallel  
with 1FF, C = 4.7nF  
600  
Q0.1  
COMP  
Tested according to the ideal transfer  
functions shown in Table 9  
Gain Error  
Q0.5  
Q0.5  
45  
%FS  
Gain-Error Drift  
Q2  
ppm/NC  
5V range  
FSMODE = DVDD  
5.25  
10V range  
10.5  
6
Full-Scale Output Voltage  
V
V
OUT  
5V range  
FSMODE = DGND  
10V range  
12  
V
V
= 5% of V  
= 50% of V  
(unipolar mode),  
AIN  
AIN  
REFIN  
Offset Error  
Q0.1  
%FS  
(bipolar mode)  
REFIN  
Offset-Error Drift  
Q2  
ppm/NC  
Integral Nonlinearity Error  
INL  
0.05  
%FS  
At DC, V  
= +18.5V to +32.5V, V  
AVSS  
AVDD  
Power-Supply Rejection  
Output-Voltage Noise  
PSRR  
30  
FV/V  
= -18.5V to -32.5V, V  
0.1Hz to 10Hz  
1kHz  
= V  
REFIN  
AIN  
16.3  
250  
1.5  
FV  
RMS  
nV/Hz  
V/Fs  
Output-Voltage Slew Rate  
Short-Circuit Current  
20  
30  
mA  
Maximum OUT Voltage to  
AVDDO  
V
V
- V  
2.0  
2.0  
V
V
AVDDO  
OUT  
Minimum OUT Voltage to  
AVSSO  
- V  
OUT  
AVSSO  
_______________________________________________________________________________________  
5
Industrial Analog Current/  
Voltage-Output Conditioners  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
OUTPUT MONITOR (MON)  
Current mode, see the Output Monitor  
section for V equations  
3
MON  
Maximum Output Voltage  
Output Resistance  
V
Voltage mode, see the Output Monitor  
section for V equations  
3
MON  
35  
kI  
OVERTEMPERꢁTURE DETECTION  
Overtemperature Threshold  
+150  
10  
NC  
NC  
Overtemperature Threshold  
Hysteresis  
DIGITꢁL INPUTS (CS1, CS2, SCLK, DIN, OUTDIS, FSSEL, FSMODE)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
DVDD  
0.3 x  
V
IL  
V
DVDD  
Input Hysteresis  
V
300  
Q0.1  
10  
mV  
FA  
pF  
IHYST  
Input Leakage Current  
Input Capacitance  
I
V
= 0V or V  
DVDD  
Q1.0  
IN  
INPUT  
C
IN  
DIGITꢁL OUTPUT (DOUT, READY)  
Output Low Voltage  
V
I
I
= 4mA  
0.4  
V
V
OL  
OH  
OZ  
SINK  
V
-
DVDD  
0.5  
Output High Voltage  
V
= 4mA  
SOURCE  
Output Three-State Leakage  
Output Three-State Capacitance  
Output Short-Circuit Current  
I
DOUT only  
DOUT only  
Q0.1  
15  
Q10  
FA  
pF  
C
OZ  
I
V
= 5.25V  
Q150  
mA  
OSS  
DVDD  
DIGITꢁL INTERRUPT (ERROR)  
Interrupt Active Voltage  
V
INT  
I
= 5.0mA  
0.4  
V
SINK  
Interrupt Inactive Leakage  
Interrupt Inactive Capacitance  
Interrupt Short-Circuit Current  
I
Q0.1  
15  
Q1.0  
FA  
pF  
mA  
INTZ  
C
INTZ  
I
V
= 2.7V  
5
30  
INTSS  
DVDD  
6
______________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
ELECTRICꢁL CHꢁRꢁCTERISTICS (continued)  
(V  
AVDD  
= +24V, V  
= -24V, V  
= 5.0V, C  
= 1nF, C  
= 0nF, V  
= 4.096V for the MAX15500, V = 2.5V for  
REFIN  
AVSS  
DVDD  
LOAD  
COMP  
REFIN  
the MAX15501. All specifications for T = -40NC to +105NC. Typical values are at T = +25NC, unless otherwise noted.)  
A
A
PꢁRꢁMETER  
TIMING CHꢁRꢁCTERISTICS  
Serial-Clock Frequency  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MꢁX  
UNITS  
f
(Note 4)  
0
20  
20  
15  
0
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
t
40% duty cycle  
60% duty cycle  
To 1st SCLK falling edge  
(Note 5)  
CH  
t
CL  
t
CS_ Fall to SCLK Fall Setup Time  
SCLK Fall to CS_ Fall Hold Time  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
SCLK Fall to DOUT Settle Time  
SCLK Fall to DOUT Hold Time  
SCLK Fall to DOUT Disable  
CSS  
CSH  
t
t
15  
0
DS  
t
DH  
t
C
C
= 20pF  
= 0pF  
30  
DOT  
LOAD  
t
2
DOH  
LOAD  
t
14th SCLK deassertion (Note 6)  
30  
30  
35  
35  
35  
DOZ  
t
16th SCLK assertion, C  
= 0pF or 20pF  
2
1
SCLK Fall to READY Fall  
CS_ Fall to DOUT Enable  
CS_ Rise to DOUT Disable  
CS_ Rise to READY Rise  
CS_ Pulse-Width High  
CR  
LOAD  
t
Asynchronous assertion  
Asynchronous deassertion  
Asynchronous deassertion, C  
DOE  
t
CSDOZ  
t
= 20pF  
LOAD  
CSR  
t
15  
CSW  
Note 1: Use diodes as shown in the Typical Operating Circuit/Functional Diagram to ensure a voltage difference of 2V to 3.5V  
from AVDD to AVDDO and from AVSS to AVSSO.  
Note 2: R  
= 750I. For the MAX15500, R  
= 48.7I for FSMODE = DVDD and R  
= 42.2I for FSMODE = DGND.  
LOAD  
SENSE  
SENSE  
= 41.2I for FSMODE = DGND. See the Typical  
SENSE  
For the MAX15501, R  
Operating Circuit/Functional Diagram.  
= 47.3I for FSMODE = DVDD and R  
SENSE  
Note 3: Condition at which part is stable.  
Note 4: The maximum clock speed for daisy-chain applications is 10MHz.  
Note 5: t  
is applied to CS_ falling to determine the 1st SCLK falling edge in a free-running SCLK application. It is also applied  
CSH  
to CS_ rising with respect to the 15th SCLK falling edge to determine the end of the frame.  
Note 6: After the 14th SCLK falling edge, the MAX15500/MAX15501 outputs are high impedance and DOUT data is ignored.  
_______________________________________________________________________________________  
7
Industrial Analog Current/  
Voltage-Output Conditioners  
Typical Operating Characteristics  
(V  
AVDD  
= +24V, V  
= +5V, V  
= -24V, C  
= 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output  
DVDD  
AVSS  
LOAD  
mode, V  
= +4.096V, T = +25NC, unless otherwise specified.)  
A
REFIN  
VOLTAGE-MODE OUTPUT SLEW  
RATE vs. TEMPERATURE  
CURRENT-MODE OUTPUT SLEW  
RATE vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
C
= 750I  
= 1FF  
NO LOAD  
LOAD  
LOAD  
NO LOAD  
6
4
2
I
AVDD  
0
-2  
-4  
-6  
-8  
10  
I
AVSS  
-40 -25 -10  
5
20 35 50 65 80 95 105  
-40 -25 -10  
5
20 35 50 65 80 95 105  
-40 -25 -10  
5
20 35 50 65 80 95 105  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
VOLTAGE-MODE OUTPUT NOISE  
vs. FREQUENCY  
CURRENT-MODE OUTPUT NOISE  
vs. FREQUENCY  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0V  
V
= 200mV  
AIN  
AIN  
UNIPOLAR  
UNIPOLAR  
VOLTAGE  
MODE (0 to 5V)  
CURRENT MODE  
(0 to 20mA)  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
VOLTAGE-MODE PSRR  
vs. SUPPLY VOLTAGE  
DIGITAL FEEDTHROUGH  
MAX15500 toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.096V  
AIN  
SCLK  
2V/div  
V
OUT  
(AC-COUPLED)  
1mV/div  
SCLK = DIN  
SCLK = 1MHz  
CS_ = HIGH  
V
= 0.5 x V  
AIN  
REFIN  
24  
26  
28  
30  
32  
400ns/div  
SUPPLY VOLTAGE (V)  
8
______________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= +24V, V  
= +5V, V  
= -24V, C  
= 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output  
DVDD  
AVSS  
LOAD  
mode, V  
= +4.096V, T = +25NC, unless otherwise specified.)  
REFIN  
A
CURRENT-MODE PSRR vs.  
SUPPLY VOLTAGE  
LOAD TRANSIENT (VOLTAGE MODE)  
MAX15500 toc09  
1.0  
0.9  
0.8  
0.7  
0.6  
I
OUT  
10mA/div  
OmA  
V
OUT (AC-COUPLED)  
20mV/div  
0.5  
0.4  
0.3  
0.2  
0.1  
0
24 25 26 27 28 29 30 31 32  
SUPPLY VOLTAGE (V)  
40Fs/div  
FULL-SCALE OUTPUT VOLTAGE  
vs. TEMPERATURE  
LOAD TRANSIENT (CURRENT MODE)  
MAX15500 toc10  
20  
16  
12  
8
V
= 4.096V  
AIN  
V
OUT  
10V/div  
O
4
I
OUT  
0
10mA/div  
-4  
-8  
0mA  
-12  
-16  
-20  
40Fs/div  
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (NC)  
OUTPUT CURRENT DRIFT  
vs. TEMPERATURE  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
10  
6
2.0  
1.5  
V
= 4.096V  
AIN  
NO LOAD  
1.0  
I
0.5  
AVDD  
2
0
-2  
-6  
-10  
-0.5  
-1.0  
-1.5  
-2.0  
I
AVSS  
-40 -25 -10  
5
20 35 50 65 80 95  
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
_______________________________________________________________________________________  
9
Industrial Analog Current/  
Voltage-Output Conditioners  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= +24V, V  
= +5V, V  
= -24V, C  
= 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output  
DVDD  
AVSS  
LOAD  
mode, V  
= +4.096V, T = +25NC, unless otherwise specified.)  
A
REFIN  
GAIN vs. FREQUENCY  
(HART COMPLIANT)  
WAKEUP FROM STANDBY  
(VOLTAGE MODE)  
WAKEUP FROM STANDBY  
(CURRENT MODE)  
MAX15500 toc14  
MAX15500 toc15  
0
-4  
BIPOLAR  
CURRENT MODE  
OUTDIS  
2V/div  
2V/div  
OUTDIS  
-8  
0V  
-12  
-16  
-20  
5V/div  
V
OUT  
I
OUT  
UNIPOLAR  
CURRENT MODE  
10mA/div  
0V  
FULL-SCALE INPUT  
BIPOLAR VOLTAGE MODE  
5% OVERRANGE  
V
= 40mV  
P-P  
AIN  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
40Fs/div  
50Fs/div  
SMALL-SIGNAL STEP RESPONSE  
SMALL-SIGNAL STEP RESPONSE  
(VOLTAGE MODE)  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
(CURRENT MODE)  
MAX15500 toc17  
MAX15500 toc18  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
30.5  
30.0  
V
= 4.096V  
AIN  
V
AIN  
(AC-COUPLED)  
50mV/div  
V
AIN  
20mV/div  
V
OUT  
I
OUT  
(AC-COUPLED)  
100mV/div  
100FA/div  
5Fs/div  
1Fs/div  
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (NC)  
VOLTAGE-MODE MON TRANSFER  
CURVE vs. OUTPUT CURRENT  
CURRENT-MODE MON TRANSFER  
CURVE vs. OUTPUT VOLTAGE  
VOLTAGE-MODE MAXIMUM OUT TO  
AVDDO VOLTAGE vs. TEMPERATURE  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
AIN  
= 4.096V  
V
= 4.096V  
AIN  
V
= 4.096V  
AIN  
NO LOAD ON MON  
NO LOAD ON MON  
0
1
2
3
4
5
6
7
8
9
10 11  
0
4
8
12  
16  
-40 -25 -10  
5
20 35 50 65 80 95  
I
(mA)  
V
(V)  
OUT  
TEMPERATURE (NC)  
OUT  
1ꢀ _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= +24V, V  
= +5V, V  
= -24V, C  
= 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output  
DVDD  
AVSS  
LOAD  
mode, V  
= +4.096V, T = +25NC, unless otherwise specified.)  
A
REFIN  
LARGE-SIGNAL SETTLING TIME  
(VOLTAGE MODE, RISING EDGE)  
CURRENT-MODE OUTPUT  
CONDUCTANCE vs. OUTPUT VOLTAGE  
LARGE-SIGNAL SETTLING TIME  
(VOLTAGE MODE, FALLING EDGE)  
MAX15500 toc24  
MAX15500 toc25  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R = 1kI  
R = 1kI  
L
L
V
AIN  
5V/div  
C = 1nF, C  
= 0nF  
L
COMP  
V
AIN  
V
OUT  
5V/div  
5V/div  
C = 47nF, C  
= 0nF  
L
COMP  
C = 470nF, C  
= 4.7nF  
L
COMP  
0
C = 470nF, C  
L
= 4.7nF  
COMP  
C = 47nF, C  
L
= 0nF  
COMP  
V
OUT  
5V/div  
C = 1nF, C  
L
= 0nF  
COMP  
100Fs/div  
0
2
4
6
8
10 12 14 16  
100Fs/div  
OUTPUT VOLTAGE (V)  
LARGE-SIGNAL SETTLING TIME  
(VOLTAGE MODE, RISING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(VOLTAGE MODE, RISING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, RISING EDGE)  
MAX15500 toc26  
MAX15500 toc27  
MAX15500 toc28  
R = 1kI  
L
R = 1kI  
L
R = 750I  
L
V
V
V
AIN  
5V/div  
AIN  
AIN  
L = 22FH, C = 0nF  
L COMP  
C = 1FF, C  
= 4.7nF  
5V/div  
5V/div  
L
COMP  
C = 10FF,  
L
C = 100FF,  
L
C
= 4.7nF  
COMP  
C
= 4.7nF  
COMP  
L = 220FH, C  
= 0nF  
L
COMP  
V
OUT  
V
OUT  
L = 1mH, C  
L
= 1nF  
5V/div  
COMP  
C = 100FF,  
L
C = 10FF,  
L
C
= 4.7nF  
COMP  
C
= 4.7nF  
COMP  
C = 1FF, C  
= 4.7nF  
L
COMP  
I
OUT  
4mA/div  
10ms/div  
10ms/div  
200Fs/div  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, FALLING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, RISING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, FALLING EDGE)  
MAX15500 toc29  
MAX15500 toc30  
MAX15500 toc31  
R = 750I  
L
R = 20I  
L
R = 20I  
L
V
V
AIN  
5V/div  
AIN  
V
AIN  
L = 22FH, C  
= 0.15nF  
5V/div  
L
COMP  
L = 22FH, C  
= 0nF  
L
COMP  
L = 220FH,  
L
L = 220FH, C  
L
= 0nF  
COMP  
C
= 0.47nF  
COMP  
L = 1mH, C  
= 1nF  
L
COMP  
L = 1mH, C  
= 1nF  
L
COMP  
L = 1mH, C  
L
= 1nF  
COMP  
L = 220FH,  
L
I
C
= 0.47nF  
OUT  
COMP  
I
I
OUT  
OUT  
4mA/div  
4mA/div  
4mA/div  
L = 22FH, C  
= 0.15nF  
L
COMP  
200Fs/div  
20Fs/div  
20Fs/div  
______________________________________________________________________________________ 11  
Industrial Analog Current/  
Voltage-Output Conditioners  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= +24V, V  
= +5V, V  
= -24V, C  
= 1nF, 5% overrange mode, unipolar current output or bipolar voltage-output  
DVDD  
AVSS  
LOAD  
mode, V  
= +4.096V, T = +25NC, unless otherwise specified.)  
A
REFIN  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, RISING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, RISING EDGE)  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, FALLING EDGE)  
MAX15500 toc32  
MAX15500 toc34  
MAX15500 toc33  
R = 750I  
L
R = 20I  
L
R = 750I  
L
L = 10mH, C  
= 10nF  
L
COMP  
V
AIN  
V
V
AIN  
5V/div  
AIN  
5V/div  
5V/div  
L = 50mH, C  
= 100nF  
= 470nF  
L
COMP  
L = 80mH, C  
= 470nF  
L = 50mH, C  
L
= 100nF  
L
COMP  
COMP  
L = 80mH, C  
L
COMP  
L = 50mH, C  
= 100nF  
L
COMP  
L = 80mH,  
L
L = 10mH, C  
= 10nF  
L
COMP  
C
= 470nF  
COMP  
I
L = 10mH, C  
= 10nF  
OUT  
L
COMP  
I
OUT  
4mA/div  
4mA/div  
I
OUT  
4mA/div  
100ms/div  
10ms/div  
100ms/div  
LARGE-SIGNAL SETTLING TIME  
(CURRENT MODE, FALLING EDGE)  
CURRENT-MODE INL  
VOLTAGE-MODE INL  
MAX15500 toc35  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
R = 20I  
L
V
AIN  
20V/div  
L = 80mH, C  
= 470nF  
L
COMP  
L = 50mH, C  
= 100nF  
= 10nF  
L
COMP  
L = 10mH, C  
L
COMP  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
I
OUT  
4mA/div  
10ms/div  
0
0.6 1.2 1.8 2.4 3.0 3.6 4.2  
0
0.6 1.2 1.8 2.4 3.0 3.6 4.2  
(V)  
V
(V)  
V
AIN  
AIN  
CURRENT-MODE  
OPEN-CIRCUIT DETECTION  
VOLTAGE-MODE  
SHORT-CIRCUIT DETECTION  
MAX15500 toc39  
MAX15500 toc38  
I
50mA/div  
OUT  
50mA/div  
2V/div  
0mA  
I
OUT  
0mA  
ERROR  
ERROR  
2V/div  
100ms/div  
100ms/div  
12 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
Pin Description  
PIN  
1
NAME  
SCLK  
DIN  
FUNCTION  
SPI Clock Input. Activate SCLK only when CS_ is low to minimize noise coupling.  
SPI Data Input. Data is clocked into the serial interface on the falling edge of SCLK.  
2
SPI Data Output. Data transitions at DOUT on the falling edge of SCLK. DOUT is high impedance  
when either CS1 or CS2 is high.  
3
4
DOUT  
Active-Low Device Ready Output. READY is an active-low output that goes low when the device  
successfully completes processing an SPI data frame. READY returns high at the next rising edge  
of CS_. In daisy-chain applications, the READY output typically drives the CS_ input of the next  
device in the chain or a GPIO of a microcontroller.  
READY  
Active-Low Flag Output. ERROR is an open-drain output that pulls low when output short circuit,  
output open circuit, overtemperature, or brownout conditions occur. ERROR typically drives an  
interrupt input of a microcontroller. The ERROR output is cleared after the internal error register is  
read through the SPI interface. Connect a 10kΩ pullup resistor from ERROR to DVDD.  
5
ERROR  
Digital Power-Supply Voltage Input. Apply either a 3V or 5V nominal voltage supply to DVDD.  
DVDD powers the digital portion of the MAX15500/MAX15501. Bypass DVDD to DGND with a 0.1FF  
capacitor as close as possible to the device.  
6
7
DVDD  
DGND  
N.C.  
Digital Ground  
8, 16,  
24, 32  
No Connection. Not internally connected.  
Active-Low Output Disable Input. OUTDIS is an active-low logic input that forces the analog output  
to 0A or 0V and puts the device in standby mode when connected to DGND. Connect OUTDIS to  
DVDD for normal operation.  
9
OUTDIS  
Full-Scale Select Input. Connect FSSEL to DVDD for the MAX15500 when applying a +4.096V  
reference at REFIN. Connect FSSEL to DGND for the MAX15501 when applying a +2.50V reference  
at REFIN.  
10  
FSSEL  
Overrange Mode Select Input. Connect FSMODE to DVDD to set the output voltage to 105%FS  
when the input voltage is equal to the full-scale value. Connect FSMODE to DGND to set the output  
voltage to 120%FS when the input voltage is equal to the full-scale value. FSMODE has no effect in  
current mode.  
11  
FSMODE  
12, 15, 27  
13  
AGND  
REFIN  
Analog Ground  
Reference Voltage Input. Connect REFIN to an external +4.096V reference for the MAX15500 or  
+2.5V reference for the MAX15501. REFIN is used to set the offset for unipolar and bipolar modes.  
Analog Signal Input. The analog input signal range at AIN is from 0V to the nominal full scale of  
+4.096V for the MAX15500 and +2.5V for the MAX15501.  
14  
17  
18  
AIN  
Negative Output Driver Supply Voltage Input. AVSSO provides power to the driver output stage.  
Bypass AVSSO to AVSS with a 0.1FF capacitor. Use diodes as shown in the Typical Operating  
Circuit/Functional Diagram to ensure a voltage difference of 2V to 3.5V between AVSS and AVSSO.  
AVSSO  
COMP  
Output Amplifier Compensation Feedback Node. Connect a compensation capacitor from COMP to  
OUT. See Table 10 for the recommended compensation capacitor values.  
______________________________________________________________________________________ 13  
Industrial Analog Current/  
Voltage-Output Conditioners  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Analog Output. The analog voltage or current output range at OUT is programmable. See Tables  
1 to 4 for possible output range settings.  
19  
OUT  
Positive Output Driver Supply Voltage Input. AVDDO provides power to the driver output stage.  
Bypass AVDDO to AVDD with a 0.1FF capacitor. Use diodes as shown in the Typical Operating  
Circuit/Functional Diagram to ensure a voltage difference of 2V to 3.5V between AVDD and  
AVDDO.  
20  
AVDDO  
Sense Resistor Positive Connection. See the Typical Operating Circuit/Functional Diagram for the  
typical connection.  
21  
22  
23  
25  
SENSERP  
SENSERN  
SENSEVN  
SENSEVP  
Sense Resistor Negative Connection. See the Typical Operating Circuit/Functional Diagram for the  
typical connection.  
Kelvin Sense Voltage Negative Input. See the Typical Operating Circuit/Functional Diagram for the  
typical connection.  
Kelvin Sense Voltage Positive Input. See the Typical Operating Circuit/Functional Diagram for the  
typical connection.  
26  
28  
29  
30  
31  
AVDD  
AVSS  
MON  
CS1  
Positive Analog Supply Voltage Input. Bypass AVDD to AGND with a 0.1FF capacitor.  
Negative Analog Supply Voltage Input. Bypass AVSS to AGND with a 0.1FF capacitor.  
Load Monitoring Output. MON provides an analog 0 to 3V output. See the Output Monitor section.  
Active-Low SPI Chip-Select Input 1. See the SPI Interface section.  
Active-Low SPI Chip-Select Input 2. See the SPI Interface section.  
CS2  
Exposed Pad. Internally connected to AVSS. Connect to AVSS. Connect to a large copper area to  
maximize thermal performance. Do not connect ground or signal lines through EP.  
EP  
14 _____________________________________________________________________________________  
Typical Operating Circuit/Functional Diagram  
24V  
5V  
0.1FF  
0.1FF  
0.1FF  
DVDD  
AVDD  
AVDDO  
10kI  
AIN  
DAC  
SENSEVP  
CABLE1  
SENSERP  
COMP  
PGA  
C
COMP  
R
SENSE  
OUT  
CABLE2  
CABLE3  
10kI  
REFIN  
2.5V/4.096V  
REF  
SENSERN  
R
LOAD  
C
LOAD  
SENSEVN  
OFFSET  
GENERATOR  
OUTPUT STAGE  
DIN  
SCLK  
CS1  
CS2  
DOUT  
DVDD  
POR  
WRITE  
SCLK  
MON  
SPI INTERFACE/  
LOGIC I/O  
BROWNOUT  
ADC  
CS  
TEMP  
MONITOR  
FC  
MAX15500  
MAX15501  
READ  
AGND  
DGND  
0.1FF  
AVSSO  
AVSS  
ERROR  
INT  
READY  
GPIO  
DVDD  
0.1FF  
-24V  
*FSSEL IS CONNECTED TO DGND FOR THE MAX15501.  
Industrial Analog Current/  
Voltage-Output Conditioners  
device applications. The MAX15500/MAX15501 provide  
Detailed Description  
extensive error reporting of short-circuit, open-circuit,  
brownout, and overtemperature conditions through the  
SPI interface and an additional open-drain interrupt  
output (ERROR). The MAX15500/MAX15501 include an  
analog 0 to 3V output (MON) to monitor the load condi-  
tion at OUT.  
The MAX15500/MAX15501 output a programmable cur-  
rent up to Q24mA or a voltage up to Q12V proportional to  
a control signal at AIN. The devices operate from a dual  
15V to 32.5V supply. The control voltage applied at AIN  
is typically supplied by an external DAC with an output  
voltage range of 0 to 4.096V for the MAX15500 and 0  
to 2.5V for the MAX15501. The MAX15500/MAX15501  
are capable of both unipolar and bipolar current and  
voltage outputs. In current mode, the devices produce  
currents of -1.2mA to +24mA or -24mA to +24mA. In  
voltage mode, the devices produce voltages of -0.3V  
to +6V, -0.6V to +12V, or Q12V. To allow for overrange  
and underrange capability in unipolar mode, the transfer  
function of the MAX15500/MAX15501 is offset such that  
Analog Section  
The MAX15500/MAX15501 support two output modes:  
current and voltage. Each mode has different full-scale  
output values depending on the state of FSMODE as  
detailed in Tables 1 to 4 and Figures 1 and 2. Use the  
device configuration register in Table 6 to select the  
desired voltage or current output range.  
Startup  
During startup, the MAX15500/MAX15501 output is set  
to zero and all register bits are set to zero. The devices  
remain in standby mode until they are configured  
through the SPI interface.  
when the voltage at AIN is 5% of full scale, I  
is 0mA  
OUT  
and V  
is 0V. Once V  
attains full scale, V  
or  
OUT  
AIN  
OUT  
I
becomes full scale +5% or +20% depending on  
OUT  
the state of FSMODE. The MAX15500/MAX15501 are  
protected against overcurrent and short-circuit condi-  
tions when OUT goes to ground or a voltage up to  
Q32.5V. The devices also monitor for overtemperature  
and supply brownout conditions. The supply brownout  
threshold is programmable between 10V and 24V in  
2V increments.  
Input Voltage Range  
The input voltage full-scale level is selectable between  
2.5V and 4.096V using logic input FSSEL. The MAX15500  
is specified for a 0 to 4.096V input voltage range, while  
the MAX15501 is specified for a 0 to 2.500V input volt-  
age range. Connect FSSEL to DVDD to set the input  
range to 0 to 4.096V for the MAX15500. Connect FSSEL  
to DGND to set the input range to 0 to 2.500V for the  
MAX15501.  
The MAX15500/MAX15501 are programmed through an  
SPI interface with daisy-chain capability. A device ready  
logic output (READY) and two device select inputs (CS1  
and CS2) facilitate a daisy-chain arrangement for multiple  
Table 1. Output Values for FSMODE =  
DVDD, Unipolar 5% Overrange  
Table 3. Output Values for FSMODE =  
DVDD, Bipolar 5% Overrange  
OUTPUT VALUES  
OUTPUT RANGE  
OUTPUT VALUES  
OUTPUT RANGE  
V
AIN  
= 5%FS  
V
AIN  
= FS  
V
AIN  
= 0V  
V
= FS  
AIN  
Q20mA  
Q10V  
-21mA  
-10.5V  
+21mA  
+10.5V  
0 to 20mA  
(4mA to 20mA)  
0mA  
21mA  
0 to 5V  
0V  
0V  
5.25V  
10.5V  
0 to 10V  
Table 2. Output Values for FSMODE =  
DGND, Unipolar 20% Overrange  
Table 4. Output Values for FSMODE =  
DGND, Bipolar 20% Overrange  
OUTPUT VALUES  
OUTPUT VALUES  
OUTPUT RANGE  
OUTPUT RANGE  
V
AIN  
= 0V  
V
= FS  
AIN  
V
AIN  
= 5%FS  
V
AIN  
= FS  
Q20mA  
Q10V  
-24mA  
-12V  
+24mA  
+12V  
0 to 20mA  
(4mA to 20mA)  
0mA  
24mA  
0 to 5V  
0V  
0V  
6V  
0 to 10V  
12V  
16 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
resets the ERROR pin but not the error register itself,  
allowing the system to determine the source of the error  
and take steps to fix the error condition. After the error  
condition has been fixed, read the error register for the  
second time to allow the device to clear the error reg-  
ister. Read the error register for the third time to verify  
if the error register has been cleared. If another error  
occurs after the first read, ERROR goes low again. More  
information on reading and clearing the error register is  
described in the SPI Interface section.  
Output Monitor  
The MON output provides an analog voltage signal  
proportional to the output voltage in current mode and  
proportional to the output current in voltage mode. Use  
this signal to measure the system load presented to the  
output. The full-scale signal on MON is 3V with a typical  
accuracy of 10%. The signal range is typically 1.5V to 3V  
in unipolar mode and 0 to 3V in bipolar mode.  
In current mode, the MAX15500/MAX15501 program I  
and monitor the voltage at SENSERN.  
OUT  
When an output short-circuit or output open-load error  
occurs and disappears before the error register is read,  
the intermittent bit is set in the error register. The intermit-  
tent bit does not assert for brownout and overtempera-  
ture error conditions.  
V
= 1.425V + (V  
/20)  
MON  
SENSERN  
R
= ((V  
- 1.425V) x 20)/I  
MON OUT(PROGRAMMED)  
LOAD  
In voltage mode, the MAX15500/MAX15501 program  
and monitor I  
V
OUT  
.
OUT  
V
= 1.521V + 62.4 x I  
LOAD  
MON  
Error Conditions  
Output Short Circuit  
R
LOAD  
= V  
/((V  
- 1.521V)/62.4)  
OUT(PROGRAMMED)  
MON  
The output short-circuit error bit asserts when the output  
current exceeds 30mA (typ) for longer than 260ms. In  
current mode, this error occurs when the sense resistor  
is shorted and the sense voltage is not equal to 0V. In  
voltage mode, this error occurs when the load is shorted  
to the supply or ground. The short-circuit error activates  
the intermittent bit in the error register if the error goes  
away before the error register is read.  
Error Handling  
Many industrial control systems require error detection  
and handling. The MAX15500/MAX15501 provide exten-  
sive error status reporting.  
An open-drain interrupt flag output, ERROR, pulls low  
when an error condition is detected. An error register  
stores the error source. Reading the error register once  
V
OUT  
OR I  
OUT  
V
OR I  
OUT  
FS + 20%  
FS + 5%  
OUT  
FS  
FS + 20%  
FS + 5%  
FSMODE = DGND  
FS  
FSMODE = DGND  
V
AIN  
50%FS  
FSMODE = DVDD  
FSMODE = DVDD  
-FS  
-FS - 5%  
V
AIN  
FS  
-FS - 20%  
5%FS  
FS  
Figure 1. Unipolar Transfer Function  
Figure 2. Bipolar Transfer Function  
______________________________________________________________________________________ 17  
Industrial Analog Current/  
Voltage-Output Conditioners  
Output Open Load  
Output Protection  
The open-circuit error bit activates when V  
is within  
The MAX15500/MAX15501 supply inputs (AVDD, AVDDO,  
AVSS, and AVSSO) and sense inputs (SENSERN,  
SENSERP, SENSEVN, and SENSEVP) are protected  
against voltages up to Q35V with respect to AGND. See  
the Typical Operating Circuit/Functional Diagram for the  
recommended supply-voltage connection.  
OUT  
30mV of AVDDO or AVSSO and there is no short-circuit  
current in current mode for longer than 260ms. This error  
activates the intermittent bit in the error register if the  
error goes away before the error register is read.  
Internal Overtemperature  
The MAX15500/MAX15501 enter standby mode if the die  
temperature exceeds +150NC and the overtemperature  
protection is enabled as shown in Table 6. When the die  
temperature cools down below +140NC, the error regis-  
ter must be read back twice to resume normal operation.  
The devices provide a 10NC hysteresis.  
SPI Interface  
Standard SPI Implementation  
The MAX15500/MAX15501 SPI interface supports daisy-  
chaining. Multiple MAX15500/MAX15501 devices can  
be controlled from a single 4-wire SPI interface. The  
MAX15500/MAX15501 feature dual CS_ inputs and  
an added digital output, READY, that signals when  
the devices finish processing the SPI frame. CS1 and  
CS2 are internally OR-ed. Pull both CS1 and CS2 to  
logic-low to activate the MAX15500/MAX15501. For a  
daisy-chained application, connect the CS1 input of  
all of the devices in the chain to the CS driver of the  
microcontroller. Connect the CS2 input of the first device  
to ground or to the CS driver of the microcontroller.  
Connect CS2 of the remaining devices to the READY  
output of the preceding device in the chain. The READY  
output of the last device in the chain indicates when  
all slave devices in the chain are configured. Connect  
the READY output of the last device in the chain to the  
microcontroller. Use the open-drain ERROR output as a  
wired-OR interrupt. See Figures 3 to 6.  
Brownout  
The brownout-error bit activates when the supply voltage  
(V  
AVDD  
or V ) falls below the brownout threshold.  
AVSS  
The threshold is programmable between Q10V to Q24V  
in 2V steps. See Table 6 for details. The MAX15500/  
MAX15501 provide a 2% hysteresis for the brownout  
threshold. The accuracy of the threshold is typically  
within 10%. During power-up, ERROR can go low and  
the brownout register is set. Users need to read out the  
error register twice to clear all the error register bits and  
reset ERROR to high.  
TO OTHER CHIPS/CHAINS  
R
PULLUP  
FC  
CSn  
MAX15500  
MAX15501  
CS1  
CS  
CS2  
CS1  
SCLK  
SCLK  
DIN  
DWRITE  
DOUT  
ERROR  
READY  
DREAD  
INT  
MONITOR  
OPTIONAL CONNECTION  
Figure 3. Single Connection (Compatible with Standard SPI)  
18 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
TO OTHER CHIPS/CHAINS  
R
PULLUP  
FC  
CSn  
MAX15500  
MAX15501  
CS1  
CS  
CS2  
CS1  
SCLK  
SCLK  
DIN  
DWRITE  
DOUT  
ERROR  
READY  
DREAD  
INT  
MONITOR  
OPTIONAL CONNECTION  
Figure 4. Alternate Single Connection (Compatible with Standard SPI)  
TO OTHER CHIPS/CHAINS  
R
PULLUP  
FC  
CSn  
MAX15500  
MAX15501  
CS1  
CS  
CS2  
CS1  
SCLK  
SCLK  
DIN  
DWRITE  
DOUT  
ERROR  
READY  
DREAD  
INT  
MONITOR  
MAX15500  
MAX15501  
CS2  
CS1  
SCLK  
DIN  
DOUT  
ERROR  
READY  
MAX15500  
MAX15501  
CS2  
CS1  
SCLK  
DIN  
DOUT  
ERROR  
READY  
OPTIONAL CONNECTION  
Figure 5. Daisy-Chain Connection (Compatible with Standard SPI)  
______________________________________________________________________________________ 19  
Industrial Analog Current/  
Voltage-Output Conditioners  
TO OTHER CHIPS/CHAINS  
R
PULLUP  
FC  
CSn  
MAX15500  
MAX15501  
CS1  
CS  
CS2  
CS1  
SCLK  
SCLK  
DIN  
DWRITE  
DOUT  
ERROR  
READY  
DREAD  
INT  
MAX15500  
MAX15501  
CS2  
CS1  
SCLK  
DIN  
DOUT  
ERROR  
READY  
SPI DEVICE  
CS  
SCLK  
DIN  
DOUT  
Figure 6. Daisy-Chain Terminating (Compatible with Standard SPI)  
Modified SPI Interface Description  
low. A new communication cycle is initiated by a sub-  
sequent falling edge on CS1 or CS2. When either CS1  
or CS2 is high, the MAX15500/MAX15501 SPI interface  
deactivates, DOUT returns to a high-impedance mode,  
READY (if active) clears, and any partial frames not yet  
processed are ignored.  
The SCLK, DIN, and DOUT of the MAX15500/MAX15501  
assume standard SPI functionality. While the basic func-  
tion of the MAX15500/MAX15501 CS_ inputs is similar  
to the standard SPI interface protocol, the management  
of the CS_ input within the chain is modified. When both  
CS_ inputs are low, the MAX15500/MAX15501 assume  
control of the DOUT line and continue to control the line  
until the data frame is finished and READY goes low  
(Figure 9). Once a complete frame is processed and the  
READY signal is issued, the devices do not accept any  
data from DIN, until either CS1 or CS2 rises and returns  
READY asserts once a valid frame is processed allowing  
the next device in the chain to begin processing the sub-  
sequent frame. A valid frame consists of 16 SCLK cycles  
following the falling edge of CS_. Once READY asserts,  
it remains asserted until either CS_ rises, completing the  
programming of the chain.  
20 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
The MAX15500/MAX15501 relinquish control of DOUT  
monitor input on the microcontroller. The MAX15500/  
MAX15501 portion of the chain continues to display tim-  
ing parameters comparable to a single device.  
once the devices process the frame(s). DOUT remains  
high impedance when the SPI interface continues to hold  
CS_ low beyond the required frame(s). Install a pullup/  
puldown resistor at the DOUT line to maintain the desired  
state when DOUT goes high impedance.  
SPI Digital Specifications and Waveforms  
Figures 8, 9, and 10 show the operation of the modified  
SPI interface. The minimum programming operation  
typically used in single device applications is 16 SCLK  
periods, the minimum for a valid frame. This cycle can  
also represent the operation of the final device in a chain.  
Single Device SPI Connection  
For applications using a single MAX15500 or MAX15501,  
connect both CS1 and CS2 inputs to the device-select  
driver of the host microcontroller. Alternatively, connect  
one of the CS_ inputs to the device-select driver of the  
host microcontroller and the other CS_ to DGND. Both  
methods allow standard SPI interface operation. See  
Figures 3 and 4.  
The extended programming operation is typically used  
for devices in daisy-chained applications. In this case,  
READY drives the chip-select input of the subsequent  
device in the chain. The next device in the chain  
begins its active frame on the 16th SCLK falling edge in  
response to READY falling (latching DIN[13] on the 17th  
SCLK falling edge, if present).  
Daisy-Chain SPI Connection  
The MAX15500/MAX15501-modified SPI interface allows  
a single SPI master to drive multiple devices in a daisy-  
chained configuration, saving additional SPI channels for  
other devices and saving cost in isolated applications.  
Aborted SPI Operations  
Driving a CS_ input high before a valid SPI frame is  
transmitted to the device can cause an erroneous com-  
mand. Avoid driving CS_ high before a valid SPI frame is  
transmitted to the device. See Figures 9 and 10 for valid  
SPI operation timing.  
Figure 5 shows multiple MAX15500/MAX15501 devices  
connected in a daisy chain. The chain behaves as a  
single device to the microcontroller in terms of timing  
with an expanded instruction frame requiring 16 SCLK  
cycles per device for complete programming. No timing  
parameters are affected by the READY propagation as  
all devices connect to the microcontroller chip-select  
through the CS1 inputs.  
SPI Operation Definitions  
Input data bits DIN[13:11] represent the SPI command  
address while DIN[9:0] represent the data written to  
or read from the command address. The command  
address directs subsequent input data to the proper  
internal register for setting up the behavior of the device  
and selects the correct status data for readback through  
DOUT. Command address 0h points to a no-op com-  
mand and does not impact the operation of the device.  
DOUT is active during this operation and reads back  
00h. Command address 1h points to the configuration  
register used to program the MAX15500/MAX15501.  
Device configuration takes effect following the 14th  
SCLK falling edge. DOUT activates and remains low dur-  
ing this operation. Command addresses 4h and 5h point  
to readback commands of the MAX15500/MAX15501.  
Readback commands provide configuration and error  
register status through DOUT[9:0] and do not affect the  
internal operation of the device. Command addresses  
2h, 3h, 6h, and 7h are reserved for future use. Table 5  
shows the list of commands.  
A chain of MAX15500/MAX15501 devices can be termi-  
nated with any standard SPI-compatible single device  
without a READY output. The MAX15500/MAX15501 por-  
tion of the chain continues to display timing parameters  
comparable to a single device. See Figure 6.  
When using the MAX15500/MAX15501 with mixed  
chains, the connections could require some modification  
to accommodate the interfaces of the additional devices  
in the chain. Construct the daisy chain as shown in  
Figure 7 when using devices with similar READY outputs  
but without dual CS_ inputs such as the MAX5134 quad  
16-bit DAC. The chain is subject to timing relaxation for  
parameters given with respect to CS_ rising edges to  
accommodate READY propagation to and through con-  
secutive MAX5134 devices.  
The chain can begin and terminate with either device  
type. Each MAX5134 or MAX15500/MAX15501 device  
in the chain could be replaced by a subchain of similar  
devices. If the chain is terminated with a standard SPI  
device, omit the optional connection from READY to the  
Device Configuration Operation  
Table 6 shows the function of each bit written to the con-  
figuration register 1h. Table 7 shows the data readback  
registers.  
______________________________________________________________________________________ 21  
Industrial Analog Current/  
Voltage-Output Conditioners  
TO OTHER CHIPS/CHAINS  
R
PULLUP  
FC  
CSn  
MAX15500  
MAX15501  
CS1  
CS  
CS2  
CS1  
SCLK  
SCLK  
DIN  
DWRITE  
DOUT  
ERROR  
READY  
DREAD  
INT  
MONITOR  
MAX15500  
MAX15501  
CS2  
CS1  
SCLK  
DIN  
DOUT  
ERROR  
READY  
MAX5134  
CS  
SCLK  
DIN  
READY  
OPTIONAL CONNECTION  
Figure 7. Mixed MAX15500/MAX15501 and MAX5134 Daisy-Chain Connections  
ERROR REGISTER UPDATED,  
ERROR RE-EVALUATED  
COMMAND EXECUTED  
ACTIVE FRAME  
X
Z
DIN13 DIN12 DIN11 DIN10 DIN9 DIN8 DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0  
X
X
X
X
DIN  
t
DS  
t
CP  
t
CH  
SCLK  
t
1
2
3
4
5
6
7
t
8
9
10  
11  
14  
12  
13  
15  
16  
t
t
t
CL  
DOH  
CSS  
t
DOZ  
t
DOT  
CSH  
CH  
HIGH-Z  
DOUT  
DOUT9 DOUT8 DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0  
t
DOE  
t
CSH  
CS_  
t
CSW  
Figure 8. Minimum SPI Programming Operation (Typically for Single Device Applications)  
22 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
ACTIVE FRAME  
X
Z
DIN13 DIN12 DIN11 DIN10 DIN9 DIN8 DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0  
X
X
X
X
DIN  
t
t
DS  
CP  
t
CH  
SCLK  
t
1
2
3
4
5
6
7
t
8
9
10  
11  
14  
12  
13  
15  
16  
17  
t
t
t
CL  
DOH  
CSS  
t
DOZ  
t
DOT  
CSH  
CH  
HIGH-Z  
DOUT  
DOUT9 DOUT8 DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0  
t
CSV  
t
DOE  
CS_  
t
CR  
t
CSR  
READY  
Figure 9. Extended SPI Programming Operation (Daisy-Chained Applications)  
ERROR REGISTER UPDATED,  
ERROR RE-EVALUATED  
SCLK  
X
1
2
3
4
5
6
7
8
9
10  
11  
14  
12  
13  
15  
16  
t
CSS  
t
CSH  
Z
HIGH-Z  
DOUT  
DOUT9  
t
t
DOE  
CSDOZ  
CS_  
OPERATION ABORTED  
Figure 10. Aborted SPI Programming Operation (Invalid, Showing t  
and Internal Activity)  
CSDOZ  
Readback Operations  
Write to the command addresses 4h or 5h to read back the  
configuration register data or the internal error information  
through DOUT[9:0]. For error readback operations, each  
bit corresponds to a specific error condition, with multiple  
bits indicating multiple error conditions present.  
temperature and supply voltage brownout do not trigger  
the intermittent bit.  
Error Reporting Applications  
The ERROR output is typically connected to an inter-  
rupt input of the system microcontroller. The MAX15500/  
MAX15501 only issue an interrupt when a new error con-  
dition is detected. The devices do not issue interrupts  
when errors (either individual or multiple) are resolved  
or when already reported errors persist. The system  
microcontroller resets ERROR when the system micro-  
controller reads back the error register. ERROR does not  
assert again unless a different error occurs.  
Intermittent Errors  
An intermittent error is defined as an error that is detected  
and is resolved before the error register is read back.  
When the error is resolved without intervention, the inter-  
mittent bit (bit 9) is set. The output short-circuit and output  
open-load errors trigger the intermittent bit. Internal over-  
______________________________________________________________________________________ 23  
Industrial Analog Current/  
Voltage-Output Conditioners  
Table 5. SPI Commands  
COMMAND  
ADDRESS  
DIN[13:11]  
NAME  
DESCRIPTION  
000  
001  
010  
011  
100  
101  
110  
111  
No-op  
No operation.  
Write configuration  
Reserved  
Write device configuration register. See Table 6 for details.  
Reserved, no operation.  
Reserved  
Reserved, no operation.  
Read error  
Read error register status. See Table 7 for details.  
Read device configuration register. See Table 6 for details.  
Reserved, no operation.  
Read configuration  
Reserved  
Reserved  
Reserved, no operation.  
Table 6. Configuration Register  
LOCATION  
FUNCTION  
DESCRIPTION  
100 Mode[4]: Standby  
Sets device operating mode.  
000 Mode[0]: Standby  
DIN[9:7]  
Mode[2:0]  
001 Mode[1]: Bipolar current: Q20mA  
010 Mode[2]: Unipolar current: 0 to 20mA  
011 Mode[3]: Unipolar current: 4mA to 20mA  
101 Mode[5]: Bipolar voltage: Q10V  
110 Mode[6]: Unipolar voltage: 0 to 10V  
111 Mode[7]: Unipolar voltage: 0 to 5V  
Sets supply voltage brownout threshold for error reporting.  
000: Q10V  
001: Q12V  
010: Q14V  
011: Q16V  
100: Q18V  
101: Q20V  
110: Q22V  
111: Q24V  
DIN[6:4]  
DIN[3]  
VBOTH[2:0]  
Thermal  
shutdown  
0 = thermal protection off. 1 = thermal protection on.  
Reserved  
DIN[10],  
DIN[2:0]  
Note: Modes 2h and 3h are functionally identical.  
Table 7. Readback Operations and Formatting  
DOUT BITS  
DESCRIPTION  
COMMAND ADDRESS DIN[13:11] = 101. READBACK DEVICE CONFIGURATION REGISTER  
DOUT[9:0]  
See configuration register details in Table 6.  
COMMAND ADDRESS DIN[13:11] = 100. READBACK ERROR REGISTER  
DOUT[9]  
DOUT[8]  
Output intermittent fault. For details, see the Error Handling section.  
Output short circuit. This bit asserts when I > 30mA in voltage and current modes for longer than 260ms.  
OUT  
Output open load. This bit asserts when V  
condition for longer than 260ms.  
is within 30mV of AVDDO or AVSSO and there is no short-circuit  
OUT  
DOUT[7]  
DOUT[6]  
DOUT[5]  
Internal overtemperature. This bit asserts when the die temperature exceeds +150NC.  
Supply brownout. This bit asserts when either supply has entered the brownout limits. See Table 6 for details.  
Reserved  
DOUT[4:0]  
24 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
Since the MAX15500/MAX15501 do not use a continuous  
3) An error that cannot be resolved.  
clock signal, the SPI read cycles are used to cycle the  
error detection and reporting logic. Continue to poll the  
device until the error readback reports an all clear status  
when resolving single or multiple errors. See below for  
examples of typical error handling situations and the  
effects of the SPI read operations.  
a) The MAX15500/MAX15501 detect an error condi-  
tion and ERROR asserts.  
b) The host controller reads the error register for the  
first time and resets ERROR. The data indicates to  
the host processor which error is active.  
c) The host processor takes action to resolve the  
error unsuccessfully.  
1) Error resolved by the system.  
a) The MAX15500/MAX15501 detect an error condi-  
d) The host processor reads the error register for the  
second time. The data still shows that the error is  
present.  
tion and ERROR asserts.  
b) The host controller reads the error register for the  
first time. This has the effect of resetting ERROR.  
The data indicates to the host processor which  
error is active.  
e) The host processor reads the error for the third  
time. The data show the error to be unresolved.  
ERROR does not respond to the same error until  
the error is resolved and reported. ERROR asserts  
if different errors occur.  
c) The host processor resolves the error successfully.  
d) The host processor reads the error register for the  
second time. The data still shows that the error is  
present as the error persisted for some time after  
step b and before step c. If the error is either an  
open load or short circuit, the intermittent bit is set.  
An overtemperature or a brownout does not set the  
intermittent bit. Reading the register a second time  
resets the register.  
Applications Information  
Setting the Output Gain in Current Mode  
In current mode, there is approximately 1.0V across the  
current-sensing resistors at full scale. The current sens-  
ing resistor sets the gain and is calculated as follows:  
R
= V  
/I  
SENSE  
SENSE_FS MAX  
e) The host reads the error register for a third time.  
The data now shows the error is resolved and  
future occurrences of this error will trigger ERROR  
assertion.  
where V  
is the full-scale voltage across the  
SENSE_FS  
sense resistor.  
See Table 8 for values of V  
.
SENSE_FS  
2) Error resolved before the host processor reads error  
register.  
Output Gain in Voltage Mode  
The output gain in voltage mode is fixed as shown in  
Table 9.  
a) The MAX15500/MAX15501 detect an error condi-  
tion and ERROR asserts, but the error resolves  
itself.  
Selection of the Compensation  
Capacitor (C  
)
COMP  
b) The host controller reads the error register for the  
first time resetting ERROR. The data indicates to  
the host processor which error is active. The data  
also indicates to the host that the error has been  
resolved since the intermittent bit is set.  
Use Table 10 to select the compensation capacitor.  
Layout Considerations  
In the current-mode application, use Kelvin and a short  
connection from SENSERN and SENSERP to the R  
SENSE  
c) The host processor reads the error register for the  
second time. The data still shows that the error is  
active. If the error is for an output fault, the data  
also indicates to the host that the error has been  
resolved since the intermittent bit is set. Reading  
the register a second time resets the register.  
terminals to minimize gain-error drift. Balance and mini-  
mize all analog input traces for optimum performance.  
______________________________________________________________________________________ 25  
Industrial Analog Current/  
Voltage-Output Conditioners  
Table 8. Recommended Current Setting Components  
V
OVERRANGE  
(%)  
BIPOLAR/  
UNIPOLAR  
V
R
I
OUT  
mA)  
(
IDEAL  
GAIN  
IDEAL TRANSFER  
FUNCTION  
REFIN  
(V)  
SENSE_FS  
(V)  
SENSE  
MODE  
(I)  
I
= 0.2625 x (V  
-
OUT  
AIN  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
2
1
2
1
2
1
2
1
1.02144  
Q1.024  
1.02144  
Q1.024  
42.2  
42.2  
48.7  
48.7  
41.2  
41.2  
47.5  
47.5  
24.205 0.2625/42.2  
0.05 x V  
)/42.2  
REFIN  
+20  
+5  
I
V
= 0.5 x (V  
- 0.5 x  
OUT  
AIN  
Q24.27  
20.97  
0.5/42.2  
0.2625/48.7  
0.5/48.7  
)/42.2  
REFIN  
4.096  
I
= 0.2625 x (V  
-
OUT  
AIN  
0.05 x V  
)/48.7  
REFIN  
I
V
= 0.5 x (V  
- 0.5 x  
OUT  
AIN  
Q21.03  
24.5  
)/48.7  
REFIN  
I
= 0.425 x (V  
-
OUT  
AIN  
1.009375  
Q1  
0.425/41.2  
0.8/41.2  
0.05 x V  
)/41.2  
REFIN  
+20  
+5  
I
V
= 0.8 x (V  
- 0.5 x  
OUT  
AIN  
Q24.27  
21.25  
)/41.2  
REFIN  
2.500  
I
= 0.425 x (V  
-
OUT  
AIN  
1.009375  
Q1  
0.425/47.5  
0.8/47.5  
0.05 x V  
)/47.5  
REFIN  
I
V
= 0.8 x (V  
- 0.5 x  
OUT  
AIN  
Q21.05  
)/47.5  
REFIN  
Table 9. Full-Scale Output Voltages  
V
REFIN  
(V)  
OVERRANGE  
(%)  
BIPOLAR/  
UNIPOLAR  
IDEAL  
GAIN  
IDEAL  
TRANSFER FUNCTION  
IDEAL V  
(V)  
OUT  
MODE  
7
6
5
7
6
5
7
6
5
7
6
5
1.5625  
3.125  
6.0  
V
= 1.5625 x (V - 0.05 x V  
)
6.08  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
AIN  
REFIN  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
+20  
+5  
V
= 3.125 x (V  
- 0.05 x V  
)
12.16  
Q12.288  
5.3504  
10.7008  
Q10.752  
5.96719  
12.0234  
Q12  
AIN  
REFIN  
V
V
V
V
V
V
V
V
V
V
= 6.0 x (V  
- 0.5 x V  
)
AIN  
REFIN  
4.096  
2.500  
1.375  
2.75  
= 1.375 x (V  
- 0.05 x V  
REFIN  
)
AIN  
= 2.75 x (V  
- 0.05 x V  
)
AIN  
AIN  
REFIN  
5.25  
= 5.25 x (V  
- 0.5 x V  
)
REFIN  
2.5125  
5.0625  
9.6  
= 2.5125 x (V  
= 5.0625 x (V  
- 0.05 x V  
REFIN  
- 0.05 x V  
REFIN  
)
)
AIN  
AIN  
+20  
+5  
= 9.6 x (V  
- 0.5 x V  
)
AIN  
REFIN  
2.175  
4.425  
8.4  
= 2.175 x (V  
= 4.425 x (V  
- 0.05 x V  
)
)
5.16563  
10.5094  
Q10.5  
AIN  
AIN  
REFIN  
- 0.05 x V  
REFIN  
= 8.4 x (V  
- 0.5 x V  
)
AIN  
REFIN  
26 _____________________________________________________________________________________  
Industrial Analog Current/  
Voltage-Output Conditioners  
Table 10. Recommended Compensation Capacitor for Various Load Conditions  
MODE  
Voltage  
Voltage  
Voltage  
Voltage  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
Current  
C (F)  
L
R (kI)  
L (H)  
L
C
(F)  
L
COMP  
0 to 1n  
1
0
0
1n to 100n  
100n to 1F  
1Fto 100F  
0 to 1n  
1
0
1n  
1
0
2.2n  
4.7n  
0
1
0
20 to 750  
20 to 750  
20 to 750  
20 to 750  
20 to 750  
20 to 750  
20 to 750  
0 to 20F  
20Fto 1m  
1m to 50m  
0 to 20F  
20Fto 1m  
1m to 50m  
0 to 20F  
20Fto 1m  
1m to 50m  
0 to 20F  
20Fto 1m  
1m to 50m  
0 to 1n  
2.2n  
100n  
1n  
0 to 1n  
1n to 100n  
1n to 100n  
1n to 100n  
100n to 1F  
100n to 1F  
100n to 1F  
1Fto 100F  
1Fto 100F  
1Fto 100F  
2.2n  
100n  
2.2n  
2.2n  
100n  
2.2n  
2.2n  
100n  
20 to 750  
20 to 750  
20 to 750  
20 to 750  
20 to 750  
C = Load capacitance.  
L
R = Load resistance.  
L
L = Load inductance.  
L
C
COMP  
= Compensation capacitance.  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
32 TQFN-EP  
T3255+4  
21-0140  
90-0012  
______________________________________________________________________________________ 27  
Industrial Analog Current/  
Voltage-Output Conditioners  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
7/09  
2/11  
Initial release  
Corrected description of DOUT pin in Pin Description section  
13  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

MAX15500GTJ+

Industrial Analog Current/ Voltage-Output Conditioners
MAXIM

MAX15500GTJ+T

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX15500KGTJ+

Analog Circuit, 1 Func, BICMOS, TQFN-32
MAXIM

MAX15500_11

Industrial Analog Current/ Voltage-Output Conditioners
MAXIM

MAX15501

Industrial Analog Current/ Voltage-Output Conditioners
MAXIM

MAX15501EVKIT

USB-PC Connection (Cable Included)
MAXIM

MAX15501GTJ+

Industrial Analog Current/ Voltage-Output Conditioners
MAXIM

MAX1551

SOT23 Dual-Input USB/AC Adapter 1-Cell Li+Battery Chargers
MAXIM

MAX1551-MAX1555

SOT23 Dual-Input USB/AC Adapter 1-Cell Li+Battery Chargers
MAXIM

MAX1551EZK

SOT23 Dual-Input USB/AC Adapter 1-Cell Li Battery Chargers
MAXIM

MAX1551EZK-T

SOT23 Dual-Input USB/AC Adapter 1-Cell Li Battery Chargers
MAXIM

MAX1551|MAX1555

SOT23. Dual-Input. USB/AC Adapter. 1-Cell Li+ Battery Chargers
MAXIM