MAX1490EACPG [MAXIM]

15kV ESD-Protected, Isolated RS-485/RS-422; 15kV ESD保护,隔离型RS - 485 / RS - 422
MAX1490EACPG
型号: MAX1490EACPG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

15kV ESD-Protected, Isolated RS-485/RS-422
15kV ESD保护,隔离型RS - 485 / RS - 422

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总19页 (文件大小:1664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1940; Rev 0; 4/01  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
_________________General Description  
____________________________Features  
Isolated Data Interface, Guaranteed to 1260V  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
are complete, electrically isolated, RS-485/RS-422 data  
communications interface solutions in a hybrid microcir-  
cuit. The RS-485/RS-422 I/O pins are protected against  
15ꢀk electrostatic discharge ꢁESꢂD shocꢀs, ꢃithout  
latchup. Transceivers, optocouplers, and a transformer  
provide a complete interface in a standard ꢂIP pacꢀage.  
A single +5k supply on the logic side poꢃers both sides  
of the interface.  
RMS  
(1min)  
15kV ESD Protection on I/O Pins  
Slew-Rate Limited for Errorless Data  
Transmission (MAX1480EC/MAX1490EB)  
High-Speed, Isolated, 2.5Mbps RS-485/RS-422  
Interface (MAX1480EA/MAX1490EA)  
Full-Duplex Data Communication  
(MAX1490EA/MAX1490EB)  
The MAX1480EC/MAX1490EB feature reduced-sleꢃ-rate  
drivers that minimize EMI and reduce reflections caused  
by improperly terminated cables, alloꢃing error-free data  
transmission at data rates up to 160ꢀbps. The  
MAX1480EA/MAX1490EA driver sleꢃ rate is not limited,  
alloꢃing transmission rates up to 2.5Mbps. The  
MAX1480EA/MAX1480EC are designed for half-duplex  
communication, ꢃhile the MAX1490EA/MAX1490EB fea-  
ture full-duplex communication.  
Single +5V Supply  
Current Limiting and Thermal Shutdown for  
Driver Overload Protection  
Standard 0.6in DIP Packages  
28-Pin DIP (MAX1480EA/MAX1480EC)  
24-Pin DIP (MAX1490EA/MAX1490EB)  
_______________Ordering Information  
ꢂrivers are short-circuit current limited and protected  
against excessive poꢃer dissipation by thermal shut-  
doꢃn circuitry that places the driver outputs into a high-  
impedance state. The receiver input has a fail-safe  
feature that guarantees a ꢀnoꢃn output ꢁRO loꢃ for the  
MAX1480EA/MAX1480EC, RO high for the MAX1490EA/  
MAX1490EBD if the input is open circuit.  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX1480EACPI  
MAX1480EAEPI  
0°C to +70°C  
28 Wide Plastic ꢂIP*  
28 Wide Plastic ꢂIP*  
-40°C to +85°C  
Ordering Information continued at end of data sheet.  
Data rate for A parts is up to 2.5Mbps. Data rate for C parts is  
up to 250kbps.  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
*See Reliability section at end of data sheet.  
ꢃithstand 1260k  
ꢁ1minD or 1520k  
ꢁ1sD. Their iso-  
RMS  
RMS  
lated outputs meet all RS-485/RS-422 specifications. The  
MAX1480EA/MAX1480EC are available in a 28-pin ꢂIP  
pacꢀage, and the MAX1490EA/MAX1490EB are available  
in a 24-pin ꢂIP pacꢀage.  
-in Configurations  
TOP VIEW  
V
.
CC1  
CC2  
1
2
3
4
5
AC1  
24  
MAX1490EA/  
MAX1490EB  
V
23 AC2  
________________________Applications  
Isolated RS-485/RS-422 ꢂata Interface  
Transceivers for EMI-Sensitive Applications  
Industrial-Control Local Area Netꢃorꢀs  
Automatic Test Equipment  
22  
21  
20  
19  
18  
17  
D1  
D2  
ISO V  
CC1  
ISO RO DRV  
GND1  
FS  
A
B
Z
Y
6
HkAC/Building Control Netꢃorꢀs  
Telecom  
SD  
7
8
V
V
CC3  
DI  
9
16 ISO COM1  
ISO DI DRV  
10  
11  
12  
15  
14  
CC4  
RO  
ISO V  
CC2  
GND2  
13 ISO RO LED  
ISOLATION BARRIER  
DIP  
Pin Configurations continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
ABSOLUTE MAXIMUM RATINGS  
With Respect to GNꢂ_  
Supply koltage ꢁk  
LEꢂ Forꢃard Current ꢁꢂI, ꢂE, ISO RO LEꢂD ......................50mA  
D..........................................-0.3k to +6k  
Continuous Poꢃer ꢂissipation ꢁT = +70°CD  
CC_  
A
Control Input koltage ꢁSꢂ, FSD..............-0.3k to ꢁk  
Receiver Output koltage ꢁRO, ROD.......-0.3k to ꢁk  
Output Sꢃitch koltage ꢁꢂ1, ꢂ2D.......................................+12k  
With Respect to ISO COM_  
+ 0.3kD  
+ 0.3kD  
24-Pin Plastic ꢂIP ꢁderate 8.7mW°C above +70°CD ....696mW  
28-Pin Plastic ꢂIP ꢁderate 9.09mW/°C above +70°CD .727mW  
Operating Temperature Ranges  
MAX1480E_CPI/MAX1490E_CPI ........................0°C to +70°C  
MAX1480E_EPI/MAX1490E_EPI......................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature ꢁsoldering, 10sD .................................+300°C  
CC_  
CC_  
Control Input koltage ꢁISO ꢂE_D....-0.3k to ꢁISO k  
ꢂriver Input koltage ꢁISO ꢂI_D .......-0.3k to ꢁISO k  
+ 0.3kD  
+ 0.3kD  
+ 0.3kD  
CC_  
CC_  
Receiver Output koltage ꢁISO RO_D ..-0.3k to ꢁISO k  
CC_  
ꢂriver Output koltage ꢁA, B, Y, ZD ......................-8k to +12.5k  
Receiver Input koltage ꢁA, BD.............................-8k to +12.5k  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
ꢁk  
= +5k 10ꢄ, k = k  
, T = T  
to T  
, unless otherꢃise noted. Typical values are at k = +5k and T = +25°C.D  
CC_ A  
CC_  
FS  
CC_  
A
MIN  
MAX  
ꢁNotes 1, 2D  
PARAMETER  
SYMBOL  
CONDITIONS  
or open  
MIN  
TYP  
MAX UNITS  
f
k
= 0  
535  
725  
85  
145  
55  
120  
130  
180  
65  
SWL  
FS  
Sꢃitch Frequency  
ꢀHz  
f
FS = k  
CC_  
SWH  
R =   
120  
MAX1480EA,  
ꢂE´ = k or open  
L
R = 54Ω  
CC_  
L
R = ∞  
120  
MAX1480EC,  
ꢂE´ = k or open  
L
R = 54Ω  
CC_  
L
Operating Supply Current  
I
mA  
CC  
R = ∞  
180  
L
MAX1490EA  
MAX1490EB  
R = 54Ω  
L
R = ∞  
125  
L
R = 54Ω  
L
130  
Shutdoꢃn Supply Current  
ꢁNote 3D  
I
Sꢂ = k  
0.2  
µA  
SHꢂN  
CC_  
k
k
High  
Loꢃ  
2.4  
2.4  
SꢂH  
Shutdoꢃn Input Threshold  
k
0.8  
SꢂL  
Shutdoꢃn Input Leaꢀage  
Current  
10  
pA  
k
k
High  
Loꢃ  
FSH  
FS Input Threshold  
k
0.8  
FSL  
FS Input Pullup Current  
FS Input Leaꢀage Current  
Input High koltage  
FS loꢃ  
50  
µA  
pA  
k
FS high  
10  
k
k
CC  
- 0.4  
ꢂE´, ꢂI´, Figures 1 and 2  
ꢂE´, ꢂI´, Figures 1 and 2  
IH  
Input Loꢃ koltage  
k
0.4  
k
IL  
Isolation koltage  
k
R
T
A
T
A
T
A
= +25°C, 1min ꢁNote 4D  
1260  
100  
k
RMS  
ISO  
ISO  
Isolation Resistance  
Isolation Capacitance  
= +25°C, k  
= 50kꢂC  
10,000  
10  
MΩ  
pF  
ISO  
C
= +25°C, f = 1MHz  
ISO  
ꢂifferential ꢂriver Output  
ꢁNo LoadD  
k
8
5
k
Oꢂ1  
R = 50ꢁRS-422D  
R = 27ꢁRS-485D, Figure 4  
2
1.5  
ꢂifferential ꢂriver Output  
ꢁꢃith LoadD  
k
Oꢂ2  
k
2
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
ELECTRICAL CHARACTERISTICS (continued)  
ꢁk  
= +5k 10ꢄ, k = k  
, T = T  
A
to T  
, unless otherꢃise noted. Typical values are at k  
= +5k and T = +25°C.D  
CC_ A  
CC_  
FS  
CC_  
MIN  
MAX  
ꢁNotes 1, 2D  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Change in Magnitude of  
ꢂriver Output koltage for  
Complementary Output States  
ꢂifferential  
0.3  
k
0.3  
k  
R = 27or 50, Figure 4  
R = 27or 50, Figure 4  
Oꢂ  
Common mode  
ꢂriver Common-Mode Output  
k
OC  
4
k
MAX1490EA/  
MAX1490EB  
1.0  
k
= +12k  
= -7k  
IN  
MAX1480EA/  
MAX1480EC  
0.25  
0.8  
ꢂE´ = 0,  
= 0 or +5.5k  
Input Current ꢁA, BD  
ISO I  
mA  
IN  
k
CC_  
MAX1490EA/  
MAX1490EB  
k
IN  
MAX1480EA/  
MAX1480EC  
0.2  
ꢁMAX1480E_D  
ꢁMAX1490E_D  
48  
12  
Receiver Input Resistance  
R
-7k k  
-7k k  
+12k  
+12k  
Ω  
IN  
CM  
Receiver ꢂifferential Threshold  
Receiver Input Hysteresis  
k
TH  
-0.2  
0.2  
k
CM  
k  
k
CM  
= 0  
70  
mk  
k
TH  
Receiver Output Loꢃ koltage  
Receiver Output High Current  
ꢂriver Short-Circuit Current  
k
OL  
Using resistor values listed in Tables 1 and 2  
= 5.5k  
0.4  
I
k
OUT  
250  
µA  
mA  
OH  
ISO I  
-7k k 12k ꢁNote 5D  
100  
15  
OSꢂ  
O
A, B, Y, and Z pins, tested using Human Body  
Model, Figures 1 and 2  
ESꢂ Protection  
ISO I  
ꢀk  
OSꢂ  
SWITCHING CHARACTERISTICS—MAX1480EA/MAX1490EA  
ꢁk  
= +5k 10ꢄ, k = k  
, T = T  
A
to T  
, unless otherꢃise noted. Typical values are at k = +5k and T = +25°C.D  
MAX CC_ A  
CC_  
FS  
CC_  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
90  
MAX UNITS  
t
t
275  
ns  
PLH  
PHL  
ꢂriver Input to Output  
Propagation ꢂelay  
Figures 5 and 7, R  
= 54,  
ꢂIFF  
C
L1  
= C = 100pF  
L2  
60  
275  
ꢂriver Output Sꢀeꢃ  
t
Figures 5 and 7, R  
Figures 5 and 7, R  
= 54, C = C = 100pF  
30  
100  
50  
ns  
ns  
SKEW  
ꢂIFF  
L1  
L2  
ꢂriver Rise or Fall Time  
t
t
= 54, C = C = 100pF  
15  
R, F  
ꢂIFF  
L1  
L2  
ꢂriver Enable to Output High  
ꢁMAX1480EA OnlyD  
t
Figures 6 and 8, C = 100pF, S2 closed  
1.0  
1.0  
0.5  
0.5  
1.8  
1.8  
1.8  
1.8  
µs  
µs  
µs  
µs  
ns  
ZH  
L
ꢂriver Enable to Output Loꢃ  
ꢁMAX1480EA OnlyD  
t
Figures 6 and 8, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
ꢂriver ꢂisable Time from Loꢃ  
ꢁMAX1480EA OnlyD  
t
Figures 6 and 8, C = 15pF, S1 closed  
L
ꢂriver ꢂisable Time from High  
ꢁMAX1480EA OnlyD  
t
Figures 6 and 8, C = 15pF, S2 closed  
L
t
120  
90  
225  
225  
PLH  
Receiver Input to Output  
Propagation ꢂelay  
Figures 5 and 10, R  
= 54, C = C = 100pF  
L1 L2  
ꢂIFF  
t
PHL  
_______________________________________________________________________________________  
3
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
SWITCHING CHARACTERISTICS—MAX1480EA/MAX1490EA (continued)  
ꢁk  
= +5k 10ꢄ, k = k  
, T = T  
A
to T  
, unless otherꢃise noted. Typical values are at k = +5k and T = +25°C.D  
MAX CC_ A  
CC_  
FS  
CC_  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
|t  
- t  
| ꢂifferential  
PLH PHL  
t
Figures 5 and 10, R  
= 54, C = C = 100pF  
30  
150  
ns  
SKꢂ  
MAX  
ꢂIFF  
L1  
L2  
Receiver Sꢀeꢃ  
Maximum ꢂata Rate  
Time to Shutdoꢃn  
Shutdoꢃn to ꢂriver Output High  
Shutdoꢃn to ꢂriver Output Loꢃ  
f
t
, t  
, t  
25ꢄ of data period  
2.5  
Mbps  
µs  
µs  
SKEW SKꢂ PHL  
t
100  
3
3
SHꢂN  
t
t
Figures 6 and 9, C = 100pF, S2 closed  
15  
15  
ZHꢁSHꢂND  
ZHꢁSHꢂND  
L
Figures 6 and 9, C = 100pF, S1 closed  
µs  
L
SWITCHING CHARACTERISTICS—MAX1480EC/MAX1490EB  
ꢁk  
= +5k 10ꢄ, k = k  
, T = T  
A
to T  
, unless otherꢃise noted. Typical values are at k = +5k and T = +25°C.D  
MAX CC_ A  
CC_  
FS  
CC_  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.4  
1.1  
MAX UNITS  
t
t
Figures 5 and 7, R  
= 54, C = C = 100pF  
3.0  
3.0  
ꢂriver Input to Output  
Propagation ꢂelay  
PLH  
ꢂIFF  
ꢂIFF  
ꢂIFF  
ꢂIFF  
L1  
L2  
µs  
Figures 5 and 7, R  
Figures 5 and 7, R  
Figures 5 and 7, R  
= 54, C = C = 100pF  
= 54, C = C = 100pF  
= 54, C = C = 100pF  
L1 L2  
PHL  
L1  
L2  
ꢂriver Output Sꢀeꢃ  
t
300  
1.0  
1200  
2.0  
ns  
µs  
SKEW  
L1  
L2  
ꢂriver Rise or Fall Time  
t
t
R, F  
ꢂriver Enable to Output High  
ꢁMAX1480EC OnlyD  
t
Figures 6 and 8, C = 100pF, S2 closed  
1.4  
1.4  
2.0  
1.7  
4.5  
4.5  
4.5  
4.5  
µs  
µs  
µs  
µs  
µs  
ns  
ZH  
L
ꢂriver Enable to Output Loꢃ  
ꢁMAX1480EC OnlyD  
t
Figures 6 and 8, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
ꢂriver ꢂisable Time from Loꢃ  
ꢁMAX1480EC OnlyD  
t
Figures 6 and 8, C = 15pF, S1 closed  
L
ꢂriver ꢂisable Time from High  
ꢁMAX1480EC OnlyD  
t
Figures 6 and 8, C = 15pF, S2 closed  
L
t
0.9  
1.1  
3.0  
3.0  
Receiver Input to Output  
Propagation ꢂelay  
PLH  
Figures 5 and 10, R  
Figures 5 and 10, R  
= 54, C = C = 100pF  
L1 L2  
ꢂIFF  
t
PHL  
|t  
- t  
| ꢂifferential  
PLH PHL  
t
= 54, C = C = 100pF  
200  
SKꢂ  
ꢂIFF  
L1  
L2  
Receiver Sꢀeꢃ  
Maximum ꢂata Rate  
f
t
, t  
25ꢄ of data period  
160  
ꢀbps  
µs  
MAX  
SKEW SKꢂ  
Time to Shutdoꢃn  
t
100  
3
SHꢂN  
Shutdoꢃn to ꢂriver Output High  
Shutdoꢃn to ꢂriver Output Loꢃ  
t
Figures 6 and 9, C = 100pF, S2 closed  
15  
15  
µs  
ZHꢁSHꢂND  
L
t
Figures 6 and 9, C = 100pF, S1 closed  
3
µs  
ZLꢁSHꢂND  
L
Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to logic-  
side ground ꢁGNꢂ_D, unless otherꢃise specified.  
Note 2: For ꢂE´ and ꢂI´ pin descriptions, see Detailed Block Diagram and Typical Application Circuit ꢁFigure 1 for MAX1480EA/  
MAX1480EC, Figure 2 for MAX1490EA/MAX1490EBD.  
Note 3: Shutdoꢃn supply current is the current at k  
and k  
ꢃhen shutdoꢃn is enabled.  
CC1  
CC2  
Note 4: Limit guaranteed by applying 1520k  
for 1s. Test voltage is applied betꢃeen all pins on one side of the pacꢀage to all  
RMS  
pins on the other side of the pacꢀage, e.g., betꢃeen pins 1–14 and pins 15–28 on the 28-pin pacꢀage.  
Note 5: Applies to peaꢀ current ꢁsee Typical Operating CharacteristicsD. Although the MAX1480EA/MAX1480EC and  
MAX1490EA/MAX1490EB provide electrical isolation betꢃeen logic ground and signal paths, they do not provide isolation  
betꢃeen external shields and the signal paths ꢁsee Isolated Common Connection sectionD.  
4
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
__________________________________________Typical Operating Characteristics  
ꢁk  
= +5k, k = k  
, Figures 1 and 2, T = +25°C, unless otherꢃise noted.D  
CC_  
A
CC_  
FS  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
OUTPUT CURRENT vs.  
RECEIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
RECEIVER OUTPUT HIGH VOLTAGE  
-30  
-25  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
80  
MEASURED AT ISO RO DRV  
MEASURED AT ISO RO DRV  
MEASURED AT ISO RO DRV  
I
= 8mA  
RO  
70  
60  
50  
40  
30  
20  
-20  
-15  
-10  
-5  
0
3.25  
3.00  
10  
0
-40  
-20  
0
20  
40  
60  
80  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
OUTPUT CURRENT vs.  
DRIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
DRIVER OUTPUT HIGH VOLTAGE  
180  
160  
140  
120  
100  
80  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-100  
-90  
MEASURED AT ISO RO DRV  
I
RO  
= 8mA  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
60  
40  
20  
0
0.1  
0
-10  
0
-40  
-20  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
10 11 12  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
OUTPUT LOW VOLTAGE (V)  
OUTPUT HIGH VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
3.0  
2.9  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
80  
70  
60  
50  
40  
30  
20  
SD = V , DI´ = V  
DI´ = HIGH OR OPEN  
CC_  
CC_  
DI´ = HIGH OR OPEN  
R = 54Ω  
L
DE´= V (MAX1480EC ONLY)  
CC_  
MEASURED AT V AND V  
2.8  
2.7  
2.6  
CC1  
CC2  
2.5  
2.4  
2.3  
2.2  
0.05  
0
10  
0
2.1  
2.0  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
____________________________Typical Operating Characteristics (continued)  
ꢁk  
= +5k, k = k  
, Figures 1 and 2, T = +25°C, unless otherꢃise noted.D  
CC_  
A
CC_  
FS  
MAX1480EA  
SUPPLY CURRENT vs. TEMPERATURE  
MAX1480EC  
SUPPLY CURRENT vs. TEMPERATURE  
MAX1490EA  
SUPPLY CURRENT vs. TEMPERATURE  
160  
140  
120  
110  
100  
90  
200  
180  
160  
R = 54Ω  
L
V
= +5.5V  
= +5V  
R = 54Ω  
CC  
R = 54Ω  
L
L
V
= +5.5V  
= +5V  
V
= +5.5V  
CC  
CC  
V
V
CC  
CC  
V
= +5V  
CC  
120  
100  
80  
V
= +4.5V  
CC  
V
= +4.5V  
CC  
V
= +4.5V  
CC  
80  
DE´ = V  
CC  
DE´ = V  
CC  
R = ∞  
L
70  
140  
120  
100  
80  
60  
V
= +5.5V  
CC  
60  
R = ∞  
L
V
= +5.5V  
V
= +5V  
CC  
CC  
R = ∞  
L
50  
V
= +5V  
40  
CC  
V
= +5V  
V
= +5.5V  
CC  
CC  
40  
30  
20  
V
CC  
= +4.5V  
20  
0
V
= +4.5V  
80  
V
= +4.5V  
CC  
60  
CC  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX1490EB  
SUPPLY CURRENT vs. TEMPERATURE  
150  
140  
130  
120  
110  
100  
90  
V
= +5.5V  
CC  
V
= +5V  
CC  
V
= +4.5V  
CC  
R = 54Ω  
L
V
= +5.5V  
CC  
80  
V
= +5V  
CC  
R = ∞  
L
70  
60  
50  
V
= +4.5V  
CC  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
MAX1480EA/MAX1490EA  
MAX1480EA/MAX1490EA  
RECEIVER t  
RECEIVER t  
PLH  
PHL  
MAX1480E/90E toc15  
MAX1480E/90E toc14  
RECEIVER  
INPUT B  
1V/div  
RECEIVER  
INPUT A  
1V/div  
RECEIVER  
INPUT A  
1V/div  
RECEIVER  
INPUT B  
1V/div  
RO  
RO  
2V/div  
2V/div  
20ns/div  
20ns/div  
V
= 5.0V, DE´= V  
CC_  
V
= 5.0V, DE´= V  
CC_  
CC_  
CC_  
DI
´
= 0V TO 5V AT 1 25MHz  
6
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
_____________________________Typical Operating Characteristics (continued)  
ꢁk  
= +5k, k = k  
, k = 0, ꢂE´ toggled 0 to 5k at 5ꢀHz, Figures 1 and 2, T = +25°C, unless otherꢃise noted.D  
CC_  
FS  
CC_ ꢂI´  
A
MAX1480EC/MAX1490EB  
MAX1480EC/MAX1490EB  
RECEIVER t  
PHL  
RECEIVER t  
PLH  
MAX1480E/90E toc16  
MAX1480E/90E toc17  
RECEIVER  
INPUT A  
1V/div  
RECEIVER  
INPUT A  
1V/div  
RECEIVER  
INPUT B  
1V/div  
RECEIVER  
INPUT B  
1V/div  
RO  
RO  
2V/div  
2V/div  
200ns/div  
500ns/div  
V
= 5 0V
 
DE
´
= V  
V
= 5 0V
 
DE
´
= V  
CC  
CC  
MAX1480EC  
DRIVER ENABLE TIME  
MAX1480EC  
DRIVER DISABLE TIME  
DRIVER  
OUTPUT B  
2V/div  
DRIVER  
OUTPUT B  
2V/div  
DE´  
2V/div  
DE´  
2V/div  
500ns/div  
500ns/div  
V
= 5.0V, DI´= 0V  
V
= 5.0V, DI´ = 0V  
CC  
CC  
MAX1480EA/MAX1490EA  
POWER-UP DELAY TO DRIVER OUTPUTS VALID  
DRIVER  
OUTPUT B  
(Z FOR MAX1490)  
2V/div  
SD  
2V/div  
1µs/div  
V
V
= 0  
DI´  
= 5V TO 0 AT 1kHz  
SD  
_______________________________________________________________________________________  
7
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
________________________________________________________________-in Description  
PIN  
NAME  
FUNCTION  
MAX1480EA/  
MAX1480EC  
MAX1490EA/  
MAX1490EB  
1, 2, 8, 10  
1, 2, 8, 10  
k
–k  
Logic-Side ꢁNonisolated SideD +5k Supply koltages  
Internal Connections. Leave these pins unconnected.  
Logic-Side Ground. Connect to GNꢂ2 ꢁpin 12D.  
CC1 CC4  
3, 4  
5
3, 4  
5
ꢂ1, ꢂ2  
GNꢂ1  
Frequency Select Input. If FS = k  
or is open, sꢃitch frequency is high; if FS  
CC_  
6
7
6
7
FS  
= GNꢂ, sꢃitch frequency is loꢃ. For optimal performance and minimal supply  
current, connect FS to k or leave unconnected.  
CC_  
Shutdoꢃn Input. Ground for normal operation. When high, the poꢃer oscillator is  
disabled.  
Sꢂ  
ꢂriver Input. With ꢂE´ high ꢁMAX1480EA/MAX1480EC onlyD, a loꢃ on ꢂI´ forces  
output A loꢃ and output B high. Similarly, a high on ꢂI´ forces output A high and  
output B loꢃ. ꢂrives internal LEꢂ cathode through a resistor ꢁsee Table 1 for  
MAX1480EA/MAX1480EC, Table 2 for MAX1490EA/MAX1490EBD.  
9
9
ꢂI  
ꢂriver-Enable Input. The driver outputs, A and B, are enabled by bringing ꢂE´  
high. The driver outputs are high impedance ꢃhen ꢂE´ is loꢃ. If the driver out-  
puts are enabled, the device functions as a line driver. While the driver outputs  
are high impedance, the device functions as a line receiver. ꢂrives internal  
LEꢂ cathode through a resistor ꢁTable 1D.  
11  
ꢂE  
Receiver Output. If A > B by 200mk, RO is high; if A < B by 200mk, RO is loꢃ.  
12  
13  
11  
12  
RO  
Open collector; must have pullup to k  
ꢁTable 2D.  
CC  
GNꢂ2  
Logic-Side Ground. Connect to GNꢂ1 ꢁpin 5D.  
Receiver Output. If A > B by 200mk, RO is loꢃ; if A < B by 200mk, RO is high.  
RO  
Open collector; must have pullup to k  
ꢁTable 1D.  
CC  
14  
k
CC5  
Logic-Side ꢁNonisolated SideD +5k Supply koltage  
Isolated Receiver Output LEꢂ. Internal LEꢂ anode in MAX1480EA/MAX1480EC and  
LEꢂ cathode in MAX1490EA/MAX1490EB. Connect to ISO RO ꢂRk through a resis-  
tor ꢁTable 1 for MAX1480EA/MAX1480EC; Table 2 for MAX1490EA/MAX1490EBD.  
15  
16  
13  
ISO RO LEꢂ  
ISO COM2  
Isolated Common. Connect to ISO COM1 ꢁpin 20D.  
Isolated ꢂriver-Enable ꢂrive. The driver outputs, A and B, are enabled by bringing  
ꢂE´ high. The driver outputs are high impedance ꢃhen ꢂE´ is loꢃ. If the driver  
outputs are enabled, the device functions as a line driver. While the driver outputs  
are high impedance, the device functions as a line receiver. Open-collector out-  
put; must have pullup to ISO kCC_ and be connected to ISO ꢂE IN for normal  
operation ꢁTable 1D.  
17  
ISO ꢂE ꢂRk  
Isolated Supply koltage. Connect to ISO k  
MAX1480EC, or pin 22 for MAX1490EA/MAX1490EBD.  
ꢁpin 26 for MAX1480EA/  
CC1  
18  
19  
20  
14  
15  
16  
ISO k  
CC2  
Isolated ꢂriver-Input ꢂrive. With ꢂE´ high ꢁMAX1480EA/MAX1480EC onlyD, a loꢃ on  
ꢂI´ forces output A loꢃ and output B high. Similarly, a high on ꢂI´ forces output A  
high and output B loꢃ. Connect to ISO ꢂI IN ꢁon the MAX1480EA/MAX1480EC onlyD  
for normal operation. Open-collector output; connect a pullup resistor to ISO k  
ꢁTable 1 for MAX1480EA/MAX1480EC, Table 2 for MAX1490EA/MAX1490EBD.  
ISO ꢂI ꢂRk  
ISO COM1  
CC_  
Isolated Common. For MAX1480EA/MAX1480EC, connect to ISO COM2 ꢁpin  
16D ꢁFigures 1 and 2D.  
8
_______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
___________________________________________________-in Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1480EA/  
MAX1480EC  
MAX1490EA/  
MAX1490EB  
21  
22  
23  
17  
18  
19  
20  
Y
Noninverting ꢂriver Output  
Inverting ꢂriver Output  
Inverting Receiver Input  
Noninverting Receiver Input  
Isolated ꢂriver-Enable Input. Connect to ISO ꢂE ꢂRk for normal operation.  
Isolated ꢂriver Input. Connect to ISO ꢂI ꢂRk for normal operation.  
Noninverting ꢂriver Output and Noninverting Receiver Input  
Z
B
A
ISO ꢂE IN  
ISO ꢂI IN  
A
Isolated Receiver-Output ꢂrive. Connect to ISO RO LEꢂ through a resistor ꢁsee  
Table 1 for MAX1480EA/MAX1480EC, Table 2 for MAX1490EA/MAX1490EBD.  
24  
21  
ISO RO ꢂRk  
25  
26  
22  
B
ISO k  
Inverting ꢂriver Output and Inverting Receiver Input  
Isolated Supply koltage Source  
CC1  
27, 28  
23, 24  
AC2, AC1  
Internal Connections. Leave these pins unconnected.  
Note: For DE´ and DI´ pin descriptions, see Detailed Block Diagram and Typical Application Circuit (Figure 1 for MAX1480EA/  
MAX1480EC, Figure 2 for MAX1490EA/MAX1490EB).  
ꢂrivers are short-circuit current limited and are protect-  
Detailed Description  
ed against excessive poꢃer dissipation by thermal  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
shutdoꢃn circuitry that puts the driver outputs into a  
are complete, electrically isolated, RS-485/RS-422 data-  
high-impedance state. The receiver input has a fail-safe  
communications interface solutions. Transceivers, opto-  
feature that guarantees a logic-high RO ꢁlogic-loꢃ ROD  
couplers, a poꢃer driver, and a transformer in one  
output if the input is open circuit.  
standard 28-pin ꢂIP pacꢀage ꢁ24-pin pacꢀage for the  
On the MAX1480EA/MAX1480EC, the driver outputs are  
enabled by bringing ꢂE´ high. ꢂriver-enable time is typi-  
cally 1.0µs. Alloꢃ time for the devices to be  
enabled before sending data ꢁsee Typical Operating  
CharacteristicsD. When enabled, driver outputs function  
as line drivers. ꢂriver outputs are high impedance ꢃhen  
ꢂE´ is loꢃ. When outputs are high impedance, they func-  
tion as line receivers.  
MAX1490EA/MAX1490EBD provide a complete inter-  
face. Signals and poꢃer are internally transported  
across the isolation barrier ꢁFigures 1, 2D. Poꢃer is  
transferred from the logic side ꢁnonisolated sideD to the  
isolated side of the barrier through a center-tapped  
transformer. Signals cross the barrier through high-  
speed optocouplers. A single +5k supply on the logic  
side poꢃers both sides of the interface. The  
MAX1480EA/MAX1480EC offer half-duplex communica-  
tions ꢃhile the MAX1490EA/MAX1490EB feature full-  
duplex communication. The functional input/output  
relationships are shoꢃn in Tables 3 through 6.  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
ꢃithstand 1260k  
ꢁ1minD or 1520k  
ꢁ1sD. The logic  
RMS  
RMS  
inputs can be driven from TTL/CMOS logic ꢃith a series  
resistor, and the received data output can directly drive  
TTL or CMOS-logic families ꢃith only a resistive pullup.  
The MAX1480EC/MAX1490EB feature reduced-sleꢃ-rate  
drivers that minimize EMI and reduce reflections caused  
by improperly terminated cables, alloꢃing error-free  
transmission at data rates up to 160ꢀbps. The  
MAX1480EA/MAX1490EA driver sleꢃ rate is not limited,  
alloꢃing transmission rates up to 2.5Mbps.  
Lowꢂ-ower ꢁhutdown Mode  
The Sꢂ pin shuts doꢃn the oscillator on the internal poꢃer  
driver. With the primary side in shutdoꢃn, no poꢃer is  
transferred across the isolation barrier. The ꢂI and ꢂE  
optocouplers, hoꢃever, still consume current if the drive  
signals on the nonsolated side are loꢃ. Therefore, leave  
ꢂI´ and ꢂE´ high or floating ꢃhen in shutdoꢃn mode.  
Under these conditions, the MAX1480EC/MAX1490EB  
supply current is reduced to as loꢃ as 0.2µA.  
The MAX1480EC/MAX1490EB shutdoꢃn feature reduces  
supply current to as loꢃ as 0.2µA by using the Sꢂ pin ꢁsee  
Low-Power Shutdown Mode sectionD.  
_______________________________________________________________________________________  
9
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
V
CC3  
ISO V  
CC1  
D1  
D2  
MAX845E  
Q
MAX1480EA: MAX1487E  
MAX1480EC: MAX487E  
N
OSC  
1.07MHz/  
1.45MHz  
T
F/F  
FS  
B
A
ISO DI IN  
D
Q
N
ISO DE IN  
ISO RO DRV  
R
GND1  
RE  
SD  
ISO COM1  
EXTERNAL RS-485/RS-422 WIRING  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
MAX1480EA  
MAX1480EC  
V
V
V
CC1  
IN  
+5V  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TWISTED PAIR  
CC2  
TO OTHER TRANSCEIVERS  
C1  
C2  
ISO V  
CC1  
R
R
22µF  
0.1µF  
L
3
D1  
D2  
B
B
4
SHIELD (OPTIONAL)  
GND1  
ISO RO DRV  
A
5
A
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
MAX1487E  
MAX487E  
FS  
MAX845E  
6
SD  
ISO DI IN  
R6*  
SH  
7
L
74HC86  
OR EQUIVALENT  
V
V
CC3  
DI  
ISO DE IN  
8
R1*  
R4*  
SHIELD (OPTIONAL)  
DI  
DRIVER INPUT  
ISO COM1  
ISO DI DRV  
9
DI´  
CC4  
DE  
10  
11  
12  
13  
14  
R2*  
R3*  
R5*  
NOTE: RESISTOR R7 PROTECTS  
THE MAX1480EA FROM TRANSIENT  
CURRENTS BETWEEN SHIELD AND  
TRANSMISSION LINES.  
DE  
DRIVER ENABLE  
ISO V  
CC2  
DE´  
R7  
100Ω  
GND2  
ISO DE DRV  
ISO COM2  
ISO RO LED  
RECEIVER OUTPUT  
RO  
RO  
V
CC5  
LOGIC GROUND  
ISOLATION BARRIER  
ISOLATED COMMON  
*SEE TABLE 1.  
270pF  
4kV  
Figure 1. MAX1480EA/MAX1480EC Detailed Block Diagram and Application Circuit  
Table 1. Pullup and LED Drive Resistors for Figure 1  
PART  
MAX1480EA  
MAX1480EC  
R1 ()  
200  
R2 ()  
200  
R3 ()  
1000  
R4 ()  
R5 ()  
1000  
R6 ()  
200  
4300  
3000  
200  
200  
3000  
3000  
200  
The high-speed optocouplers on the MAX1480EA/  
MAX1480EC/MAX1490EA consume an additional 10mA  
couplers. In normal operating mode, the sꢃitch carries  
only the optocoupler currents, so an on-resistance of sev-  
eral ohms does not significantly degrade efficiency.  
through k  
ꢁk  
for the MAX1490EAD. Therefore, to  
CC5 CC4  
completely shut doꢃn these devices, use an external P-  
channel MOSFET as shoꢃn in Figure 3. In normal opera-  
tion, Sꢂ is loꢃ, turning the MOSFET on and thereby  
providing poꢃer to all the k  
pins. When Sꢂ is pulled  
CC  
high, the poꢃer oscillator is disabled and the sꢃitch is  
turned off, disconnecting poꢃer from the ꢂI and ꢂE opto-  
10 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
V
CC3  
D1  
D2  
MAX845  
Q
N
OSC  
1.07MHz/  
1.45MHz  
A
T
F/F  
R
FS  
ISO RO DRV  
ISO DI DRV  
B
Z
Q
N
MAX1490EA: MAX490E  
MAX1490EB: MAX488E  
D
Y
SD  
GND1  
MAX1490EA/  
MAX1490EB  
EXTERNAL RS-485/RS-422 WIRING  
V
IN  
+5V  
V
V
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
CC1  
CC2  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
C1  
C2  
0.1µF  
22µF  
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
ISO V  
CC1  
D1  
D2  
3
ISO RO DRV  
4
R
L
R
L
GND1  
A
B
Z
Y
A
B
5
SHIELD (OPTIONAL)  
FS  
6
TWISTED PAIR  
TO OTHER TRANSCEIVERS  
Z
SD  
7
R
L
74HC86  
OR EQUIVALENT  
V
Y
CC3  
8
R
L
R1*  
R5, 100Ω  
R6, 100Ω  
SH1  
DI  
DRIVER INPUT  
ISO COM1  
ISO DI DRV  
DI  
9
R4*  
V
DI´  
SHIELD (OPTIONAL)  
CC4  
SH2  
10  
11  
12  
R2*  
RECEIVER OUTPUT  
ISO V  
CC2  
R0  
RO  
R3*  
ISO RO LED  
GND2  
NOTE: RESISTORS R5 AND R6 PROTECT  
THE MAX1490EA/MAX1490EB FROM  
TRANSIENT CURRENTS BETWEEN SHIELD AND  
TRANSMISSION LINES.  
ISOLATION BARRIER  
ISOLATED COMMON  
*SEE TABLE 2.  
LOGIC GROUND  
270 pF  
4kV  
Figure 2. MAX1490EA/MAX1490EB Detailed Block Diagram and Typical Application Circuit  
Table 2. Pullup and LED Drive Resistors for Figure 2  
PART  
MAX1490EA  
MAX1490EB  
R1 ()  
200  
R2 ()  
1000  
R3 ()  
R4 ()  
1000  
330  
330  
200  
3000  
3000  
MAX1480EC/MAX1490EB transmitting the same signal.  
The high-frequency harmonics have much loꢃer ampli-  
tudes, and therefore the potential for EMI is significantly  
reduced.  
MAX1480EC/MAX1490EB:  
Reduced EMI and Reflections  
The MAX1480EC/MAX1490EB are sleꢃ-rate-limited,  
minimizing EMI and reducing reflections caused by  
improperly terminated cables. Figure 11 shoꢃs both  
the driver output ꢃaveform of a MAX1480EA/  
MAX1490EA transmitting a 150ꢀHz signal and the  
Fourier analysis of that ꢃaveform. High-frequency har-  
monics ꢃith large amplitudes are evident. Figure 12  
shoꢃs the same information for the sleꢃ-rate-limited  
Driver Output -rotection  
There are tꢃo mechanisms to prevent excessive output  
current and poꢃer dissipation caused by faults or by  
bus contention. A foldbacꢀ current limit on the output  
stage provides immediate protection against short cir-  
______________________________________________________________________________________ 11  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
MAX1480EA  
V
V
CC1  
CC2  
D1  
V
AC1  
AC2  
ISO V  
B
IN  
+5V  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
3
CC1  
D2  
4
GND1  
FS  
ISO RO DRV  
5
Si9433DY  
P
A
6
MAX845  
MAX1487E  
SD  
ISO DI IN  
ISO DE IN  
7
SHUTDOWN  
DI´  
V
CC3  
8
R1  
R2  
DI  
CC4  
DE  
ISO COM1  
ISO DI DRV  
9
20  
19  
18  
17  
V
10  
11  
12  
13  
14  
ISO V  
CC2  
DE´  
GND2  
RO  
ISO DE DRV  
ISO COM2  
ISO RO LED  
R3  
16  
15  
RO  
V
CC5  
ISOLATION BARRIER  
GND  
Figure 3. MAX1480EA Low-Power Shutdown Mode  
Test Circuits  
ISOLATION BARRIER  
ISOLATION BARRIER  
ISOLATION BARRIER  
(DE´)  
( ) ARE FOR  
THE MAX1480EA/MAX1480EC.  
C
L1  
R
R
DIFF  
D
R
RO (RO)*  
V
V
D
DI´  
ID  
OD  
* OPTOCOUPLER  
R
C
V
L2  
OC  
OUTPUTS. SEE FIGURES 1  
AND 2 FOR DETAILED BLOCK  
DIAGRAM AND TYPICAL  
APPLICATION CIRCUIT.  
Figure 4. Driver DC Test Load  
Figure 5. Driver/Receiver Timing Test Circuit  
12 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
____________________________________________________Test Circuits (continued)  
ISO V  
_
CC  
S1  
S2  
500Ω  
OUTPUT  
UNDER TEST  
C
L
Figure 6. Driver Timing Test Load  
ꢁwitching Waveforms  
V
CC_  
- 0.4V  
2
V
- 0.4V  
CC_  
2
V
-0.4V  
0
CC_  
V
- 0.4V  
0
CC_  
V
- 0.4V  
V
CC_  
- 0.4V  
CC_  
2
2
DE´  
DI´  
t
t
PHL  
PLH  
1/2 V  
O
t
t
LZ  
ZL  
B
A
A, B  
V
O
2.3V  
V
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
V
OL  
1/2 V  
O
V
= V (A) - V (B)  
DIFF  
A, B  
V
O
0
V
DIFF  
90%  
90%  
2.3V  
t
OH  
10%  
10%  
0
-V  
O
t
R
t
F
t
ZH  
HZ  
t
t - t  
SKEW = PLH PHL  
Figure 7. Driver Propagation Delays and Transition Times  
Figure 8. Driver Enable and Disable Times  
INPUT  
V
ID  
ID  
2.4V  
0
0
-V  
SD  
0.8V  
1.6V  
1.6V  
V - V  
A
B
MAX1490EA/MAX1490EB  
OUTPUT  
t
t
SHDN  
ZL(SHDN)  
A, B  
RO V  
OH  
t
t
PHL  
2.3V  
V
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
1.5V  
t
1.5V  
V
OL  
V
OL  
PLH  
A, B  
V
OH  
2.3V  
OH  
MAX1480EA/MAX1480EC  
1.5V  
RO  
0
1.5V  
V
OUTPUT  
OL  
t
t
SHDN  
ZH(SHDN)  
t
PHL  
PLH  
t
= t  
t
SKEW  
PLH - PHL  
Figure 10. Receiver Propagation Delays  
______________________________________________________________________________________ 13  
Figure 9. Times to/from Shutdown  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
cuits over the entire common-mode range ꢁsee Typical  
_____________________Function Tables  
Operating CharacteristicsD. In addition, a thermal shut-  
doꢃn circuit forces the driver outputs into a high-im  
pedance state if the die temperature rises excessively.  
HalfꢂDuplex Devices  
(MAX1480EA/MAX1480EC)  
-ropagation Delay ꢁ5ew  
Propagation delay sꢀeꢃ is the difference betꢃeen the  
Table 3. Transmitting  
loꢃ-to-high and high-to-loꢃ propagation delay. Small  
INPUTS*  
OUTPUTS  
driver/receiver sꢀeꢃ times help reduce EMI and reflec-  
tions by maintaining balanced differential signals.  
B
0
1
A
DE´  
1
DI´  
1
1
0
1
0
0
X
High-Z  
High-Z  
X = Don’t care; High-Z = High impedance  
Table 4. Receiving  
INPUTS*  
OUTPUT  
(RO)  
V
- V  
B
DE´  
0
A
+0.2k  
-0.2k  
Open  
0
1
0
10dB/div  
0
0
0
5MHz  
FullꢂDuplex Devices  
(MAX1490EA/MAX1490EB)  
500kHz/div  
Figure 11. Driver Output Waveform and FFT Plot of  
MAX1480EA/MAX1490EA Transmitting a 150kHz Signal  
Table 5. Transmitting  
OUTPUTS  
INPUT*  
Z
Y
1
0
(DI´)  
1
0
1
0
* For DE´ and DI´ pin descriptions, see Detailed Block Diagram  
and Typical Application Circuit (Figure 1 for MAX1480EA/  
MAX1480EC, Figure 2 for MAX1490EA/MAX1490EB).  
10dB/div  
Table 6. Receiving  
0
5MHz  
OUTPUT  
(RO)  
INPUT  
(V - V )  
500kHz/div  
A
B
+0.2k  
-0.2k  
Open  
1
0
1
Figure 12. Driver Output Waveform and FFT Plot of  
MAX1480EC/ MAX1490EB Transmitting a 150kHz Signal  
14 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
Human Body Model  
___________Applications Information  
Figure 13 shoꢃs the Human Body Model, and Figure 14  
These E versions of the MAX1480EA/MAX1480EC/  
shoꢃs the current ꢃaveform it generates ꢃhen dis-  
1490EA/MAX1490EB provide extra protection against  
charged into loꢃ impedance. This model consists of a  
ESꢂ. The rugged MAX1480EA/MAX1480EC/MAX1490EA/  
100pF capacitor charged to the ESꢂ voltage of interest,  
MAX1490EB are intended for harsh environments ꢃhere  
ꢃhich is then discharged into the test device through a  
high-speed communication is important. These devices  
1.5ꢀresistor.  
eliminate the need for transient suppressor diodes or the  
use of discrete protection components. The standard  
ꢁnon-ED MAX1480A/MAX1480C/MAX1490A/MAX1490B  
are recommended for applications ꢃhere cost is critical.  
Machine Model  
The Machine Model for ESꢂ tests all pins using a 200pF  
storage capacitor and zero discharge resistance. Its  
objective is to simulate the stress caused by contact that  
occurs ꢃith handling and assembly during manufactur-  
ing. All pins require this protection during manufactur-  
ing—not just inputs and outputs. Therefore, after PC  
board assembly, the Machine Model is less relevant to  
I/O ports.  
1ꢀ5k EꢁD -rotection  
As ꢃith all Maxim devices, ESꢂ-protection structures are  
incorporated on all pins to protect against electrostatic  
discharges encountered during handling and assembly.  
The driver outputs and receiver inputs have extra protec-  
tion against static electricity. Maxim’s engineers devel-  
oped state-of-the-art structures to protect these pins  
against ESꢂ of 15ꢀk ꢃithout damage. The ESꢂ struc-  
tures ꢃithstand high ESꢂ in all states: normal operation,  
shutdoꢃn, and poꢃered doꢃn. After an ESꢂ event,  
Maxim’s MAX1480EA/MAX1480EC/MAX1490EA/  
MAX1490EB ꢀeep ꢃorꢀing ꢃithout latchup. An isolation  
capacitor of 270pF 4ꢀk should be placed betꢃeen ISO  
COM and logic ground for optional performance against  
an ESꢂ pulse ꢃith respect to logic ground.  
The MAX1480EA/MAX1480EC are designed for bidirec-  
tional data communications on multipoint bus-transmis-  
sion lines. The MAX1490EA/MAX1490EB are designed  
for full-duplex bidirectional communications that are pri-  
marily point-to-point. Figures 15 and 16 shoꢃ half-duplex  
and full-duplex typical netꢃorꢀ application circuits,  
respectively. To minimize reflections, terminate the line at  
both ends ꢃith its characteristic impedance, and ꢀeep  
stub lengths off the main line as short as possible. The  
sleꢃ-rate-limited MAX1480EC/MAX1490EB are more tol-  
erant of imperfect termination and stubs off the main line.  
ESꢂ protection can be tested in various ꢃays; the trans-  
mitter outputs and receiver inputs of this product family  
are characterized for protection to 15ꢀk using the  
Human Body Model.  
Layout Considerations  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
pinouts enable optimal PC board layout by minimizing  
interconnect lengths and crossovers:  
EꢁD Test Conditions  
The 15ꢀk ESꢂ test specifications apply only to the A, B,  
Y, and Z I/O pins. The test surge may be referenced to  
either the ISO COM or to the nonisolated GNꢂ ꢁFigures 1  
and 2D.  
For maximum isolation, the “isolation barrier” should  
not be breached except by the MAX1480EA/  
R
1MΩ  
1500Ω  
RD  
C
I 100%  
P
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
STORAGE  
CAPACITOR  
s
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 13. Human Body ESD Test Model  
______________________________________________________________________________________ 15  
Figure 14. Human Body Current Waveform  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
TERMINATING RESISTOR  
(ONE RESISTOR ON EACH END)  
B
DI  
D
120Ω  
DE  
RO  
A
A
B
A
B
R
100Ω  
RE  
R
R
RE  
RE  
D
D
RO DE  
DI  
RO DE  
DI  
TERMINATING RESISTOR  
MAX1480EA/  
MAX1480EC  
V
IN  
+5V  
(ONE RESISTOR ON EACH END)  
V
V
CC1  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
3
4
5
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CC2  
C1  
22µF  
C2  
0.1µF  
ISO V  
CC1  
D1  
D2  
B
B
GND1  
ISO RO DRV  
A
120Ω  
A
MAX487E  
MAX845E  
FS  
6
MAX1487E  
R6  
SD  
ISO DI IN  
ISO DE IN  
ISO COM1  
ISO DI DRV  
SH  
7
74HC86  
OR EQUIVALENT  
R4  
R5  
SHIELD  
(OPTIONAL)  
V
V
CC3  
DI  
8
R1  
DI  
DRIVER INPUT  
NOTE: RESISTOR R7 PROTECTS  
THE MAX1480EA/MAX1480EC  
FROM TRANSIENT CURRENTS  
BETWEEN SHIELD AND  
9
CC4  
DE  
10  
11  
12  
13  
14  
R2  
R3  
DE  
DRIVER ENABLE  
ISO V  
CC2  
TRANSMISSION LINES.  
R7  
100Ω  
GND2  
ISO DE DRV  
ISO COM2  
ISO RO LED  
RECEIVER OUTPUT  
RO  
RO  
V
CC5  
LOGIC GROUND ISOLATION BARRIER  
ISOLATED COMMON  
270pF  
4kV  
Figure 15. Typical Half-Duplex RS-485/RS-422 Network  
16 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
MAX1490EA/  
MAX1490EB  
V
IN  
+5V  
V
V
CC1  
AC1 (MAKE NO CONNECTION)  
AC2 (MAKE NO CONNECTION)  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
C1  
C2  
CC2  
22µF  
0.1µF  
ISO V  
CC1  
D1  
D2  
3
Y
120Ω  
ISO RO DRV  
4
D
R
DI  
120Ω  
Z
GND1  
A
A
B
Z
Y
5
SHIELD (OPTIONAL)  
B
FS  
6
SD  
Z
7
120Ω  
74HC86  
B
V
CC3  
Y
8
OR EQUIVALENT  
120Ω  
RO  
R1  
R5, 100Ω  
DI  
ISO COM1  
DI  
SH1  
9
A
R4  
SHIELD (OPTIONAL)  
DI´  
V
ISO DI DRV  
SH2  
CC4  
10  
11  
12  
R2  
DRIVER INPUT  
ISO V  
CC2  
RO  
R6, 100Ω  
RO  
NOTE: RESISTORS R5 AND R6 PROTECT  
THE MAX1490EA/MAX1490EB FROM TRANSIENT  
CURRENTS BETWEEN SHIELD AND  
TRANSMISSION LINES.  
R3  
RECEIVER OUTPUT  
ISO RO LED  
GND2  
ISOLATED COMMON  
ISOLATION BARRIER  
LOGIC GROUND  
270pF  
4kV  
Figure 16. Typical Full-Duplex RS-485/RS-422 Network  
MAX1480EC/MAX1490EA/MAX1490EB. Connections  
and components from one side should not be locat-  
ed near those of the other side.  
resistor values shoꢃn in Tables 1 and 2 are recommend-  
ed ꢃhen the 74HC86 gate or equivalent is used. These  
values may need to be adjusted if a driving gate ꢃith dis-  
similar series resistance is used.  
A shield trace connected to the ground on each side  
of the barrier can help intercept capacitive currents  
that might otherꢃise couple into the signal path. In a  
double-sided or multilayer board, these shield traces  
should be present on all conductor layers.  
All pullup resistors are based on optocoupler specifica-  
tions in order to optimize the devices’ data-transfer rates.  
Isolated Common Connection  
The isolated common may be completely floating ꢃith  
respect to the logic ground and the effective netꢃorꢀ  
ground. The receiver input resistors cause the isolated  
common voltage to go to the mean voltage of the receiver  
inputs. If using shielded cable, connect the isolated com-  
mon to the shield through a 100resistor. In the case of  
the MAX1490EA/MAX1490EB, each shield should have its  
oꢃn 100resistor ꢁFigures 1, 2, 15, and 16D.  
Try to maximize the ꢃidth of the isolation barrier  
ꢃherever possible; a clear space of at least 0.25  
inches betꢃeen ground and isolated common is  
suggested.  
-ullup and LED Drive Resistors  
The MAX1480EA/MAX1480EC/MAX1490EA/MAX1490EB  
are specified and characterized using the resistor val-  
ues shoꢃn in Tables 1 and 2. Altering the recommend-  
ed values can degrade performance.  
DoubleꢂIsolated Rꢁꢂ48ꢀ Repeater  
The RS-422/RS-485 standard is specified for cable  
lengths up to 4000 feet. When approaching or exceeding  
the specified maximum cable length, a ground-potential  
difference of several tens of volts can easily develop.  
This difference can be either ꢂC, AC, at poꢃer-line fre-  
quency, or any imaginable noise or impulse ꢃaveform. It  
is typically very loꢃ impedance so that if a connection  
betꢃeen the tꢃo grounds is attempted, very large cur-  
DI and DE are intended to be driven through a series  
current-limiting resistor. Directly grounding these  
pins destroys the device.  
The ꢂI and ꢂE ꢁMAX1480EA/MAX1480EC onlyD inputs  
are the cathodes of LEꢂs ꢃhose anodes are connected  
to the supply. These points are best driven by a CMOS-  
logic gate ꢃith a series resistor to limit the current. The  
______________________________________________________________________________________ 17  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
rents may floꢃ. These currents are by their nature unsta-  
ble and unpredictable. In addition, they may cause noise  
to be injected into sensitive instrumentation and, in  
severe cases, might actually cause physical damage to  
such equipment.  
corrupted by the collisions that inevitably occur ꢃith a  
party-line system. With the repeater of Figure 17, there  
might be transmitters up to 8000 feet apart. That repre-  
sents more than 8µs ꢁassuming 1ns/foot of delayD in  
ꢃhich tꢃo nodes could be transmitting simultaneously.  
Figure 17 shoꢃs a half-duplex ꢁ2-ꢃireD, bidirectional,  
party-line repeater system that prevents interference  
and/or damage from ground-potential differences. Tꢃo  
MAX1480EA/MAX1480EC isolated RS-485 transceivers  
are used to isolate each of the netꢃorꢀ segments from  
the electrical environment of the repeater. The  
MAX1480EA/MAX1480EC also regenerate bus signals  
that may have been degraded by line attenuation or dis-  
persion.  
The circuit in Figure 17 can be used either directly as  
shoꢃn, ꢃith the sleꢃ-rate-limited MAX1480EC, for data  
transfer rates up to 160ꢀbps, or ꢃith the MAX1480EA for  
data rates up to 2.5Mbps ꢁsee Table 1 for pullup and  
LEꢂ resistor values ꢃhen using the MAX1480EAD. If dual-  
port isolation is not needed, one of the MAX1480EC  
devices can be replaced by a MAX487E for 250ꢀbps  
applications.  
Reliability  
In the idle state, both transmitters are disabled, ꢃhile all  
receivers in the system are enabled. If any device on the  
system has information for any other device, it starts  
sending its data onto the bus. Each data transmission on  
the bus retriggers the one-shot, ꢀeeping the sending  
transmitter enabled until there are no more transmis-  
sions. All receivers receive all data; if this is undesirable,  
the protocol must alloꢃ for an address field so receivers  
can ignore data not directed to them.  
These products contain transformers, optocouplers, and  
capacitors, in addition to several monolithic ICs and  
diodes. As such, the reliability expectations more closely  
represent those of discrete optocouplers rather than the  
more robust characteristics of monolithic silicon ICs. The  
reliability testing programs for these multicomponent  
devices may be vieꢃed on the Maxim ꢃebsite  
ꢁꢃꢃꢃ.maxim-ic.comD under Technical Support,  
Technical Reference, Multichip Products.  
Each node must refrain from transmitting ꢃhen data  
already exists on the bus, and must resend data that is  
+5V  
+5V  
NETWORK SEGMENT B  
2 8 10 14  
NETWORK SEGMENT A  
2 8 10 14  
13  
3k  
200Ω  
A
B
23  
25  
23  
25  
A
1
2
9
B
26  
26  
3kΩ  
74HC04  
MAX1480EC  
MAX1480EC  
3kΩ  
3kΩ  
200Ω  
4
3
13  
11  
9
3kΩ  
19  
22  
17  
21  
19  
22  
17  
21  
3kΩ  
DRIVER  
ENABLE  
B > A  
DRIVER  
ENABLE  
A > B  
200Ω  
200Ω  
11  
24  
24  
200Ω  
200Ω  
15  
15  
5
7 12  
5
7 12  
+5V  
+5V  
51k1000pF  
51k1000pF  
16 15 14  
7
6
5
2
B
Q
Q
10  
B
Q
13  
4
74HC123  
74HC123  
Q 12  
1 A  
9
A
CLR  
3
CLR  
11  
Figure 17. Double-Isolated RS-485 Repeater  
18 ______________________________________________________________________________________  
1ꢀ5k EꢁDꢂ-rotected, Isolated Rꢁꢂ48ꢀ/Rꢁꢂ422  
Data Interfaces  
Ordering Information (continued)  
-in Configurations (continued)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX1480ECCPI  
MAX1480ECEPI  
MAX1490EACPG  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
28 Wide Plastic ꢂIP  
28 Wide Plastic ꢂIP  
24 Wide Plastic ꢂIP  
24 Wide Plastic ꢂIP  
24 Wide Plastic ꢂIP  
24 Wide Plastic ꢂIP  
MAX1480EA/  
MAX1480EC  
TOP VIEW  
MAX1490EAEPG -40°C to +85°C  
MAX1490EBCPG  
0°C to +70°C  
MAX1490EBEPG -40°C to +85°C  
V
CC1  
CC2  
D1  
1
2
3
4
5
AC1  
28  
V
27 AC2  
ISO V  
26  
25  
Data rate for A parts is up to 2500kbps. Data rate for C parts is  
up to 250kbps.  
CC1  
B
D2  
GND1  
FS  
24 ISO RO DRV  
MAX845  
MAX487E  
MAX1487E  
23  
22  
A
6
7
8
9
ISO DI IN  
SD  
V
CC3  
DI  
21 ISO DE IN  
ꢁelector Guide  
ISO COM1  
ISO DI DRV  
20  
19  
V
CC4 10  
DE 11  
HALF/  
FULL  
DUPLEX  
DATA  
RATE  
(Mbps)  
SLEW-  
RATE  
LIMITED  
PART  
18 ISO V  
CC2  
ISO DE DRV  
GND2 12  
17  
16 ISO COM2  
ISO RO LED  
MAX1480EA  
MAX1480EC  
MAX1490EA  
MAX1490EB  
Half  
Half  
Full  
Full  
2.5  
0.25  
2.5  
No  
Yes  
No  
RO  
13  
14  
V
CC5  
15  
ISOLATION BARRIER  
0.25  
Yes  
DIP  
This device is constructed using a unique set of packaging  
techniques that impose a limit on the thermal profile the device  
can be exposed to during board-level solder attach and  
rework. Maxim recommends the use of the solder profiles rec-  
ommended in the industry-standard specification, JEDEC  
020A, paragraph 7.6, Table 3 for IR/VPR and Convection  
Reflow processes. Preheating, per this standard, is required.  
Hand or wave soldering is not recommended.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated -roducts, 120 ꢁan Gabriel Drive, ꢁunnyvale, CA 94086 (408) 737ꢂ7600___________________ 19  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products.  

相关型号:

MAX1490EACPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1490EAEPG

15kV ESD-Protected, Isolated RS-485/RS-422
MAXIM

MAX1490EAEPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, Hybrid, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1490EBCPG

15kV ESD-Protected, Isolated RS-485/RS-422
MAXIM

MAX1490EBCPG

LINE TRANSCEIVER, PDIP24, PLASTIC, DIP-24
ROCHESTER

MAX1490EBCPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1490EBEPG

15kV ESD-Protected, Isolated RS-485/RS-422
MAXIM

MAX1490EBEPG+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDIP24, PLASTIC, DIP-24
MAXIM

MAX1491

3.5- and 4.5-Digit, Single-Chip ADCs with LCD Drivers
MAXIM

MAX14912

Low Power and Heat Dissipation
MAXIM

MAX14912AKN+T

Buffer/Inverter Based Peripheral Driver,
MAXIM

MAX14912EVKIT

Reverse-Voltage Protection
MAXIM