MAX15158AATJ [MAXIM]

High-Voltage Multiphase Boost Controller;
MAX15158AATJ
型号: MAX15158AATJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Voltage Multiphase Boost Controller

文件: 总28页 (文件大小:857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
General Description  
Benefits and Features  
Wide Operating Range  
MAX15158/MAX15158A is a high-voltage multiphase  
boost controller designed to support up to two MOSFET  
drivers and four external MOSFETs in single-phase  
or dual-phase boost/inverting-buck-boost configurations.  
Two devices can be stacked up for quad-phase operation.  
The output voltage of MAX15158 can be dynamically  
set through the 1V to 2.2V reference input (REFIN) for  
modular design support. For MAX15158A the REFIN pin  
is removed, and the internal 2.0V reference voltage is  
selected by default.  
• 8V to 76V Input Voltage Range for Booost  
Configuration and -8V to -76V Input Voltage Range  
for Inverting-Buck-Boost Configuration  
• 3.3V to 60V Output Voltage Range on the Top of  
Input Voltage  
• 120kHz to 1MHz Switching Frequency Range  
• -40°C to +125°C Temperature Range  
• Single/Dual/Quad-Phase Operation  
• Active Phase Current Balance Control  
Integration Reduces Design Footprint  
• Internal LDO for Bias Supply Generation  
• Multiphase Multiple Controller Synchronization and  
Interleave  
The switching frequency is controlled either through  
an external resistor setting the internal oscillator or by  
synchronizing the regulator to an external clock. The  
device is designed to support 120kHz to 1MHz switching  
frequencies. The controller has a dedicated enable/input  
undervoltage-lockout (EN/UVLO) pin to configure for flexible  
power sequencing.  
• Output Voltage Sense Level Shifter  
Robust Fault Protection Improves Quality and  
Reliability  
• Adjustable Input Undervoltage Lockout  
• Adjustable Cycle-by-Cycle Peak Current Limit  
and Fast Overcurrent Protection  
• Selectable Feedback Overvoltage Protection  
• Thermal Shutdown  
MAX15158/MAX15158A has a dedicated RAMP pin to  
adjust internal slope compensation. The device features  
adjustable overcurrent protection. The device incorporates  
current sense amplifiers to accurately measure the current  
of each phase across external sense resistors to  
implement accurate phase current sharing. The control-  
ler is also protected against output overvoltage, input  
undervoltage and thermal shutdown.  
Flexible and Simple System Design  
• Adjustable Slope Compensation  
• Low-Side MOSFET Gate Monitoring for Accurate  
Current Sensing  
The device is available in 5mm x 5mm, 32-pin TQFN  
package and supports -40°C to 125°C junction temperature  
range.  
• Discontinuous-Conduction-Mode Operation is  
Supported when Using a Diode in Place of the  
High-Side MOSFET  
Applications  
Communication  
Industrial  
Small 5mm x 5mm TQFN package, 0.5mm pitch  
Ordering Information appears at end of data sheet.  
Automotive  
Multiphase Boost  
19-100365; Rev 2; 11/19  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Typical Application Circuit  
V
= -8V TO -65V  
IN-  
3.3V TO 60V  
OUTPUT  
MAX15158 /  
MAX15158A  
V
V
IN-  
IN-  
EN/UVLO  
DH1  
DL1  
RAMP  
V
IN-  
MOSFET  
DRIVER  
V
IN-  
DRV  
6V TO 14V BIAS W.R.T. V  
IN-  
DLFB1  
REFIN  
(NC)  
1V TO 2.2V DAC W.R.T. V  
SYSTEM CLK  
IN-  
POWER STAGE  
CURRENT SENSE  
FREQ/CLK  
CSP1  
CSN1  
COMP  
V
IN-  
V
IN-  
V
IN-  
V
IN-  
V
V
IN-  
IN-  
OPEN-DRAIN POWER GOOD  
PGOOD  
DH2  
DL2  
MOSFET  
DRIVER  
SYNC  
CSIO_  
MULTIPHASE SUPPORT / SYNCHRONIZATION  
DLFB2  
SS  
POWER STAGE  
CURRENT SENSE  
V
V
IN-  
IN-  
CSP2  
CSN2  
BIAS  
V
IN-  
ILIM  
OVP  
OUTN  
OUTP  
FB  
GND  
V
IN-  
V
IN-  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Absolute Maximum Ratings  
OUTP, OUTN to GND............................................-0.3V to +80V  
CSP_, CSN_ to GND ...........................................-0.3V to +0.3V  
CSP_ to CSN_ .....................................................-0.3V to +0.3V  
CSION, CSIOP to GND..........................-0.3V to (V  
Maximum Current out of BIAS .........................................100mA  
Operating Temperature Range......................... -40°C to +125°C  
+ 0.3V)  
BIAS  
DH_, DL_ to GND ................................ -0.3V to (V  
DLFB_ to GND........................................ -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
BIAS  
A
TQFN (derate 34.5mW/°C above +70°C)......................2.76W  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -40°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+240°C  
DRV  
DRV to GND..........................................................-0.3V to +16V  
BIAS to GND...........................................................-0.3V to +6V  
DRV to BIAS..........................................................-0.3V to +16V  
FB, PGOOD, REFIN to GND ..................................-0.3V to +6V  
EN/UVLO, FREQ/CLK to GND ...............................-0.3V to +6V  
COMP, SS, ILIM, OVP, RAMP,  
SYNC to GND.....................................-0.3V to (V  
+ 0.3V)  
BIAS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 32-PIN TQFN  
Package Code  
T3255+6  
21-0140  
90-0603  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
29°C/W  
1.7°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Electrical Characteristics  
(V  
= 9V, V  
= 1.2V, REFIN = BIAS (MAX15158), C  
= 2.2μF, C = 10nF, R  
= 100kΩ (600kHz), T = T = -40°C to +125°C,  
DRV  
EN/UVLO  
BIAS  
SS  
FREQ  
A
J
unless otherwise noted.) (Note 1)  
PARAMETER  
INPUT SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRV Operating Range  
V
8.5  
14  
V
mA  
μA  
V
DRV  
Device Switching, 2 phases, 10pF load  
DH_ and DL_  
DRV Quiescent Current  
DRV Shutdown Current  
I
10.0  
15.4  
DRV  
EN = GND  
10  
19  
V
V
rising  
falling  
8.00  
7.90  
8.27  
8.16  
8.41  
8.31  
DRV Undervoltage-Lockout  
Threshold  
DRV  
V
DRV(UVLO)  
DRV  
BIAS LINEAR REGULATOR  
BIAS LDO Output  
Voltage  
V
I
= 5mA  
4.66  
4.75  
4.81  
V
mA  
V
BIAS  
BIAS  
BIAS LDO Current Limit  
30  
56  
90  
V
V
rising  
4.10  
4.00  
4.24  
4.19  
4.40  
4.32  
BIAS Undervoltage-Lockout  
Threshold  
BIAS  
V
BIAS(UVLO)  
falling  
BIAS  
CONTROLLER ENABLE  
V
V
rising  
falling  
0.98  
0.88  
1.00  
0.90  
1.03  
0.93  
EN/UVLO Adjustable Undervolt-  
age-Lockout Threshold  
UVLO  
V
V
UVLO  
UVLO  
EN/UVLO Input  
Leakage Current  
I
V
= 0V to V  
-1  
+1  
μA  
UVLO  
UVLO  
BIAS  
FEEDBACK VOLTAGE LEVEL SHIFTER (OUTP, OUTN)  
OUTP Current Range  
OUTN Bias Current  
I
OUTP = OUTN > 8V  
OUTP = OUTN > 8V  
OUTN = OUTP = BIAS  
OUTN = OUTP = BIAS  
0.05  
3.000  
375  
10  
mA  
μA  
μA  
μA  
OUTP  
I
220  
4
OUTN  
OUTP Leakage Current  
OUTN Leakage Current  
3
10  
Minimum OUTN voltage for HV FB  
operations  
7.0  
6.8  
8
7.2  
7.0  
7.4  
7.2  
76  
OUTN Undervoltage-Lockout  
Threshold  
OUTN  
UVLO  
V
V
V
OUTN UVLO hysteresis  
HV FB Voltage-Buffer Operat-  
ing Range  
V
OUTP,  
V
OUTN  
CONTROL LOOP  
FB Regulation Threshold (Pre-  
set Mode)  
V
REFIN = BIAS (MAX15158)  
1.97  
2.00  
2.02  
FB  
FB-to-REFIN Offset Voltage (Track-  
ing Mode)  
V
– V  
, V = 1V to 2V  
REFIN  
-9  
1
+9  
mV  
V
FB  
REFIN  
REFIN Input Voltage Range  
V
(Note 2)  
2.2  
REFIN  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Electrical Characteristics (continued)  
(V  
= 9V, V  
= 1.2V, REFIN = BIAS (MAX15158), C  
= 2.2μF, C = 10nF, R  
= 100kΩ (600kHz), T = T = -40°C to +125°C,  
DRV  
EN/UVLO  
BIAS  
SS  
FREQ  
A
J
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
100mV hysteresis (typ)  
V = 0V to 2V;  
FB  
MIN  
TYP  
MAX  
UNITS  
Preset Mode REFIN Threshold  
Rising  
2.30  
2.36  
V
FB Input Leakage  
Current  
I
-1  
-1  
+1  
+1  
μA  
μA  
FB  
OUTP = OUTN = BIAS  
REFIN Input Leakage Current  
I
V
= 0.4V to 2.2V  
REFIN  
REFIN  
CSP_  
CSP_-to-CSN_ Differential Volt-  
age Range  
D
V
- V  
-200  
+200  
mV  
VCS_  
CSN_  
Current-Sense  
Common-Mode Voltage Range  
V
,
CSP_  
With respect to GND (Note 3)  
-300  
-1  
+300  
+1  
mV  
V/V  
μA  
V
CSN_  
CSP_, CSN_ Current-Sense  
Amplifier Gain  
A
8.3  
1.1  
CS_  
CSP_ , CSN_ Input Leakage  
Current  
I
V
, V  
= ±200 mV with respect  
CSP_,  
CSP_ CSN_  
I
to AGND  
CSN_  
Error-Amplifier Transconduc-  
tance  
G
mS  
mV  
MEA  
Ramp Pin Amplitude Adjustable  
Range  
V
120  
375  
RAMP  
Internal Slope Compensation  
V
V
= 0.3V  
= 0V  
1.9  
V/V  
RAMP  
Ramp Voltage to V  
Ratio  
RAMP  
RAMP Bias Current  
I
9.4  
10.0  
10.6  
305  
μA  
RAMP  
RAMP  
SWITCHING FREQUENCY  
Preset PWM Switching  
Frequency  
f
f
f
R
= OPEN  
293  
300  
kHz  
kHz  
SW  
SW  
SW  
FREQ/CLK  
R
R
R
= 20kΩ  
105  
135  
550  
115  
150  
600  
125  
165  
650  
FREQ  
FREQ  
FREQ  
Adjustable PWM  
Switching Frequency  
= 25kΩ  
= 100kΩ (R  
< 120 kΩ)  
FREQ  
PWM Switching  
frequency range  
FREQ/CLK externally applied  
120  
1000  
kHz  
FREQ/CLK Frequency Detec-  
tion Range  
f
0.48  
4.00  
1.85  
MHz  
CLK  
Logic-high (rising)  
Logic-low (falling)  
1.80  
1.6  
FREQ/CLK Logic Level  
V
V
CLK  
1.5  
FREQ/CLK Input Bias Current  
I
V
= GND  
-10.7  
-10.0  
-9.3  
μA  
CLK  
FREQ/CLK  
FREQ/CLK to PWM Switching  
Frequency Ratio  
f
/ f  
1/2/4 Phases Operation  
4
kHz/kHz  
CLK SW  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Electrical Characteristics (continued)  
(V  
= 9V, V  
= 1.2V, REFIN = BIAS (MAX15158), C  
= 2.2μF, C = 10nF, R  
= 100kΩ (600kHz), T = T = -40°C to +125°C,  
DRV  
EN/UVLO  
BIAS  
SS  
FREQ  
A
J
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
QUAD-PHASE CLOCK SYNC  
Logic high (rising)  
Logic low (falling)  
= 0V to 4.6V, internal 5MΩ  
1.58  
1.17  
1.95  
SYNC Logic Threshold  
V
V
SYNC  
0.90  
-2  
V
SYNC  
SYNC Input Leakage Current  
SYNC Frequency Range  
I
f
+2  
μA  
SYNC  
SYNC  
pulldown  
200  
2000  
kHz  
Logic-high, I  
= 10mA  
V
- 0.4  
SOURCE  
BIAS  
SYNC Output Voltage Level  
V
V
SYNC  
Logic-low, I  
= 10mA  
0.4  
SINK  
OUTPUT FAULT PROTECTION  
CSP_ to CSN_ Minimum  
Threshold for Cycle-by-Cycle  
Positive Peak Current Limit  
V
V
= 0V  
17  
94  
20  
23  
mV  
mV  
ILIM  
CSP_ to CSN_ Maximum  
Threshold for Cycle-by-Cycle  
Positive Peak Current Limit  
> 1.25V  
> 1.25V  
100  
106  
ILIM  
CSP_ to CSN_ Minimum  
Threshold for Cycle-by-Cycle  
Negative Overcurrent  
Protection  
V
V
-80  
mV  
mV  
ILIM  
CSP_ to CSN_ Maximum  
Threshold for Cycle-by-Cycle  
Negative Overcurrent  
Protection  
= 0V  
-16  
26  
ILIM  
CSP_ to CSN_ Minimum  
Threshold for Fast Positive  
Overcurrent Protection  
V
V
= 0V  
21  
31  
mV  
mV  
ILIM  
CSP_ to CSN_ Maximum  
Threshold for Fast Positive  
Overcurrent Protection  
> 1.25V  
121  
133  
145  
ILIM  
ILIM Source Current  
9.4  
-15  
10.0  
10.6  
+ 15  
µA  
%
CSP_-to-CSN_ Cycle-by-Cycle  
Positive Peak Current Limit  
Threshold Accuracy  
0.25V < V  
< 0.95V  
ILIM  
V
= 500mV  
-6  
+6  
%
ILIM  
ILIM  
CSP_-to-CSN_ Negative  
Overcurrent Protection  
Threshold Accuracy  
V
= 500mV  
-20  
+20  
%
Maxim Integrated  
6  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Electrical Characteristics (continued)  
(V  
= 9V, V  
= 1.2V, REFIN = BIAS (MAX15158), C  
= 2.2μF, C = 10nF, R  
= 100kΩ (600kHz), T = T = -40°C to +125°C,  
DRV  
EN/UVLO  
BIAS  
SS  
FREQ  
A
J
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 500mV  
MIN  
TYP  
MAX  
UNITS  
V
to |CSP_ - CSN_|  
Cycle-by-Cycle Positive Peak  
ILIM  
V
10  
V/V  
ILIM  
Current Limit Threshold Ratio  
Minimum REFIN and SS  
Voltage for Valid FB OV Fault  
SS > 1V  
Measured with respect to target voltage  
1.00  
8.5  
1.02  
10.0  
1.04  
12.0  
V
FB Overvoltage Default  
Threshold (Preset Mode)  
FB OV  
FB OV  
(REFIN = BIAS for MAX15158), V  
falling, 3% hysteresis  
%
FB  
Measured with respect to target voltage  
(V = 1V for MAX15158), V falling,  
FB Overvoltage Threshold  
(Tracking Mode)  
8.5  
9.4  
10  
11  
%
REFIN  
FB  
3% hysteresis  
OVP Selector Output Source  
Current  
Resistor connected to GND  
10.0  
12  
10.6  
µA  
EN/UVLO falling to SS falling  
μs  
Cumulative cycle-by-cycle peak current  
limit or negative overcurrent protection  
events for hiccup  
Fault Propagation  
Delay  
32  
Events  
PWM CLK  
Cycles  
FB OV  
128  
PWM CLK  
Cycles  
Hiccup Timeout Duration  
PGOOD Threshold  
32,768  
1.88  
PGOOD rising (REFIN = BIAS for  
MAX15158)  
1.83  
1.77  
1.93  
1.87  
V
PGOOD falling (REFIN = BIAS for  
MAX15158)  
1.82  
PGOOD Falling and Rising  
Delay  
PWM CLK  
Cycles  
64  
20  
PGOOD Output Low Voltage  
PGOOD Leakage Current  
Thermal Shutdown  
V
I
= 3mA  
SINK  
40  
1
mV  
μA  
°C  
PGOOD  
I
FB = REFIN for MAX15158, V  
= 5V  
PGOOD  
PGOOD  
T
15°C hysteresis  
165  
SHDN  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Electrical Characteristics (continued)  
(V  
= 9V, V  
= 1.2V, REFIN = BIAS (MAX15158), C  
= 2.2μF, C = 10nF, R  
= 100kΩ (600kHz), T = T = -40°C to +125°C,  
DRV  
EN/UVLO  
BIAS  
SS  
FREQ  
A
J
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SOFT-START (SS)  
SS Amplifier  
Transconductance  
G
0.2  
mS  
μA  
Ω
M(SS)  
Source  
Sink  
4.75  
-5.8  
5.00  
-5.0  
5.25  
-4.2  
SS Current Capability  
I
SS  
SS Pulldown  
Resistance  
R
Discharge  
SS rising  
4.3  
SS  
55  
45  
SS Undervoltage-  
Lockout Threshold  
V
mV  
UVLO(SS)  
SS falling (drivers disabled)  
PWM Output  
Logic-high, I  
= 10mA  
V
- 0.5  
SOURCE  
BIAS  
DH_, DL_ Output  
Voltage Level  
V
, V  
V
DH_ DL_  
Logic-low, I  
= 10mA  
0.2  
SINK  
DLFB_ Leakage Current  
DLFB_ Logic Threshold  
I
V
= 9V  
-1  
+1  
μA  
LK  
DLFB_  
Logic high (rising)  
Logic low (falling)  
0.75  
0.45  
0.80  
0.50  
0.85  
0.55  
V
V
DLFB  
CURRENT SHARING (MULTIPHASE APPLICATIONS ONLY)  
CSIO_ Output Common-Mode  
Voltage  
V
With respect to AGND  
1.24  
4.2  
V
CSION  
CSIO_ Differential Input  
Resistance  
R
kΩ  
CSIO_  
Note 1: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply-voltage range are  
A
guaranteed by design and characterization.  
Note 2: For MAX15158, operating REFIN below 1V is not recommended due to disabled FB overvoltage-fault protection.  
Note 3: Guaranteed by design, not production tested.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Typical Operating Characteristics  
(T = -40°C to +125°C, V = -48V, unless otherwise noted. See the Standard Application Circuits.)  
A
IN-  
EFFICIENCY vs. LOAD CURRENT  
LOAD REGULATION  
LINE REGULATION  
toc01  
toc02  
toc03  
98  
12.060  
12.055  
12.050  
12.045  
12.040  
12.035  
12.030  
12.040  
12.038  
12.036  
12.034  
12.032  
12.030  
96  
94  
92  
90  
88  
86  
84  
82  
V
VOUT = 5V  
V
VOUT = 9V  
V
VOUT = 12V  
VV=14.5V  
OUT  
VOUT = 12V  
ILOAD = 1A  
VV=35V  
OUT  
VOUT = 12V  
20  
VV=55V  
OUT  
0
5
10  
15  
20  
25  
0
5
10  
15  
25  
-60 -55 -50 -45 -40 -35 -30 -25  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
STARTUP WAVEFORM WITH  
PREBIASED OUTPUT VOLTAGE  
STARTUP WAVEFORM  
EN/UVLO RISING  
STARTUP WAVEFORM  
LX_ SWITCHING  
toc06  
toc04  
toc05  
5V/div  
5V/div  
5V/div  
1V/div  
VEN/UVLO  
VPGOOD  
5V/div  
5V/div  
VOUT  
1V/div  
VOUT  
VSS  
VLX1  
VLX2  
VSS  
1V/div  
VOUT  
VSS  
50V/div  
50V/div  
50V/div  
50V/div  
VLX1  
VLX2  
5ms/div  
5ms/div  
5ms/div  
DYNAMIC REFIN RAMP RESPONSE  
17.5V TO 35V OUTPUT  
SHUT-DOWN WAVEFORM  
EN/UVLO FALLING  
SHUT-DOWN WAVEFORM  
LX_ SWITCHING  
toc09  
toc07  
toc08  
VOUT  
VEN/UVLO  
10V/div  
5V/div  
5V/div  
VOUT  
VPGOOD  
VOUT  
VREFIN  
1V/div  
1V/div  
VSS  
5V/div  
1V/div  
VSS  
VSS  
5V/div  
1V/div  
50V/div  
50V/div  
VLX1  
VPGOOD  
5V/div  
VLX2  
5ms/div  
5ms/div  
10ms/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Typical Operating Characteristics (continued)  
(T = -40°C to +125°C, V = -48V, unless otherwise noted. See the Standard Application Circuits.)  
A
IN-  
DYNAMIC REFIN STEP RESPONSE  
17.5V TO 35V OUTPUT  
LOAD TRANSIENT WAVEFORM  
35V OUTPUT WITH 10A LOAD STEP  
CLOCK SYNCHRONIZATION  
toc12  
toc10  
toc11  
VOUT  
VREFIN  
VSS  
VCLK  
10V/div  
1V/div  
1V/div  
2V/div  
VOUT  
500mV/div  
10A/div  
VLX1  
50V/div  
50V/div  
ILOAD  
VPGOOD  
5V/div  
VLX2  
10ms/div  
2ms/div  
2µs/div  
BODE PLOT  
12V OUTPUT WITH 25A LOAD  
BODE PLOT  
12V OUTPUT WITH 0A LOAD  
toc14  
toc13  
100  
200  
160  
120  
80  
100  
80  
200  
80  
60  
160  
120  
80  
60  
40  
40  
20  
40  
20  
40  
0
0
0
0
-20  
-40  
-60  
-80  
-40  
-80  
-120  
-160  
-200  
-20  
-40  
-60  
-80  
-100  
-40  
-80  
-120  
-160  
-200  
-100  
1
10  
100  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
AUTO-RETRY AFTER  
OVERCURRENT FAULT  
OUTPUT OVERCURRENT WAVEFORM  
toc16  
toc15  
5V/div  
VOUT  
VOUT  
5V/div  
ILOAD  
ILOAD  
50A/div  
2V/div  
50A/div  
VSS  
VPGOOD  
5V/div  
5V/div  
VPGOOD  
50V/div  
VLX  
200µs/div  
50ms/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Pin Configuration  
24 23 22 21 20 19 18 17  
24 23 22 21 20 19 18 17  
NC  
REFIN  
FB  
COMP  
SS  
OVP  
ILIM  
RAMP  
NC  
NC  
FB  
COMP  
SS  
OVP  
ILIM  
RAMP  
DLFB1  
DL1  
DH1  
CSP1  
CSN1  
CSN2  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
DLFB1  
DL1  
DH1  
CSP1  
CSN1  
CSN2  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
TOP VIEW  
5mm x 5mm  
TQFN  
TOP VIEW  
5mm x 5mm  
TQFN  
EP  
EP  
CSP2  
DLFB2  
CSP2  
DLFB2  
1
2
3
4
5
6
7
8
1 2 3 4 5 6 7 8  
+
+
MAX15158  
MAX15158A  
T3255-6  
T3255-6  
Pin Description  
PIN  
NAME  
FUNCTION  
Logic Output for Low-Side MOSFET Gate Driver for the Second Phase. Connect DL2 to the second phase  
external MOSFET driver low-side input pin.  
1
DL2  
Logic Output for High-Side MOSFET Gate Driver for the Second Phase. Connect DH2 to the second phase  
external MOSFET driver high-side input pin.  
2
3
DH2  
Multiphase Synchronization Pin. For single IC operation, leave this pin unconnected. Tie this pin together  
when two MAX15158/MAX15158A ICs are stacked-up in master/slave operation mode.  
SYNC  
Frequency Selection/Clock Synchronization Input. MAX15158/MAX15158A supports switching frequencies  
from 120kHz to 1MHz. Set the switching frequency by either selecting the appropriate external resistor to use  
the internal oscillator frequency, or by synchronizing the regulator to an external system clock (see Table 2).  
Leave the FREQ/CLK pin unconnected to select the preset 300kHz switching frequency or place a resistor  
FREQ/  
CLK  
4
between FREQ/CLK and GND to set the following: f  
= (R  
/100k) x 600kHz  
SW  
FREQ  
5
6
GND  
Analog Ground.  
Negative Input of Master/Slave Current-Sense Signal. MAX15158/MAX15158A uses a differential current-  
sense signal to ensure proper startup and current-balance behavior in applications where two MAX15158/  
MAX15158A ICs are stacked up in master/slave operation mode.  
CSION  
Positive Input of Master/Slave Current-Sense Signal. MAX15158/MAX15158A uses a differential current-  
sense signal to ensure proper startup and current-balance behavior in applications where two MAX15158/  
MAX15158A ICs are stacked up in master/slave operation mode.  
7
8
CSIOP  
Open-Drain Power Good Output. MAX15158/MAX15158A pulls PGOOD low when the output voltage  
exceeds the OVP threshold, or drops below the output UVP threshold, during soft-start and shutdown  
(EN/UVLO pulled low). The PGOOD output goes high-impedance when the controller completes soft-start  
and remains in regulation.  
PGOOD  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Slope Compensation Input. A resistor connected from RAMP to GND programs the amount of slope  
compensation. See the Adjustable Slope Compensation (RAMP) section.  
9
RAMP  
CSP_-CSN_ Cycle-by-Cycle/Hiccup Current Limit Threshold Selector. Connect a resistor from ILIM to GND  
to select the protection value.  
10  
11  
12  
ILIM  
OVP  
SS  
Program Pin. Connect a resistor from OVP to GND to configure FB overvoltage protection, single-phase or  
dual-phase selection and FB level shifter selection (see Table 1).  
Soft-Start Control. The capacitance (C ) between SS to GND sets the startup period. An internal  
SS  
pulldown MOSFET holds SS low until the controller begins the startup sequence.  
Compensation Amplifier Output. COMP is the output of the internal transconductance error amplifier.  
Connect a type II compensation network as shown in the Typical Application Circuit (See the Compensation  
Design Guidelines section).  
13  
COMP  
Feedback Input. When the FB level shifter is enabled, connect a resistor from FB to GND; when the FB  
level shifter is disabled, connect FB to the center of a resistive divider between the output and GND. For  
MAX15158A, FB regulates to the preset 2.0V reference voltage. For MAX15158, FB tracks the REFIN  
voltage (REFIN between 0.4V and 2.2V) or regulates to the preset 2.0V reference voltage by connecting  
REFIN to BIAS. Operation between 0.4V < REFIN < 1V is possible but the FB OVP is disabled. When two  
MAX15158/MAX15158A ICs are stacked-up in master/slave operation mode, connect FB of the slave to  
BIAS.  
14  
FB  
External Reference Input of MAX15158. REFIN sets the feedback regulation voltage when supplied with a volt-  
age between 0.4V and 2.2V. Connect REFIN pin to BIAS to select internal 2.0V reference voltage. Operation  
between 0.4V < REFIN < 1V is possible but the FB OV and UV fault functions are disabled.  
REFIN  
15  
Not Connected. For MAX15158A, this pin is NC (Not Connected), where the controller selects internal 2.0V  
reference voltage.  
NC  
NC  
16,  
19–20  
Not Connected  
Positive Differential Output Voltage Sense Input. MAX15158/MAX15158A can operate in inverting  
buck-boost mode and sense output voltage differentially using its internal FB level shifter. Connect a sense  
resistor between OUTP and positive node of output as shown in the Typical Application Circuit. OUTP must  
be shorted to OUTN and BIAS if the internal FB level shifter is disabled.  
17  
OUTP  
Negative Differential Output Voltage Sense Input. MAX15158/MAX15158A can operate in inverting  
buck-boost mode and sense output voltage differentially using its internal FB level shifter. Connect OUTN to  
the negative node of output as shown in the Typical Application Circuit. Connect OUTN to OUTP and BIAS if  
the internal FB level shifter is disabled.  
18  
21  
OUTN  
BIAS  
4.75V Linear Regulator Output and Controller Bias Supply. Bypass to GND with a 2.2µF or greater ceramic  
capacitor.  
Enable Control / Adjustable Undervoltage Lockout Input for Startup/Shutdown Power Sequencing. This  
pin has two voltage thresholds with hysteresis. The lower threshold (0.7V rising / 0.55V falling) determines  
whether the BIAS regulator is enabled/disabled. The higher threshold (1V rising / 0.9V falling) initiates soft-  
start / soft-shutdown and enables switching. Connect EN/UVLO to the center of a resistor divider between  
the input and GND to adjust the undervoltage lockout voltage level as shown in the Typical Application  
Circuit.  
22  
EN/UVLO  
23  
24  
GND  
DRV  
Analog Ground.  
Supply Voltage Input. Provide a 8.5V to 14V supply for internal bias generation.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
External MOSFET Status Feedback Pin for the First Phase. Connect DLFB1 to the center of a resistor di-  
vider between the gate of the low-side MOSFET of the first phase and GND. See the MOSFET Gate Control  
section.  
25  
DLFB1  
Logic Output for Low-Side MOSFET Gate Driver for the First Phase. Connect DL1 to the first phase external  
MOSFET driver low-side input pin.  
26  
27  
DL1  
DH1  
Logic Output for High-Side MOSFET Gate Driver for the First Phase. Connect DH1 to the first phase  
external MOSFET driver high-side input pin.  
Positive Low-Side Differential Current-Sense Input for the First Phase. MAX15158/MAX15158A uses the  
differential current-sense signal in the current-mode control loop, and multiphase current sharing.  
Connect CSP1 to the "MOSFET side" of the current-sense resistor.  
28  
29  
30  
31  
32  
CSP1  
CSN1  
CSN2  
CSP2  
DLFB2  
Negative Low-Side Differential Current-Sense Input for the First Phase. MAX15158/MAX15158A uses  
the differential current-sense signal in the current-mode control loop, and multiphase current sharing.  
Connect CSN1 to the "ground side" of the current-sense resistor.  
Negative Low-Side Differential Current-Sense Input for the Second Phase. MAX15158/MAX15158A uses  
the differential current-sense signal in the current-mode control loop, and multiphase current sharing.  
Connect CSN2 to the "ground side" of the current-sense resistor.  
Positive Low-Side Differential Current-Sense Input for the Second Phase. MAX15158/MAX15158A uses  
the differential current-sense signal in the current-mode control loop, and multiphase current sharing.  
Connect CSP2 to the "MOSFET side" of the current-sense resistor.  
External MOSFET Status Feedback Pin for the Second Phase. Connect DLFB2 to the center of a resistor  
divider between the gate of the low-side MOSFET of the second phase and GND. See the MOSFET Gate  
Control section.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Block Diagram  
CSP2  
CSN2  
IB2  
CSIOP  
CSION  
2R  
2R  
CURRENT  
BALANCE  
R
MAX15158  
CSP1  
CSN1  
1.23V  
IB1  
ILIM2  
IB1  
ILIM2  
ILIM1  
DH1  
DL1  
ILIM  
ILIM  
GENERATOR  
CSP1  
CSN1  
CMP1  
DLFB1  
PWM  
CONTROL  
LOGIC  
DH2  
CLOCK  
DISTRIBUTION  
AND SLOPE  
CLK  
UP  
FREQ/CLK  
SYNC  
DL2  
CLK  
REF  
COMPENSATION  
DLFB2  
IB2  
RAMP  
RAMP  
GENERATOR  
CMP2  
OUTP  
OUTN  
CSP2  
CSN2  
FEEDBACK LEVEL SHIFT  
FB  
ILIM1  
COMP  
OVP  
FB  
1V  
PGOOD  
COMPARATORS  
OVP  
THRESHOLD  
ILIM1  
ILIM2  
50mV  
REFIN  
0.7V  
RISING  
2.3V  
EN/UVLO  
STARTUP  
AND FAULT  
LOGIC  
DRV  
BIAS  
DRV UVLO  
SS  
2V REF  
BIAS UVLO  
RESTA RT  
2V  
40mV  
HICCUP  
RESET  
PGOOD  
THERMAL  
SHUTDOW N  
BIAS SUPPLIES  
GND  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Block Diagram (continued)  
CSP2  
CSN2  
IB2  
CSIOP  
2R  
2R  
CURRENT  
BALANCE  
R
MAX15158A  
CSION  
CSP1  
CSN1  
1.23V  
IB1  
ILIM2  
IB1  
DH1  
DL1  
ILIM2  
ILIM1  
ILIM  
ILIM  
GENERATOR  
CMP1  
CSP1  
CSN1  
DLFB1  
PWM  
CONTROL  
LOGIC  
DH2  
CLK  
UP  
CLOCK  
DISTRIBUTION  
AND SLOPE  
FREQ/CLK  
SYNC  
DL2  
CLK  
REF  
DLFB2  
COMPENSATION  
IB2  
RAMP  
RAMP  
GENERATOR  
CMP2  
OUTP  
OUTN  
CSP2  
CSN2  
FEEDBACK LEVEL SHIFT  
FB  
ILIM1  
COMP  
OVP  
FB  
1V  
PGOOD  
COMPARATORS  
OVP  
THRESHOLD  
ILIM1  
ILIM2  
0.7V  
RISING  
EN/UVLO  
STARTUP  
AND FAULT  
LOGIC  
DRV  
BIAS  
DRV UVLO  
BIAS UVLO  
SS  
2V REF  
RESTA RT  
HICCUP  
2V  
40mV  
PGOOD  
THERMAL  
SHUTDOW N  
BIAS SUPPLIES  
GND  
RESET  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
FB level shifter to differentially sense the output voltage.  
The internal FB level shifter can be enabled or disabled  
by connecting a resistor from the OVP pin to GND (See  
Overvoltage Protection (OVP) section). When the internal FB  
level shifter is enabled, connect OUTN to the ground node  
of the output capacitor and OUTP to the output terminal  
Detailed Description  
MAX15158/MAX15158A is a high-voltage multiphase  
boost controller designed to support up to two MOSFET  
drivers and four external MOSFETs in single-phase  
or dual-phase boost/inverting-buck-boost configurations.  
Two devices can be stacked up for quad-phase operation.  
When configured as inverting-buck-boost converter, the  
controller has an internal high-voltage FB level shifter to  
differentially sense the output voltage. The output voltage  
of MAX15158 can be dynamically set through the 1V to  
2.2V reference input (REFIN) for modular design sup-  
port. For MAX15158A the REFIN pin is removed, and the  
internal 2.0V reference voltage is selected by default.  
using a resistor R  
. FB is connected to GND (V  
)
IN-  
FB1  
using a resistor R . The output voltage is set by these  
FB2  
two resistors:  
V
= (R  
/R  
) x V  
OUT  
FB1 FB2 REF  
For MAX15158, V  
can be externally supplied with a  
REF  
voltage between 1V and 2.2V on the REFIN pin. By con-  
necting the REFIN pin to BIAS, the default internal 2.0V  
The switching frequency is controlled either through  
an external resistor setting the internal oscillator or by  
synchronizing the regulator to an external clock. The  
device is designed to support 120kHz to 1MHz switch-  
ing frequencies. When two devices are stacked up  
as master-slave for quad-phase operation, the SYNC  
pin of two devices are connected to ensure the clock  
synchronization and phase interleaving. The controller  
has a dedicated enable/input undervoltage-lockout (EN/  
UVLO) pin to configure for flexible power sequencing.  
reference voltage is selected. For MAX15158A, V  
=
REF  
2.0V and cannot be externally controlled. When the FB  
level shifter is enabled, the OUTN pin has a UVLO threshold  
that controls the power sequencing. If the voltage on  
OUTN falls below 7.0V (typ), the controller disables the  
drivers (all driver outputs are pulled low) and discharges  
the SS capacitor through a 4.3Ω pulldown MOSFET.  
V
OUT  
MAX15158/MAX15158A has a dedicated RAMP pin to  
adjust internal slope compensation. The device features  
adjustable overcurrent protection. The device incorpo-  
rates current sense amplifiers to accurately measure the  
current of each phase across external sense resistors to  
implement accurate phase current sharing. The controller  
is also protected against output overvoltage, input under-  
voltage and thermal shutdown.  
R
FB1  
MAX15158 /  
MAX15158A  
OUTP  
OUTN  
High Voltage Internal FB Level Shifter  
FB  
MAX15158/MAX15158A can support both boost and  
inverting-buck-boost applications. When configured  
in inverting-buck-boost operation, the GND pin of the  
device must be connected to the negative input voltage  
R
FB2  
GND  
terminal (V ), so that the ground of the IC is different  
IN-  
V
IN-  
than the ground of output capacitor and load. Output  
voltage cannot be controlled using a simple resistor  
divider. MAX15158/MAX15158A has a dedicated internal  
Figure 1. Using Internal FB Level Shifter  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
For inverting-buck-boost applications where V is higher  
IN  
differential voltage across CSP_ and CSN_ does not  
exceed the cycle-by-cycle peak current limit threshold  
(see the Overcurrent Protection (OCP) section). The  
differential voltage across CSP_ and CSN_ is amplified 8  
times by a current sense amplifier. A high-frequency RC  
noise filter is suggested across the sense resistor. The RC  
time constant should not exceed 30ns.  
than 76V, MAX15158/MAX15158A can still be used but  
an external level shifter is required. The internal FB level  
shifter must be disabled. Pin OUTP and OUTN must be  
tied to BIAS. An example of using external FB level shifter  
is shown in Figure 2. Two matched PNP transistors are  
used. The output voltage is given by:  
V
OUT  
= (1 + R  
/R  
) x V  
The error between the output voltage feedback (V  
)
FB  
FB1 FB2  
REF  
and reference voltage (V ) is fed to the input of  
SS  
When operating in boost mode, the internal FB level shifter  
is disabled. Pin OUTP and OUTN must be tied to BIAS,  
and the FB pin must be connected to the center of a resis-  
tor divider from output to GND as shown in Figure 3. When  
the resistor divider is used, the output voltage is given by:  
an error amplifier. The output of the error amplifier  
(COMP) is required to connect to a type-II compensation  
network for control loop stability (see the Compensation  
Design Guidelines section). A slope compensation ramp  
generator is also used. The slope of the compensation  
ramp can be adjusted by connecting a resistor between  
RAMP and GND (see the Adjustable Slope Compensation  
(RAMP) section).  
V
OUT  
= (1 + R  
/R  
) x V  
FB1 FB2 REF  
Peak-Current-Mode Control Loop  
The controller relies on a fixed-frequency, peak-current-  
mode architecture to regulate the output. A detailed  
block diagram of the control loop is shown in Figure 4.  
A sense resistor is required between the source of the  
low-side MOSFET and GND for current sensing. The  
sense resistor should be selected so that the maximum  
The controller drives on the low-side MOSFET (DL_  
driven high) on each rising clock edge. When the PWM  
comparator detects that the sum of the current-sense  
amplifier output (V  
), the slope compensation ramp  
CS_  
and the phase current imbalance signal exceeds the  
COMP voltage, the controller pulls DL_ low and drives  
DH_ high.  
V
OUT  
V
OUT  
R
R
FB1  
FB1  
MAX15158 /  
MAX15158A  
MAX15158 /  
MAX15158A  
BIAS  
BIAS  
OUTP  
OUTN  
OUTP  
OUTN  
DISABLE INTERNAL  
FB LEVEL SHIFTER  
DISABLE INTERNAL  
FB LEVEL SHIFTER  
FB  
FB  
R
FB2  
R
FB2  
GND  
GND  
R
FB1  
V
IN-  
V
IN-  
Figure 2. Using External FB Level Shifter  
Figure 3. Using External FB Resistor Divider  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
V
OUT  
*
HIGH-  
V
IN  
MAX15158 /  
MAX15158A  
SIDE  
MOSFET  
I
RAMP  
CLOCK  
L
RAMP  
DH_  
DL_  
RAMP  
GENERATOR  
LOW-  
SIDE  
MOSFET  
PHASE CURRENT  
IMBALANCE  
R
V
= 1.9 × I  
× R  
RAMP  
SLOPE  
RAMP RAMP  
PWM  
CONTROL  
LOGIC  
GND  
GND  
CSP_  
CSN_  
V
CS_  
= 8.3 × (V  
- V  
)
CSP_  
CSN_  
R
SENSE  
PWM  
COMPARATOR  
ERROR  
AMPLIFIER  
FB  
SS  
GND  
GND  
C
COMP  
R
CCOMP  
COMP  
GND  
TYPE-II COMPENSATION  
C
PAR  
*FOR BOOST APPLICATIONS V  
IS REFERRED TO GND; FOR INVERTING-BUCK-BOOST  
OUT  
APPLICATIONS V  
IS REFERRED TO V  
IN  
OUT  
Figure 4. Peak-Current-Mode Control Loop  
For stable operation, it is required that the bandwidth  
of control loop (BW) is sufficiently lower than f and  
Compensation Design Guidelines  
RHP  
MAX15158/MAX15158A utilizes a fixed-frequency, peak  
current-mode control scheme to provide easy compensation  
and fast transient response. It is by nature for boost or  
inverting-buck-boost converters to have a right half plane  
(RHP) zero in their small signal control-to-output transfer  
function. For boost converters, the location of RHP zero  
is calculated by:  
switching frequency (f ).  
SW  
BW ≤ Minimum(f  
/7, f /10)  
SW  
RHP  
A type-II compensation network is required to be  
connected between COMP and GND (R , C  
COMP  
COMP  
and C  
in Figure 4) to provide sufficient phase margin  
PAR  
and gain margin to the control loop. The value of the  
compensation network can be selected by:  
2
f
= V  
x (1 - D) / (2 x π x I  
x L)  
RHP  
OUT  
OUT(MAX)  
where:  
R
= 16 x π x BW x R  
x C  
x V  
/
COMP  
SENSE  
MEA  
OUT  
]
OUT  
[N x (1 - D) x G  
x V  
REF  
I
= Maximum load current per phase  
OUT(MAX)  
C
= 5/(π x R  
x BW)  
COMP  
COMP  
D = Duty cycle = 1 - V /V  
IN OUT  
C
= 1/(2 x π x R  
x f  
)
PAR  
COMP  
SW  
L = Value of the inductor  
where,  
For inverting-buck-boost converters, the location of RHP  
zero is calculated by:  
R
C
= Value of the sense resistor  
SENSE  
2
f
= V  
x (1 - D) / (2 x π x I  
x L x D)  
= Value of the output capacitor  
RHP  
OUT  
OUT(MAX)  
OUT  
where:  
D = Duty cycle = V  
N = Number of phases  
= Error Amplifier Transconductance (1.1mS, typ)  
/(|V | + V  
)
G
OUT  
IN  
OUT  
MEA  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
and discharges the SS capacitor through an internal  
4.3Ω discharge MOSFET, placing the regulator into a  
high-impedance output state, so the output capacitance  
passively discharges through the load current.The BIAS  
linear regulator and internal reference power up only  
when DRV exceeds its undervoltage-lockout threshold  
and EN/UVLO is driven high.  
Adjustable Slope Compensation (RAMP)  
When MAX15158/MAX15158A operates at a duty cycle  
greater than 50%, additional slope compensation is  
required to ensure stability and prevent subharmonic  
oscillations that occurs naturally in peak-current-mode  
controlled converters operating in continuous-conduction-  
mode (CCM). MAX15158/MAX15158A provides RAMP  
input to select the internal slope compensation ramp  
within a range of 230mV ~ 730mV. It is recommended  
that discontinuous-conduction-mode (DCM) designs also  
use this minimum amount of slope compensation to  
provide better noise immunity and jitter-free operation.  
EN/UVLO and Soft-Start/Shutdown  
The EN/UVLO pin allows the input voltage operating  
range to be externally adjusted for power-sequence  
control. Connect EN/UVLO to the center of a resistor  
divider between the input and GND to adjust the under-  
voltage lockout voltage level as shown in the Typical  
Application Circuit. In the case where the DRV voltage  
threshold of the external MOSFET driver is higher than  
the undervoltage lockout threshold of the DRV pin, the  
EN/UVLO pin should also be pulled to GND before the  
external MOSFET driver is enabled. The EN/UVLO pin  
has two levels of thresholds with hysteresis. At power-  
up, once the voltage of the EN/UVLO pin is higher than  
0.7V (typ) and DRV voltage is higher than its UVLO  
threshold, the internal 4.75V BIAS regulator is enabled.  
Once the voltage of EN/UVLO is higher than 1V (typ),  
and the internal reference stabilizes, the controller starts  
the initialization period where the OVP pin configuration  
is checked. During this initialization period, the control-  
ler pulls SS low through a 4.3Ω discharge MOSFET. As  
long as initialization is complete, the controller starts the  
soft-start sequence by charging the SS capacitor with a  
constant 5μA current source until the SS voltage reaches  
either the preset 2.0V target voltage (MAX15158A or  
MAX15158 with REFIN connected to BIAS), or the exter-  
As shown in Figure 4, by connecting a resistor (R  
between RAMP and GND, the amplitude of the slope  
compensation ramp is calculated as:  
)
RAMP  
V
= 1.9 x V  
= 1.9 x I  
x R  
SLOPE  
RAMP  
RAMP RAMP  
where I  
is the current sourced from RAMP to GND  
RAMP  
(10μA typ)  
To guarantee stable and jitter-free operation, it is  
suggested to select the RAMP resistor that:  
R
≥ 5 x (V  
- V  
)
RAMP  
x R  
OUT(MAX)  
IN(MIN)  
/(I  
x f  
x L)  
SENSE RAMP  
SW  
where:  
V
= Maximum output voltage referred to GND  
OUT(MAX)  
V
= Minimum input voltage referred to GND  
= Value of the sense resistor  
IN(MIN)  
R
f
SENSE  
= Switching frequency  
SW  
L = Value of the inductor  
DRV Supply and Bias Regulator (BIAS)  
nally driven REFIN voltage (MAX15158, V  
= 1V to  
REFIN  
2.2V). The drivers start switching once SS exceeds 50mV  
and the controller detects that FB voltage is below the  
SS voltage. The controller enables the overvoltage fault-  
protection circuitry when SS exceeds 1V.  
The controller requires an external 8.5V to 14V DRV supply.  
The DRV supply powers the internal linear regulator that  
generates a regulated 4.75V bias supply to power the  
internal analog and digital control circuitry as shown in  
the Block Diagram. Bypass the BIAS pin with a 2.2μF  
or greater ceramic capacitor to maintain noise immunity  
and stability. The BIAS regulator provides up to 50mA of  
load current and the controller requires up to 5mA, so the  
remaining load capability can be used to support pullup  
resistors.  
At power-down, once the voltage of EN/UVLO is below  
0.9V (typ), the controller pulls PGOOD low and initiates the  
soft-shutdown sequence by discharging the SS capacitor  
with a constant 5μA current load. Since the output voltage  
tracks the SS voltage, the regulator actively discharges  
the output capacitors. Once the SS and FB voltage  
reaches 40mV, the controller stops switching and enters  
a low-power shutdown state. The device does not restart  
until the soft-shutdown sequence has completed. During  
the soft-shutdown cycle, the overvoltage fault protec-  
tion remains active until the SS voltage falls below 1V. If  
the voltage of EN/UVLO is below 0.55V (typ) after soft-  
shutdown is complete, the 4.75V BIAS regulator is then  
disabled (see Figure 5).  
The controller has an undervoltage-lockout threshold on  
DRV. The undervoltage-protection circuits inhibit switching  
until DRV rises above 8.196V (typ).  
If DRV drops below its undervoltage threshold, the con-  
troller determines that there is insufficient supply voltage  
to make valid control decisions. To protect the regulator  
and the output, the controller immediately pulls PGOOD  
low, disables the drivers (all driver outputs pulled low),  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
DRV  
1V  
0.9V  
0.7V  
0.55V  
EN/UVLO  
t
DELAY  
BIAS  
50mV  
SS  
40mV  
t
INIT  
PWM  
PGOOD  
Figure 5. Soft-Start and Shutdown Sequence with EN/UVLO  
The cycle-by-cycle peak current limit threshold is set by a  
resistor at ILIM pin. A 10μA source current flows into the  
resistor and generates a voltage level. This voltage level  
is internally scaled by a factor of 0.10 to set cycle-by-cycle  
peak current limit threshold. The minimum and maximum  
settable current limit levels are 20mV and 100mV. The  
cycle-by-cycle peak current limit level is given by:  
Overcurrent Protection (OCP)  
A current-sense resistor (R40 and R41 in the Standard  
Application Circuits) is connected between the source of  
the low-side MOSFET and GND. MAX15158/MAX15158A  
detects the current-sense signal (CSP_ to CSN_) and  
compares it with the cycle-by-cycle peak current limit  
threshold during low-side on-time. When the current  
exceeds the cycle-by-cycle peak current limit threshold,  
the device turns off the low-side MOSFET and turns on  
the high-side MOSFET to allow the inductor current to  
be discharged until the end of that switching cycle. Each  
phase has an independent up-down counter to accumulate  
the number of consecutive peak current limit events. If  
the counter exceeds 32, the device disables the drivers  
(all driver outputs are pulled low) and discharges the SS  
capacitor. After 32,768 clock cycles, the device automatically  
attempts to restart using the soft-start sequence.  
V
OCP  
= 0.10 x 10μA x R  
ILIM  
The maximum peak inductor current is set by both V  
OCP  
and the current-sense resistor (R  
).  
SENSE  
I
= V  
/R  
PEAK(MAX)  
OCP SENSE  
The device also has a negative overcurrent protection  
(NOCP) threshold which is -83% of the cycle-by-cycle  
peak current limit threshold. When the low-side MOSFET  
is turned on and the inductor current is below the NOCP  
threshold, the device will command to keep the low-side  
MOSFET on to allow the inductor current to be charged  
by the input voltage, until the inductor current is above  
the NOCP threshold. Each phase has an independent  
up-down counter to accumulate the number of consecutive  
NOCP events. If the counter exceeds 32, the device  
disables the drivers (all driver outputs are pulled low) and  
discharges the SS capacitor. After 32,768 clock cycles,  
the device automatically attempts to restart using the  
soft-start sequence.  
There is a secondary fast positive overcurrent protection  
(FPOCP) threshold, which is 33% higher than the cycle-  
by-cycle peak current limit threshold. If the inductor peak  
current exists the FPOCP threshold for two cycles, the  
device disables the drivers (all driver outputs are pulled  
low) and discharges the SS capacitor. After 32,768 clock  
cycles, the device automatically attempts to restart using  
the soft-start sequence.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Overvoltage Protection (OVP)  
Thermal Shutdown (TSHDN)  
MAX15158/MAX15158A has an OVP comparator to  
monitor the FB voltage. The device can be configured  
to disable OVP or select OVP threshold of 110% by  
connecting a resistor from the OVP pin to GND. FB OVP  
is also disabled when the voltage on the SS pin is below  
1V. Once OVP is enabled, the drivers start switching, and  
voltage on the SS pin is higher than 1V, the FB overvoltage  
comparator trips if the feedback voltage exceeds the SS  
voltage by 110% for more than 128 PWM clock cycles. If  
the overvoltage comparator is triggered, the controller pulls  
PGOOD low, discharges the SS capacitor and disables  
the drivers. The controller immediately restarts once the  
fault condition has been removed. When OVP is disabled,  
the PGOOD will remain high when FB voltage is higher  
than the reference voltage.  
The controller features a thermal fault-protection circuit.  
When the junction temperature rises above +165°C,  
the internal thermal sensor triggers the fault protection,  
disables the drivers, and discharges the SS capacitor.  
The controller remains disabled until the junction  
temperature cools by 15°C. Once the device has cooled  
down the controller automatically restarts using the  
soft-start sequence.  
Switching Frequency (FREQ/CLK)  
The controller supports 120kHz to 1MHz switching  
frequencies. Leave FREQ/CLK unconnected to select  
the preset 300kHz switching frequency. To adjust the  
switching frequency, either place an external resistor from  
FREQ/CLK to AGND, or drive FREQ/CLK with an external  
system clock (see Table 2). The resistively programmable  
switching frequency is determined by:  
The resistor from OVP pin to GND is also used to enable  
or disable the FB level shifter and select single or dual  
phase operation. Refer to the Table 1.  
Table 1. FB OVP Settings, Phase and FB Level Shifter Configuration  
OVP PIN VOLTAGE (V)  
0.10 ± 0.05  
R
FB OVP THRESHOLD  
110%  
FB LEVEL SHIFTER  
DISABLED  
ENABLED  
PHASE CONFIGURATION  
OVP  
GND  
33kΩ  
0.33 ± 0.05  
DISABLED  
110%  
Dual-phase or  
quad-phase operations  
0.68 ± 0.05  
68kΩ  
ENABLED  
1.00 ± 0.05  
1.33 ± 0.05  
1.69 ± 0.05  
2.05 ± 0.05  
2.53 ± 0.05  
100kΩ  
133kΩ  
169kΩ  
205kΩ  
OPEN  
DISABLED  
DISABLED  
110%  
DISABLED  
ENABLED  
ENABLED  
Single-phase operation  
DISABLED  
110%  
DISABLED  
DISABLED  
Table 2. Phase and Master/Slave Configurations  
NUMBER OF  
NUMBER OF PHASES  
FB OF SLAVE  
CONNECTED TO BIAS  
CLK FREQUENCY  
MAX15158/MAX15158A  
1
2
4
1
1
2
N/A  
N/A  
Yes  
4 x f  
4 x f  
4 x f  
SW  
SW  
SW  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
f
= (R  
/100kΩ) x 600kHz  
MAX15158/MAX15158A must be used with external  
MOSFET drivers to drive power MOSFETs for typical  
high-voltage applications. The device has dedicated  
DLFB_ pins to detect the gate voltage of the low-side  
MOSFETs to ensure no-shoot-through between the high-  
and low-side MOSFETs due to the mismatch delays  
caused by the external MOSFET driver. The DLFB_ pins  
have a rising threshold of 0.8V (typ) and falling threshold  
of 0.5V (typ). A resistor divider can be used from the gate  
of the low-side MOSFET to DLFB_ pins to match the  
MOSFET gate threshold voltage and the DLFB_ threshold  
(see the Standard Application Circuits), to allow robust  
operation with a wide range of MOSFETs while minimizing  
dead-time power losses.  
SW  
FREQ  
Phase and Master/Slave Configurations  
MAX15158/MAX15158A can be configured in single-  
phase, dual-phase or quad-phase operation modes.  
When supporting quad-phase operation, two MAX15158/  
MAX15158A ICs are used as master and slave. The  
controller identifies the number of phases by the resistor  
at the OVP pin. This identification is used to determine  
how the controller responds to the multiphase clock signal  
generated by the primary phase.  
For proper synchronization between two devices, connect  
the SYNC, SS, COMP, CSIOP and CSION of the master  
and slave devices. The FB, REFIN, OUTP and OUTN of  
the slave device are connected to its BIAS pin (see the  
Standard Application Circuits).  
Inductor Selection  
A larger inductor value results in reduced inductor ripple  
current, leading to a reduced inductor core loss. However,  
a larger inductor value results in either a larger physical  
size or a higher series resistance (DCR) and a lower  
saturation current rating. Typically, inductor value is  
The two phases of the same device are interleaved 180°.  
When two MAX15158/MAX15158A ICs are stacked up,  
there is a 90° phase shift between master and slave  
(Figure 6).  
chosen to have current ripple (ΔI ) around 50% of  
average inductor current. The average inductor current is  
can be calculated by:  
L
Multiphase Current Balance  
MAX15158/MAX15158A monitors the low side MOSFET  
current of each phase for active phase current balancing in  
multiphase operations. The current imbalance is applied  
to the cycle-by-cycle current sensing circuitry as a feed-  
back, helping regulating so that load current is evenly  
shared between the two phases (see the Block Diagram).  
I
= I  
/[(1 – D) x N]  
L(AVE)  
LOAD(MAX)  
where:  
N = Number of phases  
The inductor can be chosen with the following formula:  
L = D x V /(f x ΔI )  
In quad phase operation, the device uses the differential  
CSIO_ connections to communicate the average per-chip  
current between master and slave. The current-mode  
master and slave devices regulate their current so that all  
four phases share the load current equally.  
IN SW  
L
Output Capacitor Selection  
The output capacitors are selected to improve stability,  
output voltage ripple and load transient performance. To  
MOSFET Gate Control  
meet output voltage ripple (V  
output capacitor can be selected by:  
) requirement, the  
RIPPLE  
C
= I x D/(N x f  
x V  
)
OUT(RIPPLE)  
LOAD(MAX)  
SW  
RIPPLE  
For some applications it is desired to limit output voltage  
overshoot and undershoot during load transient. To meet  
the load transient requirement, the output capacitor can  
be selected by:  
CLK  
MASTER  
PHASE 1  
C
= ΔI  
/(3 x BW x ΔV  
)
OUT(TRANSIENT)  
LOAD  
OUT  
MASTER  
PHASE 2  
where:  
ΔI  
SLAVE  
PHASE 3  
= Load current step,  
LOAD  
BW = The control loop bandwidth (see Compensation  
Design Guidelines),  
SLAVE  
PHASE 4  
ΔV  
= The desired output voltage overshoot or undershoot.  
OUT  
Figure 6. Quad Phase Synchronization (Master/Slave)  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
The final output capacitance should be selected as:  
For high power applications, it is suggested to use  
planes for the power traces V , V  
, and GND. It is  
OUT  
IN  
C
≥ Maximum (C  
, C  
)
OUT  
OUT(RIPPLE) OUT(TRANSIENT)  
important to have enough vias connecting the power  
planes in different layers. The signal and power grounds  
must be seperated. All the power components, including  
input and output capacitors, MOSFETs, sense resistor  
and MOSFET driver should be connected to the power  
ground. MAX15158/MAX15158A and its peripheral RC  
components must be connected to the signal ground. It  
is suggested to have an island of signal ground in the  
closest internal layer underneath the controller. Multiple  
vias can be used to connect the signal ground island to  
the exposed pad of the controller and the ground nodes of  
the noise sensitive signal (COMP, SS, REFIN, FB, etc.).  
Signal ground should be tied to power ground through a  
short trace or 0Ω resistor, close to the power ground node  
of the sense resistor and input capacitors.  
Input Capacitor Selection  
The input capacitors are selected to help reduce input  
voltage ripple (V ). For boost converters, the  
IN_RIPPLE  
input current is continuous. Neglecting ESR and ESL of  
the input capacitor, the input capacitor can be selected by:  
C
= ΔI /(8 x N x f  
x V  
)
IN  
L
SW  
IN_RIPPLE  
For inverting-buck-boost converters, the input current is  
discontinuous. The input capacitor can be selected by:  
C
= I  
x D/(N x f  
x V  
).  
IN  
LOAD(MAX)  
SW  
IN_RIPPLE  
PCB Layout Guidelines  
PCB layout can dramatically affect the performance of the  
power converter. A poorly designed board can degrade  
efficiency, thermal performance, noise control, and even  
control-loop stability. At higher switching frequencies, lay-  
out issues are especially critical.  
When the FB level shifter is used, the OUTP/OUTN  
sense lines must be routed differentially directly from the  
load points. The current sense lines from sense resistor  
to CSP_ and CSN_ should also be routed differentially.  
When the controller is configured to multiphase operation,  
the current sense lines of different phases should be kept  
apart to avoid signal coupling. Keep all sense lines and  
other noise sensitive signals (CSIO_, COMP, SS, REFIN,  
FB, etc.) away from the noisy traces (SW, BST, gate  
drives, FREQ/CLK, SYNC, etc.).  
As a general guideline, the input capacitors, inductor,  
MOSFETs, sense resistor and output capacitors should  
be placed close together to minimize the high frequency  
current path. The MOSFET driver should be placed close  
to the MOSFETs and the switching node (SW) to keep  
the gate drive, BST and SW traces short. MAX15158/  
MAX15158A should keep some distance from the high  
dv/dt SW, BST, and gate drive traces. The peripheral RC  
components should be placed as close to the controller as  
possible. Priority should be given to the pins that are  
sensitive to noise (COMP, SS, REFIN, FB, etc.). It is  
suggested to place both differential-mode and common-  
mode filters between the CSP_ pin, CSN_ pin, and sense  
resistor (see the Standard Application Circuits).  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Standard Application Circuits  
Dual-Phase Inverting Buck-Boost Converter  
C1, C2... C16  
16x 1210 4.7µF X7R 100V  
V
= -8V TO -65V  
IN-  
R19 200k  
C29 47nF  
C31 to C40  
10x 1210 10µF  
X7R 63V  
OUT  
17.5V TO 38.5V  
V
IN-  
V
V
IN-  
IN-  
OUTP  
EN/UVLO  
DRV  
R14  
35kΩ  
R20 30kΩ  
OUTN  
FB  
V
IN-  
DRV  
8V TO 14V  
W.R.T. V  
DRV  
8V TO 14V W.R.T. V  
R24 2kΩ  
C39 1µF  
IN-  
IN-  
V
IN-  
MAX15158  
ILIM  
C21 0.1µF  
V
V
DD  
IN-  
BST  
DH  
IN_H  
DH1  
N1 150V NFET  
R17 55kΩ  
R18 33kΩ  
BSC110N15NS5  
OVP  
L1 10µH  
SER2915H-103KL  
MAX15013  
HS  
V
IN-  
BIAS  
C40 2.2µF  
IN_L  
DL1  
N2 150V NFET  
BSC110N15NS5  
DL  
R8 100kΩ  
GND  
V
V
IN-  
R53 3kΩ  
R54 1kΩ  
V
IN-  
PGOOD  
PGOOD  
REFIN  
DLFB1  
R32 10kΩ  
REFIN  
1V TO 2.2V  
C25 1nF  
V
IN-  
C32 10nF  
W.R.T. V  
R6 10Ω  
C17 1nF  
IN-  
V
IN-  
CSP1  
CSN1  
R40  
3m1%  
IN-  
C41 to C50  
10x 1210 10µF X7R 63V  
COMP  
SS  
R7 10Ω  
C26 1nF  
R22 6.2kΩ  
C36 100pF  
C33 47nF  
V
IN-  
V
IN-  
C35 68nF  
DRV  
IN-  
8V TO 14V W.R.T. V  
IN_H  
C23 0.1µF  
V
DD  
BST  
DH  
V
IN-  
CLK  
FREQ/CLK DH2  
N3 150V NFET  
BSC110N15NS5  
R16 41.2kΩ  
L2 10µH  
SER2915H-103KL  
MAX15013  
R21 39.2kΩ  
RAMP  
DL2  
GND  
HS  
DL  
IN_L  
N4 150V NFET  
BSC110N15NS5  
GND  
EP  
R55 3kΩ  
V
IN-  
V
IN-  
DLFB2  
CSIOP  
R56 1kΩ  
CSIOP  
CSION  
V
C25 1nF  
IN-  
V
R36 10Ω  
C18 1nF  
IN-  
CSION  
CSP2  
R41  
3m1%  
SYNCCLK  
SYNC  
CSN2  
R37 10Ω  
MULTIPHASE SIGNALS  
C28 1nF  
V
IN-  
V
IN-  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Standard Application Circuits (continued)  
Single-Phase Boost Converter  
C1, C2... C16  
16x 1210 4.7µF X7R 50V  
V
= 8V TO 24V  
IN  
R19 200kΩ  
C29 47nF  
C31 to C40  
10x 1210 10µF  
X7R 63V  
OUT 48V  
EN/UVLO  
R20 30kΩ  
DRV  
8V TO 14V  
DRV  
C39 1µF  
DRV 8V TO 14V  
MAX15158A  
C21 0.1µF  
V
DD  
BST  
DH  
ILIM  
DH1  
IN_H  
R17 55kΩ  
N1 80V NFET  
OVP  
BSC030N08NS5  
R18 220kΩ  
L1 4.7µH  
MAX15013  
HS  
DL  
SER2915H-472KL  
BIAS  
DL1  
C40 2.2µF  
IN_L  
N2 80V NFET  
BSC030N08NS5  
R8 100kΩ  
GND  
R53 3kΩ  
R54 1kΩ  
PGOOD  
PGOOD  
DLFB1  
C25 1nF  
R6 10Ω  
CSP1  
R40  
3m1%  
C17 1nF  
R7 10Ω  
CSN1  
COMP  
R22 6.2kΩ  
C36 100pF  
C33 47nF  
SS  
C26 1nF  
C35 68nF  
R14  
46kΩ  
FB  
CLK  
FREQ/CLK  
R24 2kΩ  
R16 41.2kΩ  
DH2  
DL2  
R21 39.2kΩ  
RAMP  
DLFB2  
GND  
EP  
CSP2  
CSN2  
CSIOP  
CSION  
SYNCCLK  
CSIOP  
CSION  
SYNC  
V
BIAS  
OUTP  
OUTN  
MULTIPHASE SIGNALS  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Standard Application Circuits (continued)  
Quad Phase Interconnects (Inverting Buck-Boost Converter)  
EN  
CLK  
U1_MASTER  
U2-SLAVE  
-48V  
SYNC  
COMP  
SYNC  
COMP  
DAC  
REFIN  
REFIN  
-48V  
-48V -48V  
-48V  
-48V  
-48V  
OUTPUT  
-48V  
-48V  
POWER STAGE  
-48V  
POWER STAGE  
-48V  
POWER STAGE  
POWER STAGE  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Ordering Information  
PART NUMBER  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
MAX15158ATJ+  
MAX15158ATJ+T  
MAX15158AATJ+  
MAX15158AATJ+T  
+ Denotes a lead(Pb)-free/RoHS-complian package.  
T = Tape and reel.  
*EP = Exposed pad.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX15158/MAX15158A  
High-Voltage Multiphase Boost Controller  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/18  
Initial release  
Updated Electrical Characteristics table, Block Diagrams, OVP section, added  
Inductor Selection section, and update Ordering Information table  
4, 6, 7, 13, 14,  
16, 17, 19, 21, 25  
1
2
9/18  
Updated General Description, Benefits and Features sections, Electrical  
Characteristics, Pin Description, Block Diagrams, and Detailed Description  
1, 4–7, 10, 11,  
13–20  
11/19  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY