MAX1549ETL [MAXIM]

Dual, Interleaved, Fixed-Frequency Step-Down Controller with a Dynamically Adjustable Output; 双通道,交叉工作,固定频率降压型控制器,提供动态可调节输出
MAX1549ETL
型号: MAX1549ETL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, Interleaved, Fixed-Frequency Step-Down Controller with a Dynamically Adjustable Output
双通道,交叉工作,固定频率降压型控制器,提供动态可调节输出

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 信息通信管理
文件: 总35页 (文件大小:505K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3165; Rev 0; 1/04  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1549 dual pulse-width modulation (PWM) step-  
down controller provides the high efficiency, excellent  
transient response, and high DC-output accuracy nec-  
essary for generating low-voltage chipset and RAM  
power supplies in notebook computers. The controller  
employs a fixed-frequency, current-mode PWM archi-  
tecture that does not require complex compensation.  
The MAX1549 also interleaves the dual step-down regu-  
lators, minimizing the input capacitor requirements.  
Interleaved, Fixed-Frequency, Current-Mode  
Control Architecture  
1% V  
Accuracy Over Line and Load  
OUT  
Main Output (OUT1)  
0.5V to 2.0V Adjustable Output  
External Reference Input for Dynamically  
Selectable Output Voltages  
Four Digitally Selectable Output Voltages  
Power-Good and Fault Blanking During  
Transitions  
The MAX1549 features differential current-sense inputs  
for accurately sensing the inductor current across an  
external current-sense resistor in series with the output  
to ensure reliable overload protection. Alternatively, the  
controller can provide overload protection using loss-  
less inductor current-sensing methods, lowering power  
dissipation and reducing system cost.  
Second Output (OUT2)  
2.5V/1.8V Fixed or 0.5V to 2.7V Adjustable  
Output  
Accurate Differential Current-Sense Inputs  
Single-stage buck conversion allows the MAX1549 to  
directly step down high-voltage batteries for the highest  
possible efficiency. Very low output-voltage applica-  
tions require two-stage conversion—stepping down  
from another system supply rail instead of the battery.  
100kHz/200kHz/300kHz/400kHz Selectable  
Switching Frequency  
Output Overvoltage/Undervoltage Protection  
Soft-Start and Soft-Shutdown  
The MAX1549 powers chipsets and graphics processor  
cores that require dynamically adjustable output voltages,  
or generates the active termination bus that must track  
the input re fe re nc e . The ma in ste p-down c ontrolle r  
(OUT1) regulates the dedicated reference input (REFIN)  
voltage generated by a resistive voltage-divider from the  
MAX1549s reference. The MAX1549 also includes inter-  
nal open-drain pulldowns with logic-level control inputs to  
dynamically adjust the REFIN resistive-divider ratio. When  
a transition occurs on these control inputs, the controller  
enters forced-PWM mode and blanks the power-good  
(PGOOD1) output and output fault protection. OUT2 uses  
a Dual-Mode™ feedback input to provide either fixed  
2.5V/1.8V or adjustable output voltage regulation. The  
MAX1549 is available in a 40-pin, 6mm x 6mm thin QFN  
package.  
Drives Large Synchronous-Rectifier FETs  
2V ±0.6% Reference Output  
Separate Enable Inputs with Accurate Threshold  
Voltages  
Separate Power-Good Window Comparators  
Ord e rin g In fo rm a t io n  
PART  
TEMP RANGE PIN-PACKAGE  
MAX1549ETL  
-40°C to +85°C 40 Thin QFN 6mm x 6mm  
P in Co n fig u ra t io n  
Ap p lic a t io n s  
Notebook Computers  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
Dynamically Adjustable Chipset Supplies  
Video/GPU Core Supplies  
GND  
N.C.  
REF  
1
2
30 LX1  
29 BST1  
28 SKIP  
27 DL1  
3
V
CC  
4
DDR Memory Termination  
CC1  
ILIM1  
ILIM2  
G0  
5
26  
V
DD  
MAX1549  
6
25 N.C.  
24 DL2  
23 PGND  
22 BST2  
21 LX2  
CPU Core or V Supplies  
CC  
7
8
Fixed Chipset/RAM Supplies  
Active Termination Buses  
9
G1  
10  
FBLANK  
11 12 13 14 15 16 17 18 19 20  
THIN QFN  
6mm x 6mm  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ABSOLUTE MAXIMUM RATINGS  
V
V
DD  
to GND..............................................................-0.3V to +6V  
to PGND............................................................-0.3V to +6V  
LX2 to BST2..............................................................-6V to +0.3V  
DH2 to LX2 ..............................................-0.3V to (V + 0.3V)  
CC  
BST2  
CSH_, CSL_, OUT_, PGOOD_,  
OD_ to GND ...........................................-0.3V to (V + 0.3V)  
GND to PGND .......................................................-0.3V to +0.3V  
REF Short Circuit to GND...........................................Continuous  
CC  
G0, G1, ILIM_, REFIN to GND..................................-0.3V to +6V  
FB2, SKIP, ON_ to GND ...........................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
40-Pin 6mm x 6mm Thin QFN (derated 26.3mW/°C  
REF, CC1, FBLANK, FSEL to GND.............-0.3V to (V + 0.3V)  
above +70°C).............................................................2105mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
DL1, DL2 to PGND .....................................-0.3V to (V + 0.3V)  
DD  
BST1, BST2 to PGND .............................................-0.3V to +36V  
LX1 to BST1..............................................................-6V to +0.3V  
DH1 to LX1 ..............................................-0.3V to (V  
+ 0.3V)  
BST1  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
DD  
A
A
PARAMETER  
INPUT SUPPLIES (Note 1)  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
BIAS  
V
, V  
4.5  
5.5  
1.8  
V
CC DD  
OUT1 and FB2 forced above their  
regulation points  
Quiescent Supply Current (V  
)
)
I
CC  
1.0  
1.5  
mA  
CC  
OUT1 and FB2 forced above their  
regulation points  
Quiescent Supply Current (V  
I
DD  
5
µA  
DD  
Shutdown Supply Current (V  
)
ON1 = ON2 = GND, SKIP = V  
2.5  
<1  
5
5
µA  
µA  
CC  
CC  
Shutdown Supply Current (V  
)
ON1 = ON2 = GND  
DD  
PWM CONTROLLERS  
50% duty cycle  
-5  
0
+5  
With respect to  
REFIN, SKIP =  
Main Output-Voltage Accuracy  
(OUT1 Tracking)  
V
V
-
REFIN  
mV  
OUT1  
V
CC  
or GND  
10% to 90% duty cycle  
FB2 = GND  
-10  
+10  
2.475  
1.780  
0.490  
0.485  
2.5  
1.8  
2.525  
1.820  
0.510  
0.515  
Secondary Preset Output-Voltage  
Accuracy (OUT2 Fixed)  
SKIP = V , 50%  
CC  
V
V
V
OUT2  
duty cycle (Note 1)  
FB2 = V  
CC  
50% duty cycle  
0.50  
Secondary Feedback-Voltage  
Accuracy (FB2 Adjustable)  
SKIP = V  
CC  
(Note 1)  
V
FB2  
10% to 90% duty cycle  
Load-Regulation Error  
I
= 0 to 3A, SKIP = V  
0.1  
1
%
%
LOAD  
CC  
V
Line-Regulation Error  
V
= 2V to 28V  
IN  
IN  
OUT1 (tracks REFIN)  
OUT2  
0.5  
0.5  
-1  
2.0  
2.7  
Output Adjust Range  
V
OUT1 Input Bias Current  
FB2 Input Bias Current  
I
V
= 0.5V to 2.0V  
= 0 to 2.7V  
FB2  
+1  
µA  
µA  
OUT1  
OUT1  
I
V
-0.1  
120  
85  
+0.1  
460  
335  
FB2  
FB2 = GND or adjustable  
FB2 = V  
250  
180  
OUT2 Input Resistance  
R
k  
OUT2  
CC  
2
_______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
DD  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUT_ Discharge-Mode  
On-Resistance  
R
12  
40  
DISCHARGE  
OUT_ Synchronous-Rectifier  
Discharge-Mode Turn-On Level  
0.2  
0.3  
0.4  
V
FSEL = GND  
70  
100  
200  
300  
400  
130  
230  
330  
450  
200  
FSEL = REF  
FSEL = open  
170  
270  
350  
Operating Frequency  
f
(Note 2)  
(Note 3)  
kHz  
OSC  
FSEL = V  
CC  
Minimum On-Time  
t
ns  
%
ON(MIN)  
Maximum Duty Cycle  
D
91  
93  
MAX  
Measured from the rising edge of ON_ to  
full scale  
512 /  
Soft-Start Ramp Time  
REFERENCE (REF)  
Reference Voltage  
t
s
SS  
f
OSC  
T
A
= +25°C  
1.988  
1.985  
1.980  
2.00  
2.00  
2.012  
2.015  
2.020  
V
CC  
= 4.5V to  
V
REF  
V
5.5V, I  
= 0  
REF  
T
A
= 0°C to +85°C  
Reference Load Regulation  
REF Lockout Voltage  
V  
I
= -10µA to +100µA  
V
V
REF  
REF  
V
Rising edge, hysteresis = 350mV  
1.95  
REF(UVLO)  
REFIN Voltage Range  
REFIN Input Bias Current  
FAULT DETECTION  
V
0.5  
-50  
2.0  
V
REFIN  
I
+50  
nA  
REFIN  
Output Overvoltage  
Trip Threshold  
With respect to error-comparator threshold  
12  
65  
14.5  
10  
17  
75  
%
µs  
%
s
Output Overvoltage  
Fault-Propagation Delay  
OUT1 and FB2 forced 2% above trip  
threshold  
t
OVP  
Output Undervoltage-Protection  
Trip Threshold  
With respect to error-comparator threshold  
From rising edge of ON_  
70  
Output Undervoltage-Protection  
Blanking Time  
4096 /  
t
BLANK  
f
OSC  
Output Undervoltage  
Fault-Propagation Delay  
t
10  
-10  
+10  
10  
µs  
%
%
UVP  
With respect to error-comparator threshold,  
hysteresis = 1%  
PGOOD_ Lower Trip Threshold  
PGOOD_ Upper Trip Threshold  
-12.5  
+7.5  
-7.5  
With respect to error-comparator threshold,  
hysteresis = 1%  
+12.5  
OUT1 and FB2 forced 2% beyond PGOOD_  
trip threshold  
PGOOD_ Propagation Delay  
PGOOD_ Output Low Voltage  
PGOOD_ Leakage Current  
t
_
_
µs  
V
PGOOD  
I
= 4mA  
0.3  
1
SINK  
OUT1 = REFIN and V  
= 0.5V (PGOOD_  
FB2  
I
µA  
PGOOD  
high impedance), PGOOD_ forced to 5.5V  
_______________________________________________________________________________________  
3
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
DD  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
110  
60  
TYP  
150  
100  
50  
MAX  
190  
140  
75  
UNITS  
FBLANK = V  
CC  
Fault-Blanking Time  
t
µs  
FBLANK = open  
FBLANK = REF  
Hysteresis = 15°C  
FBLANK  
22  
Thermal-Shutdown Threshold  
Undervoltage-Lockout  
T
SHDN  
+165  
°C  
V
V
Rising edge, PWM disabled below this  
level, hysteresis = 50mV  
CC  
V
4.1  
4.25  
4.4  
CC(UVLO)  
Threshold  
CURRENT LIMIT  
ILIM_ Adjustment Range  
Current-Limit Input Range  
CSH_/CSL_ Input Bias Current  
Current-Limit Threshold (Fixed)  
0.25  
0
V
V
V
REF  
V
_, V  
_
2.7  
+0.15  
75  
CSH  
CSL  
V
CSH  
_ = V  
_ = 0 to 2.7V  
-0.15  
65  
µA  
mV  
CSL  
V
V
CSH  
_ - V  
_, ILIM_ = V  
CC  
70  
200  
100  
50  
LIMIT  
CSL  
V
ILIM  
_ = 2.0V  
_ = 1.0V  
_ = 0.5V  
170  
91  
230  
109  
58  
Current-Limit Threshold  
(Adjustable)  
V
LIMIT  
V
CSH  
_ - V _  
CSL  
mV  
V
ILIM  
V
ILIM  
42  
Current-Limit Threshold  
(Zero Crossing)  
V
ZX  
V
PGND  
- V _, SKIP = GND  
3
mV  
mV  
LX  
ILIM_ = V  
10  
15  
20  
CC  
With respect to  
current-limit  
threshold  
Idle-ModeThreshold  
V
CSH  
_ - V  
_
CSL  
20  
%
ILIM_ Leakage Current  
GATE DRIVERS  
-0.1  
+0.1  
µA  
DH_ Gate-Driver On-Resistance  
R
BST_ - LX_ forced to 5V  
DL_, high state  
1.5  
1.5  
0.5  
6
6
DH  
DL_ Gate-Driver On-Resistance  
R
DL  
DL_, low state  
2.7  
DH_ Gate-Driver Source/Sink  
Current  
I
DH  
DH_ forced to 2.5V, BST_ - LX_ forced to 5V  
1
A
DL_ Gate-Driver Source Current  
DL_ Gate-Driver Sink Current  
I
DL_ forced to 2.5V  
DL_ forced to 2.5V  
DL_ rising  
1
3
A
A
DL (SOURCE)  
I
DL (SINK)  
35  
26  
Dead Time  
t
ns  
DEAD  
DH_ rising  
INPUTS AND OUTPUTS  
OD_ On-Resistance  
R
_
10  
100  
100  
2.8  
nA  
V
OD  
OD_ Leakage Current  
ON_ Logic Input Threshold  
I
OD  
_
OD_ high impedance, V _ = 5.5V  
OD  
Rising edge, hysteresis = 600mV  
2.4  
2.4  
2.6  
High  
Low  
SKIP, G0, G1 hysteresis =  
600mV  
Logic Input Voltage  
V
0.8  
Idle Mode is a trademark of Maxim Integrated Products, Inc.  
4
_______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
DD  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-1  
TYP  
MAX  
+1  
UNITS  
Logic Input Current  
ON_, SKIP, G0, G1  
µA  
High  
Low  
1.9  
2.0  
0.1  
2.1  
Dual-Mode Threshold Voltage  
FB2  
V
0.05  
0.15  
V
0.4V  
-
CC  
High  
Open  
REF  
3.15  
1.65  
3.85  
2.35  
0.5  
Four-Level Input Logic Levels  
Four-Level Logic Input Current  
FSEL, FBLANK  
V
Low  
FSEL, FBLANK forced to GND or V  
-3  
+3  
µA  
CC  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
CC  
DD  
A
PARAMETER  
INPUT SUPPLIES (Note 1)  
Input Voltage Range  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
V
BIAS  
V
V
4.5  
5.5  
1.8  
V
CC, DD  
OUT1 and FB2 forced above their  
regulation points  
Quiescent Supply Current (V  
)
)
I
CC  
mA  
CC  
OUT1 and FB2 forced above their  
regulation points  
Quiescent Supply Current (V  
I
DD  
5
µA  
DD  
Shutdown Supply Current (V  
)
ON1 = ON2 = GND, SKIP = V  
5
5
µA  
µA  
CC  
CC  
Shutdown Supply Current (V  
)
ON1 = ON2 = GND  
DD  
PWM CONTROLLERS  
With respect to  
REFIN, SKIP = V  
or GND  
50% duty cycle  
-8  
+8  
Main Output-Voltage Accuracy  
(OUT1 Tracking)  
V
V
-
REFIN  
mV  
CC  
OUT1  
10% to 90% duty cycle  
FB2 = GND  
-10  
+10  
2.470  
1.775  
0.490  
2.530  
1.825  
0.510  
0.515  
2.0  
Secondary Preset Output-Voltage  
Accuracy (OUT2 Fixed)  
SKIP = V , 50%  
CC  
V
V
V
OUT2  
duty cycle (Note 1)  
FB2 = V  
CC  
50% duty cycle  
Secondary Feedback-Voltage  
Accuracy (FB2 Adjustable)  
SKIP = V  
CC  
(Note 1)  
V
FB2  
10% to 90% duty cycle 0.485  
OUT1 (tracks REFIN)  
OUT2  
0.5  
0.5  
Output Adjust Range  
V
2.7  
FB2 = GND or adjustable  
FB2 = V  
120  
85  
460  
OUT2 Input Resistance  
R
kΩ  
OUT2  
335  
CC  
OUT_ Discharge-Mode  
On-Resistance  
R
40  
DISCHARGE  
OUT_ Synchronous-Rectifier  
Discharge-Mode Turn-On Level  
0.2  
0.4  
V
_______________________________________________________________________________________  
5
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
CC  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
FSEL = GND  
MIN  
70  
MAX  
130  
230  
330  
450  
UNITS  
kHz  
FSEL = REF  
FSEL = open  
170  
270  
350  
91  
Operating Frequency  
f
(Note 2)  
OSC  
FSEL = V  
CC  
Maximum Duty Cycle  
REFERENCE (REF)  
Reference Voltage  
D
%
MAX  
V
REF  
V
CC  
= 4.5V to 5.5V, I = 0  
REF  
1.985  
1.980  
0.5  
2.015  
2.020  
2.0  
V
V
V
Reference Load Regulation  
REFIN Voltage Range  
FAULT DETECTION  
V  
I
= -10µA to +100µA  
REF  
REF  
Output Overvoltage  
Trip Threshold  
With respect to error-comparator threshold  
With respect to error-comparator threshold  
12  
65  
17  
75  
%
%
%
Output Undervoltage-Protection  
Trip Threshold  
With respect to error-comparator threshold,  
hysteresis = 1%  
PGOOD_ Lower Trip Threshold  
-12.5  
+7.5  
-7.5  
+12.5  
With respect to error-comparator threshold,  
hysteresis = 1%  
PGOOD_ Upper Trip Threshold  
PGOOD_ Output Low Voltage  
%
V
I
= 4mA  
0.3  
190  
140  
75  
SINK  
FBLANK = V  
110  
60  
CC  
Fault-Blanking Time  
t
µs  
V
FBLANK = open  
FBLANK = REF  
FBLANK  
22  
V
CC  
Undervoltage-Lockout  
Rising edge, PWM disabled below this  
level, hysteresis = 50mV  
V
4.1  
4.4  
CC(UVLO)  
Threshold  
CURRENT LIMIT  
ILIM_ Adjustment Range  
Current-Limit Input Range  
Current-Limit Threshold (Fixed)  
0.25  
0
V
V
V
REF  
V
_, V  
_
2.7  
75  
CSH  
CSL  
V
LIMIT  
V
CSH  
_ - V  
_, ILIM_ = V  
CC  
65  
mV  
CSL  
V
_ = 2.0V  
_ = 1.0V  
_ = 0.5V  
170  
89  
230  
111  
58  
ILIM  
Current-Limit Threshold  
(Adjustable)  
V
LIMIT  
V _ - V _  
CSH CSL  
mV  
mV  
V
ILIM  
V
ILIM  
42  
Idle-Mode Threshold  
V
CSH  
_ - V  
_, ILIM_ = V  
CC  
10  
20  
CSL  
GATE DRIVERS  
DH_ Gate-Driver On-Resistance  
R
BST_ - LX_ forced to 5V  
DL_, high state  
6
6
DH  
DL_ Gate-Driver On-Resistance  
R
DL  
DL_, low state  
2.7  
6
_______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
ELECTRICAL CHARACTERISTICS (continued)  
(Circuit of Figure 1, V = V = 5V, SKIP = GND, T = -40°C to +85°C, unless otherwise noted.) (Note 4)  
CC  
DD  
A
PARAMETER  
INPUTS AND OUTPUTS  
OD_ On-Resistance  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
R
OD  
_
100  
2.8  
ON_ Logic Input Threshold  
Rising edge, hysteresis = 600mV  
2.4  
2.4  
V
High  
SKIP, G0, G1, hysteresis =  
Logic Input Voltage  
V
V
600mV  
Low  
High  
Low  
High  
Open  
REF  
Low  
0.8  
2.1  
1.9  
Dual-Mode Threshold Voltage  
Four-Level Input Logic Levels  
FB2  
0.05  
0.15  
V
- 0.4V  
CC  
3.15  
1.65  
3.85  
2.35  
0.5  
FSEL, FBLANK  
V
Note 1: When the inductor is in continuous conduction, the output voltage has a DC regulation level lower than the error-comparator  
threshold by 50% of the ripple. In discontinuous conduction (SKIP = GND, light load), the output voltage has a DC regula-  
tion level higher than the trip level by approximately 1.5% due to slope compensation.  
Note 2: The MAX1549 cannot operate over all combinations of frequency, input voltage (V ), and output voltage. For large input-to-  
IN  
output differentials and high switching-frequency settings, the required on-time may be too short to maintain the regulation  
specifications. Under these conditions, a lower operating frequency must be selected. The minimum on-time must be  
greater than 150ns, regardless of the selected switching frequency. On-time and off-time specifications are measured from  
the 50% point to the 50% point at the DH_ pin with LX_ = GND, V  
= 5V, and a 250pF capacitor connected from DH_ to  
BST_  
LX_. Actual in-circuit times may differ due to MOSFET switching speeds.  
Note 3: Specifications are guaranteed by design, not production tested.  
Note 4: Specifications to -40°C are guaranteed by design, not production tested.  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(MAX1549 circuit of Figure 1, V = 12V, V = V = 5V, SKIP = GND, FSEL = open, T = +25°C, unless otherwise noted.)  
IN  
DD  
CC  
A
OUT1 EFFICIENCY vs. LOAD CURRENT  
1.0V OUTPUT VOLTAGE (OUT1)  
vs. LOAD CURRENT  
OUT2 EFFICIENCY vs. LOAD CURRENT  
(V = 2.5V)  
(V  
= 1.0V)  
OUT1  
OUT2  
100  
90  
80  
70  
60  
50  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
100  
90  
80  
70  
60  
50  
SKIP = GND  
SKIP = V  
SKIP = GND  
SKIP = V  
SKIP = GND  
SKIP = V  
CC  
CC  
CC  
V
= 5V  
IN  
V
= 5V  
IN  
V
= 12V  
IN  
V
IN  
= 12V  
V
IN  
= 20V  
V
= 20V  
IN  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
7
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
_______________________________________________________________________________________  
7
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX1549 circuit of Figure 1, V = 12V, V = V = 5V, SKIP = GND, FSEL = open, T = +25°C, unless otherwise noted.)  
IN  
DD  
CC  
A
2.5V OUTPUT VOLTAGE (OUT2)  
vs. LOAD CURRENT  
1.0V OUTPUT VOLTAGE (OUT1)  
vs. INPUT VOLTAGE  
IDLE-MODE CURRENT  
vs. INPUT VOLTAGE  
1.02  
1.01  
1.00  
0.99  
0.98  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SKIP = GND  
1.0V OUTPUT  
SKIP = GND  
SKIP = V  
2.59  
2.57  
2.55  
2.53  
2.51  
2.49  
2.47  
2.45  
SKIP = V  
CC  
CC  
0
1
2
3
4
5
6
7
0
5
10  
15  
20  
0
4
8
12  
16  
20  
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2.5V OUTPUT VOLTAGE (OUT2)  
vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. INPUT VOLTAGE  
(FORCED-PWM OPERATION)  
IDLE-MODE CURRENT  
vs. INPUT VOLTAGE  
2.60  
2.57  
2.54  
2.51  
2.48  
2.45  
2.5  
2.0  
1.5  
1.0  
0.5  
0
28  
24  
20  
16  
12  
8
DUTY  
CYCLE  
LIMITED  
SKIP = GND  
SKIP = V  
CC  
I
BIAS  
I
IN  
4
NO LOAD  
SKIP = ON1 = ON2 = V  
2.5V OUTPUT  
16  
CC  
0
0
5
10  
15  
20  
0
4
8
12  
20  
0
4
8
12  
16  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SUPPLY CURRENT vs. INPUT VOLTAGE  
(PULSE-SKIPPING OPERATION)  
2.0V REFERENCE LOAD REGULATION  
REFERENCE DISTRIBUTION  
4
3
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SAMPLE SIZE = 150  
I
BIAS  
2
I
IN  
1
0
-1  
-2  
-3  
-4  
1mA LOAD  
SKIP = GND  
ON1 = ON2 = V  
CC  
-20  
0
20  
40  
60  
80  
100  
1.990  
1.995  
2.000  
2.005  
2.010  
0
4
8
12  
16  
20  
REFERENCE LOAD CURRENT (µA)  
REFERENCE VOLTAGE (V)  
INPUT VOLTAGE (V)  
8
_______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX1549 circuit of Figure 1, V = 12V, V = V = 5V, SKIP = GND, FSEL = open, T = +25°C, unless otherwise noted.)  
IN  
DD  
CC  
A
SWITCHING FREQUENCY DISTRIBUTION  
(300kHz OPERATION)  
STARTUP WAVEFORM  
(HEAVY LOAD)  
STARTUP WAVEFORM  
(LIGHT LOAD)  
MAX1549 toc14  
MAX1549 toc15  
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 150  
5V  
5V  
0
A
B
A
B
0
2.5V  
0
2.5V  
0
5A  
0
2A  
0
C
D
C
D
0
0
290  
295  
300  
305  
310  
400µs/div  
200µs/div  
SWITCHING FREQUENCY (kHz)  
A: ON2, 5V/div  
C: INDUCTOR CURRENT, 5A/div  
A: ON2, 5V/div  
C: INDUCTOR CURRENT, 2A/div  
B: 2.5V OUTPUT, 2V/div D: PGOOD2, 5V/div  
B: 2.5V OUTPUT, 2V/div D: PGOOD2, 5V/div  
0.5LOAD  
100LOAD  
SHUTDOWN WAVEFORM  
SHUTDOWN WAVEFORM  
INTERLEAVED OPERATION  
(1LOAD)  
(100LOAD)  
MAX1549 toc18  
MAX1549 toc16  
MAX1549 toc17  
5V  
0
5V  
0
A
A
B
12V  
A
B
0
2.5V  
2.5V  
B
1.0V  
0
0
5V  
5V  
C
D
C
D
12V  
0
0
C
D
0
0
5V  
0
5V  
2.5V  
E
E
0
0
2µs/div  
C: LX2, 10V/div  
B: 1.0V OUTPUT, 50mV/div D: 2.5V OUTPUT, 50mV/div  
100µs/div  
1ms/div  
A: LX1, 10V/div  
A: ON2, 5V/div  
B: OUT2, 2V/div  
C: DL2, 5V/div  
D: INDUCTOR CURRENT, 5A/div  
E: PGOOD2, 5V/div  
A: ON2, 5V/div  
B: OUT2, 2V/div  
C: DL2, 5V/div  
D: INDUCTOR CURRENT, 2A/div  
E: PGOOD2, 5V/div  
_______________________________________________________________________________________  
9
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(MAX1549 circuit of Figure 1, V = 12V, V = V = 5V, SKIP = GND, FSEL = open, T = +25°C, unless otherwise noted.)  
IN  
DD  
CC  
A
2.5V OUTPUT LOAD TRANSIENT  
(FORCED PWM)  
2.5V OUTPUT LOAD TRANSIENT  
(PULSE SKIPPING)  
OUTPUT OVERLOAD  
(UVP ENABLED)  
MAX1549 toc21  
MAX1549 toc19  
MAX1549 toc20  
5V  
4A  
0
4A  
A
B
A
B
A
B
0
0
2.55V  
2.50V  
2.45V  
10A  
2.55V  
0
2.5V  
2.50V  
C
D
0
5A  
4A  
0
4A  
0
C
D
C
D
0
5V  
12V  
12V  
E
0
0
0
40µs/div  
= 0 TO 4A, 5A/div C: INDUCTOR CURRENT, 5A/div  
20µs/div  
= 0.2A TO 4A, 5A/div C: INDUCTOR CURRENT, 5A/div A: PGOOD2, 5V/div  
OUT2  
40µs/div  
A: I  
B: V  
A: I  
D: INDUCTOR CURRENT, 5A/div  
B: LOAD (2.5A TO 10A), 10A/div E: DL2, 5V/div  
OUT2  
= 2.5V, 100mV/div D: LX2, 10V/div  
B: V  
= 2.5V, 50mV/div D: LX2, 10V/div  
OUT2  
OUT2  
SKIP = V  
SKIP = GND  
C: 2.5V OUTPUT, 2V/div  
CC  
MAX1549 DYNAMIC OUTPUT VOLTAGE  
MAX1549 DYNAMIC OUTPUT VOLTAGE  
TRANSITION (C  
= 100pF)  
TRANSITION (C  
= 1nF)  
REFIN  
MAX1549 toc23  
REFIN  
MAX1549 toc22  
3.3V  
3.3V  
A
B
A
B
0
1.5V  
0
1.5V  
1.0V  
1.5V  
1.0V  
1.5V  
C
C
1.0V  
12V  
1.0V  
12V  
D
E
D
E
0
5A  
0
2.5A  
0
-2.5A  
0
-5A  
40µs/div  
D: LX1, 10V/div  
100µs/div  
D: LX1, 10V/div  
E: INDUCTOR CURRENT, 5A/div  
A: GATE, 5V/div  
B: REFIN1, 0.5V/div  
A: GATE, 5V/div  
E: INDUCTOR CURRENT, 10A/div B: REFIN1, 0.5V/div  
C: OUT1 (1.0V TO 1.5V), 0.5V/div  
200mA LOAD, SKIP = GND  
C: OUT1 (1.0V TO 1.5V), 0.5V/div  
200mA LOAD, SKIP = GND  
10 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Analog Ground. Connect backside pad to GND.  
1
GND  
2, 20,  
25, 31  
N.C.  
REF  
Not Internally Connected  
2.0V Reference Voltage Output. Bypass to analog ground with a 0.1µF or greater ceramic capacitor. The  
reference can source up to 100µA for external loads. Loading REF degrades output voltage accuracy  
according to the REF load-regulation error. The reference shuts down when both MAX1549 outputs are  
disabled.  
3
Analog Supply Input. Connect to the system supply voltage (+4.5V to +5.5V) through a series 20Ω  
4
5
V
CC  
resistor. Bypass V to analog ground with a 1µF or greater ceramic capacitor.  
CC  
Integrator Capacitor Connection. Connect a 47pF to 1000pF (470pF typ) capacitor from CC1 to analog  
ground (GND) to set the integration time constant for the main MAX1549 controller (OUT1).  
CC1  
Current-Limit Threshold Adjustment for Controller 1. The current-limit threshold defaults to 70mV if ILIM1  
is connected to V . In adjustable mode, the current-limit threshold across CSH1 and CSL1 is precisely  
CC  
1/10th the voltage seen at ILIM1 over a 0.5V to 2.0V range. The logic threshold for switchover to the  
6
ILIM1  
70mV default value is approximately V - 1V.  
CC  
Current-Limit Threshold Adjustment for Controller 2. The current-limit threshold defaults to 70mV if ILIM2  
is connected to V . In adjustable mode, the current-limit threshold across CSH2 and CSL2 is precisely  
CC  
1/10th the voltage seen at ILIM2 over a 0.5V to 2.0V range. The logic threshold for switchover to the  
7
ILIM2  
70mV default value is approximately V - 1V.  
CC  
8, 9  
G0, G1  
Buffered N-Channel MOSFET Gate Inputs. See Table 4.  
Fault-Blanking Select Input. This four-level logic input enables or disables fault blanking and sets the  
minimum forced-PWM operation time (t ). When fault blanking is enabled, the MAX1549 blanks  
FBLANK  
the PGOOD1 output and main (OUT1) controllers OVP/UVP fault protection for the selected time period  
after the controller detects a transition on G0 or G1. Additionally, the main controller enters forced-PWM  
10  
FBLANK mode for the duration of t  
anytime G0 or G1 changes states.  
FBLANK  
OUT1 fault protection and PGOOD1 blanking:  
= 150µs, open = 100µs, REF = 50µs, GND = blanking disabled  
V
CC  
Automatic forced-PWM transition operation (OUT1 only):  
= 150µs, open = 100µs, REF = 50µs, GND = 100µs  
V
CC  
Frequency-Select Input. This four-level logic input sets the controllers switching frequency. Connect to  
GND, REF, V , or leave FSEL unconnected (open) to select the following typical switching frequencies:  
CC  
11  
12  
FSEL  
ON1  
V
CC  
= 400kHz, open = 300kHz, REF = 200kHz, GND = 100kHz  
OUT1 Enable Input. Pull to GND to shut down controller 1 (OUT1). Connect to V for normal operation.  
CC  
The output is discharged through a 12resistor between OUT1 and GND, and DL1 is forced high after  
V
OUT1  
drops below 0.3V. A rising edge on ON1 or ON2 clears the fault-protection latch.  
OUT2 Enable Input. Pull to GND to shut down controller 2 (OUT2). Connect to V for normal operation.  
CC  
13  
14  
ON2  
The output is discharged through a 12resistor between OUT2 and GND, and DL2 is forced high after  
V
OUT2  
drops below 0.3V. A rising edge on ON1 or ON2 clears the fault-protection latch.  
Positive Current-Sense Input for Controller 2. Connect to the positive terminal of the current-sense  
element. Figure 8 describes current-sensing options. The PWM controller does not begin a cycle unless  
the current sensed is less than the current-limit threshold programmed at ILIM2.  
CSH2  
______________________________________________________________________________________ 11  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
Negative Current-Sense Input for Controller 2. Connect to the negative terminal of the current-sense  
element. Figure 8 describes current-sensing options. The PWM controller does not begin a cycle unless  
the current sensed is less than the current-limit threshold programmed at ILIM2.  
15  
CSL2  
Dual-Mode Feedback Input for Controller 2. Connect to V for a +1.8V fixed output or to analog ground  
CC  
16  
17  
18  
FB2  
(GND) for a +2.5V fixed output. For an adjustable output (0.5V to 2.7V), connect FB2 to a resistive  
divider from OUT2. The FB2 regulation level is +0.5V.  
Output Voltage-Sense Connection for Controller 2. Connect directly to the positive terminal of the output  
capacitors as shown in the Standard Applications Circuit (Figure 1). OUT2 senses the output voltage to  
determine the on-time for the high-side switching MOSFET. OUT2 also serves as the feedback input  
when using the preset internal output voltages as shown in Figure 5. The output capacitor is discharged  
through an internal 12resistor connected between OUT2 and ground.  
OUT2  
Open-Drain Power-Good Output. PGOOD2 is low when the output voltage is more than 10% (typ) above  
PGOOD2 or below the normal regulation point. PGOOD2 is also low during soft-start and shutdown. After the soft-  
start circuit has terminated, PGOOD2 is high impedance if the output is in regulation.  
19  
21  
DH2  
High-Side Gate-Driver Output for Controller 2. DH2 swings from LX2 to BST2.  
Inductor Connection for Controller 2. Connect to the switched side of the inductor. LX2 serves as the  
lower supply rail for the DH2 high-side gate driver.  
LX2  
Boost Flying-Capacitor Connection for Controller 2. Connect to an external capacitor and diode as  
shown in Figure 6. An optional resistor in series with BST2 allows the DH2 pullup current to be adjusted.  
22  
BST2  
23  
24  
PGND  
DL2  
Power Ground  
Low-Side Gate-Driver Output for Controller 2. DL2 swings from PGND to V  
.
DD  
Supply Voltage Input for the DL_ Gate Driver. Connect to the system supply voltage (+4.5V to +5.5V).  
Bypass V to power ground with a 1µF or greater ceramic capacitor.  
26  
27  
V
DD  
DD  
DL1  
Low-Side Gate-Driver Output for Controller 1. DL1 swings from PGND to V  
.
DD  
Pulse-Skipping Control Input. This CMOS logic-level input enables or disables the light-load pulse-  
skipping operation of both outputs. Connect SKIP as follows:  
28  
29  
SKIP  
V
CC  
= OUT1 and OUT2 in forced-PWM mode.  
GND = OUT1 and OUT2 in pulse-skipping mode.  
Boost Flying-Capacitor Connection for Controller 1. Connect to an external capacitor and diode as  
shown in Figure 6. An optional resistor in series with BST1 allows the DH1 pullup current to be adjusted.  
BST1  
Inductor Connection for Controller 1. Connect to the switched side of the inductor. LX1 serves as the  
lower supply rail for the DH1 high-side gate driver.  
30  
32  
LX1  
DH1  
High-Side Gate-Driver Output for Controller 1. DH1 swings from LX1 to BST1.  
12 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
Open-Drain Power-Good Output. PGOOD1 is low when the output voltage is more than 10% (typ) above  
or below the normal regulation point. PGOOD1 is also low during soft-start and shutdown. After the soft-  
33  
PGOOD1 start circuit has terminated, PGOOD1 becomes high impedance if the output is in regulation. For the  
MAX1549, PGOOD1 is blanked—forced high-impedance statewhen FBLANK is enabled and the  
controller detects a transition on GATE.  
Output-Voltage Sense Connection for Controller 1. Connect directly to the positive terminal of the output  
capacitors as shown in the Standard Applications Circuit (Figure 1). OUT1 senses the output voltage to  
determine the on-time for the high-side switching MOSFET, and also serves as the feedback input. The  
34  
OUT1  
output capacitor is discharged through an internal 12resistor connected between OUT1 and ground.  
Negative Current-Sense Input for Controller 1. Connect to the negative terminal of the current-sense  
35  
36  
CSL1  
CSH1  
element. Figure 8 describes current-sensing options. The PWM controller does not begin a cycle unless  
the current sensed is less than the current-limit threshold programmed at ILIM1.  
Positive Current-Sense Input for Controller 1. Connect to the positive terminal of the current-sense  
element. Figure 8 describes current-sensing options. The PWM controller does not begin a cycle unless  
the current sensed is less than the current-limit threshold programmed at ILIM1.  
OD1, OD2,  
OD3  
37, 38, 39  
40  
Open-Drain Output. Controlled by G0 and G1 as described in Table 4.  
REFIN  
External Reference Input. REFIN sets the main output voltage (V  
= V  
) of the MAX1549.  
OUT1  
REFIN  
______________________________________________________________________________________ 13  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Table 1. Component Selection for Standard Applications  
COMPONENT  
Input Voltage (V  
PWM1  
PWM2  
)
IN  
5V to 16V  
5V to 16V  
G1  
0
G0  
V
OUT1  
0
1.50V  
1.30V  
1.00V  
0.70V  
Output Voltage (V  
)
0
1
2.50V  
OUT  
1
0
1
1
Load Current  
6A  
5A  
Switching Frequency  
300kHz  
300kHz  
(2) 10µF, 25V  
Taiyo Yuden TMK432BJ106KM  
C
C
, Input Capacitor  
IN_  
470µF, 4V, 10mΩ  
330µF, 6.3V, 10mΩ  
Sanyo POSCAP 6TPD330M  
, Output Capacitor  
OUT_  
Sanyo POSCAP 4TPD470M  
Siliconix Si4800BDY or  
Fairchild Semiconductor  
FDS6612A  
Siliconix Si4800BDY or  
Fairchild Semiconductor  
FDS6612A  
N
High-Side MOSFET  
H_  
Siliconix Si4736DY or  
Fairchild Semiconductor  
FDS6670A  
Siliconix Si4736DY or  
Fairchild Semiconductor  
FDS6670A  
N
D
Low-Side MOSFET  
Schottky Rectifier  
L_  
L_  
1A, 30V, 0.45V  
1A, 30V, 0.45V  
f
f
(if needed)  
Nihon EP10QS03L  
Nihon EP10QS03L  
2.5µH  
4.7µH  
L_ Inductor  
Sumida CDRH104-2R5NC  
Sumida CDRH124-4R7MC  
12m1%, 0.5W resistor  
IRC LR2010-01-R012F or  
Dale WSL-2010-R012F  
15m1%, 0.5W resistor  
IRC LR2010-01-R015F or  
Dale WSL-2010-R015F  
R
CS_  
14 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Table 2. Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
AVX  
843-448-9411 (USA)  
714-447-2345 (USA)  
631-435-1110 (USA)  
800-322-2645 (USA)  
561-752-5000 (USA)  
888-522-5372 (USA)  
310-322-3331 (USA)  
408-986-0424 (USA)  
800-344-2112 (USA)  
www.avx.com  
BI Technologies  
www.bitechnologies.com  
www.centralsemi.com  
www.coilcraft.com  
Central Semiconductor  
Coilcraft  
Coiltronics  
www.coiltronics.com  
www.fairchildsemi.com  
www.irf.com  
Fairchild Semiconductor  
International Rectifier  
Kemet  
www.kemet.com  
Panasonic  
www.panasonic.com/industrial  
81-72-870-6310 (Japan)  
408-749-9714 (USA)  
Sanyo  
www.secc.co.jp  
www.vishay.com  
www.sumida.com  
Siliconix (Vishay)  
Sumida  
203-268-6261 (USA)  
81-3-3667-3301 (Japan)  
847-545-6700 (USA)  
81-3-3833-5441 (Japan)  
800-348-2496 (USA)  
Taiyo Yuden  
TDK  
www.t-yuden.com  
81-3-5201-7241 (Japan)  
847-803-6100 (USA)  
www.component.tdk.com  
www.tokoam.com  
81-3-3727-1161 (Japan)  
847-297-0070 (USA)  
TOKO  
______________________________________________________________________________________ 15  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
INPUT (V )  
IN  
5V TO 16V  
+5V BIAS  
SUPPLY  
C
IN  
(2) 10µF  
C1  
1µF  
V
DD  
D
BST  
D
BST  
N
H1  
DH1  
DH2  
N
H2  
BST1  
BST2  
C
BST  
C
BST  
0.1µF  
0.1µF  
LX1  
DL1  
LX2  
DL2  
D
L1  
D
L2  
N
L1  
N
L2  
L1  
2.5µH  
L2  
4.7µH  
PGND  
GND  
CSH1  
CSH2  
R
CS1  
R
CS2  
12mΩ  
15mΩ  
MAX1549  
CSL1  
OUT1  
CSL2  
OUT2  
OUTPUT 1  
= V  
OUTPUT 2  
V = 2.5V  
OUT2  
V
OUT1  
REFIN  
C
470µF  
OUT1  
C
330µF  
C
470pF  
OUT2  
CC1  
FB2  
SKIP  
CC1  
REF  
C
REF  
0.22µF  
FSEL  
OPEN (300kHz)  
ON1  
ON2  
ON OFF  
R2  
R1  
20Ω  
100kΩ  
+5V BIAS  
SUPPLY  
ILIM1  
ILIM2  
V
CC  
C2  
R3  
100kΩ  
R4  
100kΩ  
1µF  
100kΩ  
R6  
R7  
100kΩ  
PGOOD1  
PGOOD2  
POWER-GOOD  
REF  
R5  
100kΩ  
REFIN  
R8  
R10  
100kΩ  
66.5kΩ  
OD3  
R11  
150kΩ  
DYNAMIC OUT1  
CONTROL INPUTS  
G0  
G1  
OD2  
R12  
R9  
487kΩ  
301kΩ  
OPEN (100µs)  
FBLANK  
OD1  
C
470pF  
REFIN  
POWER GROUND  
ANALOG GROUND  
SEE TABLE 1 FOR COMPONENT SPECIFICATIONS.  
Figure 1. Standard Applications Circuit  
16 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
The 5V bias supply must provide V (PWM controller)  
CC  
De t a ile d De s c rip t io n  
and V  
(gate-drive power), so the maximum current  
DD  
The MAX1549 dual fixed-frequency step-down con-  
troller designed for low-voltage power supplies is ideal  
for g ra p hic p roc e s s or units (GPUs ). The Sta nd a rd  
Applications Circuit (Figure 1) generates the dynami-  
c a lly a d jus ta b le outp ut volta g e (OUT1) typ ic a lly  
required by graphics processor cores, and a fixed 2.5V  
output (OUT2) for the local memory used by the GPU.  
The MAX1549 main output supports up to four output  
voltages that can be dynamically selected for support-  
ing multiple GPU frequency and sleep states. The inter-  
leaved, fixed-frequency architecture provides 180°  
out-of-phase operation to reduce the input capacitance  
required to meet the RMS input-current ratings.  
drawn is:  
I
= I + f  
(Q  
+ Q  
)
G(HIGH)  
BIAS  
CC  
SW  
G(LOW)  
= 5mA to 50mA (typ)  
is 1mA (typ), f is the switching frequency,  
where I  
CC  
SW  
a re the MOSFET d a ta  
G(HIGH)  
a nd Q  
a nd Q  
G(LOW)  
sheets total gate-charge specification limits at V = 5V.  
GS  
The battery input (V ) and 5V bias inputs (V  
and  
IN  
CC  
V ) can be connected together if the input source is a  
DD  
fixed 4.5V to 5.5V supply. If the 5V bias supply powers  
up prior to the battery supply, the enable signals (ON1  
and ON2 going from low to high) must be delayed until  
the battery voltage is present to ensure startup.  
Each controller consists of a multi-input PWM compara-  
tor, high-side and low-side gate drivers, fault protection,  
power-good detection, adjustable current-limit circuitry,  
soft-start, and shutdown logic. The main PWM controller  
(OUT1) also includes a dedicated reference input; logic-  
selected, open-drain outputs for dynamically adjusting  
the output voltage; and an integrator output for improved  
output-voltage accuracy. The second PWM controller  
(OUT2) includes a dual-mode feedback network and a  
multiplexer for preset 2.5V (FB2 = GND), 1.8V (FB2 =  
Fix e d -Fre q u e n c y, Cu rre n t -Mo d e  
P WM Co n t ro lle r  
The heart of each current-mode PWM controller is a  
multi-input, open-loop comparator that sums two sig-  
nals: the output-voltage error signal with respect to the  
reference voltage and the slope-compensation ramp  
(Figure 3). The MAX1549 uses a direct-summing config-  
uration, approaching ideal cycle-to-cycle control over  
the output voltage without a traditional error amplifier  
and the phase shift associated with it. The MAX1549  
uses a relatively low loop gain, allowing the use of low-  
cost output capacitors. The low loop gain results in the  
0.1% (typ) load-regulation error and helps reduce the  
output-capacitor size and cost by shifting the unity-gain  
crossover frequency to a lower level.  
V
CC  
), or adjustable output-voltage operation.  
See Table 1 for the standard applications circuit’s com-  
ponent selection and Table 2 for component manufac-  
turer contact information.  
+5 V Bia s S u p p ly (V  
a n d V  
)
DD  
CC  
The MAX1549 requires an external 5V bias supply in  
addition to the battery. Typically, this 5V bias supply is  
the note b ooks 95% e ffic ie nt, 5V s ys te m s up p ly.  
Keeping the bias supply external to the IC improves  
efficiency and eliminates the cost associated with the  
5V linear regulator that would otherwise be needed to  
supply the PWM circuit and gate drivers. If stand-alone  
capability is needed, generate the 5V bias supply with  
Integrator Amplifier (OUT1 Only)  
A feedback amplifier forces the DC average of the feed-  
back voltage to equal the reference threshold voltage.  
This transconductance amplifier integrates the feedback  
voltage and provides a fine adjustment to the regulation  
voltage (Figure 2), allowing accurate DC output voltage  
regulation regardless of the output voltage ripple. The  
feedback amplifier has the ability to shift the output volt-  
age by ±8%. The differential input voltage range is at  
least ±80mV total, including DC offset and AC ripple. Use  
a capacitor value of 47pF to 1000pF (470pF typ).  
an external linear regulator (V > 5.5V) or regulated  
IN  
charge pump (V < 4.5V).  
IN  
______________________________________________________________________________________ 17  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
OSC  
FSEL  
SKIP  
ILIM2  
CSH2  
CSL2  
ILIM1  
CSH1  
CSL1  
BST1  
BST2  
PWM  
CONTROLLER 2  
(FIGURE 3)  
DH2  
PWM  
LX2  
CONTROLLER 1  
(FIGURE 3)  
DH1  
LX1  
V
DD  
DL2  
V
DD  
DL1  
OUT2  
FB2  
PGND  
FB2 DECODE  
(FIGURE 10)  
CC1  
ON2  
Gm  
OUT1  
ON1  
REF  
3R  
V
CC  
2.0V  
REF  
GND  
R
REFIN  
POWER-GOOD AND  
FAULT PROTECTION  
(FIGURE 7)  
PGOOD1  
POWER-GOOD AND  
FAULT PROTECTION  
(FIGURE 7)  
PGOOD2  
BLANK  
FBLANK  
G0  
QUAD-LEVEL  
DECODE AND  
TIMER  
GATE  
LOGIC  
G1  
OD1  
OD2  
OD3  
MAX1549  
Figure 2. PWM-Controller Detailed Functional Diagram  
18 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
CSH  
CSL  
FROM FB  
REF  
SLOPE COMP  
0.1 x V  
LIMIT  
R
S
Q
DH DRIVER  
IDLE-MODE  
CURRENT  
SKIP  
SOFT-START  
COUNTER  
CURRENT  
LIMIT  
ON  
DAC  
OSC  
S
DL DRIVER  
Q
R
LX  
PGND  
Figure 3. PWM-Comparator Functional Diagram  
______________________________________________________________________________________ 19  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Lig h t -Lo a d Op e ra t io n Co n t ro l (SKIP)  
The MAX1549 includes a light-load operating-mode  
control input (SKIP) used to independently enable or  
disable the zero-crossing comparator for both con-  
trolle rs . Whe n the ze ro-c ros s ing c omp a ra tors a re  
enabled (SKIP = GND), each controller forces DL_ low  
when its current-sense inputs detect zero inductor cur-  
rent. This keeps the inductor from discharging the out-  
put capacitors and forces the controller to skip pulses  
under light-load conditions to avoid overcharging the  
output. When the zero-crossing comparators are dis-  
Table 3. FSEL Configuration  
FSEL  
SWITCHING FREQUENCY (kHz)  
V
CC  
400  
300  
200  
100  
Open  
REF  
GND  
Frequency Selection (FSEL)  
The FSEL input selects the PWM-mode switching fre-  
quency as shown in Table 3. High-frequency (400kHz)  
operation optimizes the application for the smallest  
component size, trading off efficiency due to higher  
s witc hing los s e s . This ma y b e a c c e p ta b le in ultra -  
portable devices where the load currents are lower.  
Low-frequency (100kHz) operation offers the best over-  
all efficiency at the expense of component size and  
board space.  
abled (SKIP = V ), each controller maintains PWM  
CC  
operation under light-load conditions (forced-PWM).  
The on-time of the ste p-down c ontrolle r te rmina te s  
when the output voltage exceeds the feedback thresh-  
old and when the current-sense voltage exceeds the  
idle-mode current-sense threshold. Under heavy-load  
conditions, the continuous inductor current remains  
above the idle-mode current-sense threshold, so the  
on-time depends only on the feedback-voltage thresh-  
old. Under light-load conditions, the controller remains  
above the feedback-voltage threshold, so the on-time  
d ura tion d e p e nd s s ole ly on the id le -mod e c urre nt-  
sense threshold, which is approximately 20% of the full-  
load current-limit threshold set by ILIM_.  
Fo rc e d -P WM Mo d e  
The low-noise forced-PWM mode disables the zero-  
c ros s ing c omp a ra tor, whic h c ontrols the low-s id e  
switc h on-time . This forc e s the low-side ga te -drive  
waveform to be constantly the complement of the high-  
s id e g a te -d rive wa ve form, s o the ind uc tor c urre nt  
reverses at light loads while DH_ maintains a duty fac-  
When transitioning from pulse-skipping mode to forced-  
PWM mod e (SKIP ris ing e d g e ), DL_ is p ulle d hig h  
immediately if both drivers are low.  
tor of V  
/ V . The benefit of forced-PWM mode is  
OUT_  
IN  
ke e p ing the s witc hing fre q ue nc y fa irly c ons ta nt.  
However, forced-PWM operation comes at a cost: the  
no-load 5V bias current remains between 5mA and  
50mA, d e p e nd ing on the e xte rna l MOSFETs a nd  
switching frequency. This additional supply current  
reduces the light-load efficiency.  
Idle-Mode Current-Sense Threshold  
The idle-mode current-sense threshold forces a lightly  
loaded regulator to source a minimum amount of power  
with each on-time. Since the zero-crossing comparator  
prevents the switching regulator from sinking current,  
the controller must skip pulses to avoid overcharging  
the output. When the clock edge occurs, if the output  
voltage still exceeds the feedback threshold, the con-  
troller does not initiate another on-time. This forces the  
controller to actually regulate the valley of the output  
voltage ripple under light-load conditions.  
In particular, forced-PWM mode avoids audio-frequen-  
cy noise under light-load conditions, improves the load-  
transient response, and provides sink-current capability  
for d yna mic outp ut-volta g e a d jus tme nts . The ma in  
MAX1549 controller (OUT1) uses forced-PWM opera-  
tion during all dynamic output-voltage transitions (G0 or  
G1 transition detected) to ensure fast, accurate transi-  
tions. Since forced-PWM operation disables the zero-  
crossing comparator, the inductor current reverses  
und e r lig ht loa d s , q uic kly d is c ha rg ing the outp ut  
capacitors. FBLANK determines how long the main  
MAX1549 controller maintains forced-PWM operation—  
Automatic Pulse-Skipping Crossover  
In skip mode, an inherent automatic switchover to PFM  
takes place at light loads (Figure 4). This switchover is  
affected by a comparator that truncates the low-side  
switch on-time at the inductor currents zero crossing.  
The zero-crossing comparator differentially senses the  
inductor current across the low-side MOSFET (LX_ to  
150µs (FBLANK = V ), 100µs (FBLANK = open or  
CC  
GND), or 50µs (FBLANK = REF).  
PGND). Onc e V  
- V _ d rop s b e low the 3mV  
PGND  
LX  
zero-crossing current limit, the comparator forces DL_  
low (Figure 3).  
20 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
This mechanism causes the threshold between pulse-  
skipping PFM and nonskipping PWM operation to coin-  
c id e with the b ound a ry b e twe e n c ontinuous a nd  
discontinuous inductor-current operation (also known as  
the “critical conduction” point). The load-current level at  
I  
t  
V - V  
IN OUT  
=
L
I
IDLE  
which the PFM/PWM crossover occurs, I  
, is  
LOAD(SKIP)  
equal to 1/2 the idle-mode inductor current:  
I
= I / 2  
LOAD IDLE  
1
V
IDLE  
I
=
LOAD(SKIP)  
2 R  
SENSE  
where V  
is the idle-mode threshold (V  
= 0.2 x  
IDLE  
IDLE  
V
LIMIT  
where V  
= 0.1 x V ; see the Setting the  
ILIM  
LIMIT  
Current Limit section). The switching waveforms may  
appear noisy and asynchronous when light loading caus-  
es pulse-skipping operation, but this is a normal operat-  
ing condition that results in high light-load efficiency.  
Tradeoffs in PFM noise vs. light-load efficiency are made  
by varying the inductor value. Generally, low inductor val-  
ues produce a broader efficiency vs. load curve, while  
higher values result in higher full-load efficiency (assum-  
ing the coil resistance remains fixed) and less output volt-  
age ripple. Penalties for using higher inductor values  
inc lud e la rg e r s ize a nd d e g ra d e d loa d -tra ns ie nt  
response (especially at low input-voltage levels).  
0
ON-TIME  
TIME  
Figure 4. Pulse-Skipping/Discontinuous Crossover Point  
For PFM operation (discontinuous conduction), the out-  
put voltage is defined by the following equation:  
f
1
2
SW  
V
= V  
+
I
× ESR  
OUT(PFM)  
NOM  
IDLE  
f
OSC  
where f  
FSEL, f  
is the maximum switching frequency set by  
is the actual switching frequency, and I  
OSC  
SW  
Ou t p u t Vo lt a g e  
DC-output accuracy specifications in the Electrical  
Cha ra c te ris tic s ta b le re fe r to the e rror-c omp a ra tor  
threshold. When the inductor continuously conducts  
(PWM operation), the MAX1549 regulates the peak of  
the outp ut rip p le , s o the a c tua l DC outp ut volta g e  
depends on the error-comparator threshold, the slope-  
compensation amplitude, and the output voltage ripple.  
For PWM operation (continuous conduction), the output  
voltage is defined by the following equation:  
IDLE  
is the idle-mode inductor current when pulse skipping.  
Dynamic Output Voltages (OUT1 Only)  
The MAX1549 regulates OUT1 to the voltage set at  
REFIN. By changing the voltage at REFIN, the MAX1549  
can be used in applications that require dynamic output-  
voltage changes between two set points. Figure 1 shows  
a dynamically adjustable resistive voltage-divider network  
at REFIN. Using the G0 and G1 gate inputs and the  
open-drain outputs (OD1, OD2, and OD3), resistors can  
be switched in and out of the REFIN resistor-divider,  
dynamically changing the voltage at REFIN. The open-  
drain outputs are activated by the G0 and G1 gate inputs  
as shown in Table 4. The main output voltage is deter-  
mined by the following equation:  
A
V
V
RIPPLE  
SLOPE NOM  
V
= V  
1  
-
OUT _(PWM)  
NOM  
V
2
IN  
where V  
is the nominal output voltage, A  
SLOPE  
NOM  
equals 1%, and V  
is the output voltage ripple  
RIPPLE  
(typically V  
the Output Capacitor Selection section).  
= ESR x I  
as described in  
RIPPLE  
INDUCTOR  
R
EQ  
V
= V  
REF  
OUT1  
R8 + R  
EQ  
In discontinuous conduction (I < I  
), the  
LOAD(SKIP)  
OUT  
MAX1549 regulates the valley of the output ripple, and  
the output voltage has a DC regulation level higher than  
the error-comparator threshold by approximately 1.5%  
due to the slope compensation.  
where R  
is the equivalent resistance between REFIN  
EQ  
and ground (see Figure 1 and Table 4).  
The main MAX1549 controller (OUT1) automatically  
enters forced-PWM operation after detecting a G0 or  
G1 transition (rising or falling edge), and remains in  
forced-PWM mode for a minimum time selected by  
FBLANK (Table 5).  
______________________________________________________________________________________ 21  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Table 4. Open-Drain Output States  
INPUTS  
OUTPUTS  
OD2  
R
EQ  
G1  
0
G0  
0
OD1  
High-Z  
0
OD3  
High-Z  
High-Z  
High-Z  
0
High-Z  
High-Z  
0
R9  
0
1
R9 // R12  
R9 // R11  
R9 // R10  
1
0
High-Z  
High-Z  
1
1
High-Z  
Forced-PWM operation is required to ensure fast, accu-  
rate negative voltage transitions when REFIN is low-  
e re d . Sinc e forc e d -PWM op e ra tion d is a b le s the  
zero-crossing comparator, the inductor current can  
reverse under light loads, quickly discharging the out-  
p ut c a p a c itors . If fa ult b la nking is e na b le d , the  
MAX1549 disables the main controllers (OUT1) output  
fault protection (OVP and UVP), and forces PGOOD1 to  
a high-impe da nc e sta te for the pe riod se le c te d by  
FBLANK (Table 5).  
Adding a capacitor across REFIN and GND filters noise  
and controls the rate-of-change of the REFIN voltage  
during dynamic transitions. With the additional capaci-  
tance, the REFIN voltage slews between the two set  
points with a time constant given by R  
x C  
,
REFIN  
REFIN  
where R  
is the equivalent parallel resistance seen  
REFIN  
by the slew capacitor during the transition:  
R8 × R  
R8 + R  
EQ  
τ
=
C
REFIN  
REFIN  
EQ  
For a step voltage change at REFIN, the rate-of-change  
of the output voltage is limited by the inductor current  
ramp, the total output capacitance, the current limit, and  
the load during the transition. The inductor current ramp  
is limited by the voltage across the inductor and the  
inductance. The total output capacitance determines  
how much current is needed to change the output volt-  
age. Additional load current slows down the output-volt-  
age change during a positive REFIN voltage change,  
and speeds up the output-voltage change during a neg-  
ative REFIN voltage change. Increasing the current-limit  
setting speeds up a positive output-voltage change.  
Dual-Mode Feedback (OUT2 Only)  
The MAX1549s dual-mode operation allows the selec-  
tion of common voltages without requiring external  
components (Figure 5). For the secondary controller  
(OUT2), connect FB2 to GND for a fixed 2.5V output, to  
for a fixed 1.8V output, or connect FB2 directly to  
OUT2 for a fixe d 0.5V outp ut. The ma in c ontrolle r  
(OUT1) of the MAX1549 regulates to the voltage set at  
V
CC  
REFIN (V  
mode operation.  
= V  
) and does not support dual-  
FB1  
REFIN  
OUT2  
MAX1549  
TO ERROR  
AMPLIFIER  
ADJUSTABLE  
OUTPUT  
FB2  
FIXED OUTPUT (1.8V)  
FB = V  
CC  
FIXED OUTPUT (2.5V)  
FB = GND  
REF / 20  
REF  
Figure 5. Second Controllers Dual-Mode Feedback  
22 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Alternately, the secondary output voltage (OUT2) can  
be adjusted from 0.5V to 2.7V using a resistive voltage-  
divider. The MAX1549 regulates FB2 to a fixed 0.5V ref-  
erence voltage, so the secondary output voltage can  
be determined with the following equation:  
DL_ and DH_ drivers to the MOSFET gates for the adap-  
tive dead-time circuits to work properly. Otherwise, the  
MAX1549 interprets the MOSFET gates as off” while  
charge actually remains on the gate. Use very short, wide  
traces (50 mils to 100 mils wide if the MOSFET is 1in from  
the driver).  
R
R
A
V
= V  
1 +  
The internal pulldown transistor that drives DL_ low is  
robust, with a 0.5(typ) on-resistance. This helps prevent  
DL_ from being pulled up due to capacitive coupling from  
the drain to the gate of the low-side MOSFETs when the  
OUT2  
FB2  
B
where V  
= 0.5V, R is the resistor from the output to  
A
FB2  
FB2, and R is the resistor from FB2 to analog ground.  
B
inductor node (LX_) quickly switches from ground to V .  
IN  
Cu rre n t -Lim it P ro t e c t io n (ILIM_)  
The current-limit circuit uses differential current-sense  
inputs (CSH_ and CSL_) to limit the peak inductor cur-  
re nt. If the ma g nitud e of the c urre nt-s e ns e s ig na l  
exceeds the current-limit threshold, the PWM controller  
turns off the high-side MOSFET (Figure 3). At the next  
rising edge of the internal oscillator, the PWM controller  
does not initiate a new cycle unless the current-sense  
signal drops below the peak current-limit threshold. The  
actual maximum load current is less than the peak cur-  
re nt-limit thre s hold b y a n a mount e q ua l to 1/2 the  
inductor ripple current. Therefore, the maximum load  
capability is a function of the current-limit threshold,  
current-sense resistance, inductor value, switching fre-  
Applications with high input voltages and long, inductive  
driver traces may require additional gate-to-source  
capacitance to ensure fast-rising LX_ edges do not pull  
up the low-side MOSFETs gate voltage, causing shoot-  
through currents. The capacitive coupling between LX_  
and DL_ created by the MOSFETs gate-to-drain capaci-  
tance (C  
), gate-to-source capacitance (C  
- C  
),  
RSS  
ISS  
RSS  
and additional board parasitics should not exceed the fol-  
lowing minimum threshold:  
C
RSS  
V
> V  
IN  
GS(TH)  
C
ISS  
Lot-to-lot variation of the threshold voltage can cause  
p rob le ms in ma rg ina l d e s ig ns . Typ ic a lly, a d d ing a  
quency, and duty cycle (V  
/ V ).  
OUT  
IN  
4700pF between DL_ and power ground (C in Figure  
Connect ILIM_ to V for the 70mV default threshold, or  
CC  
NL  
6), close to the low-side MOSFETs, greatly reduces the  
voltage coupling. Do not exceed 22nF of total gate  
capacitance to prevent excessive turn-off delays.  
adjust the current-limit threshold with an external resistor-  
divider at ILIM_. Use a 2µA to 20µA divider current for  
accuracy and noise immunity. The current-limit threshold  
a d jus tme nt ra ng e is from 50mV to 200mV. In the  
adjustable mode, the current-limit threshold voltage  
Alternately, shoot-through currents can be caused by a  
combination of fast high-side MOSFETs and slow low-  
side MOSFETs. If the turn-off delay time of the low-side  
MOSFET is too long, the high-side MOSFETs turn on  
before the low-side MOSFETs have actually turned off.  
Adding a resistor less than 10in series with BST_  
slows down the high-side MOSFET turn-on time, elimi-  
nating the shoot-through currents without degrading  
the turn-off time (Figure 6). Slowing down the high-side  
MOSFET also reduces the LX_ node rise time, thereby  
reducing the EMI and high-frequency coupling respon-  
sible for switching noise.  
equals precisely 1/10th the voltage seen at ILIM_ (V  
LIMIT  
= 0.1V _). The logic threshold for switchover to the  
ILIM  
70mV default value is approximately V - 1V.  
CC  
Carefully observe the PC board layout guidelines to  
ensure noise and DC errors do not corrupt the differen-  
tial current-sense signals seen by CSH_ and CSL_.  
Place the IC close to the sense resistor with short,  
direct traces, making a Kelvin-sense connection to the  
current-sense resistor.  
MOS FET Ga t e Drive rs (DH_, DL_)  
The DH_ and DL_ drivers are optimized for driving mod-  
erately sized, high-side and larger, low-side power  
MOSFETs. This is consistent with the low duty factor seen  
P o w e r-Up S e q u e n c e  
Power-on reset (POR) occurs when V  
rises above  
CC  
approximately 2V, resetting the fault latch and soft-start  
counter, powering up the reference, and preparing the  
in notebook applications, where a large V - V  
differ-  
IN  
OUT  
PWM controllers for operation. Until V reaches 4.25V  
ential exists. An adaptive dead-time circuit monitors the  
DL_ output and prevents the high-side MOSFET from  
turning on until DL_ is fully off. A similar adaptive dead-  
time circuit monitors the DH_ output to prevent the low-  
side MOSFET from turning on until DH_ is fully off. There  
must be a low-resistance, low-inductance path from the  
CC  
(typ), the V  
undervoltage-lockout (UVLO) circuitry  
CC  
inhibits switching. The controller inhibits switching by  
pulling DH_ low and forcing DL_ high. When V rises  
CC  
above 4.25V and ON_ is driven high, the activated con-  
troller initializes soft-start and starts switching.  
______________________________________________________________________________________ 23  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
S o ft -S h u t d o w n  
Soft-shutdown slowly discharges the output capaci-  
tance, providing a damped shutdown response. This  
eliminates the slightly negative output voltages caused  
C
BYP  
by quickly discharging the output through the inductor  
and low-side MOSFET. Both controllers contain sepa-  
rate soft-shutdown circuits.  
V
DD  
MAX1549  
D
BST  
(R )*  
BST  
BST  
When the controller is disabledON_ pulled low, the  
UV fa ult la tc h s e t, or inp ut UVLO trig g e re d —the  
MAX1549 discharges the respective output through an  
internal 12switch to ground. While the output dis-  
charges, the MAX1549 forces DL_ low and disables the  
PWM controller, but the reference remains active to  
provide an accurate threshold. Once the output voltage  
drops below 0.3V, the MAX1549 pulls DL_ high, effec-  
tively clamping the output and LX_ switching node to  
ground. The reference shuts down once both outputs  
are disabled and discharged below 0.3V.  
INPUT (V )  
IN  
C
BST  
DH  
LX  
N
H
L
V
DD  
DL  
N
L
(C )*  
NL  
GND  
P o w e r-Go o d Ou t p u t (P GOOD_)  
The MAX1549 includes separate open-drain outputs for  
the power-good window comparators (Figure 7) that  
monitor each output continuously (except during main-  
output fault blanking; see the Fault and Power-Good  
Bla nking s e c tion). The c ontrolle r a c tive ly hold s  
PGOOD_ low in shutdown and during soft-start. Once  
the digital soft-start terminates, PGOOD_ becomes high  
impedance as long as the respective output voltage is  
within 10% of the nominal regulation voltage. When  
either output voltage drops 10% below or rises 10%  
above the nominal regulation voltage, the MAX1549  
pulls the respective PGOOD_ output low. Any fault con-  
dition forces both PGOOD1 and PGOOD2 low until the  
fa ult la tc h is c le a re d b y tog g ling ON1 or ON2, or  
(R )* OPTIONALTHE RESISTOR LOWERS EMI BY DECREASING  
BST  
THE SWITCHING-NODE RISE TIME.  
(C )* OPTIONALTHE CAPACITOR REDUCES LX TO DL CAPACITIVE  
COUPLING THAT CAN CAUSE SHOOT-THROUGH CURRENTS.  
NL  
Figure 6. Optional Gate-Driver Circuitry  
Dig it a l S o ft -S t a rt  
Soft-start allows a gradual increase of the internal cur-  
rent-limit level during startup to reduce the input surge  
currents. Both controllers contain an internal digital  
soft-start circuit. In shutdown mode or input UVLO, the  
controller resets the soft-start counter to zero.  
cycling V power below 1V. For logic-level output volt-  
CC  
a g e s , c onne c t a n e xte rna l p ullup re s is tor b e twe e n  
PGOOD_ and V . A 100kresistor works well in most  
CC  
The MAX1549 divides the soft-start period into five  
phases. During the first phase, the controller limits the  
peak current limit to only 20% of the full current limit. If  
the output does not reach regulation within 128 clock  
applications.  
The power-good window comparators are completely  
independent of the overvoltage and undervoltage-pro-  
tection fault comparators.  
cycles (1 / f  
), soft-start enters the second phase  
OSC  
Fa u lt P ro t e c t io n  
and increments the current limit by another 20%. This  
process repeats until soft-start reaches the maximum  
current limit after 512 clock cycles or until the output  
re a c he s the nomina l re g ula tion volta g e , whic he ve r  
occurs first (see the Soft-Start Waveforms in the Typical  
Operating Characteristics). The exact rise time of the  
output voltage depends on the output capacitance and  
load current.  
Overvoltage Protection (OVP)  
If either output voltage rises above 114.5% of its nomi-  
nal regulation voltage, the OVP circuit sets the fault  
latch, pulls PGOOD1 and PGOOD2 low, shuts down  
both PWM controllers, and immediately pulls DH_ low  
and forces DL_ high. This turns on the synchronous-  
rectifier MOSFETs with 100% duty, rapidly discharging  
the output capacitors and clamping both outputs to  
ground. However, immediately latching DL_ high typi-  
cally causes slightly negative output voltages due to  
24 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
FAULT PROTECTION  
Table 5. FBLANK Configuration Table  
POWER-GOOD  
OUT1 FAULT AND  
PGOOD1 BLANKING  
OUT1 FORCED-PWM  
DURATION (TYP) (µs)  
0.9 x  
INT REF  
1.1 x  
INT REF  
0.7 x  
INT REF  
1.14 x  
INT REF  
FBLANK  
INTERNAL FB  
V
Enabled (150µs)  
Enabled (100µs)  
Enabled (50µs)  
Disabled  
150  
100  
50  
CC  
Open  
REF  
GND  
100  
BLANK  
(TRANSITION)  
Fa u lt a n d P o w e r-Go o d Bla n k in g (FBLANK)  
The main MAX1549 controller (OUT1) automatically  
enters forced-PWM operation during all dynamic out-  
put-voltage transitions (G0 or G1 transition detected) to  
ensure fast, accurate transitions. FBLANK determines  
how long the main controller maintains forced-PWM  
FAULT  
LATCH  
FAULT  
TIMER  
POWER-GOOD  
POR  
operation (Table 5)—150µs (FBLANK = V ), 100µs  
CC  
(FBLANK = open or GND), or 50µs (FBLANK = REF).  
When fault blanking is enabled (FBLANK = V , open,  
CC  
Figure 7. Power-Good and Fault Protection  
or REF), the MAX1549 also disables the overvoltage  
and undervoltage fault protection for OUT1, and forces  
PGOOD1 to a high-impedance state during the transi-  
tion period selected by FBLANK (Table 5). This pre-  
vents fault protection from latching off the MAX1549  
and keeps the PGOOD1 signal from going low while  
the output-voltage transition occurs.  
the energy stored in the output LC at the instant the OV  
fault occurs. If the load cannot tolerate a negative volt-  
age, place a power Schottky diode across the output to  
act as a reverse-polarity clamp. If the condition that  
caused the overvoltage persists (such as a shorted  
high-side MOSFET), the battery fuse blows. The main  
controller temporarily blanks OVP after transitions are  
detected on G0 or G1 (FBLANK enabled). Toggle ON1  
De s ig n P ro c e d u re  
Firmly establish the input voltage range and maximum  
load current before choosing a switching frequency  
and inductor operating point (ripple-current ratio). The  
primary design tradeoff lies in choosing a good switch-  
ing frequency and inductor operating point, and the fol-  
lowing four factors dictate the rest of the design:  
or ON2, or cycle V power below 1V, to clear the fault  
latch and restart the controller.  
CC  
Undervoltage Protection (UVP)  
Each controller has an output UVP circuit that activates  
4096 c loc k c yc le s (1 / f  
) a fte r the c ontrolle r is  
OSC  
enabled. If either output voltage drops below 70% of its  
nominal regulation voltage, the MAX1549 sets the fault  
la tc h, pulls PGOOD1 a nd PGOOD2 low, a nd shuts  
down both controllers using discharge mode (see the  
Soft-Shutd own s e c tion). Whe n e a c h outp ut volta g e  
drops to 0.3V, its synchronous rectifier turns on and  
clamps the output to GND. The main controller tem-  
porarily blanks UVP after transitions are detected on G0  
or G1 (FBLANK enabled). Toggle ON1 or ON2, or cycle  
Input Voltage Range: The maximum value (V  
)
IN(MAX)  
must accommodate the worst-case, high AC-adapter  
voltage. The minimum value (V ) must account for  
IN(MIN)  
the lowest battery voltage minus the voltage drops asso-  
ciated with the connectors, fuses, and battery-selector  
switches. If there is a choice at all, lower input voltages  
result in better efficiency. The minimum and maximum  
input voltage range is restricted by the minimum and  
maximum duty-cycle limits specified in the Electrical  
Characteristics table:  
V
CC  
power below 1V, to clear the fault latch and restart  
the controller.  
V
V
OUT  
OUT  
V
>
and V  
<
Thermal Fault Protection  
IN(MIN)  
IN(MAX)  
D
t
f
ON(MIN) OSC  
MAX  
The MAX1549 features a thermal fault-protection circuit.  
When the junction temperature rises above +160°C, a  
thermal sensor activates the fault latch, pulls PGOOD1  
and PGOOD2 low, and shuts down both controllers  
using discharge mode. Toggle ON1 or ON2, or cycle  
whe re D  
is the 91% ma ximum d uty-c yc le limit,  
MAX  
t
is the 200ns minimum off-time, and f  
is the  
ON(MIN)  
OSC  
switching frequency selected by FSEL. Since the maxi-  
mum input voltage range is restricted by the switching  
frequency and output voltage, lower frequency opera-  
tion might be required for high input-to-output voltage  
applications.  
V
CC  
power below 1V, to reactivate the controller after  
the junction temperature cools by 15°C.  
______________________________________________________________________________________ 25  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Maximum Load Current: There are two values to con-  
sider. The peak inductor current (I ) determines the  
instantaneous component stresses and filtering require-  
me nts a nd thus d rive s outp ut c a p a c itor s e le c tion,  
inductor saturation rating, and the design of the cur-  
rent-limit circuit. The maximum continuous load current  
Find a low-loss inductor with the lowest possible DC  
resistance that fits in the allotted dimensions. Ferrite  
cores are often the best choice, although powdered  
iron is inexpensive and can work well at 200kHz. The  
core must be large enough not to saturate at the peak  
PEAK  
inductor current (I ):  
PEAK  
(I  
) determines the thermal stresses and thus  
LOAD(MAX)  
LIR  
2
drives the selection of input capacitors, MOSFETs, and  
other critical heat-contributing components.  
I
= I  
1 +  
PEAK  
LOAD(MAX)  
Switching Frequency: This choice determines the  
basic tradeoff between size, efficiency, and maximum  
input voltage range. The optimum frequency is largely  
a function of maximum input voltage, due to MOSFET  
switching losses that are proportional to frequency and  
Most inductor manufacturers provide inductors in stan-  
dard values, such as 1.0µH, 1.5µH, 2.2µH, 3.3µH, etc.  
Also look for nonstandard values, which can provide a  
better compromise in LIR across the input voltage range.  
If using a swinging inductor (where the no-load induc-  
tance decreases linearly with increasing current), evalu-  
ate the LIR with properly scaled inductance values.  
V
2. The optimum frequency is also a moving target,  
IN  
due to rapid improvements in MOSFET technology that  
are making higher frequencies more practical.  
Tra n s ie n t Re s p o n s e  
The ind uc tor rip p le c urre nt a ls o imp a c ts tra ns ie nt-  
Inductor Operating Point: This choice provides trade-  
offs between size vs. efficiency and transient response  
vs. output ripple. Low inductor values provide better tran-  
sient response and smaller size, but also result in lower  
efficiency and higher output ripple due to increased rip-  
ple currents. The minimum practical inductor value is one  
that causes the circuit to operate at the edge of critical  
conduction (where the inductor current just touches zero  
with every cycle at maximum load). Inductor values lower  
than this grant no further size-reduction benefit. The opti-  
mum operating point is usually found between 20% and  
50% ripple current. When pulse skipping (SKIP low and  
light loads), the inductor value also determines the load-  
current value at which PFM/PWM switchover occurs.  
response performance, especially at low V - V  
dif-  
IN  
OUT  
fe re ntia ls . Low ind uc tor va lue s a llow the ind uc tor  
current to slew faster, replenishing charge removed  
from the output-filter capacitors by a sudden load step.  
The total output voltage sag is the sum of the voltage  
sag while the inductor is ramping up and the voltage  
sag before the next pulse can occur:  
2
L I  
(
)
LOAD(MAX)  
V
=
SAG  
2C  
V
× D  
- V  
(
)
OUT IN  
MAX  
OUT  
I  
T - T  
(
)
LOAD(MAX)  
C
In d u c t o r S e le c t io n  
The switching frequency and inductor operating point  
determine the inductor value as follows:  
+
OUT  
whe re D  
is the ma ximum d uty fa c tor (s e e the  
MAX  
Electrical Characteristics table), T is the cycle period (1 /  
), T equals V / V x T when in PWM mode, or L  
V
V
- V  
OUT  
(
)
OUT IN  
I
f
OSC  
OUT  
IN  
OUT  
L =  
V x f  
x LIR  
x 0.2 x I  
/ (V - V  
) when in skip mode. The  
IN OSC x LOAD(MAX)  
MAX  
IN  
amount of overshoot during a full-load to no-load transient  
due to stored inductor energy can be calculated as:  
For example: I  
= 5A, V = 12V, V  
=
LOAD(MAX)  
IN  
OUT  
2.5V, f  
= 300kHz, 30% ripple current or LIR = 0.3:  
OSC  
2
I  
L
(
)
LOAD(MAX)  
2.5V × (12V - 2.5V)  
= 4.40µH  
V
SOAR  
L =  
2C  
V
OUT OUT  
12V × 300kHz × 5A × 0.3  
26 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
S e t t in g t h e P e a k Cu rre n t Lim it  
The minimum c urre nt-limit thre shold must be gre a t  
INPUT (V )  
IN  
enough to support the maximum load current when the  
current limit is at the minimum tolerance value. The  
C
IN  
MAX1549  
DH_  
N
H
peak inductor current occurs at I  
ripple current; therefore:  
plus 1/2 the  
LOAD(MAX)  
L
R
SENSE  
LX_  
I
LIR  
C
OUT  
LOAD(MAX)  
2
N
L
D
L
I
> I  
+
DL_  
LIMIT  
LOAD(MAX)  
PGND  
where I  
equals the minimum current-limit thresh-  
LIMIT_  
old voltage divided by the current-sense resistance  
(R ). For the 70mV default setting, the minimum  
CSH_  
CSL_  
SENSE  
current-limit threshold is 65mV.  
Connect ILIM_ to V for a default 70mV current-limit  
CC  
A) OUTPUT SERIES RESISTOR SENSING  
threshold. In adjustable mode, the current-limit thresh-  
old is precisely 1/10th the voltage seen at ILIM_. For an  
adjustable threshold, connect a resistive-divider from  
REF to analog ground (GND) with ILIM_ connected to  
the center tap. The external 500mV to 2V adjustment  
range corresponds to a 50mV to 200mV current-limit  
threshold. When adjusting the current limit, use 1% tol-  
erance resistors and a divider current of approximately  
10µA to prevent significant inaccuracy in the current-  
limit tolerance.  
INPUT (V )  
IN  
C
IN  
MAX1549  
N
H
DH_  
INDUCTOR  
LX_  
C
OUT  
C
EQL  
R
N
L
EQL  
D
L
DL_  
PGND  
The current-sense method (Figure 8) and magnitude  
determine the achievable current-limit accuracy and  
power loss. Typically, higher current-sense limits provide  
more noise immunity, but also dissipate more power.  
Mos t a p p lic a tions e mp loy a c urre nt-limit thre s hold  
CSH_  
CSL_  
R
BIAS  
= R  
EQL  
B) LOSSLESS INDUCTOR SENSING  
(V ) of 50mV to 100mV, so the sense resistor can be  
LIMIT  
determined by:  
Figure 8. Current-Sense Configurations  
V
LIMIT  
R
=
SENSE  
the inductors DC resistance (R  
= R  
). Use the  
SENSE  
DCR  
I
LIMIT  
worst-case inductance and R  
values provided by the  
DCR  
inductor manufacturer, adding some margin for the  
inductance drop over temperature and load.  
For the best current-sense accuracy and overcurrent  
protection, use a 1% tolerance current-sense resistor  
between the inductor and output as shown in Figure  
8A. This configuration constantly monitors the inductor  
current, allowing accurate current-limit protection.  
Ou t p u t Ca p a c it o r S e le c t io n  
The output-filter capacitor must have low enough equiv-  
alent series resistance (ESR) to meet output ripple and  
load-transient requirements, yet have high enough ESR  
to satisfy stability requirements.  
Alternately, high-power applications that do not require  
highly accurate current-limit protection can reduce the  
overall power dissipation by connecting a series RC  
circuit across the inductor (Figure 8B) with an equiva-  
lent time constant:  
For processor core voltage converters and other appli-  
cations where the output is subject to severe load tran-  
sients, the output capacitors size depends on how  
much ESR is needed to prevent the output from dip-  
ping too low under a load transient. Ignoring the sag  
due to finite capacitance:  
L
= C  
× R  
EQL  
EQL  
R
DCR  
V
STEP  
LOAD(MAX)  
where R  
is the inductors series DC resistance. In  
DCR  
R
ESR  
I  
this configuration, the current-sense resistance equals  
______________________________________________________________________________________ 27  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
In applications without large and fast load transients, the  
output capacitors size often depends on how much ESR  
is needed to maintain an acceptable level of output volt-  
age ripple. The output voltage ripple of a step-down con-  
troller equals the total inductor ripple current multiplied by  
the output capacitors ESR. Therefore, the maximum ESR  
required to meet the ripple specifications is:  
Do not p ut hig h-va lue c e ra mic c a p a c itors d ire c tly  
across the feedback sense point without taking precau-  
tions to ensure stability. Large ceramic capacitors can  
have a high-ESR zero frequency and cause erratic,  
unstable operation. However, it is easy to add enough  
series resistance by placing the capacitors a couple  
inches downstream from the feedback sense point,  
which should be as close as possible to the inductor.  
V
RIPPLE  
R
ESR  
Unstable operation manifests itself in two related but  
distinctly different ways: duty-cycle variation and fast-  
feedback loop instability. Duty-cycle variation occurs  
due to noise on the output or because the ESR is so  
low that there is not enough voltage ramp in the output-  
voltage signal. This “foolsthe error comparator into  
extending the on-time, forcing the next cycle to termi-  
na te its on-time e a rly. Duty-c yc le va ria tion is more  
annoying than harmful, resulting in nothing worse than  
increased output ripple. However, it can indicate the  
possible presence of loop instability due to insufficient  
ESR. Loop instability can result in oscillations at the out-  
put after line or load steps. Such perturbations are usu-  
ally damped, but can cause the output voltage to rise  
above or fall below the tolerance limits.  
I
LIR  
LOAD(MAX)  
The actual capacitance value required relates to the  
size ne e de d to a c hie ve low ESR, a s we ll a s to the  
c he mis try of the c a p a c itor te c hnolog y. Thus , the  
capacitor is usually selected by ESR and voltage rating  
rather than by capacitance value (this is true of tanta-  
lums, OS-CONs, polymers, and other electrolytics).  
Whe n using low-c a pa c ity filte r c a pa c itors, suc h a s  
ceramic capacitors, size is usually determined by the  
capacity needed to prevent V  
and V  
from  
SAG  
SOAR  
causing problems during load transients. Generally,  
once enough capacitance is added to meet the over-  
shoot requirement, undershoot at the rising load edge  
is no longer a problem (see the V  
and V  
equa-  
SAG  
SOAR  
tions in the Transient Response section). However, low-  
capacity filter capacitors typically have high ESR zeros  
that can affect the overall stability (see the Output-  
Capacitor Stability Considerations section).  
The easiest method for checking stability is to apply a  
ve ry fa s t ze ro-to-ma x loa d tra ns ie nt a nd c a re fully  
observe the output-voltage-ripple envelope for over-  
shoot and ringing. It can help to simultaneously monitor  
the inductor current with an AC current probe. Do not  
allow more than one cycle of ringing after the initial  
step-response under/overshoot.  
Ou t p u t -Ca p a c it o r S t a b ilit y Co n s id e ra t io n s  
The MAX1549 controllers rely on the output voltage ripple,  
which can be defined as the inductor current ripple times  
the output capacitors ESR, to generate the current-mode  
control signal required for stable operation. Therefore, the  
controllers stability is determined by the value of the ESR  
zero relative to the switching frequency. The boundary of  
instability is given by the following equation:  
In p u t Ca p a c it o r S e le c t io n  
The input capacitor must meet the RMS ripple current  
requirement (I  
) imposed by the switching currents.  
RMS  
For a single step-down converter, the RMS input ripple  
current is defined by the output load current (I ),  
OUT  
input voltage, and output voltage, with the worst-case  
f
OSC  
π
f
ESR  
condition occurring at V = 2V  
:
IN  
OUT  
where:  
V
V
- V  
(
)
OUT IN  
OUT  
I
= I  
OUT  
1
RMS  
f
=
V
ESR  
IN  
2πR  
C
ESR OUT  
For a dual 180° interleaved controller, the out-of-phase  
operation reduces the RMS input ripple current, effec-  
tively lowering the input capacitance requirements.  
For a typical 300kHz application, the ESR zero frequency  
must be well below 95kHz, preferably below 50kHz.  
Tantalum and OS-CON capacitors in widespread use at  
the time of publication have typical ESR zero frequencies  
of 25kHz. In the design example used for inductor selec-  
tion, the ESR needed to support 25mV ripple is 25mV /  
P-P  
1.5A = 16.7m. One 220µF/4V Sanyo polymer (TPE)  
capacitor provides 15m(max) ESR. This results in a  
zero at 48kHz, well within the bounds of stability.  
28 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
When both outputs operate with a duty cycle less than  
50% (V > 2V ), the RMS input ripple current is  
P o w e r MOS FET Dis s ip a t io n  
Worst-case conduction losses occur at the duty-factor  
IN  
OUT  
defined by the following equation:  
extremes. For the high-side MOSFET (N ), the worst-  
H
case power dissipation due to resistance occurs at  
minimum input voltage:  
V
OUT1  
I
I
- I  
(
)
OUT1 OUT1 IN  
V
IN  
I
=
V
2
RMS  
OUT  
PD (N Resistive) =  
I
R
DS(ON)  
(
)
H
LOAD  
V
OUT2  
V
+
I
I
(
- I  
IN  
)
OUT2 OUT2 IN  
V
IN  
Generally, use a small high-side MOSFET to reduce  
switching losses at high input voltages. However, the  
where I is the average input current:  
IN  
R
required to stay within package power-dissi-  
DS(ON)  
V
V
OUT2  
V
IN  
OUT1  
pation limits often limits how small the MOSFET can be.  
The optimum occurs when the switching losses equal  
the conduction (R  
I
=
I
+
I
OUT2  
IN  
OUT1  
V
IN  
) losses. High-side switching  
DS(ON)  
For most applications, nontantalum chemistries (ceram-  
ic, aluminum, or OS-CON) are preferred due to their  
resilience to power-up surge currents typical of sys-  
tems with a mechanical switch or connector in series  
with the input. If the MAX1549 is operated as the sec-  
ond stage of a two-stage power-conversion system,  
tantalum input capacitors are acceptable. In either con-  
figuration, choose a capacitor that has less than 10°C  
temperature rise at the RMS input current for optimal  
reliability and lifetime.  
losses do not become an issue until the input is greater  
than approximately 15V.  
Ca lc ula ting the p owe r d is s ip a tion in hig h-s id e  
MOSFETs (N ) due to switching losses is difficult since  
H
it must allow for difficult-to-quantify factors that influ-  
e nc e the turn-on a nd turn-off time s . The s e fa c tors  
inc lud e the inte rna l g a te re s is ta nc e , g a te c ha rg e ,  
threshold voltage, source inductance, and PC-board-  
layout characteristics. The following switching loss cal-  
culation provides only a very rough estimate and is no  
substitute for breadboard evaluation, preferably includ-  
P o w e r MOS FET S e le c t io n  
Most of the following MOSFET guidelines focus on the  
c ha lle nge of obta ining high loa d-c urre nt c a pa bility  
when using high-voltage (>20V) AC adapters. Low-cur-  
rent applications usually require less attention.  
ing verification using a thermocouple mounted on N :  
H
2
V
C
f
I
(
)
IN(MAX)  
RSS SW LOAD  
PD (N Switching) =  
H
I
GATE  
The high-side MOSFET (N ) must be able to dissipate  
H
the resistive losses plus the switching losses at both  
where C  
is the reverse transfer capacitance of N ,  
H
RSS  
and I  
is the peak gate-drive source/sink current  
GATE  
V
and V . Ideally, the losses at V  
IN(MAX) IN(MIN)  
IN(MIN)  
(1A typ).  
should be roughly equal to the losses at V , with  
IN(MAX)  
lower losses in between. If the losses at V  
significantly higher, consider increasing the size of N .  
are  
H
IN(MIN)  
Switching losses in the high-side MOSFET can become  
a heat problem when maximum AC-adapter voltages  
are applied, due to the squared term in the switching-  
Conversely, if the losses at V  
are significantly  
IN(MAX)  
2
higher, consider reducing the size of N . If V does  
H
IN  
loss equation (C x V  
x f ). If the high-side MOSFET  
IN  
SW  
DS(ON)  
not vary over a wide range, maximum efficiency is  
achieved by selecting a high-side MOSFET (N ) that  
has conduction losses equal to the switching losses.  
chosen for adequate R  
b e c ome s e xtra ord ina rily hot whe n s ub je c te d to  
, c onside r c hoosing a nothe r MOSFET with  
at low battery voltages  
H
V
IN(MAX)  
lower parasitic capacitance.  
Choose a low-side MOSFET (N ) that has the lowest  
L
possible on-resistance (R  
), comes in a moder-  
DS(ON)  
For the low-side MOSFET (N ), the worst-case power  
L
ate-sized package (i.e., 8-pin SO, DPAK, or D2PAK),  
and is reasonably priced. Ensure that the MAX1549  
DL_ gate driver can supply sufficient current to support  
the gate charge and the current injected into the para-  
sitic drain-to-gate capacitor caused by the high-side  
MOSFET turning on; otherwise, cross-conduction prob-  
lems can occur. Switching losses are not an issue for  
the low-s id e MOSFET s inc e it is a ze ro-volta g e  
switched device when used in the step-down topology.  
dissipation always occurs at maximum battery voltage:  
V
2
OUT  
PD (N Resistive) = 1 -  
I
R
DS(ON)  
(
)
L
LOAD  
V
IN(MAX) ⎠  
______________________________________________________________________________________ 29  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
The absolute worst case for MOSFET power dissipation  
occurs under heavy overload conditions that are greater  
Ap p lic a t io n s In fo rm a t io n  
Du t y-Cyc le Lim it s  
than I  
but are not high enough to exceed the  
LOAD(MAX)  
current limit and cause the fault latch to trip. To protect  
against this possibility, “overdesign” the circuit to tolerate:  
Minimum Input Voltage  
The minimum input operating voltage (dropout voltage)  
is restricted by the maximum duty-cycle specification  
(see the Electrical Characteristics table). However,  
keep in mind that the transient performance gets worse  
as the step-down regulators approach the dropout volt-  
age, so bulk output capacitance must be added (see  
the volta g e s a g a nd s oa r e q ua tions in the De s ig n  
Proc e d ure s e c tion). The a b s olute p oint of d rop out  
occurs when the inductor current ramps down during  
I
LIR  
LOAD(MAX)  
I
= I  
-
LOAD  
LIM  
2
where I  
is the peak current allowed by the current-limit  
LIM  
circuit, including threshold tolerance and sense-resis-  
tance variation. The MOSFETs must have a relatively  
large heatsink to handle the overload power dissipation.  
the off-time (I  
) as much as it ramps up during  
the on-time (I ). This results in a minimum operating  
Choose a Schottky diode (D ) with a forward-voltage  
L
DOWN  
UP  
drop low enough to prevent the low-side MOSFETs  
body diode from turning on during the dead time. As a  
general rule, select a diode with a DC current rating  
equal to 1/3rd the load current. This diode is optional  
and can be removed if efficiency is not critical.  
voltage defined by the following equation:  
1
V
=
V
+ V  
+ h  
1  
V
+ V  
(
)
IN(MIN)  
OUT  
CHG  
OUT DIS  
D
MAX  
Bo o s t Ca p a c it o rs  
) must be selected large  
where V  
and V  
are the parasitic voltage drops in  
CHG  
DIS  
The boost capacitors (C  
BST  
the charge and discharge paths, respectively. A rea-  
sonable minimum value for h is 1.5, while the absolute  
minimum input voltage is calculated with h = 1.  
enough to handle the gate-charging requirements of  
the hig h-s id e MOSFETs . Typ ic a lly, 0.1µF c e ra mic  
capacitors work well for low-power applications driving  
medium-sized MOSFETs. However, high-current appli-  
cations driving large, high-side MOSFETs require boost  
capacitors larger than 0.1µF. For these applications,  
select the boost capacitors to avoid discharging the  
capacitor more than 200mV while charging the high-  
side MOSFETs gates:  
Maximum Input Voltage  
The MAX1549 controller includes a minimum on-time  
specification, which determines the maximum input  
operating voltage that maintains the selected switching  
frequency (see the Electrical Characteristics table).  
Operation above this maximum input voltage results in  
pulse-skipping operation, regardless of the operating  
mod e s e le c te d b y SKIP. At the b e g inning of e a c h  
cycle, if the output voltage is still above the feedback-  
threshold voltage, the controller does not trigger an on-  
time pulse, effectively skipping a cycle. This allows the  
controller to maintain regulation above the maximum  
input voltage, but forces the controller to effectively  
operate with a lower switching frequency. This results  
in an input-threshold voltage at which the controller  
N × Q  
GATE  
200mV  
C
=
BST  
where N is the number of high-side MOSFETs used for  
one regulator, and Q is the gate charge specified  
in the MOSFETs data sheet. For example, assume one  
IRF7811W N-c ha nne l MOSFET is us e d on the hig h  
side. According to the manufacturers data sheet, a sin-  
gle IRF7811W has a maximum gate charge of 24nC  
GATE  
begins to skip pulses (V  
):  
IN(SKIP)  
(V  
= 5V). Using the above equation, the required  
GS  
boost capacitance is:  
1
V
= V  
OUT  
IN(SKIP)  
f
t
OSC ON(MIN)  
1 × 24nC  
200mV  
C
=
= 0.12µF  
BST  
where f  
is the switching frequency selected by FSEL.  
OSC  
Se le c ting the c lose st sta nda rd va lue , this e xa mple  
requires a 0.1µF ceramic capacitor.  
30 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
C1  
1µF  
+5V BIAS  
SUPPLY  
R1  
20Ω  
V
DD  
INPUT (V )  
IN  
D
BST  
V
CC  
DH2  
N
H2  
C2  
1µF  
BST2  
SKIP  
C
BST  
LX2  
DL2  
R7  
R6  
N
L2  
D
L2  
PGOOD1  
PGOOD2  
PGND  
GND  
L2  
POWER-GOOD  
CSH2  
R
CS2  
C
REF  
MAX1549  
0.22µF  
REF  
CSL2  
OUT2  
FB2  
OUTPUT 2  
= 2.5V  
V
DDQ  
R2  
R3  
V
DD  
C
OUT2  
ILIM1  
ILIM2  
D
BST  
R4  
R5  
DH1  
N
H1  
BST1  
C
BST  
LX1  
DL1  
OUT2  
R8  
N
L1  
D
L1  
L1  
REFIN  
R9  
C3  
CSH1  
R
CS1  
CSL1  
OUT1  
OUTPUT 1  
= V /2  
FBLANK  
OD3  
OD2  
0D1  
V
TT DDQ  
C
470pF  
CC1  
C
OUT1  
UNUSED  
CC1  
FSEL  
OPEN (300kHz)  
G0  
ON1  
ON2  
ON OFF  
G1  
POWER GROUND  
ANALOG GROUND  
Figure 9. Active Bus Termination  
______________________________________________________________________________________ 31  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
Figure 10 shows the connection of OUT_ and FB_ in volt-  
age-positioned and nonvoltage-positioned circuits. In  
nonvoltage-positioned circuits, the MAX1549 regulates  
the voltage across the output capacitor. In voltage-posi-  
tioned circuits, the MAX1549 regulates the voltage on the  
inductor side of the current-sense resistor. The voltage-  
positioned output voltage is reduced to:  
Ac t ive Bu s Te rm in a t io n (OUT1 )  
Active-bus-termination power supplies generate a voltage  
rail that tracks a set reference. They are required to  
source and sink current. DDR memory architecture  
requires active bus termination. In DDR memory architec-  
ture, the termination voltage is set at exactly 1/2 the mem-  
ory s up p ly volta g e . Config ure the ma in MAX1549  
controller (OUT1) to generate the termination voltage  
using a resistive voltage-divider at REFIN. In such an  
application, OUT1 must be kept in PWM mode (SKIP =  
V
= V  
- R I  
SENSE LOAD  
OUT(VPS)  
OUT(NO LOAD)  
For a conventional (nonvoltage-positioned) circuit, the  
peak-to-peak voltage change is:  
V
or open) for it to source and sink current. Figure 9  
CC  
V  
= 2 x (ESR  
x I ) + V  
LOAD SAG  
shows OUT1 configured as a DDR termination regulator.  
Connect GATE and FBLANK to GND when unused.  
OUT(CONV)  
COUT  
SOAR  
+ V  
Vo lt a g e P o s it io n in g  
Powe ring ne w mob ile p roc e s s ors (CPU or GPU)  
requires careful attention to detail to reduce cost, size,  
and power dissipation. As processors consume more  
power, it was recognized that even the fastest DC-DC  
converters were inadequate to handle the severe tran-  
sient power requirements. After a load transient, the  
whe re V  
a nd V  
a re d e fine d in Fig ure 11.  
SOAR  
SAG  
Setting the converter to regulate at a lower voltage  
when under load allows a larger voltage step when the  
outp ut c urre nt s ud d e nly d e c re a s e s . The re fore , the  
peak-to-peak voltage change for a voltage-positioned  
circuit is:  
V  
= (ESR  
x I  
) + V  
+ V  
OUT(VPS)  
COUT  
a re d e fine d in the De s ig n  
SOAR  
LOAD  
SAG SOAR  
outp ut ins ta ntly c ha ng e s b y ESR  
x I  
.
COUT  
LOAD  
whe re V  
a nd V  
SAG  
Conventional DC-DC converters respond by regulating  
the output voltage back to its nominal state after the  
load transient occurs (Figure 11), but the processor  
only requires that the output voltage remains above a  
specified minimum value. Dynamically positioning the  
output voltage to this lower limit allows the use of fewer  
output capacitors and reduces the power consumption  
under load.  
Procedure section. Since the amplitudes are the same  
for both circuits (V = V ), the volt-  
age-positioned circuit tolerates twice the ESR. Since  
the ESR specification is achieved by paralleling several  
capacitors, fewer units are needed for the voltage-posi-  
tioned circuit.  
OUT(CONV)  
OUT(VPS)  
R1  
+5V BIAS  
SUPPLY  
C2  
V
DD  
V
CC  
D
BST  
C1  
V+  
INPUT (V )  
IN  
C
IN  
BST  
N
H
REGULATED VOLTAGE  
DH  
VOLTAGE-POSITIONED  
OUTPUT (V  
C
BST  
R
SENSE  
L1  
)
OUT(VPS)  
MAX1549  
LX  
DL  
N
L
C
OUT  
D
L
GND  
CSH  
OUT  
CSL  
FB  
V
= V  
- R x I  
OUT(VPS)  
OUT(NO LOAD) SENSE OUT  
Figure 10. Voltage-Positioned Applications Circuit  
32 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
CAPACITIVE SOAR  
(dV/dt = I / C  
)
OUT OUT  
VOLTAGE POSITIONING THE OUTPUT  
ESR VOLTAGE STEP  
(I x R  
)
ESR  
STEP  
A
B
1.4V  
1.4V  
V
OUT  
CAPACITIVE SAG  
(dV/dt = I / C  
)
RECOVERY  
OUT OUT  
A. CONVENTIONAL CONVERTER (50mV/div)  
B. VOLTAGE-POSITIONED OUTPUT (50mV/div)  
I
LOAD  
Figure 11. Voltage-Positioning Transient Response  
An additional benefit of voltage positioning is reduced  
power consumption at high load currents. Since the out-  
put voltage is lower under load, the processor draws less  
current. The result is lower power dissipation in the  
processor, although extra power is dissipated in the cur-  
rent-sense element. However, the current-sense element  
used for current-limit protection can also be used for  
voltage positioning, further reducing the overall power  
dissipation. In effect, the processors power dissipation  
is saved and the power supply dissipates some of the  
savings, but both the net savings and the transfer of dis-  
sipation away from the hot processor are beneficial.  
approached in terms of fractions of centimeters,  
where a single mof excess trace resistance caus-  
es a measurable efficiency penalty.  
When tradeoffs in trace lengths must be made, it is  
preferable to allow the inductor charging path to be  
made longer than the discharge path. For example,  
it is better to allow some extra distance between the  
input capacitors and the high-side MOSFET than to  
allow distance between the inductor and the low-  
side MOSFET or between the inductor and the out-  
put filter capacitor.  
Minimize c urre nt-s e ns ing e rrors b y c onne c ting  
CSH_ and CSL_ directly across the current-sense  
P C Bo a rd La yo u t Gu id e lin e s  
Careful PC board layout is critical to achieving low switch-  
ing losses and clean, stable operation. The switching  
power stage requires particular attention (Figure 12). If  
possible, mount all the power components on the top  
side of the board, with their ground terminals flush  
against one another. Refer to the MAX1549 evaluation kit  
data sheet for a specific layout example. Follow these  
guidelines for good PC board layout:  
resistor (R  
).  
SENSE_  
Route all high-speed switching nodes (BST_, LX_,  
DH_, and DL_) away from sensitive analog areas  
(REF, FB_, CSH_, and CSL_).  
La yo u t P ro c e d u re  
1) Place the power components first, with ground ter-  
minals adjacent (N source, C , C , and D  
L_  
L_  
IN  
OUT_  
anode). If possible, make all these connections on  
the top layer with wide, copper-filled areas.  
Use a star-ground connection on the power ground  
plane to minimize the crosstalk between OUT1 and  
OUT2.  
2) Mount the controller IC adjacent to the low-side  
MOSFET, preferably on the back side opposite N  
L_  
Keep the high-current paths short, especially at the  
ground terminals. This practice is essential for sta-  
ble, jitter-free operation.  
and N to keep LX_, DH_, and the DL_ gate-drive  
H_  
lines short and wide. The DL_ and DH_ gate traces  
must be short and wide (50 mils to 100 mils wide if  
the MOSFET is 1in from the controller IC) to keep  
the driver impedance low and for proper adaptive  
dead-time sensing.  
Keep the power traces and load connections short.  
This practice is essential for high efficiency. Using  
thick copper PC boards (2oz vs. 1oz) can enhance  
full-load efficiency by 1% or more. Correctly routing  
PC board traces is a difficult task that must be  
______________________________________________________________________________________ 33  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
3) Group the gate-drive components (BST_ diode and  
5) Connect the output power planes directly to the out-  
put-filter-capacitor positive and negative terminals  
with multiple vias. Place the entire DC-DC converter  
circuit as close to the load as is practical.  
capacitor, V bypass capacitor) together near the  
DD  
controller IC.  
4) Make the DC-DC controller ground connections as  
shown in Figures 1 and 12. These diagrams can be  
vie we d a s ha ving two s e p a ra te g round p la ne s :  
power ground for the high-power components, and  
an analog ground plane for sensitive analog com-  
ponents. These separate ground planes must meet  
only at a single point directly at the IC. Additionally,  
a star-ground connection (centered at PGND) must  
be used on the power ground plane to minimize  
any crosstalk between the two controllers.  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 8823  
PROCESS: BiCMOS  
VIA TO ANALOG  
GROUND PLANE  
VIA TO 5V BIAS  
SUPPLY (V  
)
DD  
VIA TO V  
CC  
BYPASS CAPACITOR  
VIA TO POWER  
GROUND  
CONNECT THE  
EXPOSED PAD TO  
ANALOG GND  
MAX1549  
TOP LAYER  
CONNECT GND  
AND PGND TO THE  
CONTROLLER AT  
ONE POINT ONLY  
AS SHOWN  
KELVIN-SENSE VIAS  
UNDER THE SENSE RESISTOR  
(REFER TO THE EVALUATION KIT)  
DUAL  
N-CHANNEL  
MOSFET  
INDUCTOR  
SINGLE  
N-CHANNEL  
MOSFETS  
INDUCTOR  
DH  
LX  
DL  
C
OUT  
C
OUT  
INPUT  
OUTPUT  
C
OUT  
OUTPUT  
GROUND  
INPUT  
GROUND  
HIGH-POWER LAYOUT  
LOW-POWER LAYOUT  
Figure 12. PC Board Layout Example  
34 ______________________________________________________________________________________  
Du a l, In t e rle a ve d , Fix e d -Fre q u e n c y S t e p -Do w n  
Co n t ro lle r w it h a Dyn a m ic a lly Ad ju s t a b le Ou t p u t  
P a c k a g e In fo rm a t io n  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ____________________ 35  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1549ETL+

Dual Switching Controller, Current-mode, 450kHz Switching Freq-Max, BICMOS, PQCC40, 6 X 6 MM, 0.8 MM HEIGHT, MO220WJJD-2, QFN-40
MAXIM

MAX1549ETL+T

Dual Switching Controller, Current-mode, 3A, 450kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1549EVKIT

MAX1549 Evaluation Kit
MAXIM

MAX154ACAG

CMOS High-Speed 8-Bit ADCs with Multiplexer and Reference
MAXIM

MAX154ACAG+

暂无描述
MAXIM

MAX154ACAG+T

暂无描述
MAXIM

MAX154ACAG-T

Analog Circuit, 1 Func, CMOS, PDSO24, SSOP-24
MAXIM

MAX154ACNG

CMOS High-Speed 8-Bit ADCs with Multiplexer and Reference
MAXIM

MAX154ACNG-T

Analog Circuit, 1 Func, CMOS, PDIP24, PLASTIC, DIP-24
MAXIM

MAX154ACWG

CMOS High-Speed 8-Bit ADCs with Multiplexer and Reference
MAXIM

MAX154ACWG+

Analog Circuit, 1 Func, CMOS, PDSO24, LEAD FREE, SOIC-24
MAXIM

MAX154ACWG-T

Analog Circuit, 1 Func, CMOS, PDSO24, SOIC-24
MAXIM