MAX149 [MAXIM]

+2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs; + 2.7V至+ 5.25V ,低功耗, 8通道,串行10位ADC
MAX149
型号: MAX149
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs
+ 2.7V至+ 5.25V ,低功耗, 8通道,串行10位ADC

文件: 总24页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0464; Rev 2; 5/98  
+2.7V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX148/MAX149 10-bit data-acquisition systems  
c omb ine a n 8-c ha nne l multip le xe r, hig h-b a nd wid th  
track/hold, and serial interface with high conversion  
speed and low power consumption. They operate from a  
single +2.7V to +5.25V supply, and sample to 133ksps.  
Both devices’ analog inputs are software configurable for  
unipolar/bipolar and single-ended/differential operation.  
8-Channel Single-Ended or 4-Channel  
Differential Inputs  
Single-Supply Operation: +2.7V to +5.25V  
Internal 2.5V Reference (MAX149)  
Low Power: 1.2mA (133ksps, 3V supply)  
54µA (1ksps, 3V supply)  
The 4-wire serial interface connects directly to SPI™/  
QSPIand MICROWIRE™ devices without external  
logic. A serial-strobe output allows direct connection to  
TMS320-family digital signal processors. The MAX148/  
MAX149 use either the internal clock or an external serial-  
interface clock to perform successive-approximation  
analog-to-digital conversions.  
1µA (power-down mode)  
SPI/QSPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
Software-Configurable Unipolar or Bipolar Inputs  
20-Pin DIP/SSOP Packages  
The MAX149 has an internal 2.5V reference, while the  
MAX148 requires an external reference. Both parts have  
a re fe re nc e -b uffe r a mp lifie r with a ± 1.5% volta g e -  
adjustment range.  
Ord e rin g In fo rm a t io n  
These devices provide a hard-wired SHDN pin and a  
s oftwa re -s e le c ta b le p owe r-d own, a nd c a n b e p ro-  
grammed to automatically shut down at the end of a con-  
version. Accessing the serial interface automatically  
powers up the MAX148/MAX149, and the quick turn-on  
time allows them to be shut down between all conver-  
sions. This technique can cut supply current to under  
60µA at reduced sampling rates.  
INL  
(LSB)  
PART†  
TEMP. RANGE PIN-PACKAGE  
MAX148ACPP  
MAX148BCPP  
MAX148ACAP  
MAX148BCAP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
±1/2  
±1  
20 SSOP  
Ordering Information continued at end of data sheet.  
Contact factory for availability of alternate surface-mount  
packages.  
The MAX148/MAX149 are available in a 20-pin DIP and a  
20-pin SSOP.  
For 4-c ha nne l ve rs ions of the s e d e vic e s , s e e the  
MAX1248/MAX1249 data sheet.  
__________Typ ic a l Op e ra t in g Circ u it  
________________________Ap p lic a t io n s  
+3V  
Portable Data Logging  
Medical Instruments  
Pen Digitizers  
Data Acquisition  
V
V
CH0  
DD  
DD  
0.1µF  
0V TO  
+2.5V  
ANALOG  
INPUTS  
DGND  
Battery-Powered Instruments  
Process Control  
MAX149  
CH7  
AGND  
COM  
CPU  
I/O  
VREF  
CS  
4.7µF  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
DIN  
DOUT  
REFADJ  
0.01µF  
SSTRB  
SHDN  
V
SS  
Pin Configuration appears at end of data sheet.  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND, DGND................................................. -0.3V to 6V  
SSOP (derate 8.00mW/°C above +70°C) ................... 640mW  
CERDIP (derate 11.11mW/°C above +70°C).............. 889mW  
Operating Temperature Ranges  
DD  
AGND to DGND...................................................... -0.3V to 0.3V  
CH0–CH7, COM to AGND, DGND ............ -0.3V to (V + 0.3V)  
DD  
VREF, REFADJ to AGND ........................... -0.3V to (V + 0.3V)  
Digital Inputs to DGND .............................................. -0.3V to 6V  
MAX148_C_P/MAX149_C_P .............................. 0°C to +70°C  
MAX148_E_P/MAX149_E_P............................ -40°C to +85°C  
MAX148_MJP/MAX149_MJP ........................ -55°C to +125°C  
Storage Temperature Range ............................ -60°C to +150°C  
Lead Temperature (soldering, 10sec) ............................ +300°C  
DD  
Digital Outputs to DGND ........................... -0.3V to (V + 0.3V)  
DD  
Digital Output Sink Current .................................................25mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 11.11mW/°C above +70°C) ......... 889mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
V
= +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
8/MAX149  
DD  
SCLK  
MAX149—4.7µF capacitor at VREF pin; MAX148—external reference, VREF = 2.500 V applied to VREF pin; T = T  
to T  
; unless  
A
MIN  
MAX  
otherwise noted.)  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
10  
Bits  
MAX14_A  
MAX14_B  
±0.5  
LSB  
±1.0  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
No missing codes over temperature  
±1  
±1  
±2  
±1  
±2  
LSB  
MAX14_A  
MAX14_B  
MAX14_A  
MAX14_B  
±0.15  
±0.15  
LSB  
Gain Error (Note 3)  
LSB  
ppm/°C  
LSB  
Gain Temperature Coefficient  
±0.25  
±0.05  
Channel-to-Channel Offset  
Matching  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 0V to 2.500Vp-p, 133ksps, 2.0MHz external clock, bipolar input mode)  
Signal-to-Noise + Distortion Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SINAD  
THD  
66  
-70  
70  
dB  
dB  
Up to the 5th harmonic  
SFDR  
dB  
65kHz, 2.500V (Note 4)  
p-p  
-75  
2.25  
1.0  
dB  
-3dB rolloff  
MHz  
MHz  
Full-Power Bandwidth  
CONVERSION RATE  
5.5  
35  
6
7.5  
65  
Internal clock, SHDN = FLOAT  
Conversion Time (Note 5)  
t
µs  
Internal clock, SHDN = V  
CONV  
DD  
External clock = 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
µs  
ns  
ps  
ACQ  
30  
Aperture Jitter  
<50  
2
_______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
ELECTRICAL CHARACTERISTICS (continued)  
V
= +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX149—4.7µF capacitor at VREF pin; MAX148—external reference, VREF = 2.500 V applied to VREF pin; T = T  
to T  
; unless  
A
MIN  
MAX  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
CONVERSION RATE (continued)  
1.8  
SHDN = FLOAT  
SHDN = V  
Internal Clock Frequency  
MHz  
0.225  
DD  
0.1  
0
2.0  
External Clock Frequency  
MHz  
2.0  
Data transfer only  
ANALOG/COM INPUTS  
Unipolar, COM = 0V  
0 to VREF  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
Bipolar, COM = VREF / 2  
±VREF / 2  
±1  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0V or V  
±0.01  
16  
µA  
pF  
CH_  
DD  
INTERNAL REFERENCE (MAX149 only, reference buffer enabled)  
VREF Output Voltage  
T
= +25°C (Note 7)  
2.470  
2.500  
2.530  
30  
V
mA  
A
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation (Note 8)  
MAX149  
±30  
ppm/°C  
mV  
0mA to 0.2mA output load  
Internal compensation mode  
External compensation mode  
0.35  
0
Capacitive Bypass at VREF  
µF  
4.7  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
0.01  
µF  
%
±1.5  
EXTERNAL REFERENCE AT VREF (Buffer disabled)  
VREF Input Voltage Range  
(Note 9)  
V
50mV  
+
DD  
V
1.0  
18  
VREF Input Current  
VREF = 2.500V  
100  
25  
150  
µA  
k  
µA  
VREF Input Resistance  
Shutdown VREF Input Current  
0.01  
10  
V
0.5  
-
DD  
REFADJ Buffer-Disable Threshold  
EXTERNAL REFERENCE AT REFADJ  
Capacitive Bypass at VREF  
V
Internal compensation mode  
External compensation mode  
MAX149  
0
µF  
V/V  
µA  
4.7  
2.06  
2.00  
Reference Buffer Gain  
REFADJ Input Current  
MAX148  
MAX149  
±50  
±10  
MAX148  
_______________________________________________________________________________________  
3
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
V
= +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX149—4.7µF capacitor at VREF pin; MAX148—external reference, VREF = 2.500 V applied to VREF pin; T = T  
to T  
; unless  
A
MIN  
MAX  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
3.6V  
2.0  
3.0  
DD  
V
IH  
V
DIN, SCLK, CS Input High Voltage  
V
DD  
> 3.6V  
V
0.8  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Mid Voltage  
IL  
V
HYST  
0.2  
I
IN  
V
= 0V or V  
DD  
±0.01  
±1  
15  
µA  
pF  
V
IN  
C
(Note 10)  
IN  
V
SH  
V
- 0.4  
DD  
1
V
SM  
1.1  
V
DD  
- 1.1  
0.4  
V
V
SL  
V
SHDN Input Low Voltage  
I
±4.0  
µA  
V
SHDN Input Current  
SHDN = 0V or V  
SHDN = FLOAT  
S
DD  
V
FLT  
V
DD  
/ 2  
SHDN Voltage, Floating  
SHDN Maximum Allowed  
Leakage, Mid Input  
±100  
nA  
SHDN = FLOAT  
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
= 5mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
OL  
V
I
= 16mA  
SINK  
Output Voltage High  
V
OH  
I
= 0.5mA  
V - 0.5  
DD  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
±0.01  
±10  
15  
µA  
pF  
CS = V  
L
DD  
C
CS = V (Note 10)  
OUT  
DD  
V
DD  
2.70  
5.25  
3.0  
2.0  
15  
V
V
= 5.25V  
= 3.6V  
= 5.25V  
= 3.6V  
1.6  
1.2  
3.5  
1.2  
30  
DD  
Operating mode,  
full-scale input (Note 11)  
mA  
V
DD  
I
DD  
Positive Supply Current  
V
DD  
Full power-down  
V
DD  
10  
µA  
I
Fast power-down (MAX149)  
70  
DD  
Full-scale input, external reference = 2.500V,  
= 2.7V to 5.25V  
Supply Rejection (Note 12)  
PSR  
±0.3  
mV  
V
DD  
4
_______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
TIMING CHARACTERISTICS  
(V = +2.7V to +5.25V, T = T  
to T  
, unless otherwise noted.)  
DD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
100  
0
TYP  
MAX UNITS  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
µs  
ns  
ns  
ACQ  
t
DS  
t
DH  
MAX14_ _C/E  
MAX14_ _M  
20  
200  
ns  
SCLK Fall to Output Data Valid  
t
Figure 1  
DO  
20  
240  
t
Figure 1  
Figure 2  
240  
240  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
DV  
t
TR  
t
100  
0
CSS  
CSH  
t
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
200  
200  
CH  
t
CL  
SCLK Fall to SSTRB  
t
Figure 1  
240  
240  
240  
SSTRB  
t
External clock mode only, Figure 1  
External clock mode only, Figure 2  
Internal clock mode only (Note 7)  
CS Fall to SSTRB Output Enable  
CS Rise to SSTRB Output Disable  
SSTRB Rise to SCLK Rise  
SDV  
t
STR  
t
0
SCK  
Note 1: Tested at V = 2.7V; COM = 0V; unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: MAX149—internal reference, offset nulled; MAX148—external reference (VREF = +2.500V), offset nulled.  
Note 4: Ground on” channel; sine wave applied to all “off” channels.  
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: The common-mode range for the analog inputs is from AGND to V  
.
DD  
Note 7: Sample tested to 0.1% AQL.  
Note 8: External load should not change during conversion for specified accuracy.  
Note 9: ADC performance is limited by the converters noise floor, typically 300µVp-p.  
Note 10: Guaranteed by design. Not subject to production testing.  
Note 11: The MAX148 typically draws 400µA less than the values shown.  
Note 12: Measured as V (2.7V) - V (5.25V) .  
FS  
FS  
|
|
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 3.0V, VREF = 2.500V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
A
DD  
SCLK  
LOAD  
INTEGRAL NONLINEARITY  
vs. CODE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.125  
0.125  
0.100  
0.075  
0.050  
0.025  
V
DD  
= 2.7V  
0.10  
0.05  
0
0.100  
0.075  
0.050  
MAX149  
MAX148  
MAX149  
MAX148  
60  
-0.05  
-0.10  
0.025  
0
0
-60  
-20  
20  
100  
140  
0
256  
512  
768  
1024  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
CODE  
_______________________________________________________________________________________  
5
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, VREF = 2.500V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
A
DD  
SCLK  
LOAD  
MAX149  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5020  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
3.0  
R = ∞  
CODE = 1010101000  
L
FULL POWER-DOWN  
C
= 50pF  
LOAD  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.5  
2.0  
MAX149  
1.5  
1.0  
0.5  
0
C
= 20pF  
LOAD  
8/MAX149  
MAX148  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
2.0  
1.3  
MAX149  
1.2  
1.6  
1.2  
0.8  
0.4  
1.1  
1.0  
MAX148  
0.9  
R
LOAD  
= ∞  
CODE = 1010101000  
-60 -20 20  
TEMPERATURE (°C)  
0
0.8  
-60  
-20  
20  
60  
100  
140  
60  
100  
140  
TEMPERATURE (°C)  
MAX149  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.501  
V
DD  
= 5.25V  
2.500  
2.499  
V
DD  
= 3.6V  
V
DD  
= 2.7V  
2.498  
2.497  
2.496  
2.495  
2.494  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
Ground reference for analog inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to ±0.5LSB.  
9
COM  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX148/MAX149 down; otherwise, they are  
fully operational. Pulling SHDN high puts the reference-buffer amplifier in internal compensation mode.  
Letting SHDN float puts the reference-buffer amplifier in external compensation mode.  
10  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode (MAX149 only), the reference buffer provides a 2.500V nominal output,  
externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling  
11  
VREF  
REFADJ to V  
.
DD  
12  
13  
14  
15  
REFADJ  
AGND  
DGND  
DOUT  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD  
Analog Ground  
Digital Ground  
Serial-Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX148/MAX149 begin the  
A/D conversion, and goes high when the conversion is finished. In external clock mode, SSTRB pulses  
high for one clock period before the MSB decision. High impedance when CS is high (external clock  
mode).  
16  
SSTRB  
17  
18  
DIN  
Serial-Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
CS  
Serial-Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed. (Duty cycle must be 40% to 60%.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage  
V
DD  
V
DD  
6k  
6k  
DOUT  
DOUT  
DOUT  
DOUT  
C
50pF  
C
LOAD  
50pF  
C
50pF  
C
50pF  
LOAD  
LOAD  
LOAD  
6k  
6k  
DGND  
DGND  
DGND  
a) High-Z to V and V to V  
OH  
DGND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________________________________________________________________________________  
7
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
acquisition interval, the T/H switch opens, retaining  
charge on C as a sample of the signal at IN+.  
_______________De t a ile d De s c rip t io n  
HOLD  
The MAX148/MAX149 a na log -to-d ig ita l c onve rte rs  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 10-bit digital output. A flexible seri-  
al interface provides easy interface to microprocessors  
(µPs ). Fig ure 3 is a b loc k d ia g ra m of the MAX148/  
MAX149.  
The conversion interval begins with the input multiplexer  
switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is simply  
COM. This unbalances node ZERO at the comparators  
input. The capacitive DAC adjusts during the remainder  
of the conversion cycle to restore node ZERO to 0V  
within the limits of 10-bit resolution. This action is equiv-  
P s e u d o -Diffe re n t ia l In p u t  
The sampling architecture of the ADCs analog com-  
p a ra tor is illus tra te d in the e q uiva le nt inp ut c irc uit  
(Fig ure 4). In s ing le -e nd e d mod e , IN+ is inte rna lly  
switched to CH0–CH7, and IN- is switched to COM. In  
differential mode, IN+ and IN- are selected from the fol-  
lowing p a irs : CH0/CH1, CH2/CH3, CH4/CH5, a nd  
CH6/CH7. Configure the channels with Tables 2 and 3.  
alent to transferring a 16pF x [(VIN+) - (V -)] charge  
IN  
from C  
to the binary-weighted capacitive DAC,  
HOLD  
which in turn forms a digital representation of the analog  
input signal.  
Tra c k /Ho ld  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM, and the converter  
samples the “+ input. If the converter is set up for dif-  
ferential inputs, IN- connects to the -” input, and the  
difference of |IN+ - IN-| is sampled. At the end of the  
conversion, the positive input connects back to IN+,  
8/MAX149  
In differential mode, IN- and IN+ are internally switched  
to e ithe r of the a na log inp uts . This c onfig ura tion is  
pseudo-differential to the effect that only the signal at IN+  
is sampled. The return side (IN-) must remain stable within  
±0.5LSB (±0.1LSB for best results) with respect to AGND  
during a conversion. To accomplish this, connect a 0.1µF  
capacitor from IN- (the selected analog input) to AGND.  
During the acquisition interval, the channel selected  
and C  
charges to the input signal.  
HOLD  
as the positive input (IN+) charges capacitor C  
.
HOLD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
The acquisition interval spans three SCLK cycles and  
ends on the falling SCLK edge after the last bit of the  
input control word has been entered. At the end of the  
18  
CS  
19  
SCLK  
CAPACITIVE DAC  
VREF  
INPUT  
SHIFT  
INT  
17  
10  
DIN  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
COMPARATOR  
INPUT  
C
SHDN  
HOLD  
MUX  
ZERO  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
1
15  
16  
CH0  
OUTPUT  
SHIFT  
DOUT  
2
3
16pF  
CH1  
CH2  
REGISTER  
SSTRB  
R
IN  
ANALOG  
INPUT  
MUX  
4
5
6
7
8
9k  
T/H  
CH3  
CH4  
C
SWITCH  
CLOCK  
HOLD  
IN  
10+2-BIT  
SAR  
ADC  
CH5  
CH6  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
OUT  
20  
14  
T/H  
SWITCH  
REF  
V
DD  
CH7  
9
A 2.06*  
COM  
+1.21V  
DGND  
AGND  
20k  
REFERENCE  
(MAX149)  
13  
12  
11  
REFADJ  
VREF  
SINGLE-ENDED MODE: IN+ = CH0–CH7, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7.  
MAX148  
MAX149  
+2.500V  
*A 2.00 (MAX148)  
Figure 4. Equivalent Input Circuit  
Figure 3. Block Diagram  
8
_______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
OSCILLOSCOPE  
V
DD  
+3V  
0.1µF  
DGND  
SCLK  
AGND  
COM  
CS  
MAX148  
MAX149  
0V TO  
+2.500V  
ANALOG  
INPUT  
SSTRB  
DOUT*  
CH7  
0.01µF  
SCLK  
DIN  
+3V  
2MHz  
OSCILLATOR  
+3V  
2.5V  
REFADJ  
VREF  
+3V  
CH1  
CH2  
CH3  
CH4  
V
OUT  
DOUT  
SSTRB  
C1  
0.1µF  
1000pF  
MAX872  
COMP  
SHDN  
N.C.  
OPTIONAL FOR MAX149,  
REQUIRED FOR MAX148  
* FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
Figure 5. Quick-Look Circuit  
allowed between conversions. The acquisition time,  
An a lo g In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog input  
to V and AGND, allow the channel input pins to swing  
t
, is the maximum time the device takes to acquire  
ACQ  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following  
equation:  
DD  
from AGND - 0.3V to V  
+ 0.3V without d a ma g e .  
DD  
However, for accurate conversions near full scale, the  
inputs must not exceed V by more than 50mV or be  
lower than AGND by 50mV.  
DD  
t
= 7 x (R + R ) x 16pF  
S IN  
ACQ  
where R = 9k, R = the source impedance of the  
input signal, and t  
that source impedances below 4kdo not significantly  
affect the ADCs AC performance.  
IN  
S
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off channels over 2mA.  
is never less than 1.5µs. Note  
ACQ  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Note that the input capacitor forms an RC filter with the  
inp ut s ourc e imp e d a nc e , limiting the ADCs s ig na l  
bandwidth.  
Qu ic k Lo o k  
To quickly evaluate the MAX148/MAX149s analog perfor-  
mance, use the circuit of Figure 5. The MAX148/MAX149  
require a control byte to be written to DIN before each  
conversion. Tying DIN to +3V feeds in control bytes of  
$FF (HEX), which trigger single-ended unipolar conver-  
sions on CH7 in external clock mode without powering  
down between conversions. In external clock mode, the  
SSTRB output pulses high for one clock period before  
the most significant bit of the conversion result is shift-  
ed out of DOUT. Varying the analog input to CH7 will  
alter the sequence of bits from DOUT. A total of 15  
clock cycles is required per conversion. All transitions  
of the SSTRB and DOUT outputs occur on the falling  
edge of SCLK.  
In p u t Ba n d w id t h  
The ADCs inp ut tra c king c irc uitry ha s a 2.25MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADCs sampling  
ra te b y us ing und e rs a mp ling te c hniq ue s . To a void  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
_______________________________________________________________________________________  
9
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7(MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion (Tables 2 and 3).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0V to VREF can be converted; in bipolar mode, the signal can range  
from -VREF/2 to +VREF/2.  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
8/MAX149  
1
PD1  
PD0  
Selects clock and power-down modes.  
0(LSB)  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full power-down  
Fast power-down (MAX149 only)  
Internal clock mode  
External clock mode  
DIF  
Table 2. Channel Selection in Single-Ended Mode (SGL/  
= 1)  
SEL2  
0
SEL1  
0
SEL0  
0
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
+
1
0
1
0
1
0
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
+
+
+
+
+
+
+
registers: set CPOL = 0 and CPHA = 0. MICROWIRE,  
SPI, and QSPI all transmit a byte and receive a byte at  
the same time. Using the Typical Operating Circuit, the  
simplest software interface requires only three 8-bit  
transfers to perform a conversion (one 8-bit transfer to  
configure the ADC, and two more 8-bit transfers to clock  
out the conversion result). See Figure 20 for MAX148/  
MAX149 QSPI connections.  
Ho w t o S t a rt a Co n ve rs io n  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX148/MAX149s internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control bytes MSB. Until this first start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 1 shows the control-byte format.  
The MAX148/MAX149 a re c omp a tib le with SPI/  
QSPI and MICROWIRE devices. For SPI, select the cor-  
rect clock polarity and sampling edge in the SPI control  
10 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
DIF  
Table 3. Channel Selection in Differential Mode (SGL/  
= 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
SSTRB  
DOUT  
START  
RB2  
B6  
RB3  
RB1  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
B8  
B7  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
ACQUISITION  
1.5µs  
CONVERSION  
A/D STATE  
IDLE  
IDLE  
(f  
SCLK  
= 2MHz)  
Figure 6. 24-Clock External Clock Mode Conversion Timing (MICROWIRE and SPI-Compatible, QSPI-Compatible with f  
2MHz)  
SCLK  
Simple Software Interface  
Make sure the CPUs serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with one leading zero, two sub-LSB bits, and three trail-  
ing zeros. The total conversion time is a function of the  
serial-clock frequency and the amount of idle time  
between 8-bit transfers. To avoid excessive T/H droop,  
make sure the total conversion time does not exceed  
120µs.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1 should be of the format: 1XXXXX11  
binary, where the Xs denote the particular channel  
and conversion mode selected.  
2) Use a general-purpose I/O line on the CPU to pull  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 17). For bipolar input mode, the output is twos  
complement (Figure 18). Data is clocked out at the  
falling edge of SCLK in MSB-first format.  
CS low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB2.  
Clo c k Mo d e s  
The MAX148/MAX149 ma y us e e ithe r a n e xte rna l  
serial clock or the internal clock to perform the succes-  
sive-approximation conversion. In both clock modes,  
the e xte rna l c loc k s hifts d a ta in a nd out of the  
5) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB3.  
6) Pull CS high.  
______________________________________________________________________________________ 11  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
• • •  
CS  
t
t
CH  
t
CSH  
CSS  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
t
DV  
t
DO  
t
TR  
8/MAX149  
DOUT  
• • •  
Figure 7. Detailed Serial-Interface Timing  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
SCLK  
• • • •  
• • • •  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
MAX148/MAX149. The T/H acquires the input signal as  
the last three bits of the control byte are clocked into  
DIN. Bits PD1 and PD0 of the control byte program the  
clock mode. Figures 7–10 show the timing characteris-  
tics common to both modes.  
state when CS goes high; after the next CS falling edge,  
SSTRB outputs a logic low. Figure 8 shows the SSTRB  
timing in external clock mode.  
The conversion must complete in some minimum time,  
or d roop on the s a mp le -a nd -hold c a p a c itors ma y  
degrade conversion results. Use internal clock mode if  
the serial-clock frequency is less than 100kHz, or if  
serial-clock interruptions could cause the conversion  
interval to exceed 120µs.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the analog-to-digital  
conversion steps. SSTRB pulses high for one clock  
period after the last bit of the control byte. Succes-  
sive-approximation bit decisions are made and appear  
at DOUT on each of the next 12 SCLK falling edges  
(Figure 6). SSTRB and DOUT go into a high-impedance  
Internal Clock  
In internal clock mode, the MAX148/MAX149 generate  
their own conversion clocks internally. This frees the µP  
12 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8  
B7  
S1  
S0  
ACQUISITION  
CONVERSION  
A/D STATE  
1.5µs  
IDLE  
IDLE  
7.5µs MAX  
(f  
SCLK  
= 2MHz) (SHDN = FLOAT)  
Figure 9. Internal Clock Mode Timing  
CS  
t
CONV  
t
CSS  
t
t
SCK  
CSH  
SSTRB  
SCLK  
t
SSTRB  
t
DO  
PD0 CLOCK IN  
DOUT  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
from the burden of running the SAR conversion clock  
and allows the conversion results to be read back at the  
processors convenience, at any clock rate from 0MHz  
to 2MHz. SSTRB goes low at the start of the conversion  
and then goes high when the conversion is complete.  
SSTRB is low for a maximum of 7.5µs (SHDN = FLOAT),  
during which time SCLK should remain low for best  
noise performance.  
Pulling CS high prevents data from being clocked into  
the MAX148/MAX149 and three-states DOUT, but it  
does not adversely affect an internal clock mode con-  
version already in progress. When internal clock mode  
is s e le c te d , SSTRB d oe s not g o into a hig h-  
impedance state when CS goes high.  
Figure 10 shows the SSTRB timing in internal clock  
mode. In this mode, data can be shifted in and out of  
the MAX148/MAX149 at clock rates exceeding 2.0MHz if  
An internal register stores data when the conversion is  
in progress. SCLK clocks the data out of this register at  
any time after the conversion is complete. After SSTRB  
goes high, the next falling clock edge produces the  
MSB of the c onve rs ion a t DOUT, followe d b y the  
remaining bits in MSB-first format (Figure 9). CS does  
not need to be held low once a conversion is started.  
the minimum acquisition time (t  
) is kept above 1.5µs.  
ACQ  
Da t a Fra m in g  
The falling edge of CS does not start a conversion.  
The first logic high clocked into DIN is interpreted as a  
start bit and defines the first bit of the control byte. A  
conversion starts on SCLK’s falling edge, after the eighth  
______________________________________________________________________________________ 13  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
Table 4. Typical Power-Up Delay Times  
REFERENCE-  
VREF  
CAPACITOR  
(µF)  
POWER-UP  
DELAY  
(µs)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
BUFFER  
COMPENSATION  
MODE  
POWER-DOWN  
MODE  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
Fast  
Full  
Fast  
Full  
5
26  
300  
26  
4.7  
4.7  
See Figure 14c  
133  
133  
133  
133  
See Figure 14c  
2
2
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as follows:  
Re fe re n c e -Bu ffe r Co m p e n s a t io n  
In addition to its shutdown function, SHDN selects inter-  
na l or e xte rna l c omp e ns a tion. The c omp e ns a tion  
affects both power-up time and maximum conversion  
speed. The100kHz minimum clock rate is limited by  
droop on the sample-and-hold and is independent of  
the compensation used.  
8/MAX149  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e.g., after V is applied.  
DD  
OR  
The first high bit clocked into DIN after bit 3 of a con-  
version in progress is clocked onto the DOUT pin.  
Floa t SHDN to s e le c t e xte rna l c omp e ns a tion. The  
Typical Operating Circuit uses a 4.7µF capacitor at  
VREF. A 4.7µF value ensures reference-buffer stability  
and allows converter operation at the 2MHz full clock  
spe e d . Exte rna l c ompe nsa tion inc re a se s powe r-up  
time (see the Choosing Power-Down Mode section and  
Table 4).  
If CS is toggled before the current conversion is com-  
plete, the next high bit clocked into DIN is recognized as  
a start bit; the current conversion is terminated, and a  
new one is started.  
The fastest the MAX148/MAX149 can run with CS held  
low between conversions is 15 clocks per conversion.  
Figure 11a shows the serial-interface timing necessary to  
perform a conversion every 15 SCLK cycles in external  
clock mode. If CS is tied low and SCLK is continuous,  
guarantee a start bit by first clocking in 16 zeros.  
Pull SHDN hig h to s e le c t inte rna l c omp e ns a tion.  
Internal compensation requires no external capacitor at  
VREF and allows for the shortest power-up times. The  
maximum clock rate is 2MHz in internal clock mode  
and 400kHz in external clock mode.  
Most microcontrollers (µCs) require that conversions  
occur in multiples of 8 SCLK clocks; 16 clocks per con-  
version is typically the fastest that a µC can drive the  
MAX148/MAX149. Fig ure 11b s hows the s e ria l-  
interface timing necessary to perform a conversion every  
16 SCLK cycles in external clock mode.  
Ch o o s in g P o w e r-Do w n Mo d e  
You can save power by placing the converter in a low-  
current shutdown state between conversions. Select full  
power-down mode or fast power-down mode via bits 1  
and 0 of the DIN control byte with SHDN high or floating  
(Tables 1 and 5). In both software power-down modes,  
the serial interface remains operational, but the ADC  
does not convert. Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
__________ Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
When power is first applied, and if SHDN is not pulled  
low, inte rna l p owe r-on re s e t c irc uitry a c tiva te s the  
MAX148/MAX149 in internal clock mode, ready to con-  
vert with SSTRB = high. After the power supplies stabi-  
lize, the internal reset time is 10µs, and no conversions  
should be performed during this phase. SSTRB is high  
on power-up and, if CS is low, the first logical 1 on DIN  
is interpreted as a start bit. Until a conversion takes  
place, DOUT shifts out zeros. (Also see Table 4.)  
Full power-down mode turns off all chip functions that  
draw quiescent current, reducing supply current to 2µA  
(typ ). Fa s t p owe r-d own mod e turns off a ll c irc uitry  
except the bandgap reference. With fast power-down  
mode, the supply current is 30µA. Power-up time can be  
shortened to 5µs in internal compensation mode.  
Table 4 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
14 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
CS  
1
8
15  
1
8
15 1  
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
1
8
16  
1
8
16  
SCLK  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DOUT  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
CLOCK  
MODE  
EXTERNAL  
EXTERNAL  
SHDN  
SETS SOFTWARE  
POWER-DOWN  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 1  
S X X X X X 0 0  
S X X X X X 1 1  
DOUT  
MODE  
VALID  
DATA  
INVALID  
DATA  
10 + 2 DATA BITS  
POWERED UP  
10 + 2 DATA BITS  
HARDWARE  
POWER-  
DOWN  
POWERED UP  
SOFTWARE  
POWERED UP  
POWER-DOWN  
Figure 12a. Timing Diagram Power-Down Modes, External Clock  
delay and maximum sample rate. In external compensa-  
tion mode, power-up time is 20ms with a 4.7µF compen-  
sation capacitor when the capacitor is initially fully  
discharged. From fast power-down, start-up time can be  
eliminated by using low-leakage capacitors that do not  
discharge more than 1/2LSB while shut down. In power-  
down, leakage currents at VREF cause droop on the ref-  
erence bypass capacitor. Figures 12a and 12b show  
the various power-down sequences in both external and  
internal clock modes.  
______________________________________________________________________________________ 15  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
CLOCK  
MODE  
INTERNAL  
SETS  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 0  
S X X X X X 0 0  
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
POWER-DOWN  
POWERED UP  
POWERED UP  
8/MAX149  
Figure 12b. Timing Diagram Power-Down Modes, Internal Clock  
Table 5. Software Power-Down  
and Clock Mode  
Table 6. Hard-Wired Power-Down  
and Internal Clock Frequency  
REFERENCE-  
BUFFER  
COMPENSATION FREQUENCY  
INTERNAL  
CLOCK  
PD1  
PD0  
DEVICE MODE  
Full Power-Down  
Fast Power-Down  
DEVICE  
MODE  
SHDN  
STATE  
0
0
0
1
1
Floating  
0
Enabled  
Enabled  
Internal  
External  
N/A  
225kHz  
1.8MHz  
N/A  
1
1
0
1
Internal Clock  
External Clock  
Power-Down  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
(USING FULLPD)  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
WITH EXTERNAL REFERENCE  
100  
10,000  
1000  
100  
10  
VREF = V = 3.0V  
DD  
R
= ∞  
LOAD  
R
LOAD  
= ∞  
CODE = 1010101000  
CODE = 1010101000  
8 CHANNELS  
8 CHANNELS  
10  
1 CHANNEL  
1 CHANNEL  
1
0.1  
1
0.01  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
0.1  
1
10  
100  
1k  
CONVERSION RATE (Hz)  
Figure 13. Average Supply Current vs. Conversion Rate with  
External Reference  
Figure 14a. MAX149 Supply Current vs. Conversion Rate,  
FULLPD  
16 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
results may be clocked out after the MAX148/MAX149  
enter a software power-down.  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
The first logical 1 on DIN is interpreted as a start bit  
a nd p owe rs up the MAX148/MAX149. Following  
the start bit, the data input word or control byte also  
determines clock mode and power-down states. For  
example, if the DIN word contains PD1 = 1, then the  
c hip re ma ins p owe re d up . If PD0 = PD1 = 0, a  
power-down resumes after one conversion.  
(USING FASTPD)  
10,000  
1000  
100  
R
= ∞  
LOAD  
CODE = 1010101000  
8 CHANNELS  
1 CHANNEL  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down (Table 6). Unlike software power-down  
mode, the conversion is not completed; it stops coin-  
cidentally with SHDN being brought low. SHDN also  
controls the clock frequency in internal clock mode.  
Letting SHDN float sets the internal clock frequency to  
1.8MHz. When returning to normal operation with SHDN  
10  
1
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
floating, there is a t delay of approximately 2Mx C ,  
RC  
L
where C is the capacitive loading on the SHDN pin.  
L
Figure 14b. MAX149 Supply Current vs. Conversion Rate,  
FASTPD  
Pulling SHDN high sets internal clock frequency to  
225kHz. This feature eases the settling-time requirement  
for the reference voltage. With an external reference, the  
MAX148/MAX149 can be considered fully powered up  
within 2µs of actively pulling SHDN high.  
TYPICAL REFERENCE-BUFFER POWER-UP  
DELAY vs. TIME IN SHUTDOWN  
P o w e r-Do w n S e q u e n c in g  
The MAX148/MAX149 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. Figures 13, 14a, and 14b show  
the average supply current as a function of the sam-  
pling rate. The following discussion illustrates the vari-  
ous power-down sequences.  
2.0  
1.5  
1.0  
Lowest Power at up to 500  
Conversions/Channel/Second  
The following examples show two different power-down  
sequences. Other combinations of clock rates, compen-  
sation modes, and power-down modes may give lowest  
power consumption in other applications.  
0.5  
0
0.001  
0.01  
0.1  
1
10  
Figure 14a depicts the MAX149 power consumption for  
one or eight channel conversions utilizing full power-  
down mode and internal-reference compensation. A  
0.01µF bypass capacitor at REFADJ forms an RC filter  
with the internal 20kreference resistor with a 0.2ms  
time constant. To achieve full 10-bit accuracy, 8 time  
c ons ta nts or 1.6ms a re re q uire d a fte r p owe r-up .  
Waiting this 1.6ms in FASTPD mode instead of in full  
power-up can reduce power consumption by a factor  
of 10 or more. This is achieved by using the sequence  
shown in Figure 15.  
TIME IN SHUTDOWN (sec)  
Figure 14c. Typical Reference-Buffer Power-Up Delay vs. Time  
in Shutdown  
Software Power-Down  
Software power-down is activated using bits PD1 and PD0  
of the control byte. As shown in Table 5, PD1 and PD0  
also specify the clock mode. When software shutdown is  
asserted, the ADC operates in the last specified clock  
mode until the conversion is complete. Then the ADC  
powers down into a low quiescent-current state. In internal  
clock mode, the interface remains active and conversion  
______________________________________________________________________________________ 17  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
COMPLETE CONVERSION SEQUENCE  
1.6ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
FULLPD  
1.21V  
1
1
1 1  
1
0 0  
FULLPD  
1
0 1  
FASTPD  
FASTPD  
NOPD  
REFADJ  
VREF  
0V  
2.50V  
0V  
τ = RC = 20kx C  
REFADJ  
t
75µs  
BUFFEN  
Figure 15. MAX149 FULLPD/FASTPD Power-Up Sequence  
8/MAX149  
+3.3V  
24k  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
MAX149  
11 . . . 111  
11 . . . 110  
510k  
100k  
REFADJ  
12  
11 . . . 101  
0.01µF  
FS = VREF + COM  
ZS = COM  
Figure 16. MAX149 Reference-Adjust Circuit  
VREF  
1024  
1LSB =  
00 . . . 011  
00 . . . 010  
Lowest Power at Higher Throughputs  
Fig ure 14b s hows the p owe r c ons ump tion with  
external-reference compensation in fast power-down,  
with one and eight channels converted. The external  
4.7µF c omp e ns a tion re q uire s a 75µs wa it a fte r  
p owe r-up with one d ummy c onve rs ion. This g ra p h  
shows fast multi-channel conversion with the lowest  
power consumption possible. Full power-down mode  
may provide increased power savings in applications  
where the MAX148/MAX149 are inactive for long peri-  
ods of time, but where intermittent bursts of high-speed  
conversions are required.  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 17. Unipolar Transfer Function, Full Scale (FS) = VREF  
+ COM, Zero Scale (ZS) = COM  
Internal Reference (MAX149)  
The MAX149s full-scale range with the internal refer-  
ence is 2.5V with unipolar inputs and ±1.25V with bipo-  
lar inputs. The internal reference voltage is adjustable  
to ±1.5% with the circuit in Figure 16.  
In t e rn a l a n d Ex t e rn a l Re fe re n c e s  
The MAX149 can be used with an internal or external  
reference voltage, whereas an external reference is  
required for the MAX148. An external reference can be  
connected directly at VREF or at the REFADJ pin.  
External Reference  
With both the MAX149 and MAX148, an external refer-  
ence can be placed at either the input (REFADJ) or the  
output (VREF) of the internal reference-buffer amplifier.  
The REFADJ input impedance is typically 20kfor the  
MAX149, and higher than 100kfor the MAX148. At  
An inte rna l b uffe r is d e s ig ne d to p rovid e 2.5V a t  
VREF for b oth the MAX149 a nd the MAX148. The  
MAX149s internally trimmed 1.21V reference is buf-  
fered with a 2.06 gain. The MAX148s REFADJ pin is  
also buffered with a 2.00 gain to scale an external 1.25V  
reference at REFADJ to 2.5V at VREF.  
18 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
Table 7. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Zero  
Negative  
Full Scale  
Full Scale  
Zero Scale  
COM  
Full Scale  
Scale  
VREF / 2  
+ COM  
-VREF / 2  
+ COM  
VREF + COM  
COM  
OUTPUT CODE  
VREF  
2
FS  
=
+ COM  
+ COM  
SUPPLIES  
011 . . . 111  
011 . . . 110  
ZS = COM  
+3V  
+3V  
GND  
-VREF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
VREF  
1024  
1LSB =  
R* = 10Ω  
111 . . . 111  
111 . . . 110  
111 . . . 101  
V
DD  
AGND  
COM DGND  
+3V DGND  
DIGITAL  
CIRCUITRY  
100 . . . 001  
100 . . . 000  
MAX148  
MAX149  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1LSB  
*OPTIONAL  
*COM VREF / 2  
Figure 18. Bipolar Transfer Function, Full Scale (FS) =  
VREF / 2 + COM, Zero Scale (ZS) = COM  
Figure 19. Power-Supply Grounding Connection  
VREF, the DC input resistance is a minimum of 18k.  
During conversion, an external reference at VREF must  
deliver up to 350µA DC load current and have 10or  
less output impedance. If the reference has a higher  
output impedance or is noisy, bypass it close to the  
VREF pin with a 4.7µF capacitor.  
Tra n s fe r Fu n c t io n  
Table 7 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
The external reference must have a temperature coeffi-  
cient of 20ppm/°C or less to achieve accuracy to within  
1LSB over the 0°C to +70°C commercial temperature  
range.  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct VREF input,  
Figure 17 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 18 shows the bipolar  
input/output transfer function. Code transitions occur  
ha lfwa y b e twe e n s uc c e s s ive -inte g e r LSB va lue s .  
Output coding is binary, with 1LSB = 2.44mV (2.500V /  
1024) for unip ola r op e ra tion, a nd 1LSB = 2.44mV  
[(2.500V / 2 - -2.500V / 2) / 1024] for bipolar operation.  
disable the internal buffer by tying REFADJ to V . In  
DD  
power-down, the input bias current to REFADJ is typi-  
cally 25µA (MAX149) with REFADJ tied to V . Pull  
DD  
REFADJ to AGND to minimize the input bias current in  
power-down.  
______________________________________________________________________________________ 19  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
+3V  
+3V  
0.1µF  
1µF  
(POWER SUPPLIES)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
V
DD  
SCK  
SCLK  
CS  
PCS0  
3
4
MOSI  
MC683XX  
ANALOG  
INPUTS  
DIN  
MAX148  
MAX149  
5
6
SSTRB  
DOUT  
DGND  
AGND  
MISO  
7
8/MAX149  
8
9
REFADJ 12  
11  
(GND)  
10  
VREF  
0.1µF  
+2.5V  
Figure 20. MAX148/MAX149 QSPI Connections, External Reference  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For b e s t p e rforma nc e , us e p rinte d c irc uit b oa rd s .  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
Figure 19 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at AGND, separate from the logic  
ground. Connect all other analog grounds and DGND  
to the star ground. No other digital system ground  
should be connected to this ground. For lowest-noise  
operation, the ground return to the star grounds power  
s up p ly s hould b e low imp e d a nc e a nd a s s hort a s  
possible.  
TMS320LC3x  
MAX148  
MAX149  
DIN  
DR  
DOUT  
SSTRB  
FSR  
High-frequency noise in the V  
power supply may  
DD  
affect the high-speed comparator in the ADC. Bypass  
the s up p ly to the s ta r g round with 0.1µF a nd 1µF  
capacitors close to pin 20 of the MAX148/MAX149.  
Minimize capacitor lead lengths for best supply-noise  
rejection. If the power supply is very noisy, a 10resis-  
tor can be connected as a lowpass filter (Figure 19).  
Figure 21. MAX148/MAX149-to-TMS320 Serial Interface  
20 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B8  
S1  
S0  
Figure 22. TMS320 Serial-Interface Timing Diagram  
Hig h -S p e e d Dig it a l In t e rfa c in g w it h QS P I  
The MAX148/MAX149 can interface with QSPI using  
2) The MAX148/MAX149s CS pin is driven low by the  
TMS320s XF_ I/O port to enable data to be clocked  
into the MAX148/MAX149s DIN.  
the circuit in Figure 20 (f  
= 2.0MHz, CPOL = 0,  
SCLK  
CPHA = 0). This QSPI circuit can be programmed to do a  
conversion on each of the eight channels. The result is  
stored in memory without taxing the CPU, since QSPI  
incorporates its own microsequencer.  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX148/MAX149 to initiate a conversion and place  
the device into external clock mode. Refer to Table  
1 to select the proper XXXXX bit values for your  
specific application.  
The MAX148/MAX149 are QSPI compatible up to the  
maximum external clock frequency of 2MHz.  
4) The MAX148/MAX149s SSTRB output is monitored  
via the TMS320s FSR input. A falling edge on the  
SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX148/MAX149.  
TMS 3 2 0 LC3 x In t e rfa c e  
Figure 21 shows an application circuit to interface the  
MAX148/MAX149 to the TMS320 in external clock mode.  
The timing diagram for this interface circuit is shown in  
Figure 22.  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 10 + 2-bit conversion result followed by  
4 trailing bits, which should be ignored.  
Use the following steps to initiate a conversion in the  
MAX148/MAX149 and to read the results:  
1) The TMS320 s hould b e c onfig ure d with CLKX  
(transmit clock) as an active-high output clock and  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR on the TMS320 are  
tied together with the MAX148/MAX149s SCLK  
input.  
6) Pull CS high to disable the MAX148/MAX149 until  
the next conversion is initiated.  
______________________________________________________________________________________ 21  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
__________________P in Co n fig u ra t io n  
INL  
(LSB)  
PART†  
TEMP. RANGE  
PIN-PACKAGE  
TOP VIEW  
MAX148AEPP -40°C to +85°C  
MAX148BEPP -40°C to +85°C  
MAX148AEAP -40°C to +85°C  
MAX148BEAP -40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
CH0  
CH1  
1
2
V
DD  
20  
19 SCLK  
±1/2  
±1  
3
CS  
CH2  
18  
17  
20 SSOP  
MAX148  
MAX149  
CH3  
4
DIN  
MAX148AMJP -55°C to +125°C 20 CERDIP*  
MAX148BMJP -55°C to +125°C 20 CERDIP*  
±1/2  
±1  
5
CH4  
16 SSTRB  
15 DOUT  
CH5  
6
MAX149ACPP  
MAX149BCPP  
MAX149ACAP  
MAX149BCAP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
CH6  
14  
13  
12  
11  
DGND  
7
±1/2  
±1  
8
CH7  
AGND  
20 SSOP  
REFADJ  
9
COM  
SHDN  
8/MAX149  
MAX149AEPP -40°C to +85°C  
MAX149BEPP -40°C to +85°C  
MAX149AEAP -40°C to +85°C  
MAX149BEAP -40°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 SSOP  
±1/2  
±1  
VREF  
10  
±1/2  
±1  
DIP/SSOP  
20 SSOP  
MAX149AMJP -55°C to +125°C 20 CERDIP*  
MAX149BMJP -55°C to +125°C 20 CERDIP*  
±1/2  
±1  
Contact factory for availability of alternate surface-mount  
packages.  
* Contact factory for availability of CERDIP package, and for  
processing to MIL-STD-883B.  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2554  
22 ______________________________________________________________________________________  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
8/MAX149  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 23  
+2 .7 V to +5.25V, Lo w -P o w e r, 8 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
8/MAX149  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX14906

Evaluation Kit
MAXIM

MAX14906EVKIT

Easy Evaluation of the MAX14906 with Per-Channel Configuration
MAXIM

MAX1490A

Complete.Isolated RS-485/RS-422 Data Interface
MAXIM

MAX1490ACPG

Complete, Isolated RS-485/RS-422 Data Interface
MAXIM

MAX1490ACPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1490ACPI

Interface IC
MAXIM

MAX1490AEPG

Complete, Isolated RS-485/RS-422 Data Interface
MAXIM

MAX1490AEPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1490AEPI

Interface IC
MAXIM

MAX1490B

64kb Add-Only Memory[DS2506/DS2506]
MAXIM

MAX1490BCPG

Complete, Isolated RS-485/RS-422 Data Interface
MAXIM

MAX1490BCPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDIP24, PLASTIC, DIP-24
MAXIM