MAX1518 [MAXIM]

TFT-LCD DC-DC Converters with Operational Amplifiers; TFT -LCD DC-DC与运算放大器转换器
MAX1518
型号: MAX1518
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

TFT-LCD DC-DC Converters with Operational Amplifiers
TFT -LCD DC-DC与运算放大器转换器

转换器 运算放大器 CD
文件: 总26页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3244; Rev 0; 4/04  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
General Description  
Features  
The MAX1516/MAX1517/MAX1518 include a high-perfor-  
mance step-up regulator, two linear-regulator controllers,  
and high-current operational amplifiers for active-matrix  
thin-film transistor (TFT) liquid-crystal displays (LCDs).  
Also included is a logic-controlled, high-voltage switch  
with adjustable delay.  
2.6V to 5.5V Input Supply Range  
1.2MHz Current-Mode Step-Up Regulator  
Fast Transient Response to Pulsed Load  
High-Accuracy Output Voltage (1.5%)  
Built-In 14V, 2.4A, 0.16N-Channel MOSFET  
High Efficiency (90%)  
The step-up DC-DC converter provides the regulated  
supply voltage for the panel source driver ICs. The con-  
verter is a high-frequency (1.2MHz) current-mode regu-  
lator with an integrated 14V n-channel MOSFET that  
allows the use of ultra-small inductors and ceramic  
capacitors. It provides fast transient response to pulsed  
loads while achieving efficiencies over 85%.  
Linear-Regulator Controllers for V  
and V  
GOFF  
GON  
High-Performance Operational Amplifiers  
±150mA Output Short-Circuit Current  
13V/µs Slew Rate  
12MHz, -3dB Bandwidth  
Rail-to-Rail Inputs/Outputs  
The gate-on and gate-off linear-regulator controllers  
provide regulated TFT gate-on and gate-off supplies  
using external charge pumps attached to the switching  
node. The MAX1518 includes five high-performance  
operational amplifiers, the MAX1517 includes three,  
and the MAX1516 includes one operational amplifier.  
These amplifiers are designed to drive the LCD back-  
plane (VCOM) and/or the gamma-correction divider  
string. The devices feature high output current  
( 15ꢀmA), fast slew rate (1ꢁV/µs), wide bandwidth  
(12MHz), and rail-to-rail inputs and outputs.  
Logic-Controlled, High-Voltage Switch with  
Adjustable Delay  
Timer-Delay Fault Latch for All Regulator Outputs  
Thermal-Overload Protection  
0.6mA Quiescent Current  
Minimal Operating Circuit  
V
CN  
V
CP  
The MAX1516/MAX1517/MAX1518 are available in ꢁ2-  
pin thin QFN packages with a maximum thickness of  
ꢀ.8mm for ultra-thin LCD panels.  
V
IN  
V
MAIN  
LX  
IN  
FB  
STEP-UP  
CONTROLLER  
Applications  
Notebook Computer Displays  
LCD Monitor Panels  
PGND  
AGND  
COMP  
V
V
CP  
MAX1518  
DRVP  
FBP  
Automotive Displays  
GATE-ON  
CONTROLLER  
GON  
Ordering Information  
SRC  
COM  
DRN  
DEL  
CTL  
PART  
TEMP RANGE PIN-PACKAGE  
SWITCH  
CONTROL  
V
V
MAX1516ETJ -4ꢀ°C to +1ꢀꢀ°C ꢁ2 Thin QFN 5mm x 5mm  
MAX1517ETJ -4ꢀ°C to +1ꢀꢀ°C ꢁ2 Thin QFN 5mm x 5mm  
MAX1518ETJ -4ꢀ°C to +1ꢀꢀ°C ꢁ2 Thin QFN 5mm x 5mm  
CN  
DRVN  
FBN  
GATE-OFF  
CONTROLLER  
GOFF  
SUP  
NEG1  
OUT1  
OP1  
OP2  
REF  
REF  
POS1  
NEG2  
NEG4  
OUT2  
POS2  
OUT4  
OP4  
POS4  
NEG5  
OUT3  
POS3  
OUT5  
POS5  
OP3  
OP5  
BGND  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
IN, CTL to AGND......................................................-ꢀ.ꢁV to +6V  
COM, DRN to AGND ................................-ꢀ.ꢁV to (V  
+ ꢀ.ꢁV)  
SRC  
COMP, FB, FBP, FBN, DEL, REF to AGND ....-ꢀ.ꢁV to (V + ꢀ.ꢁV)  
DRN to COM............................................................-ꢁꢀV to +ꢁꢀV  
OUT_ Maximum Continuous Output Current.................... 75mA  
LX Switch Maximum Continuous RMS Output Current.........1.6A  
IN  
PGND, BGND to AGND...................................................... ꢀ.ꢁV  
LX to PGND ............................................................-ꢀ.ꢁV to +14V  
SUP to AGND .........................................................-ꢀ.ꢁV to +14V  
DRVP, SRC to AGND..............................................-ꢀ.ꢁV to +ꢁꢀV  
Continuous Power Dissipation (T = +7ꢀ°C)  
A
ꢁ2-Pin Thin QFN (derate 21.2mW/°C above +7ꢀ°C) ..17ꢀ2mW  
Operating Temperature Range .........................-4ꢀ°C to +1ꢀꢀ°C  
Junction Temperature......................................................+15ꢀ°C  
Storage Temperature Range.............................-65°C to +15ꢀ°C  
Lead Temperature (soldering, 1ꢀs) .................................+ꢁꢀꢀ°C  
POS_, NEG_, OUT_ to AGND...................-ꢀ.ꢁV to (V  
POS1 to NEG1, POS2 to NEG2, POSꢁ to NEGꢁ,  
+ ꢀ.ꢁV)  
SUP  
POS4 to NEG4, POS5 to NEG5...............................-6V to +6V  
DRVN to AGND...................................(V - ꢁꢀV) to (V + ꢀ.ꢁV)  
IN  
IN  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = ꢁV, V  
IN  
= 8V, PGND = AGND = BGND = ꢀ, I  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C, unless other-  
SUP  
REF  
A
A
wise noted.)  
PARAMETER  
IN Supply Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.6  
5.5  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
V
rising, typical hysteresis = 15ꢀmV  
2.ꢁ  
2.5  
ꢀ.6  
6
2.7  
ꢀ.8  
11  
V
UVLO  
IN  
= V  
= 1.4V, V  
= ꢀ,  
FB  
FBP  
FBN  
LX not switching  
IN Quiescent Current  
I
mA  
IN  
V
= 1.1V, V  
= 1.4V, V  
= ꢀ,  
FB  
FBP  
FBN  
LX switching  
Duration to Trigger Fault  
Condition  
55  
ms  
V
REF Output Voltage  
-2µA < I  
< 5ꢀµA, V = 2.6V to 5.5V  
1.2ꢁ1  
1.25ꢀ  
+16ꢀ  
15  
1.269  
REF  
IN  
Temperature rising  
Hysteresis  
Thermal Shutdown  
°C  
MAIN STEP-UP REGULATOR  
Output Voltage Range  
V
f
V
1ꢁ  
V
kHz  
%
MAIN  
IN  
Operating Frequency  
1ꢀ2ꢀ  
84  
12ꢀꢀ  
87  
1ꢁ8ꢀ  
9ꢀ  
OSC  
Oscillator Maximum Duty Cycle  
T
T
= +25°C to +85°C  
= ꢀ°C to +85°C  
1.221  
1.218  
ꢀ.96  
1.2ꢁꢁ  
1.2ꢁꢁ  
1.ꢀꢀ  
-1.6  
1.245  
1.247  
1.ꢀ4  
A
A
FB Regulation Voltage  
V
No load  
V
FB  
FB Fault Trip Level  
FB Load Regulation  
FB Line Regulation  
FB Input Bias Current  
FB Transconductance  
FB Voltage Gain  
V
falling  
V
%
FB  
ꢀ < I  
< full load, transient only  
MAIN  
V
V
= 2.6V to 5.5V  
= 1.4V  
+ꢀ.ꢀ4  
±ꢀ.15  
+4ꢀ  
%/V  
nA  
µS  
IN  
-4ꢀ  
75  
FB  
I  
= 5µA  
15ꢀ  
6ꢀꢀ  
28ꢀ  
COMP  
FB to COMP  
V/V  
2
_______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = ꢁV, V  
IN  
= 8V, PGND = AGND = BGND = ꢀ, I  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C, unless other-  
SUP  
REF  
A
A
wise noted.)  
PARAMETER  
LX On-Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
16ꢀ  
ꢀ.ꢀ2  
ꢁ.ꢀ  
MAX  
25ꢀ  
4ꢀ  
UNITS  
mΩ  
µA  
R
LX(ON)  
LX Leakage Current  
LX Current Limit  
I
V
V
= 1ꢁV  
LX  
LX  
FB  
I
= 1V, duty cycle = 65%  
2.5  
ꢁ.ꢀ  
ꢁ.5  
A
LIM  
Current-Sense  
Transconductance  
ꢁ.8  
14  
5
S
Soft-Start Period  
t
ms  
A
SS  
Soft-Start Step Size  
I
/ 8  
LIM  
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
4.5  
1ꢁ.ꢀ  
4.8  
V
SUP  
MAX1518  
MAX1517  
MAX1516  
ꢁ.2  
Buffer configuration,  
_ = 4V, no load  
SUP Supply Current  
Input Offset Voltage  
I
mA  
2
SUP  
V
POS  
ꢀ.7  
1.1  
(V  
NEG  
_, V  
_, V  
_)  
V
/ 2,  
POS  
OUT  
SUP  
V
12  
mV  
OS  
T
= +25°C  
A
Input Bias Current  
I
(V  
_ , V  
_, V  
_)  
V
SUP  
/ 2  
+1  
±5ꢀ  
nA  
V
BIAS  
NEG  
POS  
OUT  
Input Common-Mode Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
V
V
SUP  
CM  
CMRR  
(V  
_, V  
_) V  
POS  
45  
dB  
dB  
NEG  
SUP  
125  
V
-
-
V
V
-
-
SUP  
15  
SUP  
I
I
_ = 1ꢀꢀµA  
_ = 5mA  
OUT  
OUT  
Output Voltage Swing, High  
V
mV  
OH  
V
SUP  
15ꢀ  
SUP  
8ꢀ  
I
I
_ = -1ꢀꢀµA  
_ = -5mA  
2
15  
OUT  
OUT  
Output Voltage Swing, Low  
Short-Circuit Current  
V
mV  
mA  
mA  
OL  
7ꢀ  
15ꢀ  
To V  
/ 2, source or sink  
5ꢀ  
4ꢀ  
15ꢀ  
SUP  
(V  
_ , V _, V  
POS  
_)  
V / 2,  
SUP  
NEG  
OUT  
Output Source and Sink Current  
|V | < 1ꢀmV  
OS  
DC, 6V V  
1ꢁV,  
SUP  
Power-Supply Rejection Ratio  
PSRR  
GBW  
6ꢀ  
dB  
(V  
NEG  
_, V  
_)  
V
/2  
SUP  
POS  
Slew Rate  
1ꢁ  
12  
8
V/µs  
MHz  
MHz  
-ꢁdB Bandwidth  
Gain-Bandwidth Product  
R = 1ꢀk, C = 1ꢀpF, buffer configuration  
L L  
Buffer configuration  
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
FBP Fault Trip Level  
V
I
= 1ꢀꢀµA  
falling  
1.2ꢁ1  
ꢀ.96  
-5ꢀ  
1.25ꢀ  
1.ꢀꢀ  
1.269  
1.ꢀ4  
+5ꢀ  
V
V
FBP  
DRVP  
V
V
FBP  
FBP  
FBP Input Bias Current  
I
= 1.4V  
nA  
FBP  
FBP Effective Load-Regulation  
Error (Transconductance)  
V
= 1ꢀV, I  
= 5ꢀµA to 1mA  
-ꢀ.7  
-1.5  
%
DRVP  
DRVP  
_______________________________________________________________________________________  
3
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = ꢁV, V  
IN  
= 8V, PGND = AGND = BGND = ꢀ, I  
= 25µA, T = 0°C to +85°C. Typical values are at T = +25°C, unless other-  
SUP  
REF  
A
A
wise noted.)  
PARAMETER  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.5  
5
MAX  
UNITS  
mV  
I
= 1ꢀꢀµA, 2.6V < V < 5.5V  
5
DRVP  
IN  
I
V
V
= 1.1V, V  
= 1ꢀV  
= 28V  
1
mA  
DRVP  
FBP  
FBP  
DRVP  
DRVP  
DRVP Off-Leakage Current  
Soft-Start Period  
= 1.4V, V  
ꢀ.ꢀ1  
14  
1ꢀ  
µA  
t
ms  
SS  
V
REF  
128  
/
Soft-Start Step Size  
V
GATE-OFF LINEAR-REGUALTOR CONTROLLER  
FBN Regulation Voltage  
FBN Fault Trip Level  
V
I
= 1ꢀꢀµA  
rising  
2ꢁ5  
ꢁ7ꢀ  
-5ꢀ  
25ꢀ  
42ꢀ  
265  
47ꢀ  
+5ꢀ  
mV  
mV  
nA  
FBN  
DRVN  
V
V
FBN  
FBN  
FBN Input Bias Current  
I
= ꢀ  
FBN  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= -1ꢀV, I  
= 5ꢀµA to 1mA  
DRVN  
11  
25  
5
mV  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
DRVN Off-Leakage Current  
Soft-Start Period  
I
= ꢀ.1mA, 2.6V < V < 5.5V  
+ꢀ.7  
4
mV  
mA  
µA  
DRVN  
IN  
I
V
V
= 5ꢀꢀmV, V = -1ꢀV  
DRVN  
1
DRVN  
FBN  
FBN  
= ꢀV, V  
= -25V  
-ꢀ.ꢀ1  
14  
-1ꢀ  
DRVN  
t
ms  
SS  
V
REF  
128  
/
Soft-Start Step Size  
V
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
During startup, V  
= 1V  
4
5
6
µA  
V
DEL  
V
1.19  
1.25  
1.ꢁ1  
TH(DEL)  
DEL Discharge Switch On-  
Resistance  
During UVLO, V = 2.2V  
2ꢀ  
IN  
CTL Input Low Voltage  
V
V
= 2.6V to 5.5V  
= 2.6V to 5.5V  
ꢀ.6  
+1  
V
V
IN  
IN  
CTL Input High Voltage  
2
CTL Input Leakage Current  
CTL-to-SRC Propagation Delay  
SRC Input Voltage Range  
CTL = AGND or IN  
-1  
µA  
ns  
V
1ꢀꢀ  
28  
1ꢀꢀ  
ꢁꢀ  
V
V
= 1.5V, CTL = IN  
5ꢀ  
15  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
= 1.5V, CTL = AGND  
SRC to COM Switch On-  
Resistance  
R
V
V
V
= 1.5V, CTL = IN  
= 1.5V, CTL = AGND  
= 1.1V  
6
12  
7ꢀ  
SRC(ON)  
DRN(ON)  
COM(ON)  
DEL  
DEL  
DEL  
DRN to COM Switch On-  
Resistance  
R
ꢁ5  
COM to PGND Switch On-  
Resistance  
R
ꢁ5ꢀ  
1ꢀꢀꢀ  
18ꢀꢀ  
4
_______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS  
(V = ꢁV, V  
= 8V, PGND = AGND = BGND = ꢀ, I  
= 25µA, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
REF A  
IN  
SUP  
PARAMETER  
IN Supply Range  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
V
2.6  
5.5  
V
IN  
IN Undervoltage-Lockout  
Threshold  
V
V
V
rising, typical hysteresis = 15ꢀmV  
2.265  
2.715  
ꢀ.8  
V
UVLO  
IN  
= V  
= 1.4V, V  
= ꢀ,  
FB  
FBP  
FBN  
LX not switching  
IN Quiescent Current  
I
IN  
mA  
V
V
= 1.1V, V  
= 1.4V, V  
= ꢀ,  
FB  
FBP  
FBN  
11  
LX switching  
REF Output Voltage  
-2µA < I  
< 5ꢀµA, V = 2.6V to 5.5V  
1.222  
1.269  
REF  
IN  
MAIN STEP-UP REGULATOR  
Output Voltage Range  
Operating Frequency  
FB Regulation Voltage  
FB Line Regulation  
V
f
V
1ꢁ  
1ꢁ8ꢀ  
1.25ꢀ  
±ꢀ.15  
+4ꢀ  
ꢁꢀꢀ  
V
kHz  
V
MAIN  
IN  
1ꢀ2ꢀ  
OSC  
V
No load  
1.212  
FB  
V
V
= 2.6V to 5.5V  
= 1.4V  
%/V  
nA  
µS  
mΩ  
A
IN  
FB Input Bias Current  
FB Transconductance  
LX On-Resistance  
-4ꢀ  
75  
FB  
I  
= 5µA  
COMP  
R
25ꢀ  
LX(ON)  
LX Current Limit  
I
V
= 1V, duty cycle = 65%  
FB  
2.5  
4.5  
ꢁ.5  
LIM  
OPERATIONAL AMPLIFIERS  
SUP Supply Range  
V
1ꢁ.ꢀ  
4.8  
ꢁ.ꢀ  
1.1  
12  
V
SUP  
MAX1518  
MAX1517  
MAX1516  
Buffer configuration,  
_ = 4V, no load  
SUP Supply Current  
I
mA  
SUP  
V
POS  
Input Offset Voltage  
V
(V  
NEG  
_, V  
_, V  
POS  
_)  
V
SUP  
/ 2  
mV  
V
OS  
OUT  
Input Common-Mode Range  
V
V
CM  
SUP  
V
-
SUP  
15  
I
I
_ = 1ꢀꢀµA  
_ = 5mA  
OUT  
OUT  
Output Voltage Swing, High  
V
mV  
OH  
V
-
SUP  
15ꢀ  
I
I
_ = -1ꢀꢀµA  
_ = -5mA  
15  
OUT  
OUT  
Output Voltage Swing, Low  
Short-Circuit Current  
V
mV  
mA  
mA  
OL  
15ꢀ  
Source  
Sink  
5ꢀ  
5ꢀ  
To V  
/ 2  
SUP  
(V  
_ , V _, V  
POS  
_)  
V / 2,  
SUP  
NEG  
OUT  
Output Source and Sink Current  
4ꢀ  
|V | < 1ꢀmV  
OS  
GATE-ON LINEAR-REGULATOR CONTROLLER  
FBP Regulation Voltage  
V
I
= 1ꢀꢀµA  
DRVP  
1.218  
1.269  
V
FBP  
_______________________________________________________________________________________  
5
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = ꢁV, V  
IN  
= 8V, PGND = AGND = BGND = ꢀ, I  
= 25µA, T = -40°C to +85°C, unless otherwise noted.) (Note 1)  
REF A  
SUP  
PARAMETER  
SYMBOL  
CONDITIONS  
= 5ꢀµA to 1mA  
DRVP  
MIN  
MAX  
UNITS  
FBP Effective Load-Regulation  
Error (Transconductance)  
V
= 1ꢀV, I  
-2  
%
DRVP  
FBP Line (IN) Regulation Error  
DRVP Sink Current  
I
= 1ꢀꢀµA, 2.6V < V < 5.5V  
5
mV  
mA  
DRVP  
IN  
I
V
= 1.1V, V = 1ꢀV  
DRVP  
1
DRVP  
FBP  
GATE-OFF LINEAR-REGULATOR CONTROLLER  
FBN Regulation Voltage  
V
I
= 1ꢀꢀµA  
= -1ꢀV, I  
2ꢁ5  
265  
25  
5
mV  
mV  
FBN  
DRVN  
FBN Effective Load-Regulation  
Error (Transconductance)  
V
= 5ꢀµA to 1mA  
DRVN  
DRVN  
FBN Line (IN) Regulation Error  
DRVN Source Current  
I
= ꢀ.1mA, 2.6V < V < 5.5V  
mV  
mA  
DRVN  
IN  
I
V
= 5ꢀꢀmV, V = -1ꢀV  
DRVN  
1
DRVN  
FBN  
POSITIVE GATE-DRIVER TIMING AND CONTROL SWITCHES  
DEL Capacitor Charge Current  
DEL Turn-On Threshold  
CTL Input Low Voltage  
During startup, V  
= 1V  
4
6
µA  
V
DEL  
V
1.19  
1.ꢁ1  
ꢀ.6  
TH(DEL)  
V
V
= 2.6V to 5.5V  
V
IN  
IN  
CTL Input High Voltage  
SRC Input Voltage Range  
= 2.6V to 5.5V  
2
V
28  
1ꢀꢀ  
ꢁꢀ  
V
V
V
= 1.5V, CTL = IN  
DEL  
DEL  
SRC Input Current  
I
µA  
SRC  
= 1.5V, CTL = AGND  
SRC to COM Switch On-  
Resistance  
R
V
V
V
= 1.5V, CTL = IN  
12  
7ꢀ  
SRC(ON)  
DRN(ON)  
COM(ON)  
DEL  
DEL  
DEL  
DRN to COM Switch On-  
Resistance  
R
= 1.5V, CTL = AGND  
= 1.1V  
COM to PGND Switch On-  
Resistance  
R
ꢁ5ꢀ  
18ꢀꢀ  
Note 1: Specifications to -4ꢀ°C are guaranteed by design, not production tested.  
6
_______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Typical Operating Characteristics  
(Circuit of Figure 1. V = 5V, V  
IN  
= 1ꢁV, V  
= 24V, V  
= -8V, V  
= V  
= V  
= V  
= V  
= 6.5V, T = +25°C  
MAIN  
GON  
GOFF  
OUT1  
OUT2  
OUTꢁ  
OUT4  
OUT5 A  
unless otherwise noted.)  
STEP-UP SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
STEP-UP EFFICIENCY  
vs. LOAD CURRENT  
10  
1.4  
1.3  
1.2  
1.1  
1.0  
100  
90  
80  
70  
60  
50  
40  
30  
NO LOAD, SUP DISCONNECTED,  
R1 = 95.3k, R2 = 10.2kΩ  
V
= 5.0V  
IN  
8
6
4
2
0
V
= 3.3V  
IN  
CURRENT INTO INDUCTOR  
CURRENT INTO IN PIN  
V
= 13V  
1000  
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
STEP-UP REGULATOR SOFT-START  
(HEAVY LOAD)  
STEP-UP REGULATOR PULSED  
LOAD-TRANSIENT RESPONSE  
MAX1516 toc05  
MAX1516 toc04  
A
0V  
A
200mA  
B
0V  
13V  
B
C
0A  
C
0A  
10µs/div  
A: LOAD CURRENT, 1A/div  
B: V , 200mV/div, AC-COUPLED  
2ms/div  
A: V , 5V/div  
IN  
B: V  
, 5V/div  
MAIN  
MAIN  
C: INDUCTOR CURRENT, 1A/div  
C: INDUCTOR CURRENT, 1A/div  
_______________________________________________________________________________________  
7
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. V = 5V, V  
IN  
= 1ꢁV, V  
= 24V, V  
= -8V, V  
= V  
= V  
= V  
= V  
= 6.5V, T = +25°C  
MAIN  
GON  
GOFF  
OUT1  
OUT2  
OUTꢁ  
OUT4  
OUT5 A  
unless otherwise noted.)  
TIMER DELAY LATCH  
RESPONSE TO OVERLOAD  
REF VOLTAGE LOAD REGULATION  
GATE-ON REGULATOR LINE REGULATION  
MAX1516 toc06  
1.253  
0.2  
0
A
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
0V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
B
V
= 23.5V  
= 20mA  
GON  
GON  
55ms  
I
0A  
0
10  
20  
30  
40  
50  
23  
24  
25  
26  
27  
28  
29  
30  
10ms/div  
, 5V/div  
LOAD CURRENT (µA)  
INPUT VOLTAGE (V)  
A: V  
MAIN  
B: INDUCTOR CURRENT, 1A/div  
GATE-ON REGULATOR LOAD REGULATION  
GATE-OFF REGULATOR LINE REGULATION  
GATE-OFF REGULATOR LOAD REGULATION  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
1.00  
0.75  
0.50  
0.25  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
I
= -8V  
= 50mA  
GOFF  
GOFF  
-0.25  
0
5
10  
15  
20  
-16  
-14  
-12  
INPUT VOLTAGE (V)  
-10  
-8  
0
10  
20  
30  
40  
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8
_______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1. V = 5V, V  
IN  
= 1ꢁV, V  
= 24V, V  
= -8V, V  
= V  
= V  
= V  
= V  
= 6.5V, T = +25°C  
MAIN  
GON  
GOFF  
OUT1  
OUT2  
OUTꢁ  
OUT4  
OUT5 A  
unless otherwise noted.)  
OPERATIONAL-AMPLIFIER  
MAX1518 OPERATIONAL-AMPLIFIER  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
RAIL-TO-RAIL INPUT/OUTPUT  
POWER-UP SEQUENCE  
MAX1516 toc14  
MAX1516 toc12  
6
5
4
3
2
1
0
V
= 6V  
SUP  
A
0V  
A
B
0V  
B
0V  
0V  
C
NO-LOAD  
BUFFER CONFIGURATION  
D
V
TO V  
= V / 2  
POS1  
POS5  
SUP  
0V  
0V  
40µs/div  
4ms/div  
4.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
A: INPUT SIGNAL, 2V/div  
B: OUTPUT SIGNAL, 2V/div  
A: V  
, 10V/div  
SUPPLY VOLTAGE (V)  
MAIN  
SRC  
B: V , 20V/div  
C: V  
, 10V/div  
GOFF  
D: V , 20V/div  
GON  
OPERATIONAL-AMPLIFIER  
OPERATIONAL-AMPLIFIER  
SMALL-SIGNAL STEP RESPONSE  
OPERATIONAL-AMPLIFIER  
LOAD-TRANSIENT RESPONSE  
LARGE-SIGNAL STEP RESPONSE  
MAX1516 toc16  
MAX1516 toc17  
MAX1516 toc15  
V
= 6V  
SUP  
A
A
0V  
A
0V  
0V  
+50mA  
B
0
B
B
-50mA  
0V  
0V  
1µs/div  
A: INPUT SIGNAL, 2V/div  
B: OUTPUT SIGNAL, 2V/div  
400ns/div  
400ns/div  
A: INPUT SIGNAL, 100mV/div  
B: OUTPUT SIGNAL, 100mV/div  
A: OUTPUT VOLTAGE, 1V/div, AC-COUPLED  
B: OUTPUT CURRENT, 50mA/div  
_______________________________________________________________________________________  
9
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Pin Description  
NAME  
PIN  
1
FUNCTION  
MAX1516 MAX1517 MAX1518  
Switch Input. Source of the internal high-voltage p-channel MOSFET. Bypass SRC to  
PGND with a minimum ꢀ.1µF capacitor close to the pins.  
SRC  
REF  
SRC  
REF  
SRC  
REF  
Reference Bypass Terminal. Bypass REF to AGND with a minimum of ꢀ.22µF close to  
the pins.  
2
Analog Ground for Step-Up Regulator and Linear Regulators. Connect to power  
ground (PGND) underneath the IC.  
AGND  
AGND  
AGND  
Power Ground. PGND is the source of the main step-up n-channel power MOSFET.  
Connect PGND to the input-capacitor ground terminals through a short, wide PC board  
trace. Connect to analog ground (AGND) underneath the IC.  
4
PGND  
PGND  
PGND  
5
6
7
OUT1  
NEG1  
POS1  
OUT1  
NEG1  
POS1  
OUT1  
NEG1  
POS1  
Operational-Amplifier 1 Output  
Operational-Amplifier 1 Inverting Input  
Operational-Amplifier 1 Noninverting Input  
Operational-Amplifier 2 Output for the MAX1518 and MAX1517. Not Internally  
Connected for the MAX1516.  
8
N.C.  
N.C.  
I. C.  
OUT2  
NEG2  
POS2  
BGND  
N.C.  
OUT2  
NEG2  
POS2  
BGND  
POSꢁ  
OUTꢁ  
SUP  
Operational-Amplifier 2 Inverting Input for the MAX1518 and MAX1517. Not Internally  
Connected for the MAX1516.  
9
Operational-Amplifier 2 Noninverting Input for the MAX1518 and MAX1517. Internally  
Connected for the MAX1516. Connect this pin to GND for the MAX1516.  
1ꢀ  
11  
12  
1ꢁ  
14  
15  
16  
17  
18  
19  
Analog Ground for Operational Amplifiers. Connect to power ground (PGND)  
underneath the IC.  
BGND  
N.C.  
N.C.  
SUP  
N.C.  
N.C.  
N.C.  
I. C.  
Operational-Amplifier ꢁ Noninverting Input for the MAX1518. Not Internally Connected  
for the MAX1517 and MAX1516.  
Operational-Amplifier ꢁ Output. Not Internally Connected for the MAX1517 and  
MAX1516.  
N.C.  
Operational-Amplifier Power Input. Positive supply rail for the operational amplifiers.  
SUP  
Typically connected to V  
. Bypass SUP to BGND with a ꢀ.1µF capacitor.  
MAIN  
Operational-Amplifier 4 Noninverting Input for the MAX1518. Operational-Amplifier ꢁ  
Noninverting Input for the MAX1517. Not Internally Connected for the MAX1516.  
POSꢁ  
NEGꢁ  
OUTꢁ  
I. C.  
POS4  
NEG4  
OUT4  
POS5  
NEG5  
Operational-Amplifier 4 Inverting Input for the MAX1518. Operational-Amplifier ꢁ  
Inverting Input for the MAX1517. Not Internally Connected for the MAX1516.  
Operational-Amplifier 4 Output for the MAX1518. Operational-Amplifier ꢁ Output for the  
MAX1517. Not Internally Connected for the MAX1516.  
Operational-Amplifier 5 Noninverting Input for the MAX1518. Internally Connected for  
the MAX1517 and MAX1516. Connect this pin to GND for the MAX1517 and MAX1516.  
Operational-Amplifier 5 Inverting Input. Not Internally Connected for the MAX1517 and  
MAX1516.  
N.C.  
N.C.  
10 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Pin Description (continued)  
NAME  
PIN  
FUNCTION  
MAX1516 MAX1517 MAX1518  
Operational-Amplifier 5 Output. Not Internally Connected for the MAX1517 and  
MAX1516.  
2ꢀ  
N.C.  
N.C.  
OUT5  
N-Channel Power MOSFET Drain and Switching Node. Connect the inductor and  
Schottky diode to LX and minimize the trace area for lowest EMI.  
21  
22  
LX  
IN  
LX  
IN  
LX  
IN  
Supply Voltage Input. IN can range from 2.6V to 5.5V.  
Step-Up Regulator Feedback Input. Regulates to 1.2ꢁ6V (nominal). Connect a resistive  
voltage-divider from the output (V  
divider within 5mm of FB.  
) to FB to analog ground (AGND). Place the  
2ꢁ  
24  
FB  
FB  
FB  
MAIN  
Step-Up Regulator Error-Amplifier Compensation Point. Connect a series RC from  
COMP to AGND. See the Loop Compensation section for component selection  
guidelines.  
COMP  
COMP  
COMP  
Gate-On Linear-Regulator Feedback Input. FBP regulates to 1.25V (nominal). Connect  
FBP to the center of a resistive voltage-divider between the regulator output and AGND  
to set the gate-on linear-regulator output voltage. Place the resistive voltage-divider  
close to the pin.  
25  
26  
27  
FBP  
DRVP  
FBN  
FBP  
DRVP  
FBN  
FBP  
DRVP  
FBN  
Gate-On Linear-Regulator Base Drive. Open drain of an internal n-channel MOSFET.  
Connect DRVP to the base of an external pnp pass transistor. See the Pass-Transistor  
Selection section.  
Gate-Off Linear-Regulator Feedback Input. FBN regulates to 25ꢀmV (nominal).  
Connect FBN to the center of a resistive voltage-divider between the regulator output  
and REF to set the gate-off linear-regulator output voltage. Place the resistive voltage-  
divider close to the pin.  
Gate-Off Linear-Regulator Base Drive. Open drain of an internal p-channel MOSFET.  
Connect DRVN to the base of an external npn pass transistor. See the Pass-Transistor  
Selection section.  
28  
29  
DRVN  
DEL  
DRVN  
DEL  
DRVN  
DEL  
High-Voltage Switch Delay Input. Connect a capacitor from DEL to AGND to set the  
high-voltage switch startup delay.  
High-Voltage Switch Control Input. When CTL is high, the high-voltage switch between  
COM and SRC is on and the high-voltage switch between COM and DRN is off. When  
CTL is low, the high-voltage switch between COM and SRC is off and the high-voltage  
switch between COM and DRN is on. CTL is inhibited by the undervoltage lockout and  
when the voltage on DEL is less than 1.25V.  
ꢁꢀ  
CTL  
CTL  
CTL  
Switch Input. Drain of the internal high-voltage back-to-back p-channel MOSFETs  
connected to COM.  
ꢁ1  
ꢁ2  
DRN  
DRN  
DRN  
Internal High-Voltage MOSFET Switch Common Terminal. Do not allow the voltage on  
COM  
COM  
COM  
COM to exceed V  
.
SRC  
______________________________________________________________________________________ 11  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Typical Operating Circuit  
Table 1. Component List  
The MAX1518 Typical Operating Circuit (Figure 1) is a  
complete power-supply system for TFT LCDs. The cir-  
cuit generates a +1ꢁV source-driver supply and +24V  
and -8V gate-driver supplies. The input voltage range  
for the IC is from +2.6V to +5.5V. The listed load cur-  
rents in Figure 1 are available from a +4.5V to +5.5V  
supply. Table 1 lists some recommended components,  
and Table 2 lists the contact information of component  
suppliers.  
DESIGNATION  
DESCRIPTION  
22µF, 6.ꢁV X5R ceramic capacitor (121ꢀ)  
TDK Cꢁ225X5RꢀJ227M  
C1  
22µF, 16V X5R ceramic capacitor (1812)  
TDK C45ꢁ2X5X1C226M  
C2  
D1  
ꢁA, ꢁꢀV Schottky diode (M-flat)  
Toshiba CMSꢀ2  
2ꢀꢀmA, 1ꢀꢀV, dual ultra-fast diodes (SOT2ꢁ)  
Fairchild MMBD4148SE  
Detailed Description  
D2, Dꢁ  
L1  
The MAX1516/MAX1517/MAX1518 contain a high-  
performance step-up switching regulator, two low-cost  
linear-regulator controllers, multiple high-current opera-  
tional amplifiers, and startup timing and level-shifting  
functionality useful for active-matrix TFT LCDs. Figure 2  
shows the MAX1518 Functional Diagram.  
ꢁ.ꢀµH, ꢁA inductor  
Sumida CDRH6D28-ꢁRꢀ  
2ꢀꢀmA, 4ꢀV pnp bipolar transistor (SOT2ꢁ)  
Fairchild MMBTꢁ9ꢀ6  
Q1  
2ꢀꢀmA, 4ꢀV npn bipolar transistor (SOT2ꢁ)  
Fairchild MMBTꢁ9ꢀ4  
Q2  
Main Step-Up Regulator  
The main step-up regulator employs a current-mode,  
fixed-frequency PWM architecture to maximize loop  
bandwidth and provide fast transient response to  
pulsed loads typical of TFT-LCD panel source drivers.  
The 1.2MHz switching frequency allows the use of low-  
profile inductors and ceramic capacitors to minimize  
the thickness of LCD panel designs. The integrated  
high-efficiency MOSFET and the IC’s built-in digital  
soft-start functions reduce the number of external com-  
ponents required while controlling inrush currents. The  
Figure ꢁ shows the Functional Diagram of the step-up  
regulator. An error amplifier compares the signal at FB  
to 1.2ꢁ6V and changes the COMP output. The voltage  
at COMP sets the peak inductor current. As the load  
varies, the error amplifier sources or sinks current to the  
COMP output accordingly to produce the inductor peak  
current necessary to service the load. To maintain sta-  
bility at high duty cycles, a slope-compensation signal  
is summed with the current-sense signal.  
output voltage can be set from V to 1ꢁV with an exter-  
IN  
On the rising edge of the internal clock, the controller  
sets a flip-flop, turning on the n-channel MOSFET and  
applying the input voltage across the inductor. The cur-  
rent through the inductor ramps up linearly, storing  
energy in its magnetic field. Once the sum of the cur-  
rent-feedback signal and the slope compensation  
exceeds the COMP voltage, the controller resets the  
flip-flop and turns off the MOSFET. Since the inductor  
current is continuous, a transverse potential develops  
across the inductor that turns on the diode (D1). The  
voltage across the inductor then becomes the differ-  
ence between the output voltage and the input voltage.  
nal resistive voltage-divider. To generate an output volt-  
age greater than 1ꢁV, an external cascoded MOSFET  
is needed. See the Generating Output Voltages > 13V  
section in the Design Procedures.  
The regulator controls the output voltage and the power  
delivered to the output by modulating the duty cycle (D)  
of the internal power MOSFET in each switching cycle.  
The duty cycle of the MOSFET is approximated by:  
V
V  
IN  
MAIN  
D ≈  
V
MAIN  
Table 2. Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.fairchildsemi.com  
Fairchild  
4ꢀ8-822-2ꢀꢀꢀ  
847-545-67ꢀꢀ  
847-8ꢀꢁ-61ꢀꢀ  
949-455-2ꢀꢀꢀ  
4ꢀ8-822-21ꢀ2  
847-545-672ꢀ  
847-ꢁ9ꢀ-44ꢀ5  
949-859-ꢁ96ꢁ  
Sumida  
TDK  
www.sumida.com  
www.component.tdk.com  
www.toshiba.com/taec  
Toshiba  
12 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
LX  
L1  
3.0µH  
D1  
V
V
IN  
4.5V TO 5.5V  
MAIN  
13V/500mA  
C2  
22µF  
C1  
22µF  
R10  
10  
R1  
95.3kΩ  
1%  
LX  
IN  
FB  
C18  
LX  
R1  
10.2kΩ  
1%  
0.1µF  
0.1µF  
180kΩ  
AGND  
PGND  
COMP  
220µF  
0.1µF  
D2  
LX  
0.1µF  
MAX1518  
6.8kΩ  
6.8kΩ  
DRVP  
FBP  
Q1  
0.1µF  
D3  
R4  
192kΩ  
1%  
DRVN  
FBN  
Q2  
R7  
332kΩ  
1%  
R5  
V
GOFF  
-8V/50mA  
0.47µF  
10.0kΩ  
1%  
0.22µF  
R8  
40.2kΩ  
1%  
SRC  
COM  
DRN  
REF  
DEL  
V
GON  
0.22µF  
24V/20mA  
CTL  
SUP  
0.033µF  
0.1µF  
BGND  
NEG1  
OUT1  
NEG2  
POS1  
POS2  
POS3  
POS4  
POS5  
OUT2  
OUT3  
TO VCOM  
BACKPLANE  
NEG4  
OUT4  
NEG5  
OUT5  
Figure 1. Typical Operating Circuit  
______________________________________________________________________________________ 13  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
V
V
CP  
CN  
V
V
MAIN  
IN  
LX  
IN  
FB  
STEP-UP  
CONTROLLER  
PGND  
AGND  
COMP  
V
V
CP  
MAX1518  
DRVP  
FBP  
GATE-ON  
CONTROLLER  
GON  
SRC  
COM  
DRN  
DEL  
CTL  
SWITCH  
CONTROL  
V
V
CN  
DRVN  
FBN  
GATE-OFF  
CONTROLLER  
GOFF  
SUP  
NEG1  
OUT1  
OP1  
OP2  
REF  
REF  
POS1  
NEG2  
NEG4  
OUT2  
POS2  
OUT4  
OP4  
POS4  
NEG5  
OUT3  
POS3  
OUT5  
POS5  
OP3  
OP5  
BGND  
Figure 2. MAX1518 Functional Diagram  
14 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
LX  
RESET DOMINANT  
CLOCK  
S
PGND  
R
Q
ILIM  
COMPARATOR  
SOFT-  
START  
V
LIMIT  
SLOPE COMP  
PWM  
COMPARATOR  
CURRENT  
SENSE  
Σ
OSCILLATOR  
FAULT  
COMPARATOR  
TO FAULT LATCH  
ERROR AMP  
1.0V  
FB  
1.236V  
COMP  
Figure 3. Step-Up Regulator Functional Diagram  
This discharge condition forces the current through the  
inductor to ramp back down, transferring the energy  
stored in the magnetic field to the output capacitor and  
the load. The MOSFET remains off for the rest of the  
clock cycle.  
REG P is typically used to provide the TFT-LCD gate  
drivers’ gate-on voltage. Use a charge pump with as  
many stages as necessary to obtain a voltage exceed-  
ing the required gate-on voltage (see the Selecting the  
Number of Charge-Pump Stages section). Note the  
voltage rating of the DRVP is 28V. If the charge-pump  
output voltage can exceed 28V, an external cascode  
npn transistor should be added as shown in Figure 4.  
Alternately, the linear regulator can control an interme-  
diate charge-pump stage while regulating the final  
charge-pump output (Figure 5).  
Gate-On Linear-Regulator Controller, REG P  
The gate-on linear-regulator controller (REG P) is an  
analog gain block with an open-drain n-channel output.  
It drives an external pnp pass transistor with a 6.8kΩ  
base-to-emitter resistor (Figure 1). Its guaranteed base-  
drive sink current is at least 1mA. The regulator including  
Q1 in Figure 1 uses a ꢀ.47µF ceramic output capacitor  
and is designed to deliver 2ꢀmA at 24V. Other output  
voltages and currents are possible with the proper pass  
transistor and output capacitor. See the Pass-Transistor  
Selection and Stability Requirements sections.  
REG P is enabled after the REF voltage exceeds 1.ꢀV.  
Each time it is enabled, the controller goes through a  
soft-start routine that ramps up its internal reference  
DAC in 128 steps.  
______________________________________________________________________________________ 15  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
LX  
FROM CHARGE-PUMP  
0.1µF  
V
OUTPUT  
MAIN  
V
MAIN  
13V  
0.1µF  
PNP PASS  
TRANSISTOR  
DRVP  
NPN CASCODE  
TRANSISTOR  
6.8k  
V
GON  
DRVP  
Q1  
V
GON  
35V  
MAX1516  
MAX1517  
MAX1518  
MAX1516  
MAX1517  
MAX1518  
0.47µF  
0.22µF  
267kΩ  
1%  
FBP  
FBP  
10.0kΩ  
1%  
Figure 5. The linear regulator controls the intermediate charge-  
pump stage.  
Figure 4. Using Cascoded npn for Charge-Pump Output  
Voltages >28V  
Short-Circuit Current Limit  
The operational amplifiers limit short-circuit current to  
approximately ±15ꢀmA if the output is directly shorted to  
SUP or to BGND. If the short-circuit condition persists, the  
junction temperature of the IC rises until it reaches the  
thermal-shutdown threshold (+16ꢀ°C typ). Once the junc-  
tion temperature reaches the thermal-shutdown threshold,  
an internal thermal sensor immediately sets the thermal  
fault latch, shutting off all the IC’s outputs. The device  
remains inactive until the input voltage is cycled.  
Gate-Off Linear-Regulator Controller, REG N  
The gate-off linear-regulator controller (REG N) is an  
analog gain block with an open-drain p-channel output.  
It drives an external npn pass transistor with a 6.8kΩ  
base-to-emitter resistor (Figure 1). Its guaranteed base-  
drive source current is at least 1mA. The regulator  
including Q2 in Figure 1 uses a ꢀ.47µF ceramic output  
capacitor and is designed to deliver 5ꢀmA at -8V. Other  
output voltages and currents are possible with the proper  
pass transistor and output capacitor (see the Pass-  
Transistor Selection and Stability Requirements sections).  
Driving Pure Capacitive Load  
The operational amplifiers are typically used to drive  
the LCD backplane (VCOM) or the gamma-correction  
divider string. The LCD backplane consists of a distrib-  
uted series capacitance and resistance, a load that can  
be easily driven by the operational amplifier. However,  
if the operational amplifier is used in an application with  
a pure capacitive load, steps must be taken to ensure  
stable operation.  
REG N is typically used to provide the TFT-LCD gate  
drivers’ gate-off voltage. A negative voltage can be  
produced using a charge-pump circuit as shown in  
Figure 1. REG N is enabled after the voltage on REF  
exceeds 1.ꢀV. Each time it is enabled, the control goes  
through a soft-start routine that ramps down its internal  
reference DAC from V  
to 25ꢀmV in 128 steps.  
REF  
Operational Amplifiers  
As the operational amplifier’s capacitive load increases,  
the amplifier’s bandwidth decreases and gain peaking  
increases. A 5to 5ꢀsmall resistor placed between  
OUT_ and the capacitive load reduces peaking but also  
reduces the gain. An alternative method of reducing  
peaking is to place a series RC network (snubber) in par-  
allel with the capacitive load. The RC network does not  
continuously load the output or reduce the gain. Typical  
values of the resistor are between 1ꢀꢀand 2ꢀꢀ, and  
the typical value of the capacitor is 1ꢀnF.  
The MAX1518 has five operational amplifiers, the  
MAX1517 has three operational amplifiers, and the  
MAX1516 has one operational amplifier. The operational  
amplifiers are typically used to drive the LCD backplane  
(VCOM) or the gamma-correction divider string. They  
feature ±15ꢀmA output short-circuit current, 1ꢁV/µs slew  
rate, and 12MHz bandwidth. The rail-to-rail input and  
output capability maximizes system flexibility.  
16 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Undervoltage Lockout (UVLO)  
The undervoltage-lockout (UVLO) circuit compares the  
input voltage at IN with the UVLO threshold (2.5V rising,  
2.ꢁ5V falling, typ) to ensure the input voltage is high  
enough for reliable operation. The 15ꢀmV (typ) hysteresis  
prevents supply transients from causing a restart. Once  
the input voltage exceeds the UVLO rising threshold,  
startup begins. When the input voltage falls below the  
UVLO falling threshold, the controller turns off the main  
step-up regulator, turns off the linear-regulator outputs,  
and disables the switch control block; the operational-  
amplifier outputs are high impedance.  
V
V
V
V
IN  
2.5V  
REF  
MAIN  
GON  
1.05V  
Reference Voltage (REF)  
The reference output is nominally 1.25V and can  
source at least 5ꢀµA (see the Typical Operating  
Characteristics). Bypass REF with a ꢀ.22µF ceramic  
capacitor connected between REF and AGND.  
V
GOFF  
V
DEL  
12ms  
1.25V  
SWITCH  
CONTROL  
ENABLED  
INPUT SOFT- SOFT-  
VOLTAGE START START  
OK BEGINS ENDS  
Power-Up Sequence and Soft-Start  
Once the voltage on IN exceeds approximately 1.7V,  
the reference turns on. With a ꢀ.22µF REF bypass  
capacitor, the reference reaches its regulation voltage  
of 1.25V in approximately 1ms. When the reference  
voltage exceeds 1.ꢀV, the ICs enable the main step-up  
regulator, the gate-on linear-regulator controller, and  
the gate-off linear-regulator controller simultaneously.  
Figure 6. Power-Up Sequence  
1.25V (typ), the switch-control block is enabled as  
shown in Figure 6. After the switch-control block is  
enabled, COM can be connected to SRC or DRN  
through the internal p-channel switches, depending  
upon the state of CTL. Before startup and when IN is  
The IC employs soft-start for each regulator to minimize  
inrush current and voltage overshoot and to ensure a  
well-defined startup behavior. During the soft-start, the  
main step-up regulator directly limits the peak inductor  
current. The current-limit level is increased through the  
soft-start period from ꢀ up to the full current-limit value  
in eight equal current steps (ILIM / 8). The maximum  
load current is available after the output voltage reach-  
es regulation (which terminates soft-start), or after the  
soft-start timer expires. Both linear-regulator controllers  
use a 7-bit soft-start DAC. For the gate-on linear regula-  
tor, the DAC output is stepped in 128 steps from zero  
up to the reference voltage. For the gate-off linear regu-  
lator, the DAC output steps from the reference down to  
25ꢀmV in 128 steps. The soft-start duration is 14ms  
(typ) for all three regulators.  
less than V  
, DEL is internally connected to AGND  
DEL  
UVLO  
to discharge C  
. Select C  
to set the delay time  
DEL  
using the following equation:  
5µA  
1.25V  
C
=DELAY_TIME×  
DEL  
Switch-Control Block  
The switch-control input (CTL) is not activated until all  
four of the following conditions are satisfied: the input  
voltage exceeds V  
, the soft-start routine of all the  
UVLO  
regulators is complete, there is no fault condition  
detected, and V exceeds its turn-on threshold. As  
DEL  
shown in Figure 7, COM is pulled down to PGND  
through a 1kresistor when the switch control is not  
activated. Once activated and if CTL is high, the 5Ω  
internal p-channel switch (Q1) between COM and SRC  
turns on and the ꢁꢀp-channel switch (Q2) between  
DRN and COM turns off. If CTL is low, Q1 turns off and  
Q2 turns on.  
A capacitor (C ) from DEL to AGND determines the  
DEL  
switch-control-block startup delay. After the input volt-  
age exceeds the UVLO threshold (2.5V typ) and the  
soft-start routine for each regulator is complete and  
there is no fault detected, a 5µA current source starts  
charging C  
. Once the capacitor voltage exceeds  
DEL  
______________________________________________________________________________________ 17  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
IN  
MAX1516  
MAX1517  
MAX1518  
5µA  
2.5V  
FB OK  
FBP OK  
FBN OK  
SRC  
Q1  
DEL  
REF  
COM  
1k  
CTL  
Q2  
Q3  
DRN  
Figure 7. Switch-Control Block  
Fault Protection  
Thermal-Overload Protection  
Thermal-overload protection prevents excessive power  
dissipation from overheating the MAX1516/MAX1517/  
During steady-state operation, if the output of the main  
regulator or any of the linear-regulator outputs does not  
exceed its respective fault-detection threshold, the  
MAX1516/MAX1517/MAX1518 activate an internal fault  
timer. If any condition or combination of conditions indi-  
cates a continuous fault for the fault-timer duration  
(55ms typ), the MAX1516/MAX1517/MAX1518 set the  
fault latch to shut down all the outputs except the refer-  
ence. Once the fault condition is removed, cycle the  
input voltage (below the UVLO falling threshold) to  
clear the fault latch and reactivate the device. The fault-  
detection circuit is disabled during the soft-start time.  
MAX1518. When the junction temperature exceeds T =  
J
+16ꢀ°C, a thermal sensor immediately activates the  
fault protection, which shuts down all outputs except  
the reference, allowing the device to cool down. Once  
the device cools down by approximately 15°C, cycle  
the input voltage (below the UVLO falling threshold) to  
clear the fault latch and reactivate the device.  
The thermal-overload protection protects the controller  
in the event of fault conditions. For continuous opera-  
tion, do not exceed the absolute maximum junction  
temperature rating of T = +15ꢀ°C.  
J
18 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Design Procedure  
Main Step-Up Regulator  
2
η
V
V
V  
× f  
IN  
MAIN IN  
TYP  
L =  
V
I
LIR  
MAIN MAIN(MAX) OSC   
Inductor Selection  
The minimum inductance value, peak current rating,  
and series resistance are factors to consider when  
selecting the inductor. These factors influence the con-  
verter’s efficiency, maximum output load capability,  
transient-response time, and output voltage ripple. Size  
and cost are also important factors to consider.  
Choose an available inductor value from an appropriate  
inductor family. Calculate the maximum DC input cur-  
rent at the minimum input voltage (V  
) using con-  
IN(MIN)  
servation of energy and the expected efficiency at that  
operating point (η ) taken from the appropriate curve  
MIN  
in the Typical Operating Characteristics:  
The maximum output current, input voltage, output volt-  
age, and switching frequency determine the inductor  
value. Very high inductance values minimize the cur-  
rent ripple and therefore reduce the peak current,  
which decreases core losses in the inductor and I2R®  
losses in the entire power path. However, large induc-  
tor values also require more energy storage and more  
turns of wire, which increases size and can increase  
I2R losses in the inductor. Low inductance values  
decrease the size but increase the current ripple and  
peak current. Finding the best inductor involves choos-  
ing the best compromise between circuit efficiency,  
inductor size, and cost.  
I
× V  
MAIN(MAX)  
MAIN  
I
=
IN(DC,MAX)  
V
× η  
MIN  
IN(MIN)  
Calculate the ripple current at that operating point and  
the peak current required for the inductor:  
V
×(V  
V  
)
IN(MIN)  
MAIN  
IN(MIN)  
I
=
RIPPLE  
L × V  
× f  
MAIN OSC  
I
RIPPLE  
I
=I  
+
PEAK IN(DC,MAX)  
2
The inductor’s saturation current rating and the  
MAX1516/MAX1517/MAX1518s’ LX current limit (I  
The equations used here include a constant LIR, which  
is the ratio of the inductor peak-to-peak ripple current  
to the average DC inductor current at the full load cur-  
rent. The best trade-off between inductor size and cir-  
cuit efficiency for step-up regulators generally has an  
LIR between ꢀ.ꢁ and ꢀ.5. However, depending on the  
AC characteristics of the inductor core material and  
ratio of inductor resistance to other power-path resis-  
tances, the best LIR can shift up or down. If the induc-  
tor resistance is relatively high, more ripple can be  
accepted to reduce the number of turns required and  
increase the wire diameter. If the inductor resistance is  
relatively low, increasing inductance to lower the peak  
current can decrease losses throughout the power  
path. If extremely thin high-resistance inductors are  
used, as is common for LCD-panel applications, the  
best LIR can increase to between ꢀ.5 and 1.ꢀ.  
)
LIM  
should exceed I  
, and the inductor’s DC current  
PEAK  
rating should exceed I  
choose an inductor with less than ꢀ.1series resistance.  
. For good efficiency,  
IN(DC,MAX)  
Considering the Typical Operating Circuit, the maximum  
load current (I ) is 5ꢀꢀmA with a 1ꢁV output and  
MAIN(MAX)  
a typical input voltage of 5V. Choosing an LIR of ꢀ.5 and  
estimating efficiency of 85% at this operating point:  
2
5V  
1ꢁV  
1ꢁV 5V  
ꢀ.5A ×1.2MHz ꢀ.5  
ꢀ.85  
   
  
  
  
L =  
ꢁ.ꢁµH  
   
   
Using the circuit’s minimum input voltage (4.5V) and  
estimating efficiency of 8ꢀ% at that operating point:  
ꢀ.5A ×1ꢁV  
4.5V × ꢀ.8  
I
=
1.8A  
Once a physical inductor is chosen, higher and lower  
values of the inductor should be evaluated for efficien-  
cy improvements in typical operating regions.  
IN(DC,MAX)  
The ripple current and the peak current are:  
Calculate the approximate inductor value using the typ-  
4.5V ×(1ꢁV 4.5V)  
ꢁ.ꢁµH×1ꢁV ×1.2MHz  
ical input voltage (V ), the maximum output current  
IN  
I
=
ꢀ.74A  
RIPPLE  
(I  
), the expected efficiency (η  
) taken from  
TYP  
MAIN(MAX)  
an appropriate curve in the Typical Operating  
Characteristics section, and an estimate of LIR based  
on the above discussion:  
ꢀ.74A  
2
I
=1.8A +  
2.2A  
PEAK  
I2R is a registered trademark of Instruments for Research and  
Industry, Inc.  
______________________________________________________________________________________ 19  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Output-Capacitor Selection  
The total output voltage ripple has two components: the  
capacitive ripple caused by the charging and discharg-  
ing of the output capacitance, and the ohmic ripple due  
to the capacitor’s equivalent series resistance (ESR).  
where V , the step-up regulator’s feedback set point,  
FB  
is 1.2ꢁ6V. Place R1 and R2 close to the IC.  
Generating Output Voltages >13V  
The maximum output voltage of the step-up regulator is  
1ꢁV, which is limited by the absolute maximum rating of  
the internal power MOSFET. To achieve higher output  
voltages, an external n-channel MOSFET can be cascod-  
ed with the internal FET (Figure 8). Since the gate of the  
external FET is biased from the input supply, use a logic-  
level FET to ensure that the FET is fully enhanced at the  
minimum input voltage. The current rating of the FET  
needs to be higher than the IC’s internal current limit.  
V
= V  
+ V  
RIPPLE  
RIPPLE(C) RIPPLE(ESR)  
I
C
V
V
V  
MAIN  
MAIN IN  
V
, and  
RIPPLE(C)  
f
OUT  
MAIN OSC  
V
I  
R
RIPPLE(ESR) PEAK ESR(COUT)  
where I  
is the peak inductor current (see the  
PEAK  
Inductor Selection section). For ceramic capacitors, the  
Loop Compensation  
output voltage ripple is typically dominated by  
Choose R  
to set the high-frequency integrator  
COMP  
V
. The voltage rating and temperature charac-  
RIPPLE(C)  
gain for fast transient response. Choose C  
the integrator zero to maintain loop stability.  
to set  
COMP  
teristics of the output capacitor must also be considered.  
Input-Capacitor Selection  
The input capacitor (C ) reduces the current peaks  
For low-ESR output capacitors, use the following equa-  
tions to obtain stable performance and good transient  
response:  
IN  
drawn from the input supply and reduces noise injec-  
tion into the IC. A 22µF ceramic capacitor is used in the  
Typical Applications Circuit (Figure 1) because of the  
high source impedance seen in typical lab setups.  
Actual applications usually have much lower source  
impedance since the step-up regulator often runs  
directly from the output of another regulated supply.  
ꢁ15× V × V  
×C  
OUT  
IN  
OUT  
R
COMP  
L ×I  
MAIN(MAX)  
V
×C  
OUT  
OUT  
C
COMP  
1×I  
×R  
MAIN(MAX)  
COMP  
Typically, C can be reduced below the values used in  
IN  
the Typical Applications Circuit. Ensure a low-noise  
To further optimize transient response, vary R  
in  
COMP  
supply at IN by using adequate C . Alternately,  
IN  
2ꢀ% steps and C  
in 5ꢀ% steps while observing  
COMP  
greater voltage variation can be tolerated on C if IN is  
IN  
transient-response waveforms.  
decoupled from C using an RC lowpass filter (see  
IN  
Charge Pumps  
R1ꢀ and C18 in Figure 1).  
Selecting the Number of Charge-Pump Stages  
For highest efficiency, always choose the lowest num-  
ber of charge-pump stages that meet the output  
requirement. Figures 9 and 1ꢀ show the positive and  
negative charge-pump output voltages for a given  
Rectifier Diode  
The MAX1516/MAX1517/MAX1518s’ high switching fre-  
quency demands a high-speed rectifier. Schottky  
diodes are recommended for most applications  
because of their fast recovery time and low forward  
voltage. In general, a 2A Schottky diode complements  
the internal MOSFET well.  
V
for one-, two-, and three-stage charge pumps.  
MAIN  
The number of positive charge-pump stages is given by:  
Output-Voltage Selection  
The output voltage of the main step-up regulator can be  
adjusted by connecting a resistive voltage-divider from  
V
+ V  
V  
2× V  
D
GON  
DROPOUT MAIN  
n
=
POS  
V
MAIN  
the output (V  
) to AGND with the center tap connect-  
MAIN  
where n  
is the number of positive charge-pump  
is the gate-on linear-regulator REG P out-  
is the main step-up regulator output, V is  
POS  
GON  
MAIN  
ed to FB (see Figure 1). Select R2 in the 1ꢀkto 5ꢀkΩ  
range. Calculate R1 with the following equation:  
stages, V  
put, V  
D
the forward-voltage drop of the charge-pump diode,  
V
V
MAIN  
and V  
is the dropout margin for the linear reg-  
= ꢀ.ꢁV.  
DROPOUT  
DROPOUT  
ulator. Use V  
R1=R2×  
1  
FB  
20 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
nitely has a negligible effect on output-current capabili-  
ty because the internal switch resistance and the diode  
impedance place a lower limit on the source imped-  
ance. A ꢀ.1µF ceramic capacitor works well in most  
low-current applications. The flying capacitor’s voltage  
rating must exceed the following:  
V
>13V  
MAIN  
V
IN  
LX  
FB  
V
> n× V  
MAIN  
CX  
STEP-UP  
CONTROLLER  
where n is the stage number in which the flying capaci-  
tor appears, and V is the output voltage of the  
PGND  
MAIN  
main step-up regulator.  
MAX1516  
Charge-Pump Output Capacitor  
Increasing the output capacitance or decreasing the  
ESR reduces the output ripple voltage and the peak-to-  
peak transient voltage. With ceramic capacitors, the  
output voltage ripple is dominated by the capacitance  
value. Use the following equation to approximate the  
required capacitor value:  
MAX1517  
MAX1518  
Figure 8. Operation with Output Voltages >13V Using  
Cascoded MOSFET  
The number of negative charge-pump stages is given by:  
I
LOAD_CP  
C
OUT_CP  
V  
+ V  
DROPOUT  
GOFF  
V
2f  
V
OSC RIPPLE_CP  
n
=
NEG  
2× V  
MAIN  
D
where C  
pump, I  
pump, and V  
output ripple.  
is the output capacitor of the charge  
is the load current of the charge  
RIPPLE_CP  
OUT_CP  
LOAD_CP  
where n  
stages, V  
output, V  
is the number of negative charge-pump  
is the gate-off linear-regulator REG N  
NEG  
GOFF  
is the peak-to-peak value of the  
is the main step-up regulator output, V  
MAIN  
D
is the forward-voltage drop of the charge-pump diode,  
and V is the dropout margin for the linear reg-  
Charge-Pump Rectifier Diodes  
DROPOUT  
ulator. Use V  
Use low-cost silicon switching diodes with a current rat-  
ing equal to or greater than two times the average  
charge-pump input current. If it helps avoid an extra  
stage, some or all of the diodes can be replaced with  
Schottky diodes with an equivalent current rating.  
= ꢀ.ꢁV.  
DROPOUT  
The above equations are derived based on the  
assumption that the first stage of the positive charge  
pump is connected to V  
and the first stage of the  
MAIN  
negative charge pump is connected to ground.  
Sometimes fractional stages are more desirable for bet-  
ter efficiency. This can be done by connecting the first  
Linear-Regulator Controllers  
Output-Voltage Selection  
Adjust the gate-on linear-regulator (REG P) output volt-  
age by connecting a resistive voltage-divider from the  
REG P output to AGND with the center tap connected  
to FBP (Figure 1). Select the lower resistor of the divider  
R5 in the range of 1ꢀkto ꢁꢀk. Calculate the upper  
resistor R4 with the following equation:  
stage to V or another available supply. If the first  
IN  
charge-pump stage is powered from V , then the  
IN  
above equations become:  
V
+ V  
+ V  
GON  
DROPOUT IN  
n
=
=
POS  
V
2× V  
D
MAIN  
V  
+ V  
+ V  
GOFF  
DROPOUT IN  
n
NEG  
V
V
GON  
V
2× V  
D
MAIN  
R4 =R5×  
1  
FBP  
Flying Capacitors  
Increasing the flying-capacitor (C ) value lowers the  
where V  
= 1.25V (typ).  
FBP  
X
effective source impedance and increases the output-  
current capability. Increasing the capacitance indefi-  
______________________________________________________________________________________ 21  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
POSITIVE CHARGE-PUMP  
NEGATIVE CHARGE-PUMP  
OUTPUT VOLTAGE vs. V  
OUTPUT VOLTAGE vs. V  
MAIN  
MAIN  
60  
50  
40  
30  
20  
10  
0
-0  
-5  
1-STAGE  
CHARGE PUMP  
3-STAGE CHARGE PUMP  
V
= 0.3V TO 1V  
D
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
2-STAGE CHARGE PUMP  
2-STAGE  
CHARGE PUMP  
3-STAGE  
CHARGE PUMP  
1-STAGE CHARGE PUMP  
V
= 0.3V TO 1V  
D
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
V
(V)  
V
(V)  
MAIN  
MAIN  
Figure 10. Negative Charge-Pump Output Voltage vs. V  
Figure 9. Positive Charge-Pump Output Voltage vs. V  
MAIN  
MAIN  
Adjust the gate-off linear-regulator REG N output volt-  
age by connecting a resistive voltage-divider from  
GOFF  
(Figure 1). Select R8 in the range of 2ꢀkto 5ꢀk.  
Calculate R7 with the following equation:  
Therefore, transistors with current gain over 1ꢀꢀ at the  
maximum output current can be difficult to stabilize and  
are not recommended unless the high gain is needed to  
meet the load-current requirements.  
V
to REF with the center tap connected to FBN  
The transistor’s saturation voltage at the maximum out-  
put current determines the minimum input-to-output  
voltage differential that the linear regulator can support.  
Also, the package’s power dissipation limits the usable  
maximum input-to-output voltage differential. The maxi-  
mum power-dissipation capability of the transistor’s  
package and mounting must exceed the actual power  
dissipated in the device. The power dissipated equals  
V
V
V  
GOFF  
FBN  
R7 =R8×  
V  
REF  
FBN  
where V  
= 25ꢀmV, V  
= 1.25V. Note that REF can  
FBN  
REF  
only source up to 5ꢀµA; using a resistor less than 2ꢀkΩ  
for R8 results in higher bias current than REF can supply.  
the maximum load current (I  
) multiplied  
LOAD(MAX)_LR  
by the maximum input-to-output voltage differential:  
Pass-Transistor Selection  
The pass transistor must meet specifications for current  
gain (h ), input capacitance, collector-emitter saturation  
FE  
voltage and power dissipation. The transistor’s current  
gain limits the guaranteed maximum output current to:  
P =I ×(V V  
)
OUT_LR  
LOAD(MAX)_LR  
IN(MAX)_LR  
where V  
linear regulator, and V  
the linear regulator.  
is the maximum input voltage of the  
IN(MAX)_LR  
_
is the output voltage of  
OUT LR  
V
BE  
I
= I  
×h  
FE(MIN)  
LOAD(MAX)  
DRV  
R
BE  
Stability Requirements  
The MAX1516/MAX1517/MAX1518 linear-regulator con-  
trollers use an internal transconductance amplifier to  
drive an external pass transistor. The transconductance  
amplifier, the pass transistor, the base-emitter resistor,  
and the output capacitor determine the loop stability.  
The following applies to both linear-regulator controllers  
in the MAX1516/MAX1517/MAX1518.  
where I  
is the minimum guaranteed base-drive cur-  
DRV  
rent, V is the transistor’s base-to-emitter forward volt-  
BE  
age drop, and R  
is the pullup resistor connected  
BE  
between the transistor’s base and emitter. Furthermore,  
the transistor’s current gain increases the linear regula-  
tor’s DC loop gain (see the Stability Requirements sec-  
tion), so excessive gain destabilizes the output.  
22 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
The transconductance amplifier regulates the output  
voltage by controlling the pass transistor’s base cur-  
rent. The total DC loop gain is approximately:  
g
is the transconductance of the pass transistor,  
m
and f is the transition frequency. Both parameters  
T
can be found in the transistor’s data sheet. Because  
R
is much greater than R , the above equation  
IN  
BE  
can be simplified:  
1ꢀ  
V
T
I
×h  
BIAS FE  
A
× 1+  
× V  
REF  
V_LR  
I
LOAD_LR  
1
f
=
POLE_IN  
2π ×C ×R  
IN  
IN  
where V is 26mV at room temperature, and I  
is the  
T
BIAS  
BE  
current through the base-to-emitter resistor (R ). For  
Substituting for C and R yields:  
IN  
IN  
the MAX1516/MAX1517/MAX1518, the bias currents for  
both the gate-on and gate-off linear-regulator controllers  
are ꢀ.1mA. Therefore, the base-to-emitter resistor for  
both linear regulators should be chosen to set ꢀ.1mA  
bias current:  
f
T
f
=
POLE_IN  
h
FE  
4) Next, calculate the pole set by the linear regula-  
tor’s feedback resistance and the capacitance  
between FB_ and AGND (including stray capaci-  
tance):  
V
ꢀ.7V  
BE  
R
=
=
6.8kΩ  
BE  
ꢀ.1mA ꢀ.1mA  
The output capacitor and the load resistance create the  
dominant pole in the system. However, the internal  
amplifier delay, pass transistor’s input capacitance,  
and the stray capacitance at the feedback node create  
additional poles in the system, and the output capaci-  
tor’s ESR generates a zero. For proper operation, use  
the following equations to verify the linear regulator is  
properly compensated:  
1
f
=
POLE_FB  
2π ×C ×(R  
||R  
)
FB  
UPPER  
LOWER  
where C  
is the capacitance between FB_ and  
FB  
AGND, R  
is the upper resistor of the linear  
UPPER  
regulator’s feedback divider, and R  
lower resistor of the divider.  
is the  
LOWER  
1) First, determine the dominant pole set by the linear  
regulator’s output capacitor and the load resistor:  
5) Next, calculate the zero caused by the output  
capacitor’s ESR:  
I
LOAD(MAX)_LR  
f
=
POLE_LR  
1
2π ×C  
× V  
OUT_LR  
OUT_LR  
f
=
POLE_ESR  
2π ×C  
×R  
ESR  
OUT_LR  
The unity-gain crossover of the linear regulator is:  
= A  
where R  
OUT_LR  
is the equivalent series resistance of  
ESR  
.
f
f  
V_LR POLE_LR  
CROSSOVER  
C
2) The pole created by the internal amplifier delay is  
approximately 1MHz:  
To ensure stability, choose C  
large enough so  
OUT_LR  
the crossover occurs well before the poles and zero  
calculated in steps 2 to 5. The poles in steps ꢁ and 4  
generally occur at several megahertz, and using  
ceramic capacitors ensures the ESR zero occurs at  
several megahertz as well. Placing the crossover below  
5ꢀꢀkHz is sufficient to avoid the amplifier-delay pole  
and generally works well, unless unusual component  
choices or extra capacitances move one of the other  
poles or the zero below 1MHz.  
f
= 1MHz  
POLE_AMP  
ꢁ) Next, calculate the pole set by the transistor’s  
input capacitance, the transistor’s input resistance,  
and the base-to-emitter pullup resistor:  
1
f
=
POLE_IN  
2π ×C ×(R ||R )  
IN  
BE  
IN  
g
2πf  
h
FE  
m
where C  
=
, R  
=
,
IN  
IN  
g
T
m
______________________________________________________________________________________ 23  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
to the inductor, to the IC’s LX pin, out of PGND, and  
Applications Information  
to the input capacitor’s negative terminal. The high-  
current output loop is from the positive terminal of  
the input capacitor to the inductor, to the output  
diode (D1), and to the positive terminal of the output  
capacitors, reconnecting between the output capac-  
itor and input capacitor ground terminals. Connect  
these loop components with short, wide connec-  
tions. Avoid using vias in the high-current paths. If  
vias are unavoidable, use many vias in parallel to  
reduce resistance and inductance.  
Power Dissipation  
An IC’s maximum power dissipation depends on the  
thermal resistance from the die to the ambient environ-  
ment and the ambient temperature. The thermal resis-  
tance depends on the IC package, PC board copper  
area, other thermal mass, and airflow.  
The MAX1516/MAX1517/MAX1518, with their exposed  
backside pad soldered to 1in2 of PC board copper,  
can dissipate about 1.7W into +7ꢀ°C still air. More PC  
board copper, cooler ambient air, and more airflow  
increase the possible dissipation, while less copper or  
warmer air decreases the IC’s dissipation capability.  
The major components of power dissipation are the  
power dissipated in the step-up regulator and the  
power dissipated by the operational amplifiers.  
• Create a power-ground island (PGND) consisting of  
the input and output capacitor grounds, PGND pin,  
and any charge-pump components. Connect all of  
these together with short, wide traces or a small  
ground plane. Maximizing the width of the power-  
ground traces improves efficiency and reduces out-  
put voltage ripple and noise spikes. Create an  
analog ground plane (AGND) consisting of the  
AGND pin, all the feedback-divider ground connec-  
tions, the operational-amplifier divider ground con-  
nections, the COMP and DEL capacitor ground  
connections, and the device’s exposed backside  
pad. Connect the AGND and PGND islands by con-  
necting the PGND pin directly to the exposed back-  
side pad. Make no other connections between these  
separate ground planes.  
Step-Up Regulator  
The largest portions of power dissipation in the step-up  
regulator are the internal MOSFET, the inductor, and the  
output diode. If the step-up regulator has 9ꢀ% efficiency,  
about ꢁ% to 5% of the power is lost in the internal  
MOSFET, about ꢁ% to 4% in the inductor, and about 1%  
in the output diode. The remaining 1% to ꢁ% is distrib-  
uted among the input and output capacitors and the PC  
board traces. If the input power is about 5W, the power  
lost in the internal MOSFET is about 15ꢀmW to 25ꢀmW.  
• Place all feedback voltage-divider resistors as close  
to their respective feedback pins as possible. The  
divider’s center trace should be kept short. Placing  
the resistors far away causes their FB traces to  
become antennas that can pick up switching noise.  
Take care to avoid running any feedback trace near  
LX or the switching nodes in the charge pumps.  
Operational Amplifier  
The power dissipated in the operational amplifiers  
depends on their output current, the output voltage,  
and the supply voltage:  
PD  
PD  
=I  
×(V  
V  
)
SOURCE OUT_(SOURCE)  
SUP  
OUT_  
• Place the IN pin and REF pin bypass capacitors as  
close to the device as possible. The ground connec-  
tion of the IN bypass capacitor should be connected  
directly to the AGND pin with a wide trace.  
=I  
× V  
OUT_  
SINK OUT_(SINK)  
where I  
is the output current sourced by  
OUT_(SOURCE)  
the operational amplifier, and I  
is the output  
OUT_(SINK)  
current that the operational amplifier sinks.  
• Minimize the length and maximize the width of the  
traces between the output capacitors and the load  
for best transient responses.  
In a typical case where the supply voltage is 1ꢁV and  
the output voltage is 6V with an output source current  
of ꢁꢀmA, the power dissipated is 18ꢀmV.  
• Minimize the size of the LX node while keeping it  
wide and short. Keep the LX node away from feed-  
back nodes (FB, FBP, and FBN) and analog ground.  
Use DC traces to shield if necessary.  
PC Board Layout and Grounding  
Careful PC board layout is important for proper opera-  
tion. Use the following guidelines for good PC board  
layout:  
Refer to the MAX1518 evaluation kit for an example of  
proper PC board layout.  
• Minimize the area of high-current loops by placing  
the inductor, the output diode, and the output  
capacitors near the input capacitors and near the  
LX and PGND pins. The high-current input loop  
goes from the positive terminal of the input capacitor  
Chip Information  
TRANSISTOR COUNT: 46ꢀ8  
PROCESS: BiCMOS  
24 ______________________________________________________________________________________  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Pin Configurations  
TOP VIEW  
32 31 30 29 28 27 26 25  
SRC  
REF  
1
2
3
4
5
6
7
8
24 COMP  
23 FB  
AGND  
PGND  
OUT1  
NEG1  
POS1  
N.C.  
22 IN  
21 LX  
MAX1516  
20 N.C.  
19 N.C.  
18 I.C.  
17 N.C.  
9
10 11 12 13 14 15 16  
THIN QFN  
5mm x 5mm  
N.C. = NOT INTERNALLY CONNECTED  
I.C. = INTERNALLY CONNECTED  
TOP VIEW  
TOP VIEW  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
SRC  
REF  
1
2
3
4
5
6
7
8
24 COMP  
23 FB  
SRC  
REF  
1
2
3
4
5
6
7
8
24 COMP  
23 FB  
AGND  
PGND  
OUT1  
NEG1  
POS1  
OUT2  
22 IN  
AGND  
PGND  
OUT1  
NEG1  
POS1  
OUT2  
22 IN  
21 LX  
21 LX  
MAX1517  
MAX1518  
20 N.C.  
19 N.C.  
18 I.C.  
17 OUT3  
20 OUT5  
19 NEG5  
18 POS5  
17 OUT4  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
THIN QFN  
5mm x 5mm  
THIN QFN  
5mm x 5mm  
N.C. = NOT INTERNALLY CONNECTED  
I.C. = INTERNALLY CONNECTED  
______________________________________________________________________________________ 25  
TFT-LCD DC-DC Converters with  
Operational Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
DETAIL B  
e
L
C
L
C
L
L1  
L
L
e
e
0.10  
C
A
0.08  
C
C
A1 A3  
PACKAGE OUTLINE  
16, 20, 28, 32, 40L, THIN QFN, 5x5x0.8mm  
1
E
21-0140  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
DOWN  
BONDS  
ALLOWED  
PKG.  
D2  
E2  
16L 5x5  
32L 5x5  
40L 5x5  
PKG.  
CODES  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
MIN. NOM. MAX. MIN. NOM. MAX.  
T1655-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-2 3.00 3.10 3.20 3.00 3.10 3.20 YES  
NO  
T2055-3 3.00 3.10 3.20 3.00 3.10 3.20 YES  
A1  
-
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.05  
0.20 REF.  
T2055-2 3.00 3.10 3.20 3.00 3.10 3.20  
A3  
b
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
NO  
T2055-4 3.00 3.10 3.20 3.00 3.10 3.20  
D
E
T2855-1 3.15 3.25 3.35 3.15 3.25 3.35  
T2855-2 2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
T2855-3 3.15 3.25 3.35 3.15 3.25 3.35 YES  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
YES  
NO  
T2855-4 2.60 2.70 2.80 2.60 2.70 2.80  
T2855-5 2.60 2.70 2.80 2.60 2.70 2.80  
T2855-6 3.15 3.25 3.35 3.15 3.25 3.35  
L
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
NO  
N
ND  
16  
4
4
20  
5
5
28  
7
7
32  
8
8
40  
10  
10  
2.80  
3.20  
T2855-7 2.60 2.70  
T3255-2  
T3255-3 3.00 3.10  
2.60 2.70 2.80 YES  
NO  
3.00 3.10 3.20 YES  
NO  
3.00 3.10  
3.00 3.10 3.20  
NE  
3.20  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-
JEDEC  
T3255-4 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40 YES  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3 AND T2855-6.  
PACKAGE OUTLINE  
16, 20, 28, 32, 40L, THIN QFN, 5x5x0.8mm  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
2
E
21-0140  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2ꢀꢀ4 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1518A

TFT-LCD DC-DC Converters with Operational Amplifiers
MAXIM

MAX1518AETJ

TFT-LCD DC-DC Converters with Operational Amplifiers
MAXIM

MAX1518AETJ+

Switching Regulator, Current-mode, 3.5A, 1380kHz Switching Freq-Max, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO220WHHD-2, TQFN-32
MAXIM

MAX1518B

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX1518BETJ

TFT-LCD DC-DC Converter with Operational Amplifiers
MAXIM

MAX1518BETJ+

Switching Regulator, Current-mode, 3.5A, 1380kHz Switching Freq-Max, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX1518BETJ+T

Switching Regulator, Current-mode, 3.5A, 1380kHz Switching Freq-Max, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHD-2, TQFN-32
MAXIM

MAX1518ETJ

TFT-LCD DC-DC Converters with Operational Amplifiers
MAXIM

MAX1518ETJ+

暂无描述
MAXIM

MAX1518ETJ+T

Switching Regulator/Controller, Current-mode, 0.15A, 1380kHz Switching Freq-Max, BICMOS, PQCC32
MAXIM

MAX1518ETJ-T

Switching Regulator/Controller, Current-mode, 0.15A, 1380kHz Switching Freq-Max, BICMOS, PQCC32
MAXIM

MAX1519

Dual-Phase, Quick-PWM Controllers for Programmable CPU Core Power Supplies
MAXIM