MAX14850_V01 [MAXIM]

Six-Channel Digital Isolator;
MAX14850_V01
型号: MAX14850_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Six-Channel Digital Isolator

文件: 总17页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX14850  
Six-Channel Digital Isolator  
General Description  
Benefits and Features  
Protection from High-Voltage Environments  
The MAX14850 is a six-channel digital isolator utilizing  
Maxim’s proprietary process technology, whose mono-  
lithic design provides a compact and low-cost transfer  
of digital signals between circuits with different power  
domains. The technology enables low power consump-  
tion and stable high-temperature performance.  
• 600V Isolation for 60 Seconds  
RMS  
• Short-Circuit Protection on Unidirectional Outputs  
• 200V Working Isolation Voltage for 50 Years  
RMS  
Complete Digital Isolation Solution  
• Four Unidirectional Signal Paths: 2-In/2-Out  
• Two Bidirectional Open-Drain Signal Paths  
• 50Mbps (max) Unidirectional Data Rate  
• 2Mbps (max) Bidirectional Data Rate  
The four unidirectional channels are each capable of DC  
to 50Mbps, with two of the four channels passing data  
across the isolation barrier in each direction. The two  
bidirectional channels are open-drain; each capable of  
data rates from DC to 2Mbps.  
Compatible with Many Interface Standards  
2
• I C  
Independent 3.0V to 5.5V supplies on each side of the  
isolator also make it suitable for use as a level translator.  
The MAX14850 can be used for isolating SPI buses, I C  
• SPI  
• RS-232, RS-422/RS-485  
• SMBus, PMBus Interfaces  
2
buses, RS-232, RS-485/RS-422 buses, and general-pur-  
pose isolation. When used as a bus isolator, extra chan-  
nels are available for power monitoring and reset signals.  
Ordering Information appears at end of data sheet.  
Typical Operating Circuits  
The MAX14850 is available in a narrow body,16-pin SOIC  
(10mm x 4mm) package (for which an evaluation kit is  
available) and 16-pin QSOP (3.9mm x 4.94mm) package.  
The packages are specified over the -40°C to +125°C  
temperature range.  
0.1µF  
0.1µF  
3.3V  
5V  
V
V
CCB  
CCA  
For improved performance, refer to the MAX14851.  
The MAX14851 has the same functionality and pin con-  
figurations, and can be used as a footprint and functional  
replacement for the MAX14850.  
MAX14850  
R
R
PUA  
R
PUB  
R
PUB  
PUA  
GPIO1  
GPIO2  
SCLK  
MOSI  
I/OA1  
I/OA2  
INA1  
I/OB1  
I/OB2  
OUTB1  
OUTB2  
INB1  
RST  
Applications  
CS  
Industrial Control Systems  
SCLK ADC  
MOSI  
µC  
2
I C, SPI, SMBus, PMBus™ Interfaces  
INA2  
Isolated RS-232, RS-485/RS-422  
Telecommunication Systems  
Battery Management  
MISO  
OUTA1  
OUTA2  
MISO  
V
MONITOR  
CCB  
GPIO3  
INB2  
Medical Systems  
GNDA GNDB  
600V  
RMS  
ISOLATION  
PMBus is a trademark of SMIF, Inc.  
19-6161; Rev 3; 9/19  
MAX14850  
Six-Channel Digital Isolator  
Absolute Maximum Ratings  
V
to GNDA........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
CCA  
A
V
to GNDB........................................................-0.3V to +6V  
SOIC (derate 13.3mW/°C above +70°C)...................1067mW  
CCB  
OUTA1, OUTA2 to GNDA.......................-0.3V to (V  
OUTB1, OUTB2 to GNDB......................-0.3V to (V  
INA1, INA2, I/OA1, I/OA2 to GNDA ........................-0.3V to +6V  
INB1, INB2, I/OB1, I/OB2 to GNDB ........................-0.3V to +6V  
Short-Circuit Duration (OUTA_ to GNDA or  
+ 0.3V)  
+ 0.3V)  
QSOP (derate 9.6mW/°C above +70°C)..................771.5mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CCA  
CCB  
V
, OUTB_ to GNDB or V  
) ........................Continuous  
CCA  
CCB  
Continuous Current (I/OA_, I/OB_) Pin............................±50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
16 SOIC  
Package Code  
S16+3  
Outline Number  
21-0041  
90-0097  
Land Pattern Number  
THERMAL RESISTANCE, MULTILAYER BOARD  
Junction to Ambient (θ  
)
75°C/W  
24°C/W  
JA  
Junction to Case (θ  
)
JC  
16 QSOP  
Package Code  
Outline Number  
E16+1  
21-0055  
90-0167  
Land Pattern Number  
THERMAL RESISTANCE, MULTILAYER BOARD  
Junction to Ambient (θ  
)
103.7°C/W  
37°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Electrical Characteristics  
(V  
- V  
= 3.0V to 5.5V, V  
- V  
= 3.0V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
CCA  
CCA  
GNDA  
CCB  
GNDB A  
V
- V  
= 3.3V, V  
- V  
= 3.3V, and T = +25°C.) (Note 1)  
GNDA  
CCB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC CHARACTERISTICS  
V
V
Relative to GNDA  
Relative to GNDB  
3.0  
3.0  
5.5  
5.5  
CCA  
Supply Voltage  
V
CCB  
Unidirectional inputs at  
DC or 2Mbps;  
bidirectional inputs at DC  
or switching at 2Mbps,  
no load  
V
V
= 5V,  
= 5V  
CCA  
CCB  
7.2  
6.2  
11  
V
V
= 3.3V,  
= 3.3V  
CCA  
CCB  
9.5  
T
=
V
= 5V,  
V
5V  
A
CCA  
15  
17  
10  
11  
2
22  
24  
16  
18  
I
I
,
CCA  
+25°C  
Supply Current  
mA  
CCB  
=
CCB  
T =  
A
+125°C  
All inputs switching at  
max data rate. No load.  
(Note 2)  
T
=
V
A
CCA  
+25°C  
= 3.3V,  
V
3.3V  
=
CCB  
T =  
A
+125°C  
Undervoltage Lockout  
Threshold  
V
V
V
- V  
- V  
, V  
- V  
- V  
(Note 3)  
(Note 3)  
V
V
UVLO  
CCA  
GNDA CCB  
GNDB  
Undervoltage Lockout  
Hysteresis  
V
, V  
GNDA CCB  
0.1  
UVLOHYS  
CCA  
GNDB  
ISOLATION CHARACTERISTICS  
Isolation Voltage  
V
t = 60s (Note 4)  
- V continuous (Note 2), 50-year life  
GNDA  
600  
V
V
ISO  
RMS  
Working Isolation  
Voltage  
V
GNDB  
V
200  
0.7  
IOWM  
RMS  
kV  
expectancy (Figure 4)  
ESD Protection  
All pins  
±2.5  
LOGIC INPUTS AND OUTPUTS  
Input Threshold Voltage  
V
I/OA1, I/OA2, relative to GNDA  
INA1, INA2, relative to GNDA  
INB1, INB2, relative to GNDB  
I/OA1, I/OA2, relative to GNDA  
I/OB1, I/OB2, relative to GNDB  
INA1, INA2, relative to GNDA  
INB1, INB2, relative to GNDB  
I/OA1, I/OA2, relative to GNDA  
I/OB1, I/OB2, relative to GNDB  
0.5  
V
V
IT  
0.7 x V  
0.7 x V  
0.7  
CCA  
CCB  
Input Logic-High Voltage  
Input Logic-Low Voltage  
V
IH  
0.7 x V  
CCB  
0.8  
0.8  
0.5  
V
V
IL  
0.3 x V  
CCB  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Electrical Characteristics (continued)  
(V  
V
- V  
= 3.0V to 5.5V, V  
- V  
= 3.0V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
CCA  
CCA  
GNDA  
CCB  
GNDB A  
- V  
= 3.3V, V  
- V  
= 3.3V, and T = +25°C.) (Note 1)  
GNDA  
CCB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
- 0.4  
MAX  
UNIT  
OUTA1, OUTA2, relative to GNDA,  
source current = 4mA  
V
CCA  
CCB  
Output Logic-High  
Voltage  
V
V
OH  
OUTB1, OUTB2, relative to GNDB,  
source current = 4mA  
V
- 0.4  
OUTA1, OUTA2, relative to GNDA,  
sink current = 4mA  
0.8  
0.8  
OUTB1, OUTB2, relative to GNDB,  
sink current = 4mA  
Output Logic-Low  
Voltage  
I/OA1, I/OA2, relative to GNDA,  
sink current = 10mA  
V
0.6  
0.6  
0.9  
V
OL  
I/OA1, I/OA2, relative to GNDA,  
sink current = 0.5mA  
0.85  
0.4  
I/OB1, I/OB2, relative to GNDB,  
sink current = 30mA  
Input/Output Logic-Low  
Threshold Difference  
∆V  
I/OA1, I/OA2 (Note 5)  
50  
mV  
pF  
TOL  
Input Capacitance  
C
INA1, INA2, INB1, INB2, f = 1MHz  
2
IN  
DYNAMIC SWITCHING CHARACTERISTICS  
Common-Mode  
Transient Immunity  
CMTI  
V
= V _ or V  
_ (Notes 2, 6)  
1.5  
kV/µs  
Mbps  
ns  
IN  
CC GND  
INA1 to OUTB1, INA2 to OUTB2, INB1 to  
OUTA1, INB2 to OUTA2  
50  
2
Maximum Data Rate  
(Note 2)  
DR  
MAX  
I/OA1 to I/OB1, I/OA2 to I/OB2, I/OB1 to I/OA1,  
I/OB2 to I/OA2  
INA1 to OUTB1, INA2 to OUTB2, INB1 to  
OUTA1, INB2 to OUTA2 (Note 2)  
Minimum Pulse Width  
PW  
20  
MIN  
V
3.3V  
= V  
=
INA1 to OUTB1, INA2 to  
OUTB2, INB1 to OUTA1,  
INB2 to OUTA2,  
CCA  
CCB  
20  
18  
30  
26  
R = 1MΩ, C = 15pF,  
L
L
V
V
= V  
= V  
= 5V  
=
CCA  
CCB  
Figure 1  
I/OA1 to I/OB1, I/OA2 to  
CCA  
CCB  
30  
30  
60  
60  
100  
100  
100  
100  
Propagation Delay  
(Note 2)  
t
DPLH  
3.3V  
I/OB2, R = 1.6kΩ,  
ns  
1
t
DPHL  
R = 180Ω, C = CL2 =  
2
L1  
V
= V  
= V  
= 5V  
=
CCA  
CCA  
CCB  
15pF, Figure 2  
V
I/OB1 to I/OA1, I/OB2 to  
CCB  
3.3V  
I/OA2, R = 1kΩ,  
1
R = 120Ω, C = C =  
2
L1  
L2  
V
= V  
= 5V  
CCA  
CCB  
15pF, Figure 2  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Electrical Characteristics (continued)  
(V  
V
- V  
= 3.0V to 5.5V, V  
- V  
= 3.0V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
CCA  
CCA  
GNDA  
CCB  
GNDB A  
- V  
= 3.3V, V  
- V  
= 3.3V, and T = +25°C.) (Note 1)  
GNDA  
CCB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
INA1 TO OUTB1, INA2  
MIN  
TYP  
MAX  
UNIT  
V
= V  
=
CCA  
CCB  
7
TO OUTB2, INB1 TO  
3.3V  
OUTA1, INB2 TO OUTA2,  
R = 1MΩ,  
C = 15pF, Figure 1  
L
L
V
V
= V  
= V  
= 5V  
=
7
CCA  
CCB  
Pulse-Width Distortion  
|t – t  
I/OA1 to I/OB1, I/OA2 to  
CCA  
CCB  
12  
12  
60  
50  
3.3V  
|
DPHL  
PWD  
ns  
I/OB2, R = 1.6kΩ,  
DPLH  
1
(Notes 2, 7)  
R = 180Ω, C = CL2 =  
2
L1  
V
= V  
= V  
= 5V  
=
CCA  
CCA  
CCB  
15pF, Figure 2  
V
I/OB1 to I/OA1, I/OB2 to  
CCB  
3.3V  
I/OA2, R = 1kΩ,  
1
R = 120Ω, C = C =  
2
L1  
L2  
V
V
= V  
= 5V  
=
CCA  
CCB  
15pF, Figure 2  
= V  
CCA  
CCB  
3
3
OUTB1 to OUTB2 output  
skew, Figure 1  
3.3V  
V
V
= V  
= 5V  
=
CCA  
CCA  
CCB  
= V  
CCB  
3
OUTA1 to OUTA2 output  
skew, Figure 1  
3.3V  
V
= V  
= V  
= 5V  
=
3
Channel-to-Channel  
Skew (Notes 2, 7)  
CCA  
CCB  
t
ns  
DSKEWCC  
V
CCA  
CCB  
6
I/OB1 to I/OB2 output  
skew, Figure 2  
3.3V  
V
V
= V  
= V  
= 5V  
=
5
CCA  
CCA  
CCB  
CCB  
20  
20  
8
I/OA1 to I/OA2 output  
skew, Figure 2  
3.3V  
V
= V  
= 5V  
CCA  
CCB  
Part-to-Part Skew  
(Notes 2, 7)  
t
∆t  
, ∆t  
DPHL  
ns  
ns  
DSKEWPP  
DPLH  
OUTA1, OUTA2, OUTB1, OUTB2, 10% to 90%,  
Figure 1  
Rise Time (Note 2)  
t
5
5
R
OUTA1, OUTA2, OUTB1, OUTB2, 90% to 10%,  
Figure 1  
V
3.3V  
= V  
=
I/OA1, I/OA2, 90% to  
10%, R = 1.6kΩ,  
CCA  
CCB  
30  
40  
3
60  
80  
6
1
R = 180Ω, C = C  
=
=
2
L1  
L2  
Fall Time (Note 2)  
t
V
V
= V  
= V  
= 5V  
=
ns  
F
CCA  
CCB  
15pF, Figure 2  
I/OB1, I/OB2, 90% to  
10%, R = 1kΩ,  
CCA  
CCB  
3.3V  
1
R = 120Ω, C = C  
2
L1  
L2  
V
= V  
= 5V  
3
5
CCA  
CCB  
15pF, Figure 2  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Insulation and Safety Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
VALUE  
UNIT  
IEC INSULATION AND SAFETY RELATED FOR SPECIFICATIONS FOR SOIC-16  
SOIC-16  
QSOP-16  
SOIC-16  
QSOP-16  
4.2  
3.81  
4.2  
mm  
mm  
mm  
mm  
mm  
External Tracking (Creepage)  
CPG  
CLR  
IEC 60664-1  
IEC 60664-1  
External Air Gap (Clearance)  
Minimum Internal Gap  
3.81  
0.0026  
Insulation Thickness  
Tracking Resistance (Comparative  
Tracking Index)  
CTI  
IEC 112 / VDE 030 Part 1  
175  
1
V
Insulation Resistance Across  
Barrier  
R
GΩ  
pF  
ISO  
Capacitance Across Isolation  
Barrier  
C
f = 1MHz  
12  
IO  
VDE IEC INSULATION CHARACTERISTICS  
IEC 60747-17, section 5.3.1.6 and 5.4.6 for basic  
insulation  
Surge Isolation Voltage  
V
V
1
kVpeak  
IOSM  
Repetitive Peak Isolation Voltage  
Rated Transient Isolation Voltage  
Safety Limiting Temperature  
IEC 60747-17, section 5.3.1.3  
IEC 60747-17, section 5.3.1.4  
IEC 60747-17, section 7.2.1  
282  
850  
150  
Vpeak  
Vpeak  
°C  
IORM  
V
IOTM  
T
S
Safety Limiting Side A Power  
Dissipation  
P
IEC 60747-17, section 7.2.1  
IEC 60747-17, section 7.2.1  
0.75  
0.75  
W
W
SA  
Safety Limiting Side B Power  
Dissipation  
P
SB  
Apparent Charge Method  
Overvoltage Category  
Overvoltage Category  
Climatic Category  
q
IEC 60747-17, section 7.4, method a & b  
5
pC  
pd  
IEC 60664-1, single or three phase 50V DC or AC  
IEC 60664-1, single or three phase 100V DC or AC  
I,II  
I
40/125/21  
2
Pollution Degree  
DIN VDE 0110, Table 1  
Note 1: All units are production tested at T = +25°C. Specifications over temperature are guaranteed by design. All voltages of side  
A
A are referenced to GNDA. All voltages of side B are referenced to GNDB, unless otherwise noted.  
Note 2: Guaranteed by design. Not production tested.  
Note 3: The undervoltage lockout threshold and hysteresis guarantee that the outputs are in a known state during a slump in the  
supplies. See the Detailed Description section for more information.  
Note 4: The isolation is guaranteed for t = 60s, and tested at 120% of the guaranteed value for 1s.  
Note 5: ΔV  
= V – V . This is the minimum difference between the output logic-low voltage and the input logic threshold for  
TOL  
OL IL  
the same I/O pin. This ensures that the I/O channels are not latched low when any of the I/O inputs are driven low (see the  
Bidirectional Channels section).  
Note 6: The common-mode transient immunity guarantees that the device will hold its outputs stable when the isolation voltage  
changes at the specified rate.  
Note 7: Pulse-width distortion is defined as the difference in propagation delay between low-to-high and high-to-low transitions on  
the same channel. Channel-to-channel skew is defined as the difference in propagation delay between different channels on  
the same device. Part-to-part skew is defined as the difference in propagation delays (for unidirectional channels) between  
different devices, when both devices operate with the same supply voltage, at the same temperature and have identical  
package and test circuits.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Test Circuits/Timing Diagrams  
V
CCA  
INA1, INA2  
50%  
50%  
GNDA  
t
DPLH  
V
CCA  
0.1µF  
0.1µF  
V
CCB  
V
CCA  
V
CCB  
t
DPHL  
V
CCB  
MAX14850  
OUTB1  
50%  
50%  
50Ω  
INA_  
OUTB_  
GNDB  
GNDB  
TEST  
SOURCE  
R
GNDA  
C
L
L
t
DSKEWCC  
V
CCB  
90%  
50%  
OUTB2  
(A)  
10%  
GNDB  
t
t
F
R
(B)  
Figure 1. Test Circuit (A) and Timing Diagram (B) for Unidirectional Channels  
V
CCA  
0.1µF  
0.1µF  
V
CCB  
V
CCA  
V
CCB  
R
1
R
2
MAX14850  
I/OA_  
I/OB_  
C
L1  
GNDA  
GNDB  
C
L2  
TEST  
SOURCE  
(A)  
V
CCA  
V
CCB  
I/OA1, I/OA2  
I/OB1, I/OB2  
50%  
50%  
50%  
50%  
GNDA  
GNDB  
t
t
DPLH  
DPLH  
t
t
DPHL  
DPHL  
V
V
CCA  
CCB  
50%  
50%  
90%  
50%  
50%  
90%  
I/OB1  
I/OA1  
V
V
(min)  
V
(min)  
OL  
OL  
t
t
DSKEWCC  
50%  
DSKEWCC  
50%  
V
CCB  
V
CCA  
I/OB2  
I/OA2  
10%  
10%  
(min)  
V
(min)  
OL  
OL  
t
F
t
F
(B)  
(C)  
Figure 2. Test Circuit (A) and Timing Diagrams (B) and (C) for Bidirectional Channels  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Typical Operating Characteristics  
(V  
– V  
= 3.3V, V  
– V  
= 3.3V, all inputs idle, T = +25°C, unless otherwise noted.)  
CCA  
GNDA  
CCB  
GNDB A  
I
vs. DATA RATE  
I
vs. DATA RATE  
I vs. DATA RATE  
CCA  
CCA  
CCB  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
INA1/INA2  
SWITCHING  
INB1/INB2  
SWITCHING  
I/OA1/I/OA2  
SWITCHING  
I/OB1/I/OB2  
SWITCHING  
INB1/INB2  
SWITCHING  
INA1/INA2  
SWITCHING  
PULLUP = 2k  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
5.5  
75  
0.001  
0.01  
0.1  
1
10  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
I
vs. V  
I
vs. V  
CCB CCB  
I
vs. DATA RATE  
CCA  
CCA  
CCB  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
T
= +125°C  
A
T
= -40°C  
T
= +125°C  
A
A
I/OB1/I/OB2  
SWITCHING  
I/OA1/I/OA2  
SWITCHING  
T
= +25°C  
A
T
= -40°C  
T
= -40°C  
A
A
PULLUP = 2k  
1 10  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
0.001  
0.01  
0.1  
V
DATA RATE (Mbps)  
CCA  
CCB  
OUTA_ V vs. SOURCE CURRENT  
OUTA_ V vs. SINK CURRENT  
OL  
I
vs.TEMPERATURE  
OH  
CC  
5
4
3
2
1
0
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
V
= 5V  
CCA  
I
CCA  
V
= 3.3V  
CCA  
I
CCB  
V
= 3.3V  
CCA  
V
= 5V  
60  
CCA  
0
15  
30  
I
45  
(mA)  
60  
0
15  
30  
45  
(mA)  
75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
I
TEMPERATURE (°C)  
SOURCE  
SINK  
Maxim Integrated  
8
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Typical Operating Characteristics (continued)  
(V  
– V  
= 3.3V, V  
– V  
= 3.3V, all inputs idle, T = +25°C, unless otherwise noted.)  
CCA  
GNDA  
CCB  
GNDB  
A
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
OUTB_ V vs. SOURCE CURRENT  
OUTB_ V vs. SINK CURRENT  
OL  
OH  
5
4
3
2
1
0
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 5V  
CCB  
V
- V = 0V  
GNDB GNDA  
V
- V  
= -100V  
GNDB GNDA  
V
= 3.3V  
CCB  
V
- V  
= +100V  
GNDB GNDA  
V
= 3.3V  
CCB  
6
4
V
CCB  
= 5V  
60  
V
= V  
DDA  
DDB  
INA_ TO OUTB_  
LOW TO HIGH TRANSITION  
2
0
0
15  
30  
45  
(mA)  
60  
75  
0
15  
30  
45  
(mA)  
75  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
I
I
SINK  
SOURCE  
DDA  
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
PROPAGATION DELAY  
vs.CAPACITIVE LOAD  
PROPAGATION DELAY  
vs. TEMPERATURE  
12  
10  
8
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
V
- V  
= 0V  
- V  
GNDB GNDA  
LOW TO HIGH  
LOW TO HIGH  
V
= -100V  
GNDB GNDA  
HIGH TO LOW  
HIGH TO LOW  
V
- V = +100V  
GNDB GNDA  
6
4
6
6
4
4
V
= V  
DDB  
DDA  
INA_ TO OUTB_  
HIGH TO LOW TRANSITION  
2
2
2
INA_ TO OUTB_  
80 100  
INA_ TO OUTB_  
0
0
0
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
0
20  
40  
C (pF)  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
T (°C)  
A
DDA  
L
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
PROPAGATION DELAY  
vs. CAPACITIVE LOAD  
16  
14  
12  
10  
8
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
- V = 0V  
GNDB GNDA  
V
- V = -100V  
GNDB GNDA  
V
- V = 0V  
GNDB GNDA  
LOW TO HIGH  
V - V = +100V  
GNDB GNDA  
V
- V = -100V  
GNDB GNDA  
HIGH TO LOW  
6
V
- V = +100V  
GNDB GNDA  
6
4
6
4
4
V
= V  
V
= V  
DDB  
DDA  
DDB  
DDA  
INB_ TO OUTA_  
HIGH TO LOW TRANSITION  
2
INB_ TO OUTA_  
2
2
LOW TO HIGH TRANSITION  
INB_ TO OUTA_  
60 80 100  
0
0
0
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
0
20  
40  
C (pF)  
DDA  
DDA  
L
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Typical Operating Characteristics (continued)  
(V  
– V  
= 3.3V, V  
– V  
= 3.3V, all inputs idle, T = +25°C, unless otherwise noted.)  
CCA  
GNDA  
CCB  
GNDB  
A
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
18  
16  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
V
- V = +100V  
GNDB GNDA  
V
- V  
GNDB GNDA  
= +100V  
= -100V  
LOW TO HIGH  
V
- V  
GNDB GNDA  
V
- V = -100V  
GNDB GNDA  
V
- V  
= 0V  
GNDB GNDA  
HIGH TO LOW  
V
- V = 0V  
GNDB GNDA  
6
V
= V  
DDB  
DDA  
I/OA_ TO I/OB_  
4
V
= V  
DDA  
DDB  
I/OA_ TO I/OB_  
HIGH TO LOW TRANSITION  
LOW TO HIGH TRANSITION  
2
PULLUP = 1k  
INB_ TO OUTA_  
0
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
T
A
(°C)  
DDA  
DDA  
PROPAGATION DELAY  
vs.TEMPERATURE  
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
- V = +100V  
GNDB GNDA  
LOW TO HIGH  
V
- V = -100V  
GNDB GNDA  
V
- V = 0V  
GNDB GNDA  
HIGH TO LOW  
V
= V  
DDB  
DDA  
I/OB_ TO I/OA_  
LOW TO HIGH TRANSITION  
I/OA_ TO I/OB_  
PULLUP = 1k  
PULLUP = 1k  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
T
A
V
DDA  
PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
PROPAGATION DELAY  
vs. TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
- V = +100V  
GNDB GNDA  
V
- V = -100V  
GNDB GNDA  
HIGH TO LOW  
LOW TO HIGH  
V
- V = 0V  
GNDB GNDA  
V
= V  
DDB  
DDA  
I/OB_ TO I/OA_  
HIGH TO LOW TRANSITION  
I/OB_ TO I/OA_  
PULLUP = 1k  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
T
A
DDA  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Pin Configuration  
TOP VIEW  
+
V
1
2
3
4
5
6
7
8
16  
15 OUTB1  
OUTB2  
V
CCA  
CCB  
INA1  
INA2  
14  
MAX14850  
OUTA1  
OUTA2  
I/OA1  
13 INB1  
12 INB2  
11 I/OB1  
10 I/OB2  
I/OA2  
GNDA  
9
GNDB  
SOIC/QSOP  
Pin Description  
PIN  
NAME  
FUNCTION  
REFERENCE  
Supply Voltage of Logic Side A. Bypass V  
capacitor to GNDA.  
with a 0.1µF ceramic  
CCA  
1
V
GNDA  
CCA  
2
3
4
5
INA1  
INA2  
Logic Input 1 on Side A. INA1 is translated to OUTB1.  
Logic Input 2 on Side A. INA2 is translated to OUTB2.  
Logic Output 1 on Side A. OUTA1 is a push-pull output.  
Logic Output 2 on Side A. OUTA2 is a push-pull output.  
GNDA  
GNDA  
GNDA  
GNDA  
OUTA1  
OUTA2  
Bidirectional Input/Output 1 on Side A. I/OA1 is translated to/from I/OB1  
and is a open-drain output.  
6
7
I/OA1  
I/OA2  
GNDA  
GNDA  
Bidirectional Input/Output 2 on Side A. I/OA2 is translated to/from I/OB2  
and is a open-drain output.  
8
9
GNDA  
GNDB  
Ground Reference for Side A  
Ground Reference for Side B  
Bidirectional Input/Output 2 on Side B. I/OB2 is translated to/from I/OA2  
and is a open-drain output.  
10  
I/OB2  
GNDB  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
REFERENCE  
Bidirectional Input/Output 1 on Side B. I/OB1 is translated to/from I/OA1  
and is a open-drain output.  
11  
I/OB1  
GNDB  
12  
13  
14  
15  
INB2  
INB1  
Logic Input 2 on Side B. INB2 is translated to OUTA2.  
Logic Input 1 on Side B. INB1 is translated to OUTA1.  
Logic Output 2 on Side B. OUTB2 is a push-pull output.  
Logic Output 1 on Side B. OUTB1 is a push-pull output.  
GNDB  
GNDB  
GNDB  
GNDB  
OUTB2  
OUTB1  
Supply Voltage of Logic Side B. Bypass V  
capacitor to GNDB.  
with a 0.1µF ceramic  
CCB  
16  
V
GNDB  
CCB  
Functional Diagram  
Detailed Description  
The MAX14850 is a six-channel digital isolator. The  
device is rated for 600V isolation voltage for 60  
RMS  
V
CCA  
V
CCB  
seconds. This digital isolator offers a low-power, low-cost,  
high electromagnetic interference (EMI) immunity, and sta-  
ble temperature performance through Maxim’s proprietary  
process technology. The device uses a monolithic solution  
to isolate different ground domains and block high-voltage/  
high-current transients from sensitive or human interface  
circuitry. Four of the six channels are unidirectional, two  
in each direction. All four unidirectional channels support  
data rates of up to 50Mbps. The other two channels are  
bidirectional with data rates up to 2Mbps.  
MAX14850  
INA1  
INA2  
OUTB1  
OUTB2  
INB1  
OUTA1  
OUTA2  
600V  
RMS  
INB2  
DIGITAL  
ISOLATOR  
2
®
Isolation of I C, SPI/MICROWIRE , and other serial  
busses can be achieved with the MAX14850. The  
device features two supply inputs, V  
and V  
, that  
I/OA1  
I/OA2  
I/OB1  
I/OB2  
CCA  
CCB  
independently set the logic levels on either side of the  
device. V and V are referenced to GNDA and  
CCA  
CCB  
GNDB, respectively. The MAX14850 features a refresh  
mode to ensure accuracy of data when the inputs are DC.  
Digital Isolation  
The MAX14850 provides galvanic isolation for digital  
signals that are transmitted between two ground domains.  
GNDA  
GNDB  
Up to 200V  
of continuous isolation is supported as  
RMS  
well as transient differences of up to 850V.  
MICROWIRE is a registered trademark of Texas Instruments.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Due to their nature, the MAX14850 A-side output buffers  
cannot be connected together or to a device with similar  
buffers or rise time accelerators. However, the MAX14850  
B-side output buffers can be connected together or to any  
other bidirectional buffer or level translator.  
Level Shifting  
The MAX14850 tolerates a ground difference of 600V  
.
RMS  
Therefore, V  
can be 850V  
higher or lower than  
GNDA  
DC  
V
GNDB  
. In addition, the device translates logic levels  
when (V  
–V  
) is higher or lower voltage than  
CCA GNDA  
(V  
–V  
), as long as each is within the valid 3.0V  
The I/OA1, I/OA2, I/OB1, and I/OB2 pins have open-drain  
outputs, requiring pullup resistors to their respective  
supplies for logic-high outputs. The output low voltages are  
guaranteed for sink currents of up to 30mA for side B, and  
10mA for side A (see the Electrical Characteristics table).  
CCB GNDB  
to 5.5V range.  
Unidirectional and Bidirectional Channels  
The MAX14850 operates both as a unidirectional device  
and bidirectional device simultaneously. Each unidirec-  
tional channel can only be used in the direction shown in  
the functional diagram. The bidirectional channels func-  
tion without requiring a direction control input.  
Startup and Undervoltage Lockout  
The V  
and V  
supplies are both internally  
CCA  
CCB  
monitored for undervoltage conditions. Undervoltage  
events can occur during power-up, power-down, or during  
normal operation due to a slump in the supplies. When an  
undervoltage event is detected on either of the supplies, all  
outputs on both sides are automatically controlled, regard-  
less of the status of the inputs. The bidirectional outputs  
become high impedance and are pulled high by the external  
pullup resistor on the open-drain output. The unidirectional  
Unidirectional Channels  
The device features four unidirectional channels that  
operate independently with guaranteed data rates from  
DC to 50Mbps. The output driver of each unidirectional  
channel is push-pull, eliminating the need for pullup resis-  
tors. The outputs are able to drive both TTL and CMOS  
logic inputs.  
outputs are pulled high internally to the voltage of the V  
CCA  
or V  
supply during undervoltage conditions.  
Bidirectional Channels  
CCB  
When an undervoltage condition is detected on either  
supply, all unidirectional outputs are pulled to the supplies  
The device features two bidirectional channels that have  
open-drain outputs. The bidirectional channels do not  
require a direction control input. A logic-low on one side  
causes the corresponding pin on the other side to be  
pulled low while avoiding data latching within the device.  
I/OA1 and I/OA2 outputs comprise special buffers that  
regulate the logic-low voltage at approximately 0.7V. The  
(
Table 1). The bidirectional outputs are high impedance  
and pulled to the supplies by the external pullup resistors.  
Figure 3 shows the behavior of the outputs during power-  
up and power-down.  
Safety Regulatory Approvals  
The MAX14850 is safety certified by UL, CSA, and  
IEC 60747-5-2. Per UL1577, the MAX14850 is 100%  
input logic-low threshold (V ) of I/OA1 and I/OA2 is at  
IT  
least 50mV lower than the output logic-low voltage of  
I/OA1 and I/OA2. This prevents an output logic-low on side  
A from being accepted as an input low and subsequently  
transmitted to side B, thus preventing a latching action.  
I/OB1 and I/OB2 are conventional outputs that do not  
regulate the logic-low output voltage.  
tested at an equivalent V  
(see Table 2).  
of 720V  
for one second  
ISO  
RMS  
Table 1. Output Behavior During Undervoltage Conditions  
V
V
V
V
V
OUTB_  
IN  
CCA  
CCB  
OUTA_  
1
Powered  
Powered  
Powered  
Powered  
1
1
0
X
X
0
0
1
Undervoltage  
Powered  
Powered  
Follows V  
1
CCA  
Undervoltage  
Follows V  
CCB  
Table 2. Safety Regulatory Approvals  
SAFETY AGENCY  
STANDARD  
ISOLATION NUMBER  
isolation voltage for 60 seconds  
FILE NUMBER  
E351759  
UL  
UL1577 Recognized  
600V  
RMS  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
LIFE EXPECTANCY  
vs. WORKING ISOLATION VOLTAGE  
1000  
V
V
CCA  
CCB  
100  
50  
V
IOWM  
= 200V  
RMS  
V
V
OUTA_  
10  
OUTB_  
V
V
I/OA_  
1
I/OB_  
0.1  
0.001  
0
100 200 300 400 500 600 700 800  
400µs/div  
WORKING ISOLATION VOLTAGE (V ) - V  
IOWM RMS  
Figure 3. Undervoltage Lockout Behavior  
Figure 4. Life Expectancy vs. Working Isolation Voltage  
Power Supply Sequencing  
Applications Information  
The MAX14850 does not require special power-supply  
sequencing. The logic levels are set independently on  
Affect of Continuous Isolation  
on Lifetime  
either side by V  
and V  
. Each supply can be pres-  
CCA  
CCB  
High-voltage conditions cause insulation to degrade  
over time. Higher voltages result in faster degradation.  
Even the high-quality insulating material used in the  
MAX14850 can degrade over long periods of time with a  
constant high-voltage across the isolation barrier. Figure 4  
shows the life expectancy of the MAX14850 vs. working  
isolation voltage.  
ent over the entire specified range regardless of the level  
or presence of the other.  
Power Supply Decoupling  
To reduce ripple and the chance of introducing data errors,  
bypass V  
and V  
with 0.1µF ceramic capacitors to  
CCA  
CCB  
GNDA and GNDB, respectively. Place the bypass capaci-  
tors as close to the power-supply input pins as possible.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Typical Operating Circuits (continued)  
0.1µF  
0.1µF  
3.3V  
5V  
V
CCA  
V
CCB  
R
R
PUA  
R
PUB  
R
PUB  
PUA  
MAX14850  
SDA  
SCL  
I/OA1  
I/OA2  
INA1  
I/OB1  
I/OB2  
OUTB1  
OUTB2  
INB1  
SDA  
SCL  
DAC  
RESET  
µC  
GPIO1  
GPIO2  
GPIO3  
RST  
LDAC  
LOAD DAC  
INA2  
V
MONITOR  
CCB  
OUTA1  
OUTA2  
SPARE  
INB2  
GNDA  
GNDB  
600V  
RMS  
ISOLATION  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Typical Operating Circuits (continued)  
0.1µF  
0.1µF  
3.3V  
5V  
V
V
CCB  
CCA  
R
PUB  
MAX14850  
R
PUA  
MAX13085E  
RE  
RO  
I/OB1  
INB1  
GPIO1  
RX  
I/OA1  
A
OUTA1  
I/OA2  
INA1  
µC  
I/OB2  
OUTB1  
OUTB2  
INB2  
B
DE  
DI  
RTS  
TX  
INA2  
V
MONITOR  
CCB  
GPIO3  
OUTA2  
GNDA  
GNDB  
600V  
RMS  
ISOLATION  
Ordering Information  
Chip Information  
PROCESS: BiCMOS  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
16 SOIC  
MAX14850ASE+  
MAX14850ASE+T  
MAX14850AEE+  
MAX14850AEE+T  
16 SOIC  
16 QSOP  
16 QSOP  
+Denotes lead(Pb)-free/RoHS-compliant package.  
T = Tape and Reel  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14850  
Six-Channel Digital Isolator  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
3/12  
Initial release  
Updated General Description, Benefits and Features, Bidirectional Channels section,  
Table 2, and Typical Operating Circuits  
1, 13,  
15, 16  
1
2
5/14  
Added QSOP package and related information  
Additional package and ordering information for QSOP  
1, 2, 6,  
11, 13, 16  
11/14  
Updated General Description, Absolute Maximum Ratings, Electrical Characteristics,  
Pin Description table, Level Shifting, Bidirectional Channels, Startup and  
Undervoltage Lockout, Safety Regulatory Approvals, and Table 2.  
3
9/19  
1–3, 11–13  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
17  

相关型号:

MAX14852

2.75kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM

MAX14852GWE+

Line Transceiver,
MAXIM

MAX14852GWE+T

2.75kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM

MAX14853GWE+

Line Transceiver,
MAXIM

MAX14854

2.75kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM

MAX14854GWE+

Line Transceiver,
MAXIM

MAX14854GWE+T

Line Transceiver,
MAXIM

MAX14856

5kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM

MAX14856GWE+

Line Transceiver,
MAXIM

MAX14856GWE+T

5kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM

MAX14858

Operates From a Single 3.3V Supply
MAXIM

MAX14858GWE+

5kVRMS Isolated 500kbps/25Mbps Full-Duplex
MAXIM