MAX14775EASA+

更新时间:2024-09-18 19:09:23
品牌:MAXIM
描述:Line Transceiver,

MAX14775EASA+ 概述

Line Transceiver, 线路驱动器或接收器

MAX14775EASA+ 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active包装说明:,
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:13 weeks
风险等级:2.29接口集成电路类型:LINE TRANSCEIVER
峰值回流温度(摄氏度):NOT SPECIFIED处于峰值回流温度下的最长时间:NOT SPECIFIED
Base Number Matches:1

MAX14775EASA+ 数据手册

通过下载MAX14775EASA+数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
EVALUATION KIT AVAILABLE  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
General Description  
Benefits and Features  
Integrated Protection Ensures for Robust  
The MAX14775E/MAX14776E fault-protected RS-485/  
RS-422 transceivers feature ±65V protection for overvoltage  
signal faults on communication bus lines, ensuring  
communication in harsh industrial environments.  
Each device contains one driver and one receiver and  
operates over the 3V to 5.5V supply range. The  
MAX14775E is optimized for high-speed data rates up  
to 20Mbps. The MAX14776E features slew-rate limited  
outputs for data rates up to 500kbps.  
Communication  
•ꢀ ±65V Fault Protection Range on Driver Outputs/  
Receiver Inputs  
•ꢀ ±25V Common Mode Range on the Receiver Inputs  
•ꢀ Large Receiver Hysteresis Increases Noise Tolerance  
•ꢀ Hot-Swap Protection  
•ꢀ Thermal Shutdown  
High-Performance Transceiver Enables Flexible  
Designs  
These transceivers are optimized for robust communication  
in noisy environments. A large 200mV (typ) hysteresis on  
receiver inputs ensure for high noise rejection and a fail-  
safe feature guarantees a logic-high on the receiver output  
when the inputs are open or shorted. Driver outputs are  
protected against short-circuit conditions.  
•ꢀ Compliant with RS-485 EIA/TIA-485 Standard  
•ꢀ 20Mbps (MAX14775E)/500kbps (MAX14776E)  
Maximum Data Rate  
•ꢀ 3V to 5.5V Supply Range  
•ꢀ Up to 100 Devices on the Bus  
The MAX14775E/MAX14776E receivers feature a 1/3-  
unit load input impedance, allowing up to 100 transceivers  
on a bus.  
Applications  
Industrial Field Bus Networks  
Motion Controllers  
HVAC  
The MAX14775E/MAX14776E are available in 8-pin  
SOIC and 8-pin TDFN-EP packages and operate over the  
-40°C to +125°C temperature range.  
Ordering Information appears at end of data sheet.  
Selector Guide  
PART NUMBER  
MAX14775EASA+  
MAX14775EATA+  
MAX14776EASA+  
MAX14776EATA+  
MAX DATA RATE  
PIN-PACKAGE  
8 SOIC  
20Mbps  
20Mbps  
500kbps  
500kbps  
8 TDFN-EP  
8 SOIC  
8TDFN-EP  
19-8614; Rev 0; 9/16  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Absolute Maximum Ratings  
(All voltages referenced to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................-0.3V to +6V  
8-pin SOIC (derate 7.60mW/°C above +70°C) ........606.1mW  
8-pin TDFN (derate 24.4mW/°C above +70°C) ......1951.2mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
CC  
RO ............................................................-0.3V to (V  
+ 0.3V)  
CC  
DE, DI, RE...............................................................-0.3V to +6V  
A, B (I = ±1mA) ..............................................-70V to +70V  
MAX  
Short-Circuit Duration (RO, A, B)..............................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
SOIC  
TDFN  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ).......132°C/W  
Junction-to-AmbientꢀThermalꢀResistanceꢀ(θ ).........41°C/W  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ ) ...............8°C/W  
JC  
JA  
JA  
Junction-to-CaseꢀThermalꢀResistanceꢀ(θ ) .............38°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(V  
= 3.0V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 2)  
A
CC  
A
MIN  
MAX  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER  
Supply Voltage  
V
3.0  
5.5  
5.3  
V
CC  
DE = high, RE = low, no load, no  
switching  
Supply Current  
I
3
4
mA  
μA  
μA  
CC  
Shutdown Supply Current  
I
DE = high, RE = low  
SH  
Shutdown Short-Circuit Supply  
Current  
A or B shorted to ±65V, DE = high,  
RE = low  
I
240  
SHDN_SHRT  
DRIVER  
R ꢀ=ꢀ54Ω,ꢀFigureꢀ1a  
1.5  
2.0  
L
Differential Driver Output  
|V  
|
V
OD  
R ꢀ=ꢀ100Ω,ꢀFigureꢀ1a  
L
Change in Magnitude of Differ-  
ential Driver Output Voltage  
ΔV  
R
= 100Ωꢀorꢀ54Ω,ꢀFigureꢀ1aꢀ(Noteꢀ3)  
-0.2  
+0.2  
3
V
V
OD  
L
Driver Common-Mode Output  
Voltage  
V
R ꢀ=ꢀ100Ωꢀorꢀ54Ω,ꢀFigureꢀ1a  
L
V
CC  
/ 2  
OC  
Change in Magnitude of  
Common-Mode Voltage  
ΔV  
R ꢀ=ꢀ100Ωꢀorꢀ54Ω,ꢀFigureꢀ1aꢀ(Noteꢀ3)  
-0.2  
+0.2  
V
V
OC  
L
Single-Ended Driver Output  
Voltage High  
A and B outputs, output is high,  
V
V
-0.2  
CC  
OH  
I
= 3mA  
SOURCE  
A and B outputs, output is low,  
= 3mA  
Single-Ended Driver Output  
Voltage Low  
V
0.2  
V
OL  
I
SINK  
Driver Short-Circuit Output  
Current  
-65Vꢀ≤ꢀV  
V ꢀ≤ꢀ+65Vꢀ(Noteꢀ4)  
B
V
< 0V or V  
< V  
CC A or  
A or  
B
I
200  
mA  
OSD1  
Maxim Integrated  
2  
www.maximintegrated.com  
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
DC Electrical Characteristics (continued)  
(V  
= 3.0V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 2)  
A
CC  
A
MIN  
MAX  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Average Driver Short-Circuit  
Output Current  
I
0Vꢀ≤ꢀV  
V ꢀ≤ꢀV  
250  
mA  
OSD2  
A or  
B
CC  
RECEIVER  
V
V
= +12V  
= -7V  
+280  
CM  
CM  
DE = low,  
Input Current (A, B)  
I , I  
µA  
A
B
0V ≤ꢀV  
≤ꢀ5.5V  
-200  
38  
CC  
Receiver Input Resistance  
R
IN  
-7Vꢀ≤ꢀV  
ꢀ≤ꢀ+12V  
CM  
kΩ  
Common Mode Voltage Range  
V
-25  
+25  
V
CM  
Receiver Differential Threshold  
Voltage Rising  
V
-25Vꢀ≤ꢀV  
-25Vꢀ≤ꢀV  
ꢀ≤ꢀ+25V  
ꢀ≤ꢀ+25V  
+40  
+200  
mV  
mV  
THH  
CM  
Receiver Differential Threshold  
Voltage Falling  
V
-200  
-40  
THL  
ΔV  
CM  
V
< t  
= 0V, time from last transition  
CM  
Receiver Input Hysteresis  
250  
50  
mV  
TH  
D_FS  
25Vꢀ≤ꢀV  
ꢀ≤ꢀ+25V,ꢀtimeꢀfromꢀlastꢀ  
CM  
Differential Input Fail-safe  
Threshold  
V
-40  
+40  
mV  
pF  
TH_FSH  
transition > t  
D_FS  
Measured between A and B, f = 1MHz  
Differential Input Capacitance  
LOGIC OUTPUTS (RO)  
C
V
A,B  
RO Output Logic High Voltage  
I
I
= 3mA, (V - V )ꢀ≥ꢀ+200mV  
V
-0.4  
CC  
V
OH  
SOURCE  
A
B
RO Output Logic Low Voltage  
RO Leakage Current  
V
= 3mA, (V - V ) < +200mV  
0.4  
+1  
V
OL  
SINK  
A
B
I
RE = high, 0V ≤ꢀV  
≤ꢀV  
CC  
-1  
μA  
mA  
OZR  
RO  
RO Short-Circuit Current  
LOGIC INPUTS (DE, DI, RE)  
I
0V ≤ꢀV  
≤ꢀV  
CC  
70  
OSR  
RO  
0.67 x  
Input Logic High Voltage  
V
V
V
IH  
V
CC  
0.33 x  
Input Logic Low Voltage  
V
IL  
V
CC  
Input Hysteresis  
V
100  
mV  
HYS  
Input Leakage Current  
I
-1  
1
+1  
10  
μA  
IN  
Input Impedance on First  
Transition  
R
DE, RE  
kΩ  
IN_FT  
PROTECTION  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
T
Temperature rising  
+162  
12  
°C  
°C  
SHDN  
T
HYST  
Human Body Model  
±8  
ESD Protection  
(A, B Pins to GND)  
kV  
IEC 61000-4-2- Contact Discharge  
Human Body Model  
±5  
±2  
ESD Protection (All Other Pins)  
kV  
V
Fault Protection Range (A, B  
Pins to GND)  
-65  
+65  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Switching Electrical Characteristics (MAX14775E)  
(V  
= 3.0V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 2)  
A
CC  
A
MIN  
MAX  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
R ꢀ=ꢀ54Ω,ꢀC = 50pF, Figure 2 and  
Figure 3  
L
L
Driver Propagation Delay  
t
t
40  
9
ns  
ns  
DPLH, DPHL  
Differential Driver Output Skew  
|t - t  
R ꢀ=ꢀ54Ω,ꢀC = 50pF, Figure 2 and  
L L  
Figure 3 (Note 7)  
t
DSKEW  
|
DPLH DPHL  
Driver Differential Output Rise  
or Fall Time  
R ꢀ=ꢀ54Ω,ꢀC = 50pF, Figure 2 and  
Figure 3 (Note 7)  
L
L
t
, t  
LH HL  
8
15  
ns  
Maximum Data Rate  
DR  
MAX  
20  
Mbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
90  
90  
DZH  
L
L
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 5  
ns  
DZL  
L
L
-20V V  
Figure 1a  
+25V, 4.5V V  
5.5V,  
CM  
CC  
Driver Enable Time  
t
1000  
ns  
D
Driver Disable Time From Low  
Driver Disable Time From High  
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 5  
50  
50  
ns  
ns  
DLZ  
L
L
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
L L  
DHZ  
Driver Enable Time from  
Shutdown to Output High  
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
(Note 5)  
L
L
t
170  
μs  
DLZ(SHDN)  
Driver Enable Time from  
Shutdown to Output Low  
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
(Note 5)  
L
L
t
170  
800  
μs  
DHZ(SHDN)  
Time to Shutdown  
t
(Note 5)  
50  
ns  
SHDN  
RECEIVER (Note 6)  
Receiver Propagation Delay  
Receiver Output Skew  
t
t
C
C
= 15pF, Figure 6 and Figure 7  
= 15pF, Figure 6 and Figure 7  
50  
5
ns  
ns  
RPLH, RPHL  
L
L
t
RSKEW  
(Note 7)  
Receiver Enable to Output  
High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
Figure 8  
L
L
t
50  
50  
ns  
ns  
ns  
ns  
μs  
μs  
RZH  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S1 closed,  
L
L
Receiver Enable to Output Low  
t
RZL  
RLZ  
RHZ  
Figure 8  
Receiver Disable Time From  
Low  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S1 closed,  
L
L
t
50  
Figure 8  
Receiver Disable Time From  
High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
L
L
t
50  
Figure 8  
Receiver Enable from  
Shutdown to Output Low  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
L L  
Figure 8 (Note 5)  
t
170  
RLZ(SHDN)  
Receiver Enable from  
Shutdown to Output High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
L
L
t
170  
800  
RHZ(SHDN)  
Figure 8 (Note 5)  
Time to Shutdown  
t
(Note 5)  
50  
ns  
SHDN  
Delay to Fail-Safe Operation  
t
10  
μs  
D_FS  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Switching Electrical Characteristics (MAX14776E)  
(V  
= 3.0V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 2)  
A
CC  
A
MIN  
MAX  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
R ꢀ=ꢀ54Ω,ꢀC = 50pF, Figure 2 and  
Figure 3  
L
L
Driver Propagation Delay  
t
t
100  
105  
1000  
ns  
ns  
DPLH, DPHL  
Differential Driver Output Skew  
|t - t  
R ꢀ=ꢀ54Ω,ꢀC = 50pF, Figure 2 and  
L L  
Figure 3 (Note 7)  
t
140  
600  
600  
DSKEW  
|
DPLH DPHL  
3V ≤ꢀV  
≤ꢀ3.6V  
R ꢀ=ꢀ54Ω,ꢀC  
50pF, Figure 2  
and Figure 3  
=
L
CC  
L
Driver Differential Output Rise  
or Fall Time  
t
, t  
LH HL  
ns  
4.5V ≤ꢀV  
CC  
≤ꢀ5.5V  
105  
500  
Maximum Data Rate  
DR  
MAX  
kbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
2500  
2500  
DZH  
L
L
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 5  
ns  
DZL  
L
L
-20V ≤ꢀV  
Figure 1a  
≤ꢀ+25V, 4.5V ≤ꢀV  
5.5V,  
CM  
CC  
Driver Enable Time  
t
3500  
ns  
D
Driver Disable Time From Low  
Driver Disable Time From High  
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 5  
100  
100  
ns  
ns  
DLZ  
L
L
t
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
L L  
DHZ  
Driver Enable Time from  
Shutdown to Output High  
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
(Note 5)  
L
L
t
170  
μs  
DLZ(SHDN)  
Driver Enable Time from  
Shutdown to Output Low  
R ꢀ=ꢀ110Ω,ꢀC = 50pF, Figure 4  
(Note 5)  
L
L
t
170  
800  
μs  
DHZ(SHDN)  
Time to Shutdown  
t
(Note 5)  
50  
ns  
SHDN  
RECEIVER (Note 6)  
Receiver Propagation Delay  
t
t
C
C
= 15pF, Figure 6 and Figure 7  
= 15pF, Figure 6 and Figure 7  
200  
30  
ns  
ns  
RPLH, RPHL  
L
L
Receiver Output Skew  
t
RSKEW  
(Note 7)  
Receiver Enable to Output  
High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
Figure 8  
L
L
t
50  
50  
50  
50  
ns  
ns  
ns  
ns  
RZH  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S1 closed,  
L
L
Receiver Enable to Output Low  
t
RZL  
RLZ  
RHZ  
Figure 8  
Receiver Disable Time from  
Low  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S1 closed,  
L
L
t
Figure 8  
Receiver Disable Time from  
High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
L
L
t
Figure 8  
Receiver Enable from Shutdown  
to Output High  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
Figure 8  
L
L
t
170  
μs  
μs  
RLZ(SHDN)  
Receiver Enable from Shutdown  
to Output Low  
R ꢀ=ꢀ1kΩ,ꢀC = 15pF, S2 closed,  
L
L
t
170  
800  
RHZ(SHDN)  
Figure 8  
Time to Shutdown  
t
(Note 5)  
50  
ns  
SHDN  
Delay to Fail-Safe Operation  
t
10  
μs  
D_FS  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Switching Electrical Characteristics (MAX14776E) (continued)  
(V  
= 3.0V to 5.5V, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 2)  
CC A  
CC  
A
MIN  
MAX  
Note 2: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 3:ꢀ ΔV ꢀandꢀΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 4:ꢀ Theꢀshort-circuitꢀcurrentꢀisꢀ200mAꢀ(max)ꢀforꢀaꢀshortꢀperiodꢀ(35μs,ꢀtyp).ꢀIfꢀtheꢀshortꢀcircuitꢀpersists,ꢀtheꢀoutputsꢀareꢀthenꢀsetꢀ  
to high impedance for 300ms (typ).  
Note 5: Shutdown is enabled when RE is high and DE is low. If the enable inputs are in this state for less than 50ns, the device is  
guaranteed not to enter shutdown. If the enable inputs are held in this state for at least 800ns, the device is guaranteed to  
have entered shutdown.  
Note 6: Capacitive load includes test probe and fixture capacitance.  
Note 7: Guaranteed by design. Not production tested.  
375  
A
A
RL  
2
VOD  
VOD  
60Ω  
+
-
VCM  
VOC  
RL  
2
B
B
375Ω  
(b)  
(a)  
Figure 1. Driver DC Test Load  
A
DI  
V
OD  
R
L
C
L
B
Figure 2. Driver Timing Test Circuit  
Maxim Integrated  
6  
www.maximintegrated.com  
 
 
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
t
LH  
P 3ns, t P 3ns  
HL  
V
CC  
50%  
50%  
DI  
GND  
1/2 V  
t
O
DPHL  
t
DPLH  
B
A
1/2 V  
O
V
O
V
= V - V  
A B  
DIFF  
V
0
O
80%  
80%  
V
DIFF  
20%  
20%  
-V  
O
t
LH  
t
HL  
t
|t  
- t  
|
DSKEW = DPLH DPHL  
Figure 3. Driver Propagation Delays  
A
S1  
DI  
V
GND OR V  
CC  
OUT  
CC  
D
DE  
50%  
B
C
50pF  
L
R
110I  
L =  
GND  
t
DZH  
DE  
250mV  
V
OUT  
OH  
50%  
GENERATOR  
GND  
50I  
t
DHZ  
Figure 4. Driver Enable and Disable Times (t  
, t )  
DHZ DZH  
Maxim Integrated  
7  
www.maximintegrated.com  
 
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
V
CC  
R
110I  
L =  
A
B
S1  
DI  
GND OR V  
OUT  
CC  
D
C
50pF  
L =  
DE  
GENERATOR  
50I  
V
CC  
DE  
50%  
GND  
t
DZL  
t
DLZ  
V
CC  
50%  
OUT  
250mV  
V
OL  
Figure 5. Driver Enable and Disable Times (t  
, t )  
DZL DLZ  
A
RECEIVER  
OUTPUT  
R
ATE  
V
ID  
B
Figure 6. Receiver Propagation Delay Test Circuit  
Maxim Integrated  
8  
www.maximintegrated.com  
 
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
t
LH  
P 3ns, t P 3ns  
HL  
A
B
1V  
-1V  
t
t
RPHL  
RPLH  
V
V
OH  
OL  
V
V
CC  
CC  
RO  
2
2
t
|t  
- t  
|
RSKEW = RPHL RPLH  
Figure 7. Receiver Propagation Delays  
+1.5V  
-1.5V  
S3  
R
1kI  
S1  
S2  
L
V
CC  
RO  
V
R
ID  
C
L
15pF  
GNDB  
GND  
RE  
GENERATOR  
50I  
V
CC  
V
CC  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
RE  
50%  
GND  
50%  
RE  
GND  
t
t
RZL  
RZH  
V
V
CC  
OH  
V
CC  
2
V
CC  
RO  
RE  
RO  
RE  
2
GND  
V
OL  
V
CC  
V
CC  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
50%  
50%  
S3 = -1.5V  
GND  
GND  
t
t
RLZ  
RHZ  
V
CC  
V
OH  
0.25V  
RO  
RO  
0.25V  
V
OL  
GND  
Figure 8. Receiver Enable and Disable Times  
Maxim Integrated  
9  
www.maximintegrated.com  
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Typical Operating Characteristics  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. DRIVER DATA RATE  
SUPPLY CURRENT  
vs. DRIVER DATA RATE  
DRIVER CURRENT vs.  
VCC VOLTAGE  
(VCC = 3.3V)  
(VCC = 5V)  
toc01  
toc02  
toc03  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 60  
60  
50  
40  
30  
20  
10  
0
RL = 60  
RL = 120  
RL = 120  
No Load  
No Load  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
3.0  
3.5  
4.0  
VCC (V)  
4.5  
5.0  
5.5  
DRIVER DATA RATE (Mbps)  
DRIVER DATA RATE (Mbps)  
DRIVER OUTPUT SHORT CIRCUIT  
CURRENT vs. VOLTAGE  
MAX14775 DRIVER PROPAGATION  
DELAY vs TEMPERATURE  
MAX14776 DRIVER PROPAGATION  
DELAY vs TEMPERATURE  
toc06  
toc04  
toc05  
20  
0
20  
18  
16  
14  
12  
10  
8
500  
450  
400  
350  
300  
250  
200  
150  
100  
tDPHL, VCC = 3.3V  
tDPLH, VCC = 3.3V  
-20  
-40  
tDPLH, VCC = 3.3V  
tDPHL, VCC = 3.3V  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
tDPLH, VCC = 5V  
6
4
tDPHL, VCC = 5V  
2
tDPLH, VCC = 5V  
tDPHL, VCC = 5V  
OUTPUT IS HIGH  
5 15 25 35 45 55 65  
0
-65 -55 -45 -35 -25 -15 -5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
DRIVER VOLTAGE (V)  
DRIVER OUTPUT SHORT CIRCUIT  
CURRENT vs. VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. LOAD CURRENT  
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
toc09  
toc07  
toc08  
200  
180  
160  
140  
120  
100  
80  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
OUTPUT IS LOW  
VCC = 5V  
VCC = 5V  
VCC = 3.3V  
VCC = 3.3V  
60  
40  
20  
LOAD = 60  
0
RL = 54  
-20  
-65 -55 -45 -35 -25 -15 -5  
5
15 25 35 45 55 65  
0
25  
50  
75  
100  
125  
150  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DRIVER VOLTAGE (V)  
LOAD CURRENT (mA)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
CC  
RO OUTPUT HIGH  
vs SOURCE CURRENT  
RO OUTPUT LOW  
vs SINK CURRENT  
toc10  
toc11  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
6
5
4
3
2
1
0
VCC = 5V  
VCC = 5V  
VCC = 3.3V  
VCC = 3.3V  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
MAX14775 RECEIVER PROPAGATION  
DELAY vs TEMPERATURE  
MAX14776 RECEIVER PROPAGATION  
DELAY vs TEMPERATURE  
toc12  
toc13  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200  
180  
160  
140  
120  
100  
80  
tRPHL, VCC = 3.3V  
tRPHL, VCC = 3.3V  
tRPLH, VCC = 3.3V  
tRPLH, VCC = 3.3V  
tRPHL, VCC = 5V  
tRPLH, VCC = 5V  
60  
tRPLH, VCC = 5V  
tRPHL, VCC = 5V  
40  
20  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Pin Configurations  
VCC  
8
B
7
A
6
GND  
5
TOP VIEW  
+
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
VCC  
B
MAX14775E  
MAX14776E  
MAX14775E  
MAX14776E  
A
*
+
GND  
1
2
3
4
RO  
RE  
DE  
DI  
SOIC  
TDFN-EP  
3mm x 3mm  
* Exposed Pad. Connect to GND  
Pin Description  
PIN  
NAME  
FUNCTION  
1
RO  
Receiver Data Output. See the Function Tables for more information.  
Receiver Output Enable. Drive RE low or connect to GND to enable RO. Drive RE high to disable  
the receiver. RO is high impedance when RE is high. Drive RE high and DE low to force the IC into  
low-power shutdown mode.  
2
RE  
Driver Output Enable. Drive DE high to enable the driver. Drive DE low or connect to GND to disable  
the driver. Drive DE low and RE high to force the IC into low-power shutdown mode.  
3
4
DE  
DI  
Driver Input. With DE high, a low on DI forces the noninverting output (A) low and the inverting out-  
put (B) high. Similarly, a high on DI forces the noninverting output high and the inverting output low.  
5
6
7
8
GND  
A
Ground  
Noninverting Driver Output/Receiver Input  
Inverting Driver Output/Receiver Input  
B
V
Power Supply Input. Bypass V ꢀtoꢀGNDꢀwithꢀaꢀ0.1μFꢀcapacitorꢀasꢀcloseꢀasꢀpossibleꢀtoꢀtheꢀdevice.  
CC  
CC  
Exposed Pad. TDFN package only. Connect EP to GND. EP is not intended as the main ground  
connection.  
EP  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Function Tables  
TRANSMITTING  
INPUTS  
OUTPUTS  
RE  
X
DE  
1
DI  
1
B
A
0
1
1
0
1
0
X
0
0
X
X
High Impedance  
High Impedance  
0
Shutdown. A and B are high impedance.  
1
Note: X = Don’t care.  
RECEIVING  
INPUTS  
OUTPUTS  
Time from Last  
A-B Transition  
RE  
DE  
(V - V )  
RO  
A
B
0
+200mV  
-200mV < (V - V ) < +200mV  
Always  
1
X
X
Indeterminate.  
RO is latched to previous value.  
< t  
0
A
B
D_FS  
-40mV < (V - V ) < +40mV  
> t  
1
0
0
0
1
1
X
X
X
1
A
B
D_FS  
- 200mV  
Always  
0
Open/Shorted  
> t  
1
D_FS  
X
X
X
X
High impedance  
Shutdown. RO is high impedance.  
0
Note: X = Don’t care.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
When a fault is detected on A or B, the affected driver out-  
put is switched into a high-impedance state. After 300ms  
(typ),ꢀtheꢀdriverꢀoutputꢀisꢀre-enabledꢀforꢀ30μsꢀ(typ).ꢀIfꢀtheꢀ  
fault condition persists, the driver output is again disabled.  
If the fault has been removed, the driver outputs remain  
on and the transceiver operates normally.  
Detailed Description  
The MAX14775E/MAX14776E half-duplex transceivers  
are optimized for RS-485/RS-422 applications that require  
up to ±65V protection from faults on communication bus  
lines. These devices contain one differential driver and  
one differential receiver. The devices feature a 1/3 unit  
load, allowing up to 100 transceivers on a single bus.  
Driving a non-terminated cable may cause the voltage  
seen at the driver outputs (A or B) to exceed the absolute  
maximum voltage rating if the DI input is switched during  
a ±65V fault on the A or B pins. Therefore, a termina-  
tion resistor is recommended in order to maximize the  
overvoltage fault protection while the DI input is being  
switched.  
The MAX14775E supports data rates up to 20Mbps. The  
MAX14776E supports data rates up to 500kbps.  
Driver  
The driver accepts a single-ended, logic-level input (DI) and  
transfers it to a differential RS-485 level output on the A and  
B driver outputs.  
If the DI input does not change state while the fault con-  
dition is present, the MAX14775E/MAX14776E will with-  
stand up to ±65V on the RS-485 inputs, regardless of the  
termination status of the data cable.  
Set the driver enable input (DE) low to disable the driver. A  
and B are high impedance when the driver is disabled.  
Receiver  
Fail-Safe  
The receiver accepts a differential, RS-485 level input on  
the A and B inputs and transfers it to a single-ended, logic-  
level output (RO).  
The devices’ receiver features symmetrical thresholds to  
improve the duty cycle of the received signal, ensuring that  
it is 50% when the received signal amplitude is small.  
Additionally, a high input hysteresis (250mV, typ) increases  
the resilience to noise on the receiver.  
Drive the receiver enable input (RE) low to enable the  
receiver. Driver RE high to disable the receiver. RO is high  
impedance when RE is high.  
The MAX14775E/MAX14776E also include a fail-safe  
feature that ensures the receiver output (RO) is high when  
the receiver inputs are shorted or open, or when they are  
connected to a differentially terminated transmission line  
Low-Power Shutdown  
Drive DE low and RE high for at least 800ns to put  
the MAX14775E/MAX14776E into low-power shutdown  
mode.ꢀSupplyꢀcurrentꢀdropsꢀtoꢀ20μAꢀwhenꢀtheꢀdeviceꢀisꢀ  
in shutdown mode.  
with all drivers disabled for longer than t ꢀ(10μs,ꢀtyp).ꢀ  
D_FS  
Hot-Swap Functionality  
Hot-Swap Inputs  
A glitch protection feature ensures that the MAX14775E/  
MAX14776E will not accidentally enter shutdown mode  
due to logic skews between DE and RE when switching  
between transmit and receive modes.  
Inserting circuit boards into a hot, or powered backplane  
may cause voltage transients on DE, RE, and receiver  
inputs A and B that can lead to data errors. For example,  
upon initial circuit board insertion, the processor under-  
goes a power-up sequence. During this period, the high-  
impedance state of the output drivers makes them unable  
to drive the MAX14775E/MAX14776E enable inputs to  
a defined logic level. Meanwhile, leakage currents of up  
toꢀ10μAꢀfromꢀtheꢀhigh-impedanceꢀoutput,ꢀorꢀcapacitivelyꢀ  
±65V Fault Protection  
The driver outputs/receiver inputs of transceivers connected  
to an industrial RS-485 network often experience faults  
when shorted to voltages that exceed the -7V to +12V  
input range specified in the EIA/TIA-485 standard. Under  
such circumstances, ordinary RS-485 transceivers that  
have a typical absolute maximum voltage rating of -8V to  
+12.5V require costly external protection devices which  
can compromise the RS-485 performance. To reduce  
system complexity and the need for external protection,  
the driver outputs/receiver inputs of the MAX14775E/  
MAX14776E are designed to withstand voltage faults of up  
to ±65V with respect to ground without damage. Protection  
is guaranteed regardless whether the transceiver is active,  
in shutdown or without power.  
coupled noise from V  
or GND, could cause an input  
CC  
to drift to an incorrect logic state. To prevent such a  
condition from occurring, the MAX14775E/MAX14776E  
features hot-swap input circuitry on DE and RE to safe-  
guard against unwanted driver activation during hot-swap  
situations. When VCC rises, an internal pulldown circuit  
holds DE low and REꢀ highꢀ forꢀ atꢀ leastꢀ 10μs.Afterꢀ theꢀ  
initial power-up sequence, the internal pulldown/pullup  
circuitry becomes transparent, resetting the hot-swap  
tolerable inputs.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Thermal Shutdown Protection  
Power Considerations for the MAX14775E/  
MAX14776E  
The MAX14775E/MAX14776E feature thermal-shutdown  
protection circuitry to protect the device. When the junction  
temperature exceeds +165°C (typ), the driver outputs are  
disabled and RO is high impedance. Driver and receiver  
outputs are re-enabled when the junction temperature falls  
below 150°C (typ).  
At high data rates, the power dissipation of an RS-485  
transceiver can be high. The power dissipation of a half-  
duplex transceiver is determined by a number of factors,  
including:  
The data rate  
The time that the driver is transmitting  
The termination impedance  
The power supply voltage  
Applications Information  
100 Transceivers on the Bus  
The MAX14775E/MAX14776E transceivers have 0.32-  
unit load receiver, allowing up to 100 MAX14775E/  
MAX14776E transceivers connected in parallel on a  
shared communication line. Connect any combination of  
these devices, and/or other RS-485 devices, for a maximum  
of 32 unit loads to the line.  
Higher data rates result in higher power dissipation due  
to switching losses in the transceiver. Switching losses  
increase even more when capacitance is applied to the A  
and B pins. External capacitance should be kept to a minimum  
to help reduce power dissipation at high data rates.  
Similarly, the power dissipation in a transceiver is much  
higher when the driver is transmitting, compared to when  
the transceiver is receiving. In half-duplex communication,  
the period of transmission relative to the idle or receiving  
intervals (i.e., the duty cycle) should be taken into consideration  
when calculating the average power dissipation.  
Typical Application  
The MAX14775E/MAX14776E half-duplex transceivers are  
designed for bidirectional data communications on  
multipoint bus transmission lines. Figure 9 shows a typical  
network applications circuit. To minimize reflections, the bus  
should be terminated at the receiver inputs in its characteristics  
impedance, and stub lengths off the main line should be  
kept as short as possible.  
B
B
DI  
D
D
DI  
120  
120  
DE  
RE  
DE  
RE  
A
A
RO  
R
R
RO  
MAX14775E  
MAX14776E  
DI  
DE RE RO  
DI  
DE RE  
RO  
Figure 9. Typical RS-485 Network  
Maxim Integrated  
15  
www.maximintegrated.com  
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
The line termination resistance/impedance determines  
the driver’s load current during transmission and the  
ESD Protection  
ESD protection structures are incorporated on all pins  
to protect against electrostatic discharge encountered  
during handling and assembly. The driver outputs and  
receiver inputs of the MAX14775E/MAX14776E have  
extra protection against static electricity. The ESD structures  
withstand high ESD in normal operation and when powered  
down. After an ESD event, the devices keep working without  
latch-up or damage.  
differential output voltage (V ) on the driver is  
OD  
determined by the supply voltage. A higher supply voltage  
results in a larger differential output voltage at the driver  
driving the line, which in turn results in a higher current  
draw from the supply (I ).  
CC  
The power dissipation in the chip is calculated as the  
product of supply current times supply voltage, subtracting  
2
the power dissipated in the external termination resistor :  
ESD protection can be tested in various ways. The  
transmitter outputs and receiver inputs of the devices  
are characterized for protection to the cable-side ground  
(GNDB) to the following limits:  
2
P
DIS  
= (V  
x I ) – (V  
/R  
LOAD  
)
CC  
CC  
OD  
Use the Typical Operation Characteristics to determine  
the supply current at a given supply voltage and data rate.  
±8kV HBM  
For example, assuming a data rate of 20Mbps with a 5V  
±5kVꢀusingꢀtheꢀContactꢀDischargeꢀmethodꢀspecifiedꢀ  
in the IEC 61000-4-2  
supply on a fully loaded bus (R ꢀ=ꢀ60Ω),ꢀweꢀcanꢀcalculateꢀ  
L
that the power dissipation (at room temperature) is:  
2
P
= (5V x 70mA) – (4.3V /60Ω)ꢀ=ꢀ42mW  
DIS  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents test  
setup, test methodology, and test results.  
Ensure that power dissipation of the transceiver is kept  
below the value listed in the Absolute Maximum Ratings  
section to protect the device from entering thermal shut-  
down or from damage. If the calculated power dissipation  
nears the specified limits, select a package with a lower  
thermal resistance which also allows for higher power  
dissipation.  
Human Body Model (HBM)  
Figure 10 shows the HBM test model and Figure 11  
shows the current waveform it generates when  
discharged in a low-impedance state. This model  
consistsofa100pFcapacitorchargedtotheESDvoltageof  
interest, which is then discharged in to the test device  
throughꢀaꢀ1.5kΩꢀresistor.  
R
R
D
C
1M  
1500Ω  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I 100%  
P
90%  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPS  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 10. Human Body ESD Test Model  
Figure 11. Human Body Current Waveform  
Maxim Integrated  
16  
www.maximintegrated.com  
 
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
The major difference between tests done using the HBM  
and IEC 61000-4-2 is higher peak current in IEC 61000-  
4-2 because series resistance is lower in the IEC 61000-  
4-2 model. Hence, the ESD withstand voltage measured  
to IEC 61000-4-2 is generally lower than that measured  
using the HBM. Figure 12 shows the IEC 61000-4-2  
model and Figure 13 shows the current waveform for IEC  
61000-4-2 ESD Contact Discharge Test.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. However, it does not  
specifically refer to integrated circuits. The MAX14775E/  
MAX14776E help in designing equipment to meet IEC  
61000-4-2 without the need for additional ESD protection  
components.  
R
R
C
I
D
50MTO 100MΩ  
330Ω  
100%  
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t = 0.7ns TO 1ns  
r
t
30ns  
60ns  
Figure 12. IEC 61000-4-2 ESD Test Model  
Figure 13. IEC 61000-4-2 ESD Generator Current Waveform  
Maxim Integrated  
17  
www.maximintegrated.com  
 
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Functional Diagram  
R
RO  
RE  
A
B
SHUTDOWN  
DE  
DI  
D
MAX14775E  
MAX14776E  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX14775EASA+  
MAX14775EASA+T  
MAX14775EATA+  
MAX14775EATA+T  
MAX14776EASA+  
MAX14776EASA+T  
MAX14776EATA+  
MAX14776EATA+T  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
8 SOIC  
8 SOIC  
8 TDFN-EP  
8 TDFN-EP  
8 SOIC  
PACKAGE PACKAGE  
OUTLINE  
NO.  
LAND PATTERN  
NO.  
TYPE  
CODE  
8 SOIC  
S8+4  
21-0041  
21-0137  
90-0096  
90-0059  
8 SOIC  
8 TDFN-EP  
T833+2  
8 TDFN-EP  
8 TDFN-EP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and Reel  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
19  
www.maximintegrated.com  
 
MAX14775E/MAX14776E  
±65V Fault Protected 500kpbs/20Mbps  
Half-Duplex RS-485/RS-422 Transceivers  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
9/16  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2016 Maxim Integrated Products, Inc.  
20  

MAX14775EASA+ 相关器件

型号 制造商 描述 价格 文档
MAX14775EEVKIT MAXIM Operates From a Single 3V to 5V Supply 获取价格
MAX14776E MAXIM Operates From a Single 3V to 5V Supply 获取价格
MAX14776E ADI ±65V故障保护500Kbps/20Mbps半双工RS-485/RS-422收发器 获取价格
MAX14776EASA+ MAXIM Line Transceiver, 获取价格
MAX14777 MAXIM Quad Beyond-the-Rails -15V to 35V Analog Switch 获取价格
MAX14777 ADI 四通道、-15V至+35V超摆幅模拟开关 获取价格
MAX14777GTP MAXIM Quad Beyond-the-Rails -15V to 35V Analog Switch 获取价格
MAX14777GTP+ MAXIM SPST, 获取价格
MAX14777GTP+T MAXIM SPST, 获取价格
MAX14778 MAXIM Dual 25V Above- and Below-the-Rails 4:1 Analog Multiplexer 获取价格

MAX14775EASA+ 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6