MAX1458AAE+T [MAXIM]

Analog Circuit, 1 Func, PDSO16, 5.30 X 0.65 MM, SSOP-16;
MAX1458AAE+T
型号: MAX1458AAE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, PDSO16, 5.30 X 0.65 MM, SSOP-16

传感器
文件: 总20页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1373; Rev 0; 5/98  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1458 highly integrated analog-sensor signal  
processor is optimized for piezoresistive sensor calibra-  
tion and compensation without any external compo-  
nents. It includes a programmable current source for  
sensor excitation, a 3-bit programmable-gain amplifier  
(PGA), a 128-b it inte rna l EEPROM, a nd four 12-b it  
DACs. Achieving a total error factor within 1% of the  
sensors repeatability errors, the MAX1458 compen-  
sates offset, offset temperature coefficient, full-span  
output (FSO), FSO temperature coefficient (FSOTC),  
and FSO nonlinearity of silicon piezoresistive sensors.  
Medium Accuracy (±1%), Single-Chip Sensor  
Signal Conditioning  
Sensor Errors Trimmed Using Correction  
Coefficients Stored in Internal EEPROM—  
Eliminates the Need for Laser Trimming and  
Potentiometers  
Compensates Offset, Offset-TC, FSO, FSOTC,  
FSO Linearity  
Programmable Current Source (0.1mA to 2.0mA)  
for Sensor Excitation  
The MAX1458 calibrates and compensates first-order  
temperature errors by adjusting the offset and span of  
the input signal via digital-to-analog converters (DACs),  
thereby eliminating quantization noise. Built-in testabili-  
ty features on the MAX1458 result in the integration of  
three traditional sensor-manufacturing operations into  
one automated process:  
Fast Signal-Path Settling Time (<1ms)  
Accepts Sensor Outputs from 10mV/V to 40mV/V  
Fully Analog Signal Path  
Pretest: Data acquisition of sensor performance  
under the control of a host test computer.  
Ord e rin g In fo rm a t io n  
Calibration and compensation: Computation and  
storage (in an internal EEPROM) of calibration and  
c omp e ns a tion c oe ffic ie nts c omp ute d b y the te s t  
computer and downloaded to the MAX1458.  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 SSOP  
MAX1458CAE  
MAX1458C/D  
MAX1458AAE  
0°C to +70°C  
Dice*  
-40°C to +125°C  
16 SSOP  
Final test operation: Verification of transducer cali-  
bration and compensation without removal from the  
pretest socket.  
*Dice are tested at T = +25°C, DC parameters only.  
A
Although optimized for use with piezoresistive sensors,  
the MAX1458 may also be used with other resistive  
sensors (i.e., accelerometers and strain gauges) with  
some additional external components.  
Functional Diagram appears at end of data sheet.  
P in Co n fig u ra t io n  
______________________Cu s t o m iza t io n  
Maxim can customize the MAX1458 for unique require-  
ments. With a dedicated cell library consisting of more  
than 90 sensor-specific functional blocks, Maxim can  
quickly provide customized MAX1458 solutions. Please  
contact Maxim for further information.  
TOP VIEW  
SCLK  
CS  
1
2
3
4
5
6
7
8
16 LIMIT  
15  
V
DD  
________________________Ap p lic a t io n s  
Piezoresistive Pressure and Acceleration  
Transducers and Transmitters  
I.C.  
14 INP  
TEMP  
FSOTC  
DIO  
MAX1458  
13 BDRIVE  
12 INM  
11 I.C.  
MAP (Manifold Absolute Pressure) Sensors  
Automotive Systems  
WE  
10 OUT  
Hydraulic Systems  
V
SS  
9 ISRC  
Industrial Pressure Sensors  
SSOP  
________________________________________________________________ Maxim Integrated Products  
1
For the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V to V ......................................-0.3V to +6V  
Operating Temperature Ranges  
DD  
SS  
All Other Pins ...................................(V - 0.3V) to (V + 0.3V)  
Short-Circuit Duration, FSOTC, OUT, BDRIVE...........Continuous  
MAX1458CAE ......................................................0°C to +70°C  
MAX1458AAE .................................................-40°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
SS  
DD  
Continuous Power Dissipation (T = +70°C)  
A
SSOP (derate 8.00mW/°C above +70°C) .....................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX1458  
ELECTRICAL CHARACTERISTICS  
(V = +5V, V = 0, T = +25°C, unless otherwise noted.)  
DD  
SS  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Supply Voltage  
V
4.5  
5.0  
3
5.5  
6
V
DD  
Supply Current  
I
DD  
(Note 1)  
mA  
ANALOG INPUT (PGA)  
Input Impedance  
R
1
±0.5  
0.01  
1
M  
IN  
Input-Referred Offset Tempco  
Amplifier Gain Nonlinearity  
Output Step Response  
Common-Mode Rejection Ratio  
(Notes 2, 3)  
µV/°C  
%V  
DD  
63% of final value  
ms  
CMRR  
From V to V  
90  
dB  
SS  
DD  
Input-Referred Adjustable Offset  
Range  
At minimum gain (Note 4)  
±150  
mV  
Input-Referred Adjustable FSO  
Range  
(Note 5)  
10 to 40  
mV/V  
ANALOG OUTPUT (PGA)  
Differential Signal-Gain Range  
Minimum Differential Signal Gain  
Differential Signal-Gain Tempco  
Selectable in eight steps  
41 to 230  
41  
V/V  
V/V  
T
= T  
to T  
MAX  
36  
45  
A
MIN  
±50  
ppm/°C  
V
= 5.0V, no load  
= 4.6V  
V
+ 0.15  
V
DD  
- 0.25  
± 0.3  
± 0.2  
LIMIT  
SS  
10kload to V  
SS  
Output Voltage Swing  
V
SS  
+ 0.25  
+ 0.1  
V
LIMIT  
V
or V  
DD  
V
LIMIT  
No load  
V
V
LIMIT  
SS  
V
V
OUT  
= 4.6V,  
-0.45  
(sink)  
0.45  
(source)  
LIMIT  
Output Current Range  
Output Noise  
mA  
= (V + 0.25V) to (V - 0.3V)  
LIMIT  
SS  
DC to 10Hz (gain = 41,  
source impedance = 5k)  
500  
µV  
RMS  
2
_______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V, V = 0, T = +25°C, unless otherwise noted.)  
DD  
SS  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CURRENT SOURCE  
Bridge Current Range  
Bridge Voltage Swing  
I
0.1  
0.5  
2.0  
mA  
V
BDRIVE  
V
V
+ 1.3  
V
- 1.3  
BDRIVE  
SS  
DD  
Reference Input Voltage Range  
(ISRC)  
V
ISRC  
V
SS  
+ 1.3  
V
DD  
- 1.3  
12  
V
DIGITAL-TO-ANALOG CONVERTERS  
DAC Resolution  
Bits  
Differential Nonlinearity  
DNL  
V  
±1.5  
2.8  
LSB  
OUT  
Offset DAC Bit Weight  
DAC reference = V = 5.0V  
mV/bit  
mV/bit  
mV/bit  
mV/bit  
DD  
Code  
V  
OUT  
Offset TC DAC Bit Weight  
FSO DAC Bit Weight  
DAC reference = V  
= 2.5V  
1.4  
1.22  
0.6  
BDRIVE  
Code  
V  
ISRC  
DAC reference = V = 5.0V  
DD  
Code  
V  
FSOTC  
FSO TC DAC Bit Weight  
DAC reference = V  
= 2.5V  
BDRIVE  
Code  
IRO DAC  
DAC Resolution  
DAC Bit Weight  
FSOTC BUFFER  
Output Voltage Swing  
Current Drive  
3
9
Bits  
Input referred, V = 5V (Note 6)  
DD  
mV/bit  
No load  
V
+ 0.3  
V
DD  
- 1.3  
20  
V
SS  
V
FSOTC  
= 2.5V  
-20  
µA  
INTERNAL RESISTORS  
Current-Source Reference  
Resistor  
R
75  
75  
kΩ  
kΩ  
kΩ  
ISRC  
FSO Trim Resistor  
R
FTC  
Temperature-Dependent  
Resistor  
R
Typically 4600ppm/°C tempco  
100  
TEMP  
Note 1: Excludes the sensor or load current.  
Note 2: All electronics temperature errors are compensated together with sensor errors.  
Note 3: The sensor and the MAX1458 must always be at the same temperature during calibration and use.  
Note 4: This is the maximum allowable sensor offset.  
Note 5: This is the sensors sensitivity normalized to its drive voltage, assuming a desired full-span output of 4V and a bridge  
voltage of 2.5V.  
Note 6: Bit weight is ratiometric to V  
.
DD  
_______________________________________________________________________________________  
3
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Data Clock Input. Used only during programming/testing. Internally pulled to V with a 1M(typical) resis-  
tor. Data is clocked in on the rising edge of the clock. The maximum SCLK frequency is 10kHz.  
SS  
1
SCLK  
Chip-Select Input. The MAX1458 is selected when this pin is high. When low, OUT and DIO become high  
2
3, 11  
4
CS  
I.C.  
impedance. Internally pulled to V with a 1M(typical) resistor. Leave unconnected for normal operation.  
DD  
MAX1458  
Internally Connected. Leave unconnected.  
Temperature Sensor Output. An internal temperature sensor (a 100k, 4600ppm/°C TC resistor) which can  
provide a temperature-dependent voltage.  
TEMP  
Buffered FSOTC DAC Output. An internal 75kresistor (R  
Diagram). Optionally, external resistors can be used in place of or in parallel with R  
) connects FSOTC to ISRC (see Functional  
FTC  
5
6
FSOTC  
DIO  
and R  
.
FTC  
ISRC  
Data Input/Output. Used only during programming/testing. Internally pulled to V with a 1M(typical)  
resistor. High impedance when CS is low.  
SS  
Dual-Function Input Pin. Used to enable EEPROM erase/write operations. Also used to set the DAC refresh-  
7
WE  
rate mode. Internally pulled to V with a 1M(typical) resistor. Refer to the Chip-Select (CS) and Write-  
DD  
Enable (WE) section.  
8
9
V
Negative Power-Supply Input  
SS  
Current-Source Reference. An internal 75kresistor (R  
Diagram). Optionally, external resistors can be used in place of or in parallel with R  
) connects ISRC to V (see Functional  
SS  
ISRC  
ISRC  
and R  
.
FTC  
ISRC  
10  
12  
13  
14  
15  
OUT  
INM  
PGA Output Voltage  
Negative Sensor Input. Input impedance >1M. Rail-to-rail input range.  
Sensor Excitation Current Output. This current source drives the bridge.  
Positive Sensor Input. Input impedance >1M. Rail-to-rail input range.  
BDRIVE  
INP  
V
DD  
Positive Power-Supply Input. Connect a 0.1µF capacitor from V to V  
DD SS.  
Voltage Limit Input. This pin sets the maximum voltage at OUT. If left unconnected, the output voltage will be  
16  
LIMIT  
limited to 4.6V (V  
= 5V). Connect to V  
for maximum output swing. The acceptable range is 4.5V ≤  
DD  
DD  
V
LIMIT  
V  
.
DD  
an internal 128-bit EEPROM. This memory contains the  
following information as 12-bit-wide words:  
_______________De t a ile d De s c rip t io n  
The MAX1458 provides an analog amplification path for  
the sensor signal. Calibration and temperature com-  
pensation are achieved by varying the offset and gain  
of a programmable-gain amplifier (PGA) and by varying  
the sensor bridge current. The PGA uses a switched-  
capacitor CMOS technology, with an input-referred  
coarse offset trimming range of approximately ±63mV  
(9mV steps). An additional output-referred fine offset  
trim is p rovid e d b y the Offs e t DAC (a p p roxima te ly  
2.8mV steps). The PGA provides eight gain values from  
+41V/V to +230V/V. The bridge current source is pro-  
grammable from 0.1mA to 2mA.  
Configuration register  
Offset calibration coefficient  
Offset temperature error compensation coefficient  
FSO (full-span output) calibration coefficient  
FSO temperature error compensation coefficient  
24 user-defined bits for customer programming of  
manufacturing data (e.g., serial number and date)  
Figure 1 shows a typical pressure-sensor output and  
defines the offset, full-scale, and full-span output values  
as a function of voltage.  
The MAX1458 uses four 12-bit DACs and one 3-bit  
DAC, with calibration coefficients stored by the user in  
4
_______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
V
that must be added to the output summing  
FS OTC Co m p e n s a t io n  
Silicon piezoresistive transducers (PRTs) exhibit a large  
positive input resistance tempco (TCR) so that, while  
under constant current excitation, the bridge voltage  
BDRIVE  
junction to correct the error. Use the Offset TC DAC to  
adjust the amount of BDRIVE voltage that is added to  
the output summing junction (Figure 2).  
(V  
) increases with temperature. This depen-  
BDRIVE  
An a lo g S ig n a l P a t h  
The fully differential analog signal path consists of four  
stages:  
dence of V  
on the sensor temperature can be  
BDRIVE  
used to compensate the sensor temperature errors.  
PRTs also have a large negative full-span output sensi-  
tivity tempco (TCS) so that, with constant voltage exci-  
ta tion, full-s p a n outp ut (FSO) will d e c re a s e with  
temperature, causing a full-span output temperature  
coefficient (FSOTC) error. However, if the bridge volt-  
age can be made to increase with temperature at the  
same rate that TCS decreases with temperature, the  
FSO will remain constant.  
Front-end summing junction for coarse offset correction  
3-bit PGA with eight selectable gains ranging from  
41 through 230  
Three-input-channel summing junction  
Differential to single-ended output buffer (Figure 2)  
Coarse Offset Correction  
FSOTC c omp e ns a tion is a c c omp lis he d b y re s is tor  
The sensor output is first fed into a differential summing  
junction (INM (negative input) and INP (positive input))  
with a CMRR > 90dB, an input impedance of approxi-  
mately 1M, and a common-mode input voltage range  
R
and the FSOTC DAC, which modulate the excita-  
FTC  
tion reference current at ISRC as a function of tempera-  
ture (Fig ure 3). FSO DAC s e ts V a nd re ma ins  
constant with temperature while the voltage at FSOTC  
varies with temperature. FSOTC is the buffered output  
of the FSOTC DAC. The re fe re nc e DAC volta g e is  
ISRC  
from V to V . At this summing junction, a coarse off-  
SS  
DD  
set-correction voltage is added, and the resultant volt-  
a g e is fe d into the PGA. The 3-b it (p lus s ig n)  
input-referred Offset DAC (IRO DAC) generates the  
coarse offset-correction voltage. The DAC voltage ref-  
V
, which is temperature dependent. The FSOTC  
BDRIVE  
DAC alters the tempco of the current source. When the  
tempco of the bridge voltage is equal in magnitude and  
opposite in polarity to the TCS, the FSOTC errors are  
compensated and FSO will be constant with tempera-  
ture.  
erence is 1.25% of V ; thus, a V  
of 5V results in a  
DD  
DD  
front-end offset-correction voltage ranging from -63mV  
to +63mV, in 9mV steps (Table 1). To add an offset to  
the input signal, set the IRO sign bit high; to subtract an  
offset from the input signal, set the IRO sign bit low.  
The IRO DAC bits (C2, C1, C0, and IRO sign bit) are  
programmed in the configuration register (see Internal  
EEPROM section).  
OFFS ET TC Co m p e n s a t io n  
Compensating offset TC errors involves first measuring  
the uncompensated offset TC error, then determining  
the percentage of the temperature-dependent voltage  
1.25% V  
BDRIVE  
DD  
4.5  
SOTC  
±
OFFTC  
DAC  
IRO  
DAC  
A2 A1 A0  
PGA  
A = 2.3  
LIMIT  
FULL-SPAN OUTPUT (FSO)  
FULL-SCALE (FS)  
INP  
OUT  
A = 1  
Σ
Σ
INM  
±
A = 2.3  
0.5  
V
DD  
OFFSET  
Offset  
DAC  
SOFF  
P
MIN  
P
MAX  
PRESSURE  
Figure 2. Signal-Path Block Diagram  
_______________________________________________________________________________________  
Figure 1. Typical Pressure-Sensor Output  
5
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Table 1. Input-Referred Offset DAC  
Correction Values  
Table 2. PGA Gain Settings and IRO DAC  
Step Size  
OUTPUT-  
PGA  
OFFSET  
CORREC- CORREC-  
TION  
OFFSET  
IRO DAC  
PGA  
VALUE  
REFERRED IRO  
DAC STEP SIZE  
A2 A1 A0  
GAIN  
(V/V)  
TION AT  
V = 5V  
DD  
(mV)  
(V  
DD  
= 5V) (V)  
% of V  
(%)  
DD  
VALUE  
SIGN C2 C1 C0  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
41  
68  
0.369  
0.612  
0.855  
1.098  
1.341  
1.584  
1.827  
2.070  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
+0  
-0  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
+1.25  
+1.08  
+0.90  
+0.72  
+0.54  
+0.36  
+0.18  
0
+63  
+54  
+45  
+36  
+27  
+18  
+9  
MAX1458  
95  
122  
149  
176  
203  
230  
0
Output Buffer  
0
0
OUT can drive 0.1µF of capacitance. If CS is brought  
low, OUT becomes high impedance (resulting in typical  
output impedance of 1M). The output is current limit-  
ed and can be shorted to either V or V indefinitely.  
-1  
-0.18  
-0.36  
-0.54  
-0.72  
-0.90  
-1.08  
-1.25  
-9  
-2  
-18  
-27  
-36  
-45  
-54  
-63  
-3  
DD  
SS  
-4  
The maximum output voltage can be limited using the  
LIMIT pin. Output limiting can be performed for sensor  
-5  
diagnostic purposes. Connect LIMIT to V  
to disable  
DD  
-6  
the voltage-limiting feature.  
-7  
Brid g e Drive  
Fine FSO correction is accomplished by varying the  
s e ns or e xc ita tion c urre nt with the 12-b it FSO DAC  
(Figure 3). Sensor bridge excitation is performed by a  
programmable current source capable of delivering up  
to 2mA. The reference current at ISRC is established by  
Programmable-Gain Amplifier  
The programmable-gain amplifier (PGA), which is used  
to s e t the c oa rs e FSO, us e s a s witc he d -c a p a c itor  
CMOS technology and contains eight selectable gain  
levels from 41 to 230, in increments of 27 (Table 2). The  
output of the PGA is fed to the output summing junc-  
tion. The three PGA gain bits A2, A1, and A0 are stored  
in the configuration register.  
resistor R  
and by the voltage at node ISRC (con-  
ISRC  
trolled by the FSO DAC). The reference current flowing  
through this pin is multiplied by a current mirror (AA  
14) and then made available at BDRIVE for sensor exci-  
tation. Modulation of this current with respect to tem-  
perature can be used to correct FSOTC errors, while  
Output Summing Junction  
The third stage in the analog signal path consists of a  
summing junction for the PGA output, offset correction,  
and the offset TC correction. Both the offset and the off-  
set TC correction voltages are gained by a factor of 2.3  
before being fed into the summing junction, increasing  
the offset and offset TC correction range. The offset  
sign bit and offset TC sign bit are stored in the configu-  
ration register. The offset sign bit determines if the off-  
set correction voltage is added to (sign bit is high) or  
s ub tra c te d from (s ig n b it is low) the PGA outp ut.  
Negative offset TC errors require a logic high for the  
offset TC sign bit. Alternately, positive offset TC errors  
dictate a logic low for the offset TC sign bit. The output  
of the summing junction is fed to the output buffer.  
modulation with respect to the output voltage (V  
can be used to correct FSO linearity errors.  
)
OUT  
Dig it a l-t o -An a lo g Co n ve rt e rs  
The four 12-bit, sigma-delta DACs typically settle in  
less than 100ms. The four DACs have a corresponding  
memory register in EEPROM for storage of correction  
coefficients.  
Use the FSO DAC for fine FSO adjustments. The FSO  
DAC takes its reference from V  
and controls V  
DD  
ISRC  
which, in conjunction with R  
, sets the baseline sen-  
ISRC  
sor excitation current. The Offset DAC also takes its ref-  
erence from V and provides a 1.22mV resolution with  
DD  
6
_______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
V
DD  
V
DD  
FSO  
DAC  
I = I  
ISRC  
AA 14I  
= I  
ISRC BDRIVE  
I
BDRIVE  
SRC  
FSOTC  
DAC  
FSOTC  
R
FTC  
R
ISRC  
EXTERNAL  
SENSOR  
Figure 3. Bridge Excitation Circuit  
a V  
of 5V. The output of the Offset DAC is fed into  
DD  
Table 3. Configuration Register  
the outp ut s umming junc tion whe re it is g a ine d b y  
approximately 2.3, which increases the resulting out-  
put-referred offset correction resolution to 2.8mV.  
EEPROM  
DESCRIPTION  
ADDRESS (hex)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
Offset TC Sign Bit, SOTC  
Offset Sign Bit, SOFF  
PGA Gain (MSB), A2  
PGA Gain, A1  
Both the Offset TC and FSOTC DACs take their refer-  
ence from BDRIVE, a temperature-dependent voltage. A  
nominal V  
of 2.5V results in a step size of 0.6mV.  
BDRIVE  
The Offset TC DAC output is fed into the output sum-  
ming junction where it is gained by approximately 2.3,  
thereby increasing the Offset TC correction range. The  
buffered FSOTC DAC output is available at FSOTC and  
PGA Gain (LSB), A0  
Reserved 0”  
is connected to ISRC via R  
to correct FSOTC errors.  
FTC  
Reserved 0”  
In t e rn a l Re s is t o rs  
Internal Resistor (R  
Selection  
and R  
)
FTC  
ISRC  
07h  
The MAX1458 contains three internal resistors (R  
,
ISRC  
R
R
, and R  
ISRC  
) optimized for common silicon PRTs.  
(in conjunction with the FSO DAC) programs the  
FTC  
TEMP  
08h  
09h  
0Ah  
0Bh  
Input-Referred Offset (IRO) Sign Bit  
Input-Referred Offset (MSB)  
Input-Referred Offset  
nominal sensor excitation current. R  
(in conjunction  
FTC  
with the FSOTC DAC) compensates the FSOTC errors.  
Both R and R have a nominal value of 75k. If  
ISRC  
FTC  
Input-Referred Offset (LSB)  
external resistors are used, R  
and R  
can be dis-  
ISRC  
FTC  
abled by resetting the appropriate bit (address 07h  
reset to zero) in the configuration register (Table 3).  
In t e rn a l EEP ROM  
The MAX1458 has a 128-bit internal EEPROM arranged  
as eight 16-bit words. The four uppermost bits for each  
register are reserved. The internal EEPROM is used to  
store the following (also shown in the memory map in  
Table 4):  
R
is a hig h-te mp c o re s is tor with a TC of  
TEMP  
+4600ppm/°C and a nominal resistance of 100kat  
+25°C. This resistor can be used with certain sensor  
types that require an external temperature sensor.  
_______________________________________________________________________________________  
7
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Table 4. EEPROM Memory Map  
EE Address  
Contents  
0F  
1
0E  
0
0D  
0
0C  
0
0B  
0A  
1A  
2A  
3A  
09  
19  
29  
39  
08  
18  
28  
38  
07  
17  
27  
37  
06  
05  
04  
14  
24  
34  
03  
13  
23  
33  
02  
12  
22  
32  
01  
11  
21  
31  
00  
Configuration  
EE Address  
Contents  
1F  
1
1E  
0
1D  
0
1C  
1
1B  
16  
15  
10  
MSB  
Offset  
LSB  
MAX1458  
EE Address  
Contents  
2F  
1
2E  
0
2D  
1
2C  
0
2B  
26  
25  
20  
MSB  
Offset TC  
LSB  
EE Address  
Contents  
3F  
1
3E  
0
3D  
1
3C  
1
3B  
36  
35  
30  
MSB  
FSO  
LSB  
EE Address  
Contents  
4F  
1
4E  
1
4D  
0
4C  
0
4B  
4A  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
MSB  
FSOTC  
LSB  
5F  
0
5E  
0
5D  
0
5C  
0
5B  
0
5A  
0
59  
0
58  
0
57  
0
56  
0
55  
54  
0
53  
0
52  
0
51  
0
50  
0
Reserved*  
0
EE Address  
Contents  
6F  
0
6E  
0
6D  
0
6C  
0
6B  
7B  
6A  
7A  
69  
79  
68  
78  
67  
66  
65  
64  
63  
73  
62  
72  
61  
71  
60  
70  
User defined bits  
EE Address  
Contents  
7F  
0
7E  
0
7D  
0
7C  
0
77  
76  
75  
74  
User defined bits  
= Reserved Bits  
Note: The MAX1458 processes the Reserved Bits in the EEPROM. If these bits are not properly programmed, the configuration  
and DAC registers will not be updated correctly.  
* The contents of the Reserved EE Address 50–5F must all be reset to zero.  
Configuration register (Table 3)  
Configuration Register  
The configuration register (Table 3) determines the  
PGA gain, the polarity of the offset and offset TC coeffi-  
cients, and the coarse offset correction (IRO DAC). It  
12-bit calibration coefficients for the Offset and FSO  
DACs  
12-bit compensation coefficients for the Offset TC  
and FSOTC DACs  
a ls o e na b le s /d is a b le s inte rna l re s is tors (R  
a nd  
FTC  
R
).  
ISRC  
Two general-purpose registers available to the user  
for storing process information such as serial num-  
ber, batch date, and check sums  
DAC Registers  
The Offset, Offset TC, FSO, and FSOTC registers store  
the coefficients used by their respective calibration/  
compensation DACs.  
Program the EEPROM one bit at a time. The bits have  
addresses from 0 to 127 (7F hex).  
8
_______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
Data Input/Output (DIO)  
The DIO line is an input/output pin used to issue com-  
ma nd s to the MAX1458 (inp ut mod e ) or re a d the  
EEPROM contents (output mode).  
De t a ile d De s c rip t io n o f t h e Dig it a l Lin e s  
Chip-Select (CS) and Write-Enable (WE)  
CS is used to enable OUT, control serial communica-  
tion, and force an update of the configuration and DAC  
registers.  
In inp ut mod e (the d e fa ult mod e ), d a ta on DIO is  
latched on each rising edge of SCLK. Therefore, data  
on DIO must be stable at the rising edge of SCLK and  
should transition on the falling edge of SCLK.  
A low on CS d is a b le s s e ria l c ommunic a tion a nd  
places OUT in a high-impedance state.  
A transition from low to high on CS forces an update  
of the c onfig ura tion a nd DAC re g is te rs from the  
EEPROM when the “U” bit is zero.  
DIO will switch to output mode after receiving a READ  
EEPROM” c omma nd , a nd will re turn the d a ta b it  
addressed by the digital value in the “READ EEPROM”  
command. After a low-to-high transition or CS, DIO  
returns to input mode and is ready to accept more  
commands.  
A transition from high to low on CS terminates pro-  
gramming mode.  
A logic high on CS enables OUT and serial commu-  
nication (see Communication Protocol section).  
Co m m u n ic a t io n P ro t o c o l  
To initiate communication, the first six bits on DIO after  
CS tra ns itions from low to hig h must b e 1010U0  
(defined as the INIT SEQUENCE). The MAX1458 will  
then begin accepting 16-bit control words (Figure 4).  
WE controls the refresh rate for the internal configura-  
tion and DAC registers from the EEPROM and enables  
the erase/write operations. If communication has been  
initiated (see Communication Protocol section), internal  
register refresh is disabled.  
If the INIT SEQUENCE is not detected, all subsequent  
data on DIO is ignored until CS again transitions from  
low to high and the correct INIT SEQUENCE is received.  
A low on WE disables the erase/write operations and  
also disables register refreshing from the EEPROM.  
A high on WE selects a refresh rate of approximately  
400 time s p e r s e c ond a nd e na b le s EEPROM  
erase/write operations.  
The U” bit of the INIT SEQUENCE controls the updat-  
ing of the DACs and configuration register from the  
internal EEPROM. If this bit is low (U = 0), all four inter-  
nal DACs and the configuration register will be updated  
from the EEPROM on the next rising edge of CS (this is  
also the default on power-up). If the “U” bit is high, the  
DACs and configuration register will not be updated  
from the internal EEPROM; they will retain their current  
va lue on a ny s ub s e q ue nt CS ris ing e d g e . The  
MAX1458 continues to accept control words until CS is  
brought low.  
It is recommended that WE be connected to V  
SS  
after the MAX1458 EEPROM has been programmed.  
SCLK (Serial Clock)  
SCLK must be driven externally and is used to input  
commands to the MAX1458 and read EEPROM con-  
tents. Input data on DIO is latched on the rising edge of  
SCLK. Noise on SCLK may disrupt communication. In  
nois y e nvironme nts , p la c e a c a p a c itor (0.01µF)  
between SCLK and V  
.
SS  
CS  
SCLK  
DIO  
16 CLK  
CYCLES  
16 CLK  
CYCLES  
n x 16 CLK  
CYCLES  
t
= 200µs  
MIN  
X
1
0
1
0
U
0
D0 D1 CM3  
D0 D1 CM3  
BEGIN  
PROGRAMMING  
SEQUENCE  
CONTROL  
WORD  
CONTROL  
WORD  
CONTROL  
WORDS  
Figure 4. Communication Sequence  
_______________________________________________________________________________________  
9
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Co n t ro l Wo rd s  
After receiving the INIT SEQUENCE on DIO, the MAX1458  
begins latching in 16-bit control words, LSB first (Figure 5).  
Table 5. MAX1458 Commands  
HEX  
CODE  
FUNCTION  
CM3 CM2 CM1 CM0  
The first 12 bits (D0–D11) represent the data field. The  
last four bits of the control word (the MSBs, CM0–CM3)  
are the command field. The MAX1458 supports the  
commands listed in Table 5.  
ERASE EEPROM  
1h  
2h  
0
0
0
0
0
1
1
0
BEGIN EEPROM WRITE at  
Address  
READ EEPROM at Address  
Maxim Reserved  
3h  
4h  
0
0
0
1
1
0
1
0
ERASE EEPROM Command  
When an ERASE EEPROM command is issued, all of  
the memory locations in the EEPROM are reset to a  
logic “0.” The data field of the 16-bit word is ignored.  
MAX1458  
END EEPROM WRITE at  
Address  
5h  
8h  
0
1
1
0
0
0
1
0
Important: An internal charge pump develops voltages  
greater than 20V for EEPROM programming operations.  
The EEPROM control logic requires 50ms to erase the  
EEPROM. After sending a WRITE or ERASE command,  
failure to wait 50ms before issuing another command  
may result in data being accidentally written to the  
EEPROM. The maximum number of ERASE EEPROM  
cycles should not exceed 100.  
WRITE Data to  
Configuration Register  
WRITE Offset DAC  
WRITE Offset TC DAC  
WRITE FSO DAC  
WRITE FSOTC DAC  
No Operation  
9h  
Ah  
Bh  
Ch  
0h  
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
BEGIN EEPROM WRITE Command  
The BEGIN EEPROM WRITE command stores a logic  
high at the memory location specified by the lower  
seven bits of the data field (A0–A6). The higher bits of  
the data field (A7–A11) are ignored (Figure 6). Note that  
to write to the internal EEPROM, WE and CS must be  
6h,  
7h,  
Dh,  
Eh,  
Fh  
0
0
1
1
1
1
1
1
1
1
1
1
0
1
1
0
1
1
0
1
Load Register  
SCLK  
DATA  
COMMAND  
MSB LSB  
LSB  
MSB  
D0 D1 D2  
D6 D7 D8  
16-BIT CONFIGURATION WORD  
DIO  
D3 D4 D5  
D9 D10 D11 CM0 CM2 CM2 CM3  
LSB  
MSB LSB  
MSB  
Figure 5. Control-Word Timing Diagram  
CS  
WE  
16 CLK  
CYCLES  
16 CLK  
CYCLES  
n x 16 CLK  
CYCLES  
t
= 200µs  
MIN  
SCLK  
DIO  
X
1
0
1
0
U
0
A0 A1 CM3  
A0 A1 CM3  
D0 D1 CM3  
BEGIN  
EEPROM  
WRITE  
END  
EEPROM  
WRITE  
n
T
WRITE  
t
WAIT  
INIT SEQUENCE  
COMMAND  
WORDS  
Figure 6. Timing Diagram for WRITE EEPROM Operation  
10 ______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
high. In addition, the EEPROM should only be written to  
at T = +25°C and V = 5V.  
8) Wait 1ms.  
A
DD  
9) Return to Step 5 until all necessary bits have been  
set.  
Writing to the internal EEPROM is a time-consuming  
process and should only be required once. All calibra-  
tion/compensation coefficients are determined by writ-  
ing directly to the DAC and configuration registers. Use  
the following procedure to write these calibration/com-  
pensation coefficients to the EEPROM:  
10) Read EEPROM to verify that the correct calibra-  
tion/compensation coefficients have been stored.  
READ EEPROM Command  
The READ EEPROM command returns the bit stored at  
the memory location addressed by the lower seven bits  
of the data field (A0–A6). The higher bits of the data  
field (A7–A11) are ignored. Note that after a read com-  
mand has been issued, the DIO lines become an out-  
put and the state of the addressed EEPROM location  
1) Issue an ERASE EEPROM command.  
2) Wait 50ms (t  
).  
WRITE  
3) Is s ue on END EEPROM WRITE c omma nd a t  
address 00h.  
will be available on DIO 200µs (t  
) after the falling  
READ  
4) Wait 1ms (t  
).  
WAIT  
edge of the 16th SCLK cycle (Figure 8). After issuing  
the READ EEPROM command, DIO returns to input  
mode on the falling edge of CS. Reading the entire  
EEPROM requires the READ EEPROM command be  
issued 128 times.  
5) Is s ue a BEGIN EEPROM WRITE c omma nd  
(Figure 7) at the address of the bit to be set.  
6) Wait 50ms.  
7) Issue an END EEPROM WRITE command (Figure 7)  
using the same address as in Step 5.  
SCLK  
DATA  
COMMAND  
LSB  
MSB LSB  
MSB  
0
DIO  
A0 A1 A2 A3 A4 A5 A6  
0
0
0
0
0
0
0
1
16-BIT COMMAND WORD – BEGIN EEPROM WRITE AT ADDRESS COMMAND  
LSB  
LSB  
MSB  
SCLK  
DATA  
COMMAND  
MSB LSB  
MSB  
0
DIO  
A0 A1 A2 A3 A4 A5 A6  
0
0
0
0
0
1
1
0
16-BIT COMMAND WORD – END EEPROM WRITE AT ADDRESS COMMAND  
LSB  
MSB  
Figure 7. Begin WRITE EEPROM and End WRITE EEPROM Timing Diagrams  
CS  
t
= 200µs  
MIN  
16 CLOCK CYCLES  
SCLK  
DIO  
t
READ  
X
1
0
1
0
U
0
A0 A1 A2 A3 A4 A5 A6  
0
0
0
0
0
1
1
0
0
X
EE DATA  
X
READ EEPROM AT ADDRESS COMMAND  
DIO IS AN INPUT PIN  
INIT SEQUENCE  
DIO IS AN  
OUTPUT PIN  
Figure 8. READ EEPROM Timing Diagram  
______________________________________________________________________________________ 11  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Writing to the Configuration and DAC Registers  
Co e ffic ie n t In it ia liza t io n  
Select the resistor values and the PGA gain to prevent  
overload of the PGA and bridge current source. These  
values depend on sensor behavior and require some  
sensor characterization data, which may be available  
from the sensor manufacturer. If not, the data can be  
generated by performing a two-temperature, two-pres-  
sure sensor evaluation. The required sensor information  
is shown in Table 6 and can be used to obtain the val-  
ues for the parameters listed in Table 7.  
When writing to the configuration register or directly to  
the internal 12-bit DACs, the data field (D0–D11) con-  
tains the data to be written to the respective register.  
Note that all four DACs and the configuration register  
can be updated without toggling the CS line. Every  
register write command must be followed by a LOAD  
REGISTER command.  
MAX1458  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e r-Up  
Table 6. Sensor Information for Typical  
PRT  
At power up, the following occurs:  
1) The DAC and configuration registers are reset to  
zero.  
SENSOR  
DESCRIPTION  
TYPICAL  
VALUES  
PARAMETER  
Rb(T)  
2) CS transitions from low to high after power-up (an  
internal pull-up resistor ensures that this happens if  
CS is left unconnected), and the EEPROM contents  
are read and processed.  
Bridge Impedance  
5kat +25°C  
Bridge Impedance  
Tempco  
TCR  
2600ppm/°C  
1.5mV/V per  
PSI at +25°C  
3) The DAC and configuration registers are updated  
either once or approximately 400 times per second  
(as determined by the state of WE).  
S(T)  
TCS  
O(T)  
Sensitivity  
Sensitivity Tempco  
Offset  
-2100ppm/°C  
4) The MAX1458 begins accepting commands in a ser-  
ial format on DIO immediately after receiving the INIT  
SEQUENCE.  
12mV/V at  
+25°C  
-1000ppm/°C  
of FSO  
OTC  
S(p)  
Offset Tempco  
The MAX1458 is shipped with all memory locations in  
the inte rna l EEPROM uninitia lize d . The re fore , the  
MAX1458 must be programmed for proper operation.  
Sensitivity Linearity Error  
as % FSO, BSLF  
(Best Straight-Line Fit)  
0.1% FSO,  
BSLF  
Co m p e n s a t io n P ro c e d u re  
The following compensation procedure was used to  
obtain the results shown in Figure 9 and Table 8. It  
assumes a pressure transducer with a +5V supply and  
an output voltage that is ratiometric to the supply volt-  
P
Minimum Input Pressure  
Maximum Input Pressure  
0 PSI  
MIN  
P
10 PSI  
MAX  
Selecting R  
ISRC  
age. The desired offset voltage (V  
and the desired FSO voltage (V  
is 4V; thus the full-scale output voltage (V  
at P  
) is 0.5V,  
Whe n us ing a n e xte rna l re s is tor, us e the e q ua tion  
OUT  
OUT(PMAX)  
MIN  
- V  
OUT  
)
below to determine the value of R , and place the  
OUT(PMIN)  
ISRC  
at P  
)
resistor between ISRC and V . Since the 12-bit FSO  
MAX  
SS  
will be 4.5V (refer to Figure 1). The procedure requires  
a minimum of two test pressures (e.g., zero and full  
DAC provides considerable dynamic range, the R  
ISRC  
value need not be exact. Generally any resistor value  
within ±50% of the calculated value is acceptable. If  
scale) at two arbitrary test temperatures, T and T .  
1
2
Ideally, T and T are the two points where we wish to  
both the internal resistors R  
and R  
are used, set  
1
2
ISRC  
FTC  
perform best linear fit compensation. The following out-  
lines a typical compensation procedure:  
the IRS bit at EEPROM address bit 7 high. Otherwise,  
set IRS low and connect external resistors as shown in  
Figure 10.  
1) Perform Coefficient Initialization  
2) Perform FSO Calibration  
R
14 x Rb(T1)  
ISRC  
14 x 5kΩ = 70kΩ  
3) Perform FSOTC Compensation  
4) Perform Offset TC Compensation  
5) Perform Offset Calibration  
where Rb(T) is the sensor input impedance at tempera-  
ture T1 (+25°C in this example).  
12 ______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
where S is the sensor sensitivity at T1, V  
sensor excitation voltage (initially 2.5V), and P is the  
maximum pressure differential.  
is the  
BDRIVE  
Table 7. Compensation Components and  
Values  
Then calculate the ideal gain using the following formula,  
and select the nearest gain setting from Table 2:  
PARAMETER  
DESCRIPTION  
Internal (approximately 75k) or user-  
supplied resistor that programs the nomi-  
nal sensor excitation current.  
R
ISRC  
OUTFSO  
A
=
=
PGA  
SensorFSO  
4V  
Internal (approximately 75k) or user-  
supplied resistor that compensates  
FSO TC errors.  
= 106V/V  
R
FTC  
0.0375V  
A
Programmable-gain amplifier gain  
PGA  
where OUTFSO is the desired calibrated transducer  
full-span output voltage, and SensorFSO is the sensor  
full-span output voltage at T1.  
Input-referred offset correction DAC  
value  
IRO  
IRO Sign  
IRS  
Input-referred offset sign bit  
Internal resistor selection bit  
Offset correction DAC coefficient  
Offset sign bit  
In this example, a PGA value of 2 (gain of +95V/V) is  
the best selection.  
OFF COEF  
OFF Sign  
Determining Input-Referred OFFSET (IRO)  
The input-referred offset register is used to null any  
front-end sensor offset errors prior to amplification by  
the PGA. This reduces the possibility of saturating the  
PGA and maximizes the useful dynamic range of the  
PGA (particularly at the higher gain values.)  
OFFTC COEF  
OFFTC Sign  
FSO COEF  
FSOTC COEF  
Offset TC compensation DAC coefficient  
Offset TC sign bit  
FSO trim DAC coefficient  
FSO TC compensation DAC coefficient  
First, calculate the ideal IRO correction voltage using  
the following formula, and select the nearest setting  
from Table 1:  
Selecting R  
FTC  
Whe n us ing a n e xte rna l re s is tor, us e the e q ua tion  
below to determine the value for R , and place the  
resistor between ISRC and FSOTC. Since the 12-bit  
FSOTC DAC provides considerable dynamic range, the  
FTC  
IROideal = - O T1 x V  
T1  
(
)
(
)
[
]
BDRIVE  
= - 0.012V/V x 2.5V  
(
)
R
value need not be exact. Generally, any resistor  
FTC  
= - 30mV  
value within ±50% of the calculated value is accept-  
able.  
where IROideal is the exact voltage required to perfect-  
ly null the sensor, O(T1) is the sensor offset voltage in  
R
x 500ppm/°C  
ISRC  
V/V at +25°C, and V  
(T1) is the nominal sensor  
R
BDRIVE  
FTC  
TCR - | TCS |  
70kx 500ppm/°C  
excitation voltage at +25°C. In this example, 30mV  
must be subtracted from the amplifier front end to null  
the sensor perfectly. From Table 1, select an IRO value  
of 3 to set the IRO DAC to 27mV, which is nearest the  
ideal value. To subtract this value, set the IRO sign bit  
to 0. The residual output-referred offset error will be  
corrected later with the Offset DAC.  
= 70kΩ  
2600ppm/ °C - | -2100ppm/ °C |  
This approximation works best for bulk, micromachined,  
silicon PRTs. Negative values for R indicate uncon-  
FTC  
ventional sensor behavior that cannot be compensated  
by the MAX1458 without additional external circuitry.  
Determining OFFTC COEF Initial Value  
Generally, OFFTC COEF can initially be set to 0, since  
the offset TC error will be compensated in a later step.  
Howe ve r, s e ns ors with la rg e offs e t TC e rrors ma y  
require an initial coarse offset TC adjustment to prevent  
the PGA from saturating during the compensation pro-  
cedure as temperature is increased. An initial coarse  
offset TC adjustment is required for sensors with an off-  
set TC greater than about 10% of the FSO. If an initial  
Selecting the PGA Gain Setting  
To s e le c t the PGA g a in s e tting , firs t c a lc ula te  
SensorFSO, the sensor full-span output voltage at T1:  
SensorFSO = S x V  
x P  
BDRIVE  
= 1.5mV/V per PSI x 2.5V x 10 PSI  
= 0.0375V  
______________________________________________________________________________________ 13  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
coarse offset TC adjustment is required, use the follow-  
ing equation:  
Th re e -S t e p FS OTC Co m p e n s a t io n  
Step 1  
Us e the following p roc e d ure to d e te rmine FSOTC  
COEF. Four variables, A–D, will be used.  
4096 x V  
T
( )  
OUT  
OFFTC COEF =  
V  
T x 2.3  
( )  
1) Name the existing FSO DAC coefficient A”.  
2) Change FSOTC DAC to 3000.  
BDRIVE  
4096 x OTC x FSO x T  
(
)
3) Ad jus t FSO DAC until V  
(T1) is e q ua l to  
BDRIVE  
TCS x V  
x 2.3 x T  
BDRIVE  
V
(T1).  
BIDEAL  
MAX1458  
4096 x -1000ppm/°C x 4V  
(
)
4) Name the existing FSO DAC coefficient B”.  
=
= 1357  
-2100ppm/°C x 2.5V x 2.3  
5) Readjust the offset voltage (by adjusting the Offset  
DAC), if required, to 0.5V.  
where OTC is the sensor offset TC error as a ppm/°C of  
OUTFSO (Table 6), T is the operating temperature  
range in °C, and OFFTC COEF is the numerical decimal  
value to be loaded into the DAC. For positive values,  
set the OFFTC sign bit high; for negative values, set the  
OFFTC sign bit low. If the absolute value of the OFFTC  
COEF is larger than 4096, the sensor has a very large  
offset TC error, which the MAX1458 is unable to com-  
pletely correct.  
At this point, it is important that no other changes be  
made to the Offset or Offset TC DACs until the Offset  
TC Compensation step has been completed.  
Step 2  
To complete linear FSOTC compensation, take data  
measurements at a second temperature, T2 (T2 > T1).  
Perform the following steps:  
1) Measure the full-span output (measuredV  
(T2).  
FSO  
FS O Ca lib ra t io n  
Perform FSO calibration at room temperature with a full-  
scale sensor excitation.  
2) Calculate V  
(T2) using the following equation:  
BIDEAL  
V
T2 = V  
x
(
)
BIDEAL  
BDRIVE  
1) Set FSOTC COEF to 1000.  
desiredV  
- measuredV  
T2  
(
)
FSO  
FSO  
2) At T1, adjust FSO DAC until V  
is about 2.5V.  
1 +  
BDRIVE  
measuredV  
T2  
(
)
FSO  
3) Adjust Offset DAC (and OFFSET sign bit, if needed)  
until the T1 offs e t volta g e is 0.5V (s e e OFFSET  
Calibration section).  
3) Set V  
(T2) by adjusting the FSO DAC.  
BIDEAL  
4) Name the current FSO DAC coefficient D”.  
5) Change FSOTC DAC to 1000.  
4) Measure the full-span output (measuredV  
).  
FSO  
5) Calculate the ideal bridge voltage, V  
using the following equation:  
(T1),  
BIDEAL  
6) Ad jus t FSO DAC until V  
is e q ua l to  
BDRIVE  
V
(T2).  
BIDEAL  
V
T1 = V  
x
(
)
BIDEAL  
BDRIVE  
7) Name the FSO DAC coefficient C.  
desiredV  
- measuredV  
T1  
)
(
FSO  
FSO  
Step 3  
1 +  
Insert the data previously obtained from Steps 1 and 2  
into the following equation to compute FSOTC COEF:  
measuredV  
T1  
(
)
FSO  
Note: If V  
voltage swing of (V + 1.3V) to (V  
the PGA g a in s e tting . If V  
decrease the PGA gain setting by one step and return  
to Step 2. If V (T1) is too high, increase the PGA  
(T1) is outside the allowable bridge  
BIDEAL  
1000 B- D + 3000 C - A  
(
)
(
)
- 1.3V), readjust  
(T1) is too low,  
SS  
DD  
BIDEAL  
FSOTC COEF =  
B- D + C - A  
(
)
(
)
BIDEAL  
1) Load this FSOTC COEF value into the FSOTC DAC.  
2) Adjust the FSO DAC until V (T2) is equal to  
gain setting by one step and return to Step 2.  
BDRIVE  
6) Set V (T1) by adjusting the FSO DAC.  
BIDEAL  
V
(T2).  
BIDEAL  
7) Readjust Offset DAC until the offset voltage is 0.5V  
(see OFFSET Calibration section).  
This completes both FSO calibration and FSO TC com-  
pensation.  
14 ______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
4) If NewOFFTC COEF is negative, set the SOTC bit  
low; otherwise, set it high.  
Offs e t TC Co m p e n s a t io n  
The offset voltage at T1 was previously set to 0.5V;  
therefore, any variation from this voltage at T2 is an  
offset TC error. Perform the following steps:  
Offset TC Compensation is now complete.  
OFFS ET Ca lib ra t io n  
At this point the sensor should still be at temperature  
T2. The final offset adjustment can be made at T2 or T1  
by adjusting the Offset DAC (and optionally the offset  
1) Measure the offset voltage at T2.  
2) Use the following equation to compute the correc-  
tion required:  
sign bit, SOFF) until the output (V  
) reads 0.5V  
OUT(PMIN)  
NewOFFTC COEF = CurrentOFFTC COEF +  
at zero input pressure. Use the following procedure:  
1) Set Offset DAC to zero (Offset COEF = 0).  
2) Measure the voltage at OUT.  
4096 V  
T1 - V  
T2  
(
(
)
(
)
]
[
OFFSET  
OFFSET  
2.3 V  
T1 - V  
T2  
)
(
)
]
[
BDRIVE  
BDRIVE  
3) If V  
is greater than the desired offset voltage  
OUT  
(0.5V in this example), set SOFF low; otherwise set it  
high.  
Note : Curre ntOFFTC COEF is the c urre nt va lue  
stored in the Offset TC DAC. If the Offset TC sign bit  
(SOTC) is low, this number is negative.  
4) Increase Offset COEF until V  
equals the desired  
OUT  
offset voltage.  
3) Load this value into the Offset TC DAC.  
Offset calibration is now complete. Table 8 and Figure 9  
compare an uncompensated input to a typical compen-  
sated transducer output.  
Table 8. MAX1458 Calibration and Compensation  
Typical Uncompensated Input (Sensor)  
Typical Compensated Transducer Output  
Offset ..........................................................................±80% FSO  
V
OUT  
...................................................Ratiometric to V at 5.0V  
DD  
FSO ..................................................................................15mV/V Offset at +25°C ......................................................0.500V ±5mV  
Offset TC ......................................................................-17% FSO FSO at +25°C .........................................................4.000V ±5mV  
Offset TC Nonlinearity ..................................................0.7% FSO Offset Accuracy Over Temp. Range ..........±28mV (±0.7% FSO)  
FSO TC.........................................................................-35% FSO FSO Accuracy Over Temp. Range .............±20mV (±0.5% FSO)  
FSO TC Nonlinearity.....................................................0.5% FSO  
Temperature Range ...........................................-40°C to +125°C  
COMPENSATION TRANSDUCER ERROR  
UNCOMPENSATED SENSOR ERROR  
0.8  
0.6  
0.4  
0.2  
0
30  
20  
10  
0
FSO  
FSO  
OFFSET  
-0.2  
-0.4  
-0.6  
-0.8  
OFFSET  
-10  
-20  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE °(C)  
TEMPERATURE (°C)  
Figure 9. Comparison of an Uncalibrated Sensor and a Temperature-Compensated Transducer  
______________________________________________________________________________________ 15  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Ra t io m e t ric Ou t p u t Co n fig u ra t io n  
Te s t S ys t e m Co n fig u ra t io n  
Ratiometric output configuration provides an output that  
is proportional to the power-supply voltage. When used  
with ratiometric A/D converters, this output provides  
digital pressure values independent of supply voltage.  
Mos t a utomotive a nd s ome ind us tria l a p p lic a tions  
require ratiometric outputs.  
The MAX1458 is designed to support an automated  
production pressure-temperature test system with inte-  
g ra te d c a lib ra tion a nd te mp e ra ture c omp e ns a tion.  
Figure 11 shows the implementation concept for a low-  
cost test system capable of testing up to 12 transducer  
modules connected in parallel. Three-state outputs on  
the MAX1458 allow for parallel connection of transduc-  
ers. The test system shown in Figure 11 includes a  
dedicated test bus consisting of five wires:  
The MAX1458 provides a high-performance ratiometric  
output with a minimum number of external components  
(Figure 10). These external components include the fol-  
lowing:  
MAX1458  
Two power-supply lines  
One power-supply bypass capacitor (C1)  
One analog output voltage line from the transducers  
to a system digital voltmeter  
Two optional resistors, one from FSOTC to ISRC, and  
another from ISRC to V , depending on the sensor  
Two serial-interface lines: DIO (input/output) and  
SS  
type  
SCLK (clock)  
One optional capacitor C2 from BDRIVE to V  
For simultaneous testing of more than 12 sensor mod-  
ules, use buffers to prevent overloading the data bus. A  
digital multiplexer controls the chip-select signal for  
each transducer.  
SS  
+5V  
V
DD  
C1  
0.1µF  
BDRIVE  
MAX1458  
LIMIT  
OUT  
C2  
0.1µF  
INP  
PGA  
Σ
INM  
SENSOR  
ISRC  
V
DD  
FSOTC  
TEMP  
R
FTC  
R
ISRC  
R
FTC  
R
A = 1  
ISRC  
128-BIT  
EEPROM  
V
SS  
CS  
WE  
DIGITAL  
INTERFACE  
SCLK  
DIO  
TEMP  
V
SS  
Figure 10. Basic Ratiometric Output Configuration  
16 ______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
CS[1:N]  
DIGITAL  
CS1  
CS2  
CSN  
MULTIPLEXER  
MODULE 1  
MODULE 2  
MODULE N  
CS  
CS  
CS  
BDRIVE  
BDRIVE  
INP  
BDRIVE  
INP  
INP  
INM  
INM  
INM  
4
4
MAX1458  
SCLK  
DIO  
SCLK  
DIO  
SCLK  
DIO  
OUT  
OUT  
OUT  
+5V  
V
DD  
V
SS  
V
DD  
V
SS  
V
DD  
V
SS  
VOUT  
DVM  
SCLK  
DIO  
TEST  
OVEN  
Figure 11. Automated Test System Concept  
3) MAX1458 Communication Software, which enables  
programming of the MAX1458 from a computer (IBM  
compatible), one module at a time.  
MAX1 4 5 8 Eva lu a t io n  
____________________________________ De ve lo p m e n t Kit  
To expedite the development of MAX1458 based trans-  
ducers and test systems, Maxim has produced the  
MAX1458 evaluation kit (EV kit). First-time users of the  
MAX1458 are strongly encouraged to use this kit. The  
MAX1458 EV kit is designed to facilitate manual pro-  
gramming of the MAX1458 and includes the following:  
4) Interface Adapter and Cable, which allow the con-  
nection of the evaluation board to a PC parallel port.  
1) Evaluation Board with a silicon pressure sensor.  
2) Design/Applications Manual, which describes in  
d e ta il the a rc hite c ture a nd func tiona lity of the  
MAX1458. This manual was developed for test engi-  
neers familiar with data acquisition of sensor data  
and provides sensor compensation algorithms and  
test procedures.  
______________________________________________________________________________________ 17  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
Fu n c t io n a l Dia g ra m  
Ch ip In fo rm a t io n  
V
DD  
TRANSISTOR COUNT: 7772  
SUBSTRATE CONNECTED TO V  
SS  
BDRIVE  
MAX1458  
LIMIT  
OUT  
INP  
PGA  
MAX1458  
Σ
INM  
ISRC  
V
DD  
R
FTC  
FSOTC  
TEMP  
R
A = 1  
ISRC  
128-BIT  
EEPROM  
V
SS  
CS  
WE  
DIGITAL  
INTERFACE  
SCLK  
DIO  
TEMP  
V
SS  
18 ______________________________________________________________________________________  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
MAX1458  
P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 19  
1 % -Ac c u ra t e , Dig it a lly Trim m e d  
S e n s o r S ig n a l Co n d it io n e r  
NOTES  
MAX1458  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1458AAE-T

Analog Circuit, 1 Func, CMOS, PDSO16, 5.30 MM, 0.65 MM PITCH, SSOP-16
MAXIM

MAX1458C/D

1%-Accurate, Digitally Trimmed Sensor Signal Conditioner
MAXIM

MAX1458CAE

1%-Accurate, Digitally Trimmed Sensor Signal Conditioner
MAXIM

MAX1458CAE+

Analog Circuit, 1 Func, PDSO16, 5.30 X 0.65 MM, SSOP-16
MAXIM

MAX1458CAE+T

Analog Circuit, 1 Func, PDSO16, 5.30 X 0.65 MM, SSOP-16
MAXIM

MAX1459

2-Wire, 4-20mA Smart Signal Conditioner
MAXIM

MAX14590

High-Current Overvoltage Protectors with Adjustable OVLO
MAXIM

MAX14590ETA+T

Analog Circuit, 1 Func, BICMOS, PDSO8, 2 X 2 MM, ROHS COMPLIANT, TDFN-8
MAXIM

MAX14591

高速、漏极开路逻辑电平转换器
MAXIM

MAX14591EWA+

Interface Circuit, BICMOS, PBGA8, 1.60 X 0.80 MM, 0.40 MM PITCH, ROHS COMPLIANT, WLP-8
MAXIM

MAX14594E

High-Density, ±5V Capable DPDT Analog Switches
MAXIM

MAX14594EEWL+T

High-Density, ±5V Capable DPDT Analog Switches
MAXIM