MAX1452AAE+C8H [MAXIM]

Analog Circuit, PDSO16;
MAX1452AAE+C8H
型号: MAX1452AAE+C8H
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, PDSO16

光电二极管
文件: 总25页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
General Description  
Benefits and Features  
Single-Chip, Integrated Analog Signal Path Reduces  
Design Time and Saves Space in a Complete  
Precision Sensor Solution  
The MAX1452 is a highly integrated analog-sensor sig-  
nal processor optimized for industrial and process con-  
trol applications utilizing resistive element sensors. The  
MAX1452 provides amplification, calibration, and temper-  
ature compensation that enables an overall performance  
approaching the inherent repeatability of the sensor. The  
fully analog signal path introduces no quantization noise  
in the output signal while enabling digitally controlled trim-  
ming with the integrated 16-bit DACs. Offset and span are  
calibrated using 16-bit DACs, allowing sensor products to  
be truly interchangeable.  
Provides Amplification, Calibration, and  
Temperature Compensation  
• Fully Analog Signal Path  
• Accommodates Sensor Output Sensitivities from  
4mV/V to 60mV/V  
• Single-Pin Digital Programming  
• No External Trim Components Required  
• 16-Bit Offset and Span Calibration Resolution  
• Supports Both Current and Voltage Bridge Excitation  
Fast 150μs Step Response  
The MAX1452 architecture includes a programmable  
sensor excitation, a 16-step programmable-gain ampli-  
fier (PGA), a 768-byte (6144 bits) internal EEPROM, four  
16-bit DACs, an uncommitted op amp, and an on-chip  
temperature sensor. In addition to offset and span com-  
pensation, the MAX1452 provides a unique temperature  
compensation strategy for offset TC and FSOTC that was  
developed to provide a remarkable degree of flexibility  
while minimizing testing costs.  
• On-Chip Uncommitted Op Amp  
On-Chip Lookup Table Supports Multipoint  
Calibration Temperature Correction Improving  
System Performance  
Secure-Lock™ Prevents Data Corruption  
Low 2mA Current Consumption Simplifies Power-  
Supply Design in 4–20mA Applications  
The MAX1452 is packaged for the commercial, industrial,  
and automotive temperature ranges in 16-pin SSOP/  
TSSOP and 24-pin TQFN packages.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 SSOP  
Customization  
MAX1452CAE+  
MAX1452EAE+  
MAX1452AAE+  
MAX1452AUE+  
MAX1452ATG+  
MAX1452C/D  
Maxim can customize the MAX1452 for high-volume  
dedicated applications. Using our dedicated cell library  
of more than 2000 sensor-specific functional blocks,  
Maxim can quickly provide a modified MAX1452 solution.  
Contact Maxim for further information.  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
0°C to +70°C  
16 SSOP  
16 SSOP  
16 TSSOP  
24 TQFN-EP*  
Dice**  
Applications  
Pressure Sensors  
Transducers and Transmitters  
Strain Gauges  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Dice are tested at T = +25°C, DC parameters only.  
A
Pressure Calibrators and Controllers  
Resistive Elements Sensors  
Accelerometers  
Detailed Block Diagram and Pin Configurations appear at  
the end of data sheet.  
Humidity Sensors  
Outputs Supported  
4–20mA  
0 to +5V (Rail-to-Rail)  
+0.5V to +4.5V Ratiometric  
+2.5V to ±2.5V  
Secure-Lock is a trademark of Maxim Integrated Products, Inc.  
19-1829; Rev 5; 4/15  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Absolute Maximum Ratings  
Supply Voltage, V  
to V .........................................-0.3V, +6V  
Operating Temperature:  
DD  
SS  
Supply Voltage, V  
All Other Pins...................................(V - 0.3V) to (V  
Short-Circuit Duration, FSOTC, OUT, BDR,  
AMPOUT................................................................Continuous  
Continuous Power Dissipation (T = +70°C)  
16-Pin SSOP/TSSOP (derate 8.00mW/°C above +70°C)..640mW  
24-Pin TQFN (derate 20.8mW/°C above +70°C).................1.67W  
to V  
................................-0.5V to +0.5V  
MAX1452CAE+/MAX1452C/D.............................0°C to +70°C  
MAX1452EAE+.................................................-40°C to +85°C  
MAX1452AAE+...............................................-40°C to +125°C  
MAX1452AUE+..............................................-40°C to +125°C  
MAX1452ATG+...............................................-40°C to +125°C  
Junction Temperature.......................................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
DD  
DDF  
+ 0.3V)  
SS  
DD  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= +5V, V = 0V, T = +25°C, unless otherwise noted.)  
DD  
DDF SS A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Supply Voltage  
V
4.5  
4.5  
5.0  
5.0  
2.0  
5.5  
5.5  
2.5  
V
V
DD  
EEPROM Supply Voltage  
Supply Current  
V
DDF  
I
(Note 1)  
mA  
DD  
Maximum EEPROM Erase/  
Write Current  
I
30  
mA  
DDFW  
Maximum EEPROM Read  
Current  
I
12  
1
mA  
DDFR  
Oscillator Frequency  
ANALOG INPUT  
f
0.85  
1.15  
MHz  
OSC  
Input Impedance  
R
1
MI  
IN  
Input-Referred Offset Tempco  
(Notes 2, 3)  
P1  
µV/°C  
Input-Referred Adjustable  
Offset Range  
Offset TC = 0 at minimum gain (Note 4)  
P150  
0.01  
90  
mV  
%
Percent of +4V span, V  
4.5V  
= +0.5V to  
OUT  
Amplifier Gain Nonlinearity  
Specified for common-mode voltages  
Common-Mode Rejection Ratio  
CMRR  
dB  
between V and V  
SS  
(Note 2)  
DD  
Input Referred Adjustable  
FSO Range  
4 to  
60  
(Note 5)  
mV/V  
ANALOG OUTPUT  
Differential Signal-Gain Range  
Selectable in 16 steps  
39 to 234  
39  
V/V  
V/V  
V
Configuration [5:2] 0000bin  
Configuration [5:2] 0001bin  
Configuration [5:2] 0010bin  
Configuration [5:2] 0100bin  
Configuration [5:2] 1000bin  
No load from each supply  
34  
47  
46  
59  
52  
Differential Signal Gain  
58  
65  
74  
82  
91  
102  
157  
133  
143  
0.02  
Maximum Output-Voltage Swing  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Electrical Characteristics (continued)  
(V  
= V  
= +5V, V = 0V, T = +25°C, unless otherwise noted.)  
DD  
DDF SS A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1mA sinking, T = T  
MIN  
TYP  
0.100  
4.87  
0.1  
MAX  
UNITS  
Output-Voltage Low  
Output-Voltage High  
Output Impedance at DC  
I
I
to T  
MAX  
0.20  
V
V
OUT  
A
MIN  
= 1mA sourcing, T = T  
to T  
MAX  
4.75  
OUT  
A
MIN  
ΔV  
ΔOffset  
/
OUT  
Output Offset Ratio  
0.90  
0.9  
1.05  
1
1.20  
1.2  
V/V  
V/V  
ΔV  
ΔOffset TC  
/
OUT  
Output Offset TC Ratio  
Step Response and IC  
(63% Final Value)  
150  
1
µs  
Maximum Capacitive Load  
µF  
DC to 1kHz (gain = minimum, source  
Output Noise  
0.5  
mV  
RMS  
impedance = 5kΩ V  
filter)  
DDF  
BRIDGE DRIVE  
Bridge Current  
I
R = 1.7kΩ  
0.1  
10  
0.5  
12  
2
14  
mA  
BDR  
AA  
L
Current Mirror Ratio  
R
= internal  
A/A  
hex  
ISOURCE  
V
Range (Span Code)  
T
= T  
to T  
MAX  
4000  
C000  
SPAN  
A
MIN  
DIGITAL-TO-ANALOG CONVERTERS  
DAC Resolution  
16  
76  
Bits  
ΔV  
ΔCode  
/
OUT  
ODAC Bit Weight  
DAC reference = V  
DAC reference = V  
DAC reference = V  
DAC reference = V  
= +5.0V  
µV/bit  
DD  
ΔV  
/
OUT  
OTCDAC Bit Weight  
FSODAC Bit Weight  
FSOTCDAC Bit Weight  
= +2.5V  
38  
76  
38  
µV/bit  
µV/bit  
µV/bit  
BDR  
ΔCode  
ΔV  
/
OUT  
= +5.0V  
DD  
ΔCode  
ΔV  
/
OUT  
= +2.5V  
BDR  
ΔCode  
COARSE OFFSET DAC  
IRODAC Resolution  
Including sign  
4
9
Bits  
ΔV  
ΔCode  
/
Input referred, DAC reference =  
V = +5.0V (Note 6)  
DD  
OUT  
IRODAC Bit Weight  
mV/bit  
FSOTC BUFFER  
V
+ 0.1  
SS  
Minimum Output-Voltage Swing  
No load  
No load  
V
Maximum Output-Voltage  
Swing  
V
- 1.0  
V
DD  
Current Drive  
V
= +2.5V  
-40  
+40  
µA  
FSOTC  
INTERNAL RESISTORS  
Current-Source Reference  
Resistor  
R
75  
kΩ  
ISRC  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Electrical Characteristics (continued)  
(V  
= V  
= +5V, V = 0V, T = +25°C, unless otherwise noted.)  
DD  
DDF SS A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1300  
75  
MAX  
UNITS  
ppm/°C  
kΩ  
Current-Source Reference  
Resistor Temperature Coefficient  
ΔR  
ISRC  
FSOTC Resistor  
R
FTC  
FSOTC Resistor Temperature  
Coefficient  
ΔR  
1300  
ppm/°C  
FTC  
TEMPERATURE-TO-DIGITAL CONVERTER  
Temperature ADC Resolution  
Offset  
8
Bits  
LSB  
°C/bit  
LSB  
hex  
P3  
Gain  
1.45  
P0.5  
00  
Nonlinearity  
Lowest Digital Output  
Highest Digital Output  
UNCOMMITTED OP AMP  
Open-Loop Gain  
AF  
hex  
R = 100kΩ  
90  
dB  
V
L
Input Common-Mode Range  
V
V
DD  
SS  
V
0.02  
+
V
0.02  
-
DD  
SS  
Output Swing  
No load, T = T  
to T  
MIN  
V
A
MIN  
MAX  
to T  
Output-Voltage High  
Output-Voltage Low  
Offset  
1mA source, T = T  
4.85  
4.90  
0.05  
V
V
A
MAX  
1mA sink, T = T  
to T  
MAX  
0.15  
+20  
A
MIN  
V
= +2.5V, unity-gain buffer  
-20  
mV  
MHz  
IN+  
Unity-Gain Bandwidth  
EEPROM  
2
Maximum Erase/Write Cycles  
Minimum Erase Time  
Minimum Write Time  
(Note 7)  
(Note 8)  
10k  
6
Cycles  
ms  
100  
µs  
Note 1: Excludes sensor or load current.  
Note 2: All electronics temperature errors are compensated together with sensors errors.  
Note 3: The sensor and the MAX1452 must be at the same temperature during calibration and use.  
Note 4: This is the maximum allowable sensor offset.  
Note 5: This is the sensor’s sensitivity normalized to its drive voltage, assuming a desired full span output of +4V and a bridge volt-  
age range of +1.7V to +4.25V.  
Note 6: Bit weight is ratiometric to V  
.
DD  
Note 7: Programming of the EEPROM at room temperature is recommended.  
Note 8: Allow a minimum of 6ms elapsed time before sending any command.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
DD  
OFFSET DAC DNL  
AMPLIFIER GAIN NONLINEARITY  
5.0  
2.5  
0
5.0  
ODAC = 6250hex  
OTCDAC = 0  
FSODAC = 4000hex  
FSOTCDAC = 8000hex  
PGA INDEX = 0  
IRO = 2  
2.5  
0
-2.5  
-5.0  
-2.5  
-5.0  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
0
10k 20k 30k 40k 50k 60k 70k  
DAC CODE  
INPUT VOLTAGE [INP - INM] (mV)  
OUTPUT NOISE  
OUT  
10mV/div  
400µs/div  
C = 4.7µF, R  
= 1k  
LOAD  
Pin Description  
PIN  
NAME  
FUNCTION  
SSOP/TSSOP  
TQFN-EP  
1
1
ISRC  
OUT  
Bridge Drive Current Mode Setting  
High ESD and Scan Path Output Signal. May need a 0.1µF capacitor, in  
noisy environments. OUT may be parallel connected to DIO.  
2
2
3
4
5
6
7
3
4
5
6
7
V
Negative Supply Voltage  
SS  
INM  
BDR  
INP  
Bridge Negative Input. Can be swapped to INP by configuration register.  
Bridge Drive  
Bridge Positive Input. Can be swapped to INM by configuration register.  
V
Positive Supply Voltage. Connect a 0.1µF capacitor from V  
to V  
.
DD  
DD  
SS  
8, 9, 13, 16, 20, 22,  
23, 24  
No Connection. Not internally connected; leave unconnected (TQFN  
package only).  
8
N.C.  
10  
TEST  
Internally Connected. Connect to V  
.
SS  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
SSOP/TSSOP  
TQFN-EP  
Positive Supply Voltage for EEPROM. Connect a 1µF capacitor from  
9
11  
V
V
to V . Connect V  
to V  
or for improved noise performance  
DDF  
DDF  
SS  
DDF  
DD  
connect a 30Ω resistor to V  
.
DD  
10  
11  
12  
13  
14  
15  
16  
12  
14  
15  
17  
18  
19  
21  
UNLOCK Secure-Lock Disable. Allows communication to the device.  
DIO  
Digital Input Output. DIO allows communication with the device.  
CLK1M  
1MHz Clock Output. The output can be controlled by a configuration bit.  
AMPOUT Uncommitted Amplifier Output  
AMP-  
AMP+  
FSOTC  
EP  
Uncommitted Amplifier Negative Input  
Uncommitted Amplifier Positive Input  
Full Span TC Buffered Output  
Exposed Pad (TQFN Only). Internally connected; connect to V  
.
SS  
The single pin, serial Digital Input-Output (DIO) communi-  
cation architecture and the ability to timeshare its activity  
with the sensor’s output signal enables output sensing  
and calibration programming on a single line by paral-  
lel connecting OUT and DIO. The MAX1452 provides a  
Secure-Lock feature that allows the customer to prevent  
modification of sensor coefficients and the 52-byte user  
definable EEPROM data after the sensor has been  
calibrated. The Secure-Lock feature also provides a hard-  
ware override to enable factory rework and recalibration  
by assertion of logic high on the UNLOCK pin.  
Detailed Description  
The MAX1452 provides amplification, calibration, and  
temperature compensation to enable an overall perfor-  
mance approaching the inherent repeatability of the sen-  
sor. The fully analog signal-path introduces no quantiza-  
tion noise in the output signal while enabling digitally con-  
trolled trimming with the integrated 16-bit DACs. Offset  
and span can be calibrated to within ±0.02% of span.  
The MAX1452 architecture includes a programmable  
sensor excitation, a 16-step programmable-gain ampli-  
fier (PGA), a 768-byte (6144 bits) internal EEPROM,  
four 16-bit DACs, an uncommitted op amp, and an on-  
chip temperature sensor. The MAX1452 also provides a  
unique temperature compensation strategy for offset TC  
and FSOTC that was developed to provide a remarkable  
degree of flexibility while minimizing testing costs.  
The MAX1452 allows complete calibration and sensor  
verification to be performed at a single test station. Once  
calibration coefficients have been stored in the MAX1452,  
the customer can choose to retest in order to verify per-  
formance as part of a regular QA audit or to generate final  
test data on individual sensors.  
The customer can select from one to 114 temperature  
points to compensate their sensor. This allows the  
latitude to compensate a sensor with a simple first order  
linear correction or match an unusual temperature curve.  
Programming up to 114 independent 16-bit EEPROM  
locations corrects performance in 1.5°C temperature  
increments over a range of -40°C to +125°C. For sensors  
that exhibit a characteristic temperature performance,  
a select number of calibration points can be used with  
a number of preset values that define the temperature  
curve. In cases where the sensor is at a different tempera-  
ture than the MAX1452, the MAX1452 uses the sensor  
bridge itself to provide additional temperature correction.  
The MAX1452’s low current consumption and the integrat-  
ed uncommitted op amp enables a 4–20mA output signal  
format in a sensor that is completely powered from a 2-wire  
current loop. Frequency response can be user-adjusted  
to values lower than the 3.2kHz bandwidth by using the  
uncommitted op amp and simple passive components.  
The MAX1452 (Figure 1) provides an analog amplification  
path for the sensor signal. It also uses an analog architec-  
ture for first-order temperature correction. A digitally con-  
trolled analog path is then used for nonlinear temperature  
correction. Calibration and correction is achieved by vary-  
ing the offset and gain of a programmable-gain-amplifier  
(PGA) and by varying the sensor bridge excitation current  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Offset Correction  
V
DD  
Initial offset correction is accomplished at the input stage  
of the signal gain amplifiers by a coarse offset setting.  
Final offset correction occurs through the use of a tem-  
perature indexed lookup table with 176 16-bit entries.  
The on-chip temperature sensor provides a unique 16-bit  
offset trim value from the table with an indexing resolu-  
tion of approximately 1.5°C from -40°C to +125°C. Every  
millisecond, the on-chip temperature sensor provides  
indexing into the offset lookup table in EEPROM and  
the resulting value transferred to the offset DAC register.  
The resulting voltage is fed into a summing junction at  
the PGA output, compensating the sensor offset with a  
resolution of ±76μV (±0.0019% FSO). If the offset TC  
DAC is set to zero then the maximum temperature error  
is equivalent to one degree of temperature drift of the  
sensor, given the Offset DAC has corrected the sensor  
at every 1.5°C. The temperature indexing boundaries  
are outside of the specified Absolute Maximum Ratings.  
The minimum indexing value is 00hex corresponding to  
approximately -69°C. All temperatures below this value  
output the coefficient value at index 00hex. The maximum  
indexing value is AFhex, which is the highest lookup table  
entry. All temperatures higher than approximately 184°C  
output the highest lookup table index value. No indexing  
wraparound errors are produced.  
V
DD  
BIAS  
GENERATOR  
IRO  
DAC  
MAX1452  
CLK1M  
TEST  
OSCILLATOR  
INP  
INM  
PGA  
OUT  
CURRENT  
SOURCE  
ANAMUX  
ISRC  
BDR  
A = 1  
FSOTC  
TEMP  
SENSOR  
176  
8-BIT ADC  
TEMPERATURE  
LOOK UP  
POINTS FOR  
OFFSET AND  
SPAN.  
V
DDF  
INTERNAL  
EEPROM  
6144 BITS  
DIO  
UNLOCK  
416 BITS  
FOR USER  
V
DD  
BDR  
OP-AMP  
AMP+  
AMP-  
AMPOUT  
V
SS  
FSO Correction  
Figure 1. Functional Diagram  
Two functional blocks control the FSO gain calibration.  
First, a coarse gain is set by digitally selecting the gain  
of the PGA. Second, FSO DAC sets the sensor bridge  
current or voltage with the digital input obtained from a  
temperature-indexed reference to the FSO lookup table  
in EEPROM. FSO correction occurs through the use of a  
temperature indexed lookup table with 176 16-bit entries.  
The on-chip temperature sensor provides a unique FSO  
trim from the table with an indexing resolution approach-  
ing one 16-bit value at every 1.5°C from -40°C to +125°C.  
The temperature indexing boundaries are outside of the  
specified Absolute Maximum Ratings. The minimum  
indexing value is 00hex corresponding to approximately  
-69°C. All temperatures below this value output the coef-  
ficient value at index 00hex. The maximum indexing  
value is AFhex, which is the highest lookup table entry.  
All temperatures higher than approximately 184°C output  
the highest lookup table index value. No indexing wrap-  
around errors are produced.  
or voltage. The PGA utilizes a switched capacitor CMOS  
technology, with an input-referred offset trimming range of  
more than ±150mV with an approximate 3μV resolution  
(16 bits). The PGA provides gain values from 39V/V to  
234V/V in 16 steps.  
The MAX1452 uses four 16-bit DACs with calibration  
coefficients stored by the user in an internal 768 x 8  
EEPROM (6144 bits). This memory contains the following  
information, as 16-bit wide words:  
● Configuration Register  
● Offset Calibration Coefficient Table  
● Offset Temperature Coefficient Register  
● FSO (Full-Span Output) Calibration Table  
● FSO Temperature Error Correction Coefficient Register  
● 52 bytes (416 bits) uncommitted for customer pro-  
gramming of manufacturing data (e.g., serial number  
and date)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
For high-accuracy applications (errors less than 0.25%),  
the first-order offset and FSO TC error should be com-  
pensated with the offset TC and FSOTC DACs, and the  
residual higher order terms with the lookup table. The  
offset and FSO compensation DACs provide unique  
compensation values for approximately 1.5°C of tem-  
perature change as the temperature indexes the address  
pointer through the coefficient lookup table. Changing the  
offset does not effect the FSO, however changing the  
FSO affects the offset due to nature of the bridge. The  
temperature is measured on both the MAX1452 die and  
at the bridge sensor. It is recommended to compensate  
the first-order temperature errors using the bridge sensor  
temperature.  
Linear and Nonlinear  
Temperature Compensation  
Writing 16-bit calibration coefficients into the offset TC  
and FSOTC registers compensates first-order tempera-  
ture errors. The piezoresistive sensor is powered by a  
current source resulting in a temperature-dependent  
bridge voltage due to the sensor’s temperature resistance  
coefficient (TCR). The reference inputs of the offset TC  
DAC and FSOTC DAC are connected to the bridge volt-  
age. The DAC output voltages track the bridge voltage as  
it varies with temperature, and by varying the offset TC  
and FSOTC digital code a portion of the bridge voltage,  
which is temperature dependent, is used to compensate  
the first-order temperature errors.  
The internal feedback resistors (R  
and R  
) for  
STC  
ISRC  
Typical Ratiometric Operating Circuit  
FSO temperature compensation are optimized to 75kΩ  
for silicon piezoresistive sensors. However, since the  
required feedback resistor values are sensor dependent,  
external resistors may also be used. The internal resistors  
selection bit in the configuration register selects between  
internal and external feedback resistors.  
Ratiometric output configuration provides an output that is  
proportional to the power supply voltage. This output can  
then be applied to a ratiometric ADC to produce a digital  
value independent of supply voltage. Ratiometricity is an  
important consideration for battery-operated instruments  
and some industrial applications.  
To calculate the required offset TC and FSOTC compen-  
sation coefficients, two test-temperatures are needed.  
After taking at least two measurements at each tempera-  
ture, calibration software (in a host computer) calculates  
the correction coefficients and writes them to the internal  
EEPROM.  
The MAX1452 provides a high-performance ratiometric  
output with a minimum number of external components  
(Figure 2). These external components include the fol-  
lowing:  
● One supply bypass capacitor.  
● One optional output EMI suppression capacitor.  
With coefficients ranging from 0000hex to FFFFhex and a  
+5V reference, each DAC has a resolution of 76μV. Two  
of the DACs (offset TC and FSOTC) utilize the sensor  
bridge voltage as a reference. Since the sensor bridge  
voltage is approximately set to +2.5V the FSOTC and  
offset TC exhibit a step size of less than 38μV.  
● Two optional resistors, R  
and R  
, for special  
STC  
ISRC  
sensor bridge types.  
+5V V  
OUT  
DD  
7
V
DD  
5
6
9
2
BDR  
INP  
V
DDF  
OUT  
MAX1452  
16  
FSOTC  
4
SENSOR  
INM  
R
R
STC  
1
ISRC  
0.1µF  
0.1µF  
TEST V  
ISRC  
SS  
8
3
GND  
Figure 2. Basic Ratiometric Output Configuration  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
2N4392  
G
1
VPWR  
+12V TO +40V  
IN  
MAX15006B  
D
S
8
OUT  
GND  
5
7
30  
V
DD  
5
6
9
2
BDR  
INP  
V
DDF  
OUT  
MAX1452  
OUT  
16  
FSOTC  
4
SENSOR  
INM  
R
R
STC  
1
ISRC  
2.2µF  
0.1µF 0.1µF  
1.0µF  
TEST V  
ISRC  
SS  
8
3
GND  
Figure 3. Basic Nonratiometric Output Configuration  
Internal Calibration Registers (ICRs)  
Typical Nonratiometric  
Operating Circuit  
The MAX1452 has five 16-bit internal calibration registers  
that are loaded from EEPROM, or loaded from the serial  
digital interface.  
(12VDC < V  
< 40VDC)  
PWR  
Nonratiometric output configuration enables the sensor  
power to vary over a wide range. A high-performance volt-  
age reference, such as the MAX15006B, is incorporated  
in the circuit to provide a stable supply and reference for  
MAX1452 operation. A typical example is shown in Figure  
3. Nonratiometric operation is valuable when wide ranges  
of input voltage are to be expected and the system A/D  
or readout device does not enable ratiometric operation.  
Data can be loaded into the internal calibration registers  
under three different circumstances.  
Normal Operation, Power-On Initialization Sequence  
● The MAX1452 has been calibrated, the Secure-Lock  
byte is set (CL[7:0] = FFhex) and UNLOCK is low.  
● Power is applied to the device.  
● The power-on-reset functions have completed.  
Typical 2-Wire, Loop-Powered,  
4–20mA Operating Circuit  
● Registers CONFIG, OTCDAC, and FSOTCDAC are  
refreshed from EEPROM.  
Process Control systems benefit from a 4–20mA current  
loop output format for noise immunity, long cable runs,  
and 2-wire sensor operation. The loop voltages can range  
from 12VDC to 40VDC and are inherently nonratiometric.  
The low current consumption of the MAX1452 allows it  
to operate from loop power with a simple 4–20mA drive  
circuit efficiently generated using the integrated uncom-  
mitted op amp (Figure 4).  
● Registers ODAC, and FSODAC are refreshed from the  
temperature indexed EEPROM locations.  
Normal Operation, Continuous Refresh  
● The MAX1452 has been calibrated, the Secure-Lock  
byte has been set (CL[7:0] = FFhex) and UNLOCK is  
low.  
● Power is applied to the device.  
● The power-on-reset functions have completed.  
● The temperature index timer reaches a 1ms time  
period.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
V
IN+  
2N4392  
G
+12V TO +40V  
D
S
100  
1
IN  
Z1  
MAX15006B  
8
OUT  
GND  
5
7
30Ω  
V
DD  
5
6
9
BDR  
INP  
V
DDF  
16  
FSOTC  
1.0µF  
MAX1452  
ISRC  
R
STC  
1
0.1µF  
2.2µF  
4
SENSOR  
INM  
4.99MΩ  
499kΩ  
R
ISRC  
2
OUT  
AMPOUT  
AMP-  
0.1µF  
13  
2N2222A  
14  
15  
4.99kΩ  
0.1µF  
AMP+  
TEST V  
100kΩ  
SS  
8
3
47Ω  
100kΩ  
V
IN-  
Figure 4. Basic 4–20mA Output, Loop-Powered Configuration  
● Registers CONFIG, OTCDAC, and FSOTCDAC are  
page. Each page can be individually erased. The memory  
structure is arranged as shown in Table 1. The lookup  
tables for ODAC and FSODAC are also shown, with the  
respective temp-index pointer. Note that the ODAC table  
occupies a continuous segment, from address 000hex to  
address 15Fhex, whereas the FSODAC table is divided  
in two parts, from 200hex to 2FFhex, and from 1A0hex to  
1FFhex. With the exception of the general-purpose user  
bytes, all values are 16-bit wide words formed by two  
adjacent byte locations (high byte and low byte).  
refreshed from EEPROM.  
● Registers ODAC and FSODAC are refreshed from the  
temperature indexed EEPROM locations.  
Calibration Operation, Registers Updated by Serial  
Communications  
● The MAX1452 has not had the Secure-Lock byte set  
(CL[7:0] = 00hex) or UNLOCK is high.  
● Power is applied to the device.  
The MAX1452 compensates for sensor offset, FSO, and  
temperature errors by loading the internal calibration  
registers with the compensation values. These compen-  
sation values can be loaded to registers directly through  
the serial digital interface during calibration or loaded  
automatically from EEPROM at power-on. In this way the  
device can be tested and configured during calibration  
and test and the appropriate compensation values stored  
● The power-on-reset functions have completed.  
● The registers can then be loaded from the serial digital  
interface by use of serial commands. See the section  
on Serial Interface Command Format.  
Internal EEPROM  
The internal EEPROM is organized as a 768 by 8-bit  
memory. It is divided into 12 pages, with 64 bytes per  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 1. EEPROM Memory Address Map  
LOW-BYTE  
ADDRESS (hex)  
HIGH-BYTE ADDRESS  
TEMP-INDEX[7:0]  
CONTENTS  
(hex)  
PAGE  
(hex)  
001  
03F  
041  
07F  
081  
0BF  
0C1  
0FF  
101  
13F  
141  
15F  
161  
163  
165  
167  
169  
16B  
16D  
17F  
181  
19F  
1A1  
1BF  
1C1  
1FF  
201  
23F  
241  
27F  
281  
2BF  
2C1  
2FF  
000  
03E  
040  
07E  
080  
0BE  
0C0  
0FE  
100  
13E  
140  
15E  
160  
162  
164  
166  
168  
16A  
16C  
17E  
180  
19E  
1A0  
1BE  
1C0  
1FE  
200  
23E  
240  
27E  
280  
2BE  
2C0  
2FE  
00  
1F  
20  
3F  
40  
0
1
2
3
4
5F  
ODAC  
Lookup Table  
60  
7F  
80  
9F  
A0  
AF to FF  
Configuration  
Reserved  
OTCDAC  
Reserved  
FSOTCDAC  
Control Location  
5
52 General-Purpose  
User Bytes  
6
80  
8F  
90  
7
8
9
A
B
AF to FF  
00  
1F  
20  
3F  
40  
5F  
60  
7F  
FSODAC  
Lookup Table  
in internal EEPROM. The device auto-loads the registers  
from EEPROM and be ready for use without further con-  
figuration after each power-up. The EEPROM is config-  
ured as an 8-bit wide array so each of the 16-bit registers  
is stored as two 8-bit quantities. The configuration register,  
FSOTCDAC and OTCDAC registers are loaded from the  
pre-assigned locations in the EEPROM.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
The ODAC and FSODAC are loaded from the EEPROM  
lookup tables using an index pointer that is a function of  
temperature. An ADC converts the integrated temperature  
sensor output to an 8-bit value every 1ms. This digitized  
value is then transferred into the temp-index register.  
and the DIO pin to be configured by Secure-Lock or the  
UNLOCK pin.  
Reinitialization Sequence  
The MAX1452 allows for relearning the baud rate. The  
reinitialization sequence is one byte transmission of  
FFhex, as follows:  
The typical transfer function for the temp-index is as fol-  
lows:  
11111111011111111111111111  
temp-index = 0.6879 Temperature (°C) + 44.0  
When a serial reinitialization sequence is received, the  
receive logic resets itself to its power-up state and waits  
for the initialization sequence. The initialization sequence  
must follow the reinitialization sequence in order to re-  
establish the baud rate.  
where temp-index is truncated to an 8-bit integer value.  
Typical values for the temp-index register are given in  
Table 6.  
Note that the EEPROM is byte wide and the registers that  
are loaded from EEPROM are 16 bits wide. Thus each  
index value points to two bytes in the EEPROM.  
Serial Interface Command Format  
All communication commands into the MAX1452 follow a  
defined format utilizing an interface register set (IRS). The  
IRS is an 8-bit command that contains both an interface  
register set data (IRSD) nibble (4-bit) and an interface  
register set address (IRSA) nibble (4-bit). All internal cali-  
bration registers and EEPROM locations are accessed for  
read and write through this interface register set. The IRS  
byte command is structured as follows:  
Maxim programs all EEPROM locations to FFhex with the  
exception of the oscillator frequency setting and Secure-  
Lock byte. OSC[2:0] is in the Configuration Register (Table  
3). These bits should be maintained at the factory preset  
values. Programming 00hex in the Secure-Lock byte  
(CL[7:0] = 00hex), configures the DIO as an asynchronous  
serial input for calibration and test purposes.  
Communication Protocol  
IRS[7:0] = IRSD[3:0], IRSA[3:0]  
The DIO serial interface is used for asynchronous serial  
data communications between the MAX1452 and a host  
calibration test system or computer. The MAX1452 auto-  
matically detects the baud rate of the host computer when  
the host transmits the initialization sequence. Baud rates  
between 4800bps and 38,400bps can be detected and  
used regardless of the internal oscillator frequency setting.  
Data format is always 1 start bit, 8 data bits, 1 stop bit and  
no parity. Communications are only allowed when Secure-  
Lock is disabled (i.e., CL[7:0] = 00hex) or the UNLOCK  
pin is held high.  
Where:  
● IRSA[3:0] is the 4-bit interface register set address  
and indicates which register receives the data nibble  
IRSD[3:0].  
● IRSA[0] is the first bit on the serial interface after the  
start bit.  
● IRSD[3:0] is the 4-bit interface register set data.  
● IRSD[0] is the fifth bit received on the serial interface  
after the start bit.  
The IRS address decoding is shown in Table 10.  
Initialization Sequence  
Special Command Sequences  
Sending the initialization sequence shown below enables  
the MAX1452 to establish the baud rate that initializes the  
serial port. The initialization sequence is one byte trans-  
mission of 01hex, as follows:  
A special command register to internal logic (CRIL[3:0])  
causes execution of special command sequences within  
the MAX1452. These command sequences are listed as  
CRIL command codes as shown in Table 11.  
1111111101000000011111111  
The first start bit 0 initiates the baud rate synchronization  
sequence. The 8 data bits 01hex (LSB first) follow this  
and then the stop bit, which is indicated above as a 1,  
terminates the baud rate synchronization sequence. This  
initialization sequence on DIO should occur after a period  
of 1ms after stable power is applied to the device. This  
allows time for the power-on-reset function to complete  
Write Examples  
A 16-bit write to any of the internal calibration registers is  
performed as follows:  
1) Write the 16 data bits to DHR[15:0] using four byte  
accesses into the interface register set.  
2) Write the address of the target internal calibration reg-  
ister to ICRA[3:0].  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
THREE-STATE  
NEED WEAK  
PULLUP  
THREE-STATE  
NEED WEAK  
PULLUP  
DRIVEN BY TESTER  
DRIVEN BY MAX1452  
DIO  
0
1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1  
Figure 5. DIO Output Data Format  
3) Write the load internal calibration register (LdICR) com-  
Serial Digital Output  
mand to CRIL[3:0].  
When a RdIRS command is written to CRIL[3:0], DIO  
is configured as a digital output and the contents of the  
register designated by IRSP[3:0] are sent out as a byte  
framed by a start bit and a stop bit.  
When a LdICR command is issued to the CRIL register,  
the calibration register loaded depends on the address in  
the internal calibration register address (ICRA). Table 12  
specifies which calibration register is decoded.  
Once the tester finishes sending the RdIRS command,  
it must three-state its connection to DIO to allow the  
MAX1452 to drive the DIO line. The MAX1452 three-  
states DIO high for 1 byte time and then drive with the  
start bit in the next bit period followed by the data byte and  
stop bit. The sequence is shown in Figure 5.  
Erasing and Writing the EEPROM  
The internal EEPROM needs to be erased (bytes set  
to FFhex) prior to programming the desired contents.  
Remember to save the 3 MSBs of byte 161 hex (high byte  
of the configuration register) and restore it when program-  
ming its contents to prevent modification of the trimmed  
oscillator frequency.  
The data returned on a RdIRS command depends on the  
address in IRSP. Table 13 defines what is returned for the  
various addresses.  
The internal EEPROM can be entirely erased with the  
ERASE command, or partially erased with the PageErase  
command (see Table 11, CRIL command). It is necessary  
to wait 6ms after issuing the ERASE or PageErase com-  
mand.  
Multiplexed Analog Output  
When a RdAlg command is written to CRIL[3:0] the ana-  
log signal designated by ALOC[3:0] is asserted on the  
OUT pin. The duration of the analog signal is determined  
by ATIM[3:0] after which the pin reverts to three-state.  
While the analog signal is asserted in the OUT pin, DIO  
is simultaneously three-stated, enabling a parallel wiring  
of DIO and OUT. When DIO and OUT are connected in  
parallel, the host computer or calibration system must  
three-state its connection to DIO after asserting the stop  
bit. Do not load the OUT line when reading internal  
signals, such as BDR, FSOTC...etc.  
After the EEPROM bytes have been erased (value of  
every byte = FFhex), the user can program its contents,  
following the procedure below:  
1) Write the 8 data bits to DHR[7:0] using two byte  
accesses into the interface register set.  
2) Write the address of the target internal EEPROM loca-  
tion to IEEA[9:0] using three byte accesses into the  
interface register set.  
The analog output sequence with DIO and OUT is shown  
in Figure 6.  
3) Write the EEPROM write command (EEPW) to  
CRIL[3:0].  
The duration of the analog signal is controlled byATIM[3:0]  
as given in Table 14.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
THREE-STATE  
NEED WEAK  
PULLUP  
THREE-STATE  
THREE-STATE  
NEED WEAK  
PULLUP  
ATIM  
2
+1 BYTE  
TIMES  
DRIVEN BY TESTER  
DIO  
0
1 1 1 1 1 0 1 0 0 1 1 0 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
HIGH IMPEDANCE  
OUT  
VALID OUT  
Figure 6. Analog Output Timing  
The analog signal driven onto the OUT pin is determined  
by the value in the ALOC register. The signals are speci-  
fied in Table 15.  
● Calibrate the output offset and FSO of the transducer  
using the ODAC and FSODAC, respectively.  
● Store calibration data in the test computer or MAX1452  
EEPROM user memory.  
Test System Configuration  
Set next test temperature:  
The MAX1452 is designed to support an automated  
production test system with integrated calibration and  
temperature compensation. Figure 7 shows the imple-  
mentation concept for a low-cost test system capable of  
testing many transducer modules connected in parallel.  
The MAX1452 allows for a high degree of flexibility in  
system calibration design. This is achieved by use of  
single-wire digital communication and three-state output  
nodes. Depending upon specific calibration requirements  
one may connect all the OUTs in parallel or connect DIO  
and OUT on each individual module.  
● Calibrate offset and FSO using the ODAC and  
FSODAC, respectively.  
● Store calibration data in the test computer or MAX1452  
EEPROM user memory.  
● Calculate the correction coefficients.  
● Download correction coefficients to EEPROM.  
● Perform a final test.  
Sensor Calibration and  
Compensation Example  
The MAX1452 temperature compensation design corrects  
both sensor and IC temperature errors. This enables the  
MAX1452 to provide temperature compensation approach-  
ing the inherent repeatability of the sensor. An example of  
the MAX1452’s capabilities is shown in Figure 8.  
Sensor Compensation Overview  
Compensation requires an examination of the sensor per-  
formance over the operating pressure and temperature  
range. Use a minimum of two test pressures (e.g., zero  
and full-span) and two temperatures. More test pressures  
and temperatures result in greater accuracy. A typical  
compensation procedure can be summarized as follows:  
A repeatable piezoresistive sensor with an initial offset of  
16.4mV and a span of 55.8mV was converted into a com-  
pensated transducer (utilizing the piezoresistive sensor  
with the MAX1452) with an offset of 0.5000V and a span  
of 4.0000V. Nonlinear sensor offset and FSO temperature  
errors, which were on the order of 20% to 30% FSO, were  
reduced to under ±0.1% FSO. The following graphs show  
the output of the uncompensated sensor and the output of  
the compensated transducer. Six temperature points were  
used to obtain this result.  
Set reference temperature (e.g., +25°C):  
● Initialize each transducer by loading their respective  
registers with default coefficients (e.g., based on mean  
values of offset, FSO and bridge resistance) to prevent  
overload of the MAX1452.  
Set the initial bridge voltage (with the FSODAC) to  
half of the supply voltage. Measure the bridge voltage  
using the BDR or OUT pins, or calculate based on  
measurements.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
DIO[1:N]  
DIGITAL  
DION  
DIO2  
DIO1  
MULTIPLEXER  
MODULE 1  
MODULE 2  
MODULE N  
DATA  
DATA  
V
V
OUT  
V
OUT  
OUT  
V
DD  
V
SS  
V
DD  
V
SS  
V
DD  
V
SS  
+5V  
V
OUT  
DVM  
TEST OVEN  
Figure 7. Automated Test System Concept  
2) Design/Applications Manual, which describes  
in detail the architecture and functionality of the  
MAX1452. This manual was developed for test engi-  
neers familiar with data acquisition of sensor data and  
provides sensor compensation algorithms and test  
procedures.  
MAX1452 Evaluation Kit  
To expedite the development of MAX1452-based trans-  
ducers and test systems, Maxim has produced the  
MAX1452 evaluation kit (EV kit). First-time users of the  
MAX1452 are strongly encouraged to use this kit.  
The EV kit is designed to facilitate manual programming  
of the MAX1452 with a sensor. It includes the following:  
3) MAX1452 Communication Software, which enables  
programming of the MAX1452 from a computer key-  
board (IBM compatible), one module at a time.  
1) Evaluation Board with or without a silicon pressure  
sensor, ready for customer evaluation.  
4) Interface Adapter, which allows the connection of the  
evaluation board to a PC serial port.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
UNCOMPENSATED SENSOR  
TEMPERATURE ERROR  
RAW SENSOR OUTPUT  
T = +25ºC  
A
30.0  
20.0  
80  
FSO  
OFFSET  
60  
40  
10.0  
0.0  
6
0
-10.0  
-20.0  
0
20  
40  
60  
80  
100  
-50  
0
50  
TEMPERATURE (ºC)  
100  
150  
PRESSURE (kPs)  
COMPENSATED TRANSDUCER  
T = +25ºC  
COMPENSATED TRANSDUCER ERROR  
A
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.15  
0.1  
FSO  
OFFSET  
0.05  
0
-0.05  
-0.1  
-0.15  
-50  
0
50  
TEMPERATURE (ºC)  
150  
0
20  
40  
60  
80  
100  
100  
PRESSURE (kPs)  
Figure 8. Comparison of an Uncalibrated Sensor and a Calibrated Transducer  
Table 2. Registers  
REGISTER  
CONFIG  
DESCRIPTION  
Configuration Register  
ODAC  
Offset DAC Register  
OTCDAC  
FSODAC  
FSOTCDAC  
Offset Temperature Coefficient DAC Register  
Full Span Output DAC Register  
Full Span Output Temperature Coefficient DAC Register  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 3. Configuration Register (CONFIG[15:0])  
FIELD  
15:13  
12  
NAME  
DESCRIPTION  
Oscillator frequency setting. Factory preset, do not change.  
Logic ‘1’ selects external R and R  
OSC[2:0]  
R
.
STC  
EXT  
ISRC  
11  
CLK1M EN  
PGA Sign  
IRO Sign  
IRO[2:0]  
Logic ‘1’ enables CLK1M output driver.  
Logic ‘1’ inverts INM and INP polarity.  
10  
9
Logic ‘1’ for positive input-referred offset (IRO). Logic ‘0’ for negative input-referred offset (IRO).  
Input-referred coarse offset adjustment.  
8:6  
5:2  
1
PGA[3:0]  
ODAC Sign  
Programmable gain amplifier setting.  
Logic ‘1’ for positive offset DAC output. Logic ‘0’ for negative offset DAC output.  
0
OTCDAC Sign Logic ‘1’ for positive offset TC DAC output. Logic ‘0’ for negative offset TC DAC output.  
Table 4. Input Referred Offset (IRO[2:0])  
INPUT-REFERRED OFFSET  
INPUT-REFERRED OFFSET, CORRECTION  
IRO SIGN, IRO[2:0]  
CORRECTION AS % OF V  
AT V  
= 5VDC IN mV  
DD  
DD  
1,111  
1,110  
1,101  
1,100  
1,011  
1,010  
1,001  
1,000  
0,000  
0,001  
0,010  
0,011  
0,100  
0,101  
0,110  
0,111  
+1.25  
+1.08  
+0.90  
+0.72  
+0.54  
+0.36  
+0.18  
0
+63  
+54  
+45  
+36  
+27  
+18  
+9  
0
0
0
-0.18  
-0.36  
-0.54  
-0.72  
-0.90  
-1.08  
-1.25  
-9  
-18  
-27  
-36  
-45  
-54  
-63  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 5. PGA Gain Setting (PGA[3:0])  
Table 6. Temp-Index Typical Values  
PGA[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
PGA GAIN (V/V)  
TEMP-INDEX[7:0]  
TEMPERATURE  
(°C)  
39  
52  
DECIMAL  
HEXADECIMAL  
-40  
25  
20  
65  
14  
41  
6A  
86  
65  
78  
85  
106  
134  
91  
125  
104  
117  
130  
143  
156  
169  
182  
195  
208  
221  
234  
Table 7. Oscillator Frequency Setting  
OSC[2:0]  
100  
OSCILLATOR FREQUENCY  
-37.5%  
-28.1%  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
101  
110  
-18.8%  
111  
-9.4%  
000  
1MHz (nominal)  
+9.4%  
001  
010  
+18.8%  
011  
+28.1%  
1111  
Table 8. EEPROM ODAC and FSODAC Lookup Table Memory Map  
EEPROM ADDRESS ODAC  
LOW BYTE AND HIGH BYTE  
EEPROM ADDRESS FSODAC  
LOW BYTE AND HIGH BYTE  
TEMP-INDEX[7:0]  
00hex  
to  
000hex and 001hex  
to  
200hex and 201hex  
to  
7Fhex  
0FEhex and 0FFhex  
2FEhex and 2FFhex  
80hex  
to  
100hex and 101hex  
to  
1A0hex and 1A1hex  
to  
AFhex  
15Ehex and 15Fhex  
1FEhex and 1FFhex  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 9. Control Location (CL[15:0])  
FIELD  
NAME  
DESCRIPTION  
15:8  
CL[15:8]  
Reserved  
Control Location. Secure-Lock is activated by setting this to FFhex which disables DIO serial  
communications and connects OUT to PGA output.  
7:0  
CL[7:0]  
Table 10. IRSA Decoding  
IRSA[3:0]  
DESCRIPTION  
Write IRSD[3:0] to DHR[3:0] (data hold register)  
Write IRSD[3:0] to DHR[7:4] (data hold register)  
0000  
0001  
0010  
0011  
0100  
0101  
Write IRSD[3:0] to DHR[11:8] (data hold register)  
Write IRSD[3:0] to DHR[15:12] (data hold register)  
Reserved  
Reserved  
Write IRSD[3:0] to ICRA[3:0] or IEEA[3:0], (internal calibration register address or internal EEPROM address  
nibble 0)  
0110  
0111  
1000  
Write IRSD[3:0] to IEEA[7:4] (internal EEPROM address, nibble 1)  
Write IRSD[3:0] to IRSP[3:0] or IEEA[9:8], (interface register set pointer where IRSP[1:0] is IEEA[9:8])  
Write IRSD[3:0] to CRIL[3:0] (command register to internal logic)  
Write IRSD[3:0] to ATIM[3:0] (analog timeout value on read)  
Write IRSD[3:0] to ALOC[3:0] (analog location)  
1001  
1010  
1011  
1100 to 1110  
1111  
Reserved  
Write IRSD[3:0] = 1111bin to relearn the baud rate  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 11. CRIL Command Codes  
CRIL[3:0]  
0000  
NAME  
LdICR  
EEPW  
ERASE  
RdICR  
RdEEP  
RdIRS  
DESCRIPTION  
Load internal calibration register at address given in ICRA with data from DHR[15:0].  
EEPROM write of 8 data bits from DHR[7:0] to address location pointed by IEEA[9:0].  
Erase all of EEPROM (all bytes equal FFhex).  
0001  
0010  
0011  
Read internal calibration register as pointed to by ICRA and load data into DHR[15:0].  
Read internal EEPROM location and load data into DHR[7:0] pointed by IEEA[9:0].  
Read interface register set pointer IRSP[3:0]. See Table 13.  
0100  
0101  
Output the multiplexed analog signal onto OUT. The analog location is specified in ALOC[3:0] (Table  
15) and the duration (in byte times) that the signal is asserted onto the pin is specified in ATIM[3:0]  
(Table 14).  
0110  
RdAlg  
Erases the page of the EEPROM as pointed by IEEA[9:6]. There are 64 bytes per page and thus 12  
pages in the EEPROM.  
0111  
PageErase  
Reserved  
1000 to  
1111  
Reserved.  
Table 12. ICRA[3:0] Decode  
ICRA[3:0]  
0000  
NAME  
CONFIG  
ODAC  
DESCRIPTION  
Configuration Register  
0001  
Offset DAC Register  
0010  
OTCDAC  
FSODAC  
Offset Temperature Coefficient DAC Register  
0011  
Full Scale Output DAC Register  
0100  
FSOTCDAC Full Scale Output Temperature Coefficient DAC Register  
0101  
Reserved. Do not write to this location (EEPROM test).  
0110 to  
1111  
Reserved. Do not write to this location.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 13. IRSP Decode  
IRSP[3:0]  
RETURNED VALUE  
0000  
0001  
DHR[7:0]  
DHR[15:8]  
0010  
IEEA[7:4], ICRA[3:0] concatenated  
CRIL[3:0], IRSP[3:0] concatenated  
ALOC[3:0], ATIM[3:0] concatenated  
IEEA[7:0] EEPROM address byte  
IEED[7:0] EEPROM data byte  
TEMP-Index[7:0]  
0011  
0100  
0101  
0110  
0111  
1000  
BitClock[7:0]  
1001  
Reserved. Internal flash test data.  
1010-1111  
11001010 (CAhex). This can be used to test communication.  
Table 14. ATIM Definition  
ATIM[3:0]  
DURATION OF ANALOG SIGNAL SPECIFIED IN BYTE TIMES (8-BIT TIME)  
20 + 1 = 2 byte times i.e. (2 x 8)/baud rate  
21 + 1 = 3 byte times  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
22 + 1 = 5 byte times  
23 + 1 = 9 byte times  
24 + 1 = 17 byte times  
25 + 1 = 33 byte times  
26 + 1 = 65 byte times  
27 + 1 = 129 byte times  
28 + 1 = 257 byte times  
29 + 1 = 513 byte times  
210 + 1 = 1025 byte times  
211 + 1 = 2049 byte times  
212 + 1 = 4097 byte times  
213 + 1 = 8193 byte times  
214 + 1 = 16,385 byte times  
In this mode OUT is continuous, however DIO accepts commands after 32,769 byte times. Do not parallel  
connect DIO to OUT.  
1111  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Table 15. ALOC Definition  
ALOC[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
ANALOG SIGNAL  
DESCRIPTION  
OUT  
BDR  
PGA Output  
Bridge Drive  
ISRC  
Bridge Drive Current Setting  
Internal Positive Supply  
Internal Ground  
VDD  
VSS  
BIAS5U  
AGND  
FSODAC  
FSOTCDAC  
ODAC  
OTCDAC  
VREF  
Internal Test Node  
Internal Analog Ground. Approximately half of VDD.  
Full Scale Output DAC  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Full Scale Output TC DAC  
Offset DAC  
Offset TC DAC  
Bandgap Reference Voltage (nominally 1.25V)  
Internal Test Node  
VPTATP  
VPTATM  
INP  
Internal Test Node  
Sensor’s Positive Input  
1111  
INM  
Sensor’s Negative Input  
Table 16. Effects of Compensation  
TYPICAL UNCOMPENSATED INPUT (SENSOR)  
TYPICAL COMPENSATED TRANSDUCER OUTPUT  
at 5.0V  
Offset....................................................................... ±100% FSO OUT..................................................Ratiometric to V  
DD  
FSO ................................................................ 4mV/V to 60mV/V Offset at +25°C...................................................0.500V ±200μV  
Offset TC ..................................................................... 20% FSO FSO at +25°C.....................................................4.000V ±200μV  
Offset TC Nonlinearity................................................... 4% FSO Offset accuracy over temp. range................±4mV (±0.1% FSO)  
FSOTC ....................................................................... -20% FSO FSO accuracy over temp. range..................±4mV (±0.1% FSO)  
FSOTC Nonlinearity ...................................................... 5% FSO  
Temperature Range.......................................... -40°C to +125°C  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Detailed Block Diagram  
EEPROM  
(LOOKUP PLUS CONFIGURATION DATA)  
V
DD  
EEPROM ADDRESS USAGE  
000H + 001H  
OFFSET DAC LOOKUP TABLE  
(176 x 16-BITS)  
V
DD  
:
16-BIT  
15EH + 15FH  
160H + 161H  
162H + 163H  
164H + 165H  
166H + 167H  
168H + 169H  
16AH + 16BH  
16CH + 16DH  
FSO  
DAC  
V
V
DD  
CONFIGURATION REGISTER SHADOW  
RESERVED  
ISRC  
V
SS  
OFFSET TC REGISTER SHADOW  
RESERVED  
SS  
FSOTC REGISTER SHADOW  
CONTROL LOCATION REGISTER  
USER STORAGE (52 BYTES)  
TEST  
V
DD  
SS  
16-BIT  
OFFSET  
DAC  
CLK1M  
:
R
R
STC  
ISRC  
75k  
75kΩ  
19EH + 19FH  
V
V
DDF  
1A0H + 1A1H  
FSO DAC LOOKUP TABLE  
(176 x 16-BITS)  
:
V
SS  
2FEH + 2FFH  
V
DD  
8-BIT  
BANDGAP  
TEMP  
LOOKUP  
ADDRESS  
±1  
SENSOR  
16-BIT  
FSOTC  
INP  
BDR  
FSOTC  
DAC  
UNLOCK  
DIO  
DIGITAL  
INTERFACE  
V
SS  
PHASE  
REVERSAL  
MUX  
V
SS  
FSOTC REGISTER  
PGA BANDWIDTH  
3kHz 10%  
MUX  
x 26  
PGA  
MUX  
OUT  
INM  
INPUT REFERRED OFFSET  
(COARSE OFFSET)  
AMP-  
PROGRAMMABLE GAIN STAGE  
V
SS  
±1  
PGA (3:0) PGA GAIN TOTAL GAIN  
IRO (3, 2:0) OFFSET mV  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
39  
52  
1,111  
1,110  
1,101  
1,100  
1,011  
1,010  
1,001  
1,000  
0,000  
0,001  
0,010  
0,011  
0,100  
0,101  
0,110  
0,111  
63  
54  
45  
36  
27  
18  
9
AMPOUT  
65  
16-BIT  
78  
OFFSET  
TC DAC  
AMP+  
91  
104  
117  
130  
143  
156  
169  
182  
195  
208  
221  
234  
V
SS  
OTC REGISTER  
0
UNCOMMITTED OP AMP  
0
*INPUT REFERRED  
OFFSET VALUE IS  
-9  
PARAMETER  
I/P RANGE  
VALUE  
TO V  
-18  
-27  
-36  
-45  
-54  
-63  
V
SS  
DD  
PROPORTIONAL TO V  
.
DD  
VALUES GIVEN ARE FOR  
= 5V.  
I/P OFFSET  
±20mV  
V
DD  
O/P RANGE  
NO LOAD  
1mA LOAD  
V
V
, V ±0.01V  
SS DD  
, V ±0.25V  
SS DD  
UNITY GBW  
10MHz TYPICAL  
PGA BANDWIDTH 3kHz ± 10%  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Pin Configurations  
TOP VIEW  
+
24  
23  
22  
21  
20  
19  
ISRC  
OUT  
1
2
3
4
5
6
7
8
16 FSOTC  
15 AMP+  
14 AMP-  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
ISRC  
OUT  
AMP-  
+
AMPOUT  
N.C.  
V
SS  
INM  
BDR  
INP  
13 AMPOUT  
12 CLK1M  
11 DIO  
V
SS  
MAX1452  
MAX1452  
INM  
CLK1M  
DIO  
BDR  
V
10 UNLOCK  
DD  
N.C.  
INP  
TEST  
9
V
DDF  
7
8
9
10  
11  
12  
SSOP/TSSOP  
TQFN  
Chip Information  
SUBSTRATE CONNECTED TO: V  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
SS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
16 SSOP  
16 TSSOP  
24 TQFN-EP  
A16+2  
U16+2  
21-0056  
21-0066  
21-0139  
90-0106  
90-0117  
90-0022  
T2444+4  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX1452  
Low-Cost Precision Sensor  
Signal Conditioner  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Added TQFN and TSSOP package information, changed packages to lead free,  
changed all occurrences of ASIC to MAX1452, changed VDDF RC filter values,  
1–7, 9, 10, 12,  
18, 22, 24  
2
4/09  
recommended a more suitable voltage reference for non-ratiometric application  
circuits, corrected MAX1452 input range, and added typical EEPROM current  
requirements to EC table, and added gain nonlinearity graph.  
3
4
5
11/13  
10/14  
4/15  
Updated Package Information section  
Deleted automotive reference  
24  
8
Updated Benefits and Features section  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
25  

相关型号:

MAX1452AAE-T

Analog Circuit, 1 Func, PDSO16, 5.30 MM, 0.65 MM PITCH, MO-150, SSOP-16
MAXIM

MAX1452ATG

暂无描述
MAXIM

MAX1452ATG+

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452ATG-T

暂无描述
MAXIM

MAX1452AUE+

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452C

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452C/D

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452C/DW

SPECIALTY ANALOG CIRCUIT, UUC, DIE
MAXIM

MAX1452CAE

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452CAE+

Low-Cost Precision Sensor Signal Conditioner
MAXIM

MAX1452CAE+C8H

Analog Circuit, 1 Func, PDSO16, ROHS COMPLIANT, SSOP-16
MAXIM

MAX1452CAE+TC8H

Analog Circuit, 1 Func, PDSO16, ROHS COMPLIANT, SSOP-16
MAXIM