MAX1392MUB [MAXIM]

1.5V to 3.6V, 357ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 10-Bit, SAR ADCs; 1.5V至3.6V , 357ksps ,单通道真差分/双通道单端, 10位, SAR型ADC
MAX1392MUB
型号: MAX1392MUB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.5V to 3.6V, 357ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 10-Bit, SAR ADCs
1.5V至3.6V , 357ksps ,单通道真差分/双通道单端, 10位, SAR型ADC

文件: 总19页 (文件大小:875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3709; Rev 0; 5/05  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
General Description  
Features  
The MAX1392/MAX1395 micropower, serial-output,  
10-bit, analog-to-digital converters (ADCs) operate with  
a single power supply from +1.5V to +3.6V. These  
ADCs feature automatic shutdown, fast wake-up, and a  
high-speed 3-wire interface. Power consumption is only  
357ksps 10-Bit Successive-Approximation  
Register (SAR) ADCs  
Single True-Differential Analog Input Channel  
with Unipolar-/Bipolar-Selected Input (MAX1392)  
0.740mW (V  
= +1.5V) at the maximum conversion  
DD  
Dual Single-Ended Input Channel with Channel-  
rate of 357ksps. AutoShutdown™ between conversions  
reduces power consumption at slower throughput rates.  
Selected Input (MAX1395)  
0ꢀ5 ꢁSB IꢂꢁL 0ꢀ5 ꢁSB DꢂꢁL ꢂo Missing Codes  
1 ꢁSB Total Unadꢃusted Error  
The MAX1392/MAX1395 require an external reference  
REF  
V
that has a wide range from 0.6V to V . The  
DD  
MAX1392 provides one true-differential analog input  
that accepts signals ranging from 0 to V (unipolar  
61dB SIꢂAD at 85kHz Input Frequency  
Single Supply Voltage (+1ꢀ5V to +3ꢀ6V)  
0ꢀ945mW at 350kspsL 1ꢀ8V  
0ꢀ27mW at 100kspsL 1ꢀ8V  
REF  
mode) or  
vides two single-ended inputs that accept signals rang-  
ing from 0 to V . Analog conversion results are  
V
/2 (bipolar mode). The MAX1395 pro-  
REF  
REF  
available through a 5MHz, 3-wire SPI™-/QSPI™-  
/MICROWIRE™-/digital signal processor (DSP)-compat-  
ible serial interface. Excellent dynamic performance,  
low voltage, low power, ease of use, and small pack-  
age sizes make these converters ideal for portable bat-  
tery-powered data-acquisition applications, and for  
other applications that demand low power consumption  
and minimal space.  
3ꢀ1µW at 1kspsL 1ꢀ8V  
<1µA Shutdown Current  
External Reference (0ꢀ6V to V  
)
DD  
AutoShutdown Between Conversions  
SPI-/QSPI-/MICROWIRE-/DSP-CompatibleL  
The MAX1392/MAX1395 are available in a space-sav-  
ing (3mm x 3mm) 10-pin TDFN package or 10-pin  
µMAX® package. The parts operate over the extended  
(-40°C to +85°C) and military (-55°C to +125°C) tem-  
perature ranges.  
3- or 4-Wire Serial Interface  
Small (3mm x 3mm)L 10-Pin TDFꢂ or µMAX  
(3mm x 5mm) Package  
Applications  
Typical Operating Circuit and Pin Configurations appear at  
end of data sheet.  
Portable Datalogging  
Data Acquisition  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Medical Instruments  
Battery-Powered Instruments  
Process Control  
Ordering Information  
PART  
TEMP RAꢂGE  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
PIꢂ-PACKAGE  
10 TDFN-EP*  
10 µMAX  
AꢂAꢁOG IꢂPUTS  
1-CH DIFF  
1-CH DIFF  
1-CH DIFF  
1-CH DIFF  
2-CH S/E  
TOP MARK  
MAX1392ETB**  
MAX1392EUB**  
MAX1392MTB**  
MAX1392MUB**  
MAX1395ETB  
AOY  
10 TDFN-EP*  
10 µMAX  
10 TDFN-EP*  
10 µMAX  
APB  
MAX1395EUB**  
MAX1395MTB**  
MAX1395MUB**  
*EP = Exposed pad.  
2-CH S/E  
10 TDFN-EP*  
10 µMAX  
2-CH S/E  
2-CH S/E  
**Future product—contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
ABSOꢁUTE MAXIMUM RATIꢂGS  
DD  
V
to GND..............................................................-0.3V to +4V  
Operating Temperature Ranges  
SCLK, CS, OE, CH1/CH2, UNI/BIP,  
DOUT to GND.........................................-0.3V to (V  
AIN+, AIN-, AIN1, AIN2, REF to GND ........-0.3V to (V  
MAX139_E_ _...................................................-40°C to +85°C  
MAX139_M_ _................................................-55°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
Maximum Current into Any Pin ......................................... 50mA  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin TDFN (derate 18.5mW/°C above +70°C) ....1481.5mW  
10-Pin µMAX (derate 5.6mW/°C above +70°C)........444.4mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢁECTRICAꢁ CHARACTERISTICS  
(V  
= +1.5V to +3.6V, V  
= V , C  
= 0.1µF, f  
= 5MHz, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
REF  
DD  
REF  
SCLK  
A
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOꢁ  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
DC ACCURACY (ꢂote 1)  
Resolution  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
0.5  
0.5  
0.5  
1
DNL  
No missing code overtemperature  
Offset nulled  
0.25  
0.25  
Gain Error  
Total Unadjusted Error  
TUE  
Offset-Error Temperature  
Coefficient  
0.001  
0.00025  
0.1  
LSB/°C  
LSB/°C  
LSB  
Gain-Error Temperature  
Coefficient  
Channel-to-Channel Offset  
Matching  
MAX1395 only  
MAX1395 only  
Channel-to-Channel Gain  
Matching  
0.1  
0.1  
LSB  
Input Common-Mode Rejection  
CMR  
V
= 0 to V , MAX1392 only  
mV/V  
CM  
DD  
DYꢂAMIC SPECIFICATIOꢂS (Note 2)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
V
V
= V  
= V  
= 1.6 to 3.6V  
= 1.6 to 3.6V  
61  
61  
dB  
dB  
REF  
REF  
DD  
DD  
Total Harmonic Distortion  
THD  
-83  
-84  
-73  
-74  
dBc  
dBc  
Spurious-Free Dynamic Range  
SFDR  
f
f
= 83kHz at -6.5dBFS,  
= 87kHz at -6.5dBFS  
IN1  
IN2  
Intermodulation Distortion  
IMD  
-75  
dB  
Channel-to-Channel Crosstalk  
Full-Power Bandwidth  
MAX1395 only  
-3dB point  
-70  
4
dB  
MHz  
MAX1392  
MAX1395  
200  
150  
Full-Linear Bandwidth  
SINAD > 59dB  
kHz  
2
_______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
EꢁECTRICAꢁ CHARACTERISTICS (continued)  
(V  
= +1.5V to +3.6V, V  
= V , C  
= 0.1µF, f  
= 5MHz, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
REF  
DD  
REF  
SCLK  
A
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOꢁ  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
COꢂVERSIOꢂ RATE  
Conversion Time  
t
11 clock cycles  
2.2  
µs  
CONV  
14 clocks per conversion; includes power-  
up, acquisition, and conversion time  
Throughput Rate  
357  
ksps  
Power-Up and Acquisition Time  
Aperture Delay  
t
Three SCLK cycles  
600  
ns  
ns  
ACQ  
t
8
AD  
Aperture Jitter  
t
30  
ps  
AJ  
Serial Clock Frequency  
f
0.1  
0
5.0  
MHz  
CLK  
AꢂAꢁOG IꢂPUTS (AIꢂ+L AIꢂ-L AIꢂ1L AIꢂ2)  
Unipolar  
V
REF  
Input Voltage Range  
V
V
V
IN  
Bipolar, MAX1392 only (AIN+ - AIN-)  
-V  
/2  
+V  
/2  
REF  
REF  
Common-Mode Input Voltage  
Range  
V
Bipolar, MAX1392 only [(AIN+) + (AIN-)] / 2  
0
V
CM  
DD  
1
Channel not selected, or conversion  
stopped, or in shutdown mode  
Input Leakage Current  
µA  
pF  
Input Capacitance  
16  
REFEREꢂCE IꢂPUT (REF)  
V
0.05  
+
DD  
REF Input Voltage Range  
V
0.6  
V
REF  
REF Input Capacitance  
REF DC Leakage Current  
REF Input Dynamic Current  
24  
0.025  
20  
pF  
µA  
µA  
2.5  
60  
357ksps  
DIGITAꢁ IꢂPUTS (SCꢁKL CSL OEL CH1/CH2L UꢂI/BIP)  
0.3 x  
Input-Voltage Low  
Input-Voltage High  
V
V
V
IL  
V
DD  
0.7 x  
V
IH  
V
DD  
0.06 x  
Input Hysteresis  
V
V
DD  
Input Leakage Current  
Input Capacitance  
I
Inputs at GND or V  
CS, OE  
1
µA  
pF  
IL  
DD  
1
C
IN  
CH1/CH2, UNI/BIP  
12.5  
DIGITAꢁ OUTPUT (DOUT)  
Output-Voltage Low  
0.1 x  
V
I
I
= 2mA  
SINK  
V
V
OL  
V
DD  
0.9 x  
Output-Voltage High  
V
= 2mA  
SOURCE  
OH  
V
DD  
_______________________________________________________________________________________  
3
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
EꢁECTRICAꢁ CHARACTERISTICS (continued)  
(V  
= +1.5V to +3.6V, V  
= V , C  
= 0.1µF, f  
= 5MHz, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
REF  
DD  
REF  
SCLK  
A
MIN  
T
A
= +25°C.)  
PARAMETER  
SYMBOꢁ  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
µA  
Tri-State Leakage Current  
Tri-State Output Capacitance  
POWER SUPPꢁY  
I
OE = V  
1
LT  
DD  
C
OE = V  
10  
pF  
OUT  
DD  
Positive Supply Voltage  
V
1.5  
3.6  
140  
225  
600  
800  
10  
V
DD  
DD  
V
V
V
V
= 1.6V  
150  
200  
520  
710  
5
DD  
DD  
DD  
DD  
f
f
= 100ksps  
SAMPLE  
SAMPLE  
= 3V  
= 1.6V  
= 3V  
Positive Supply Current (Note 3)  
I
µA  
= 357ksps  
Power-down mode (Note 4)  
Power-down mode (Note 5)  
0.2  
2.5  
Power-Supply Rejection  
(Note 6)  
PSR  
V
= 1.5V to 3.6V, full-scale input  
150  
1000  
µV/V  
DD  
TIMIꢂG CHARACTERISTICS  
(V  
= +1.5V to +3.6V, V  
= V , C  
= 0.1µF, f  
= 5MHz, T = T  
to T  
, unless otherwise noted. Typical values are at  
MAX  
DD  
REF  
DD  
REF  
SCLK  
A
MIN  
T
A
= +25°C.) (Figure 1)  
PARAMETER  
SYMBOꢁ  
COꢂDITIOꢂS  
MIꢂ  
200  
90  
90  
80  
0
TYP  
MAX  
UꢂITS  
ns  
SCLK Clock Period  
t
10000  
CP  
CH  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Fall Ignore  
SCLK Fall to DOUT Valid  
OE Rise to DOUT Disable  
OE Fall to DOUT Enable  
CS Pulse-Width High or Low  
OE Pulse-Width High or Low  
t
ns  
t
ns  
CL  
t
ns  
CSS  
t
t
ns  
CSO  
DOV  
DOD  
C
= 0 to 30pF  
10  
80  
20  
20  
ns  
LOAD  
t
6
9
ns  
t
ns  
DOE  
CSW  
OEW  
t
t
80  
80  
10  
0
ns  
ns  
CH1/CH2 Setup Time (to the First SCLK)  
CH1/CH2 Hold Time (to the First SCLK)  
UNI/BIP Setup Time (to the First SCLK)  
UNI/BIP Hold Time (to the First SCLK)  
t
MAX1395 only  
MAX1395 only  
MAX1392 only  
MAX1392 only  
ns  
CHS  
t
ns  
CHH  
t
10  
0
ns  
UBS  
t
ns  
UBH  
ꢂote 1: V = 1.5V, V  
= 1.5V, and V  
= 1.5V.  
P-P SCLK  
DD  
REF  
REF  
AIN  
ꢂote 2: V = 1.5V, V  
= 1.5V, V  
= 1.5V , f  
= 5MHz, f  
= 357ksps, and f (sine-wave) = 85kHz.  
SAMPLE IN  
DD  
AIN  
ꢂote 3: All digital inputs swing between V and GND. V  
= V , f = 85kHz sine-wave, V  
= V  
C
= 30pF on DOUT.  
DD  
REF  
DD IN  
AIN  
REFP-P, LOAD  
ꢂote 4: CS = V , OE = UNI/BIP = CH1/CH2 = V  
or GND, SCLK is active.  
or GND, SCLK is inactive.  
DD  
DD  
ꢂote 5: CS = V , OE = UNI/BIP = CH1/CH2 = V  
DD  
DD  
ꢂote 6: Change in V  
at code boundary 1022.5.  
AIN  
4
_______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
UNI/BIP OR  
CH1/CH2  
t
CHS  
t
UBS  
OE  
CS  
t
CHH  
t
UBH  
t
t
OEW  
t
t
t
CL  
t
CH  
CSO  
CSS  
CSW  
SCLK  
DOUT  
t
t
CP  
DOE  
t
t
DOD  
DOV  
HIGH-Z  
HIGH-Z  
Figure 1. Detailed Serial-Interface Timing Diagram  
V
DD  
10mA  
DOUT  
DOUT  
10mA  
50pF  
GND  
50pF  
GND  
b) HIGH IMPEDANCE TO V , V TO V ,  
OL  
a) HIGH IMPEDANCE TO V , V TO V  
AND V TO HIGH IMPEDANCE  
,
OH OL  
OH  
OL OH  
OH  
AND V TO HIGH IMPEDANCE  
OL  
Figure 2. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
5
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Typical Operating Characteristics  
(V  
DD  
= +1.5V, V  
= +1.5V, C  
= 0.1µF, C = 30pF, f  
= 5MHz. T = +25°C, unless otherwise noted.)  
A
REF  
REF  
L
SCLK  
INL vs. CODE  
INL ERROR vs. REFERENCE VOLTAGE  
DNL vs. CODE  
1.0  
1.0  
0.8  
1.0  
0.8  
V
DD  
= 3.6V  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
MAX INL  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
MIN INL  
0
128 256 384 512 640 768 896 1024  
CODE  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
3.6  
0
128 256 384 512 640 768 896 1024  
CODE  
REFERENCE VOLTAGE (V)  
DNL ERROR vs. REFERENCE VOLTAGE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
1.0  
0.8  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
V
= 3.6V  
V
= 1.5V  
V
DD  
= 3.6V  
DD  
REF  
TEMPERATURE = +25°C  
0.6  
AIN2  
AIN2  
0.4  
MAX DNL  
MIN DNL  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
AIN1  
-100  
-200  
-300  
-400  
-100  
-200  
-300  
-400  
AIN1  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
3.6  
1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
SUPPLY VOLTAGE (V)  
-55  
-25  
5
35  
65  
95  
125  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
OFFSET ERROR  
vs. REFERENCE VOLTAGE  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
400  
300  
200  
100  
0
V
= 1.5V  
REF  
V
= 3.6V  
V
DD  
= 3.6V  
DD  
TEMPERATURE = +25°C  
AIN2  
AIN2  
-100  
-200  
-300  
-400  
-100  
-200  
-300  
-400  
-100  
-200  
-300  
-400  
AIN1  
AIN1  
1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
SUPPLY VOLTAGE (V)  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
3.6  
-55  
-25  
5
35  
65  
95  
125  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Typical Operating Characteristics (continued)  
(V  
DD  
= +1.5V, V  
= +1.5V, C  
= 0.1µF, C = 30pF, f  
= 5MHz. T = +25°C, unless otherwise noted.)  
SCLK A  
REF  
REF  
L
GAIN ERROR  
vs. REFERENCE VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
400  
300  
200  
100  
0
600  
550  
500  
450  
400  
800  
700  
600  
500  
V
= 3.6V  
V
REF  
= 1.5V, C = 33pF  
L
DD  
f
= 5MHz, f  
= 357ksps  
SCLK  
SAMPLE  
AIN = FULL SCALE, 10kHz SINE WAVE  
-100  
-200  
-300  
-400  
V
f
= 1.5V, C = 33pF  
L
REF  
= 5MHz, f  
= 357ksps  
SCLK  
SAMPLE  
AIN = FULL SCALE, 10kHz SINE WAVE  
400  
3.6  
0.6  
1.1  
1.6  
2.1  
2.6  
3.1  
-55  
-25  
5
35  
65  
95  
125  
1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. CONVERSION RATE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
800  
600  
400  
200  
0
2.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
f
= 5MHz, f  
= 357ksps  
SCLK  
SAMPLE  
AIN = FULL SCALE, 85kHz SINE WAVE  
C = 30pF  
L
1.6  
1.2  
0.8  
0.4  
0
V
DD  
= V = 3.0V  
REF  
V
DD  
= 1.8V  
V
DD  
= 3.6V  
V
DD  
= V = 1.6V  
REF  
0
50 100 150 200 250 300 350  
(ksps)  
-55  
-25  
5
35  
65  
95  
125  
1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
SUPPLY VOLTAGE (V)  
f
TEMPERATURE (°C)  
SAMPLE  
SAMPLING ERROR  
vs. SOURCE IMPEDANCE  
SCLK-TO-DOUT TIMING  
FFT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
1.0  
0.8  
V
V
= 1.6V  
= 1.6V  
= 357ksps  
= 85kHz  
DD  
REF  
AIN HIGH-TO-LOW FS TRANSITION  
f
f
S
IN  
V
DD  
= 1.5V  
0.6  
0.4  
THD = -82.7dB  
SINAD = 61.3dB  
SFDR = -83.8dB  
-40  
0.2  
V
= 3.6V  
DD  
-60  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-80  
AIN LOW-TO-HIGH FS TRANSITION  
-100  
-120  
0
100  
200  
300  
(pF)  
400  
500  
600  
0
20 40 60 80 100 120 140 160 180  
FREQUENCY (kHz)  
0
500  
1000  
1500  
2000  
2500  
C
SOURCE IMPEDENCE ()  
LOAD  
_______________________________________________________________________________________  
7
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Pin Description  
PIꢂ  
ꢂAME  
FUꢂCTIOꢂ  
MAX1392 MAX1395  
Positive Supply Voltage. Connect V to a 1.5V to 3.6V power supply. Bypass V to GND  
with a 0.1µF capacitor as close to the device as possible.  
DD  
DD  
1
1
V
DD  
2
3
2
AIN-  
AIN2  
AIN+  
AIN1  
GND  
Negative Analog Input  
Analog Input Channel 2  
Positive Analog Input  
Analog Input Channel 1  
Ground  
3
4
4
External Reference Voltage Input. V  
0.1µF capacitor as close to the device as possible.  
= 0.6V to (V  
+ 0.05V). Bypass REF to GND with a  
DD  
REF  
5
5
6
REF  
Input-Mode Select. Drive UNI/BIP high to select unipolar input mode. Pull UNI/BIP low to  
UNI/BIP select bipolar input mode. In unipolar mode, the output data is in straight binary format. In  
6
bipolar mode, the output data is in two’s-complement format.  
Channel-Select Input. Pull CH1/CH2 low to select channel 1. Drive CH1/CH2 high to select  
channel 2.  
7
CH1/CH2  
Active-Low Output Enable. Pull OE low to enable DOUT. Drive OE high to disable DOUT.  
Connect to CS to interface with SPI, QSPI, and MICROWIRE devices or set low to interface  
7
OE  
with DSP devices.  
8
9
8
9
CS  
Active-Low Chip-Select Input. A falling edge on CS initiates power-up and acquisition.  
Serial-Data Output. DOUT changes state on the falling edge of SCLK. DOUT is high  
impedance when OE is high.  
DOUT  
Serial-Clock Input. SCLK drives the conversion process and clocks data out. Acquisition ends  
on the 3rd falling edge after the CS falling edge. The LSB is clocked out on the SCLK 13th  
falling edge and the device enters AutoShutdown mode (see Figures 8, 9, and 10).  
10  
10  
SCLK  
EP  
Exposed Pad. Not internally connected. Connect the exposed pad to GND or leave floating.  
V
DD  
Detailed Description  
The MAX1392/MAX1395 use an input track and hold  
(T/H) circuit along with a SAR to convert an analog input  
signal to a serial 10-bit digital output data stream. The  
serial interface provides easy interfacing to microproces-  
sors and DSPs. Figure 3 shows the simplified functional  
diagram for the MAX1392 (1 channel, true differential)  
and the MAX1395 (2 channels, single ended).  
CS  
CONTROL  
LOGIC AND  
TIMING  
SCLK  
OE  
OUTPUT  
SHIFT  
REGISTER  
AIN+ (AIN1)*  
AIN- (AIN2)*  
INPUT  
MUX  
AND T/H  
10-BIT SAR  
ADC  
DOUT  
True-Differential Analog Input T/H  
The equivalent input circuit of Figure 4 shows the  
MAX1392/MAX1395 input architecture, which is com-  
posed of a T/H, a comparator, and a switched-capacitor  
DAC. The T/H enters its tracking mode on the falling  
edge of CS (while OE is held low). The positive input  
capacitor is connected to AIN+ (MAX1392), or to AIN1 or  
AIN2 (MAX1395). The negative input capacitor is con-  
nected to AIN- (MAX1392) or GND (MAX1395). The T/H  
enters its hold mode on the 3rd falling edge of SCLK  
REF  
UNI/BIP  
(CH1/CH2)*  
MAX1392  
MAX1395  
GND  
*INDICATES THE MAX1395  
Figure 3. Simplified Functional Diagram  
8
_______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
and the difference between the sampled positive and  
negative input voltages is converted. The time required  
for the T/H to acquire an input signal is determined by  
how quickly its input capacitance is charged. The  
required acquisition time lengthens as the input signal’s  
source impedance increases. The acquisition time,  
Analog Input Bandwidth  
The ADC’s input-tracking circuitry has a 4MHz full-  
power bandwidth, making it possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques.  
t
, is the minimum time needed for the signal to be  
ACQ  
Use anti-alias filtering to avoid high-frequency signals  
being aliased into the frequency band of interest.  
acquired. It is calculated by the following equation:  
t
7.4 x (R + R ) x C + t  
ACQ  
SOURCE  
IN  
IN  
PU  
Analog Input Range and Protection  
The MAX1392/MAX1395 produce a digital output that  
corresponds to the analog input voltage as long as the  
analog inputs are within their specified range. When  
operating the MAX1392 in unipolar mode (UNI/BIP = 1),  
the specified differential analog input range is from 0 to  
where:  
R
is the source impedance of the input signal.  
SOURCE  
R
= 500, which is the equivalent differential analog  
IN  
input resistance.  
C
= 16pF, which is the equivalent differential analog  
IN  
V
. When operating in bipolar mode (UNI/BIP = 0),  
REF  
input capacitance.  
the differential analog input range is from -V  
/2 to  
REF  
t
= 400ns.  
+V  
/2 with a common mode range of 0 to V . The  
PU  
REF  
DD  
MAX1395 has an input range from 0 to V  
.
REF  
ꢂote: t  
is never less than 600ns and any source  
ACQ  
impedance below 400does not significantly affect the  
Internal protection diodes confine the analog input volt-  
age within the region of the analog power input rails  
ADC’s AC performance.  
(V , GND) and allow the analog input voltage to swing  
DD  
from GND - 0.3V to V  
voltages beyond GND - 0.3V and V  
+ 0.3V without damage. Input  
DD  
+ 0.3V forward  
DD  
bias the internal protection diodes. In this situation, limit  
the forward diode current to less than 50mA to avoid  
damage to the MAX1392/MAX1395.  
REF  
GND  
Output Data Format  
Figures 8, 9, and 10 illustrate the conversion timing for  
the MAX1392/MAX1395. Fourteen SCLK cycles are  
required to read the conversion result and data on  
DOUT transitions on the falling edge of SCLK. The con-  
version result contains 4 zeros, followed by 10 data bits  
with the data in MSB-first format. For the MAX1392, data  
is straight binary for unipolar mode and two’s comple-  
ment for bipolar mode. For the MAX1395, data is always  
straight binary.  
DAC  
MAX1392  
R
SOURCE  
MAX1395  
AIN2  
AIN1 (AIN+)*  
CIN+  
COMPARATOR  
+
ANALOG  
SIGNAL  
SOURCE  
HOLD  
-
RIN+  
HOLD  
CIN-  
GND- (AIN-)*  
RIN-  
HOLD  
TRACK  
V
DD  
/2  
Transfer Function  
Figure 5 shows the unipolar transfer function for the  
MAX1392/MAX1395. Figure 6 shows the bipolar trans-  
fer function for the MAX1392. Code transitions occur  
halfway between successive-integer LSB values.  
*INDICATES THE MAX1392  
Figure 4. Equivalent Input Circuit  
_______________________________________________________________________________________  
9
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
TRANSITION  
V
REF  
2
FS  
V
+FS  
=
=
REF  
3FF  
3FE  
3FD  
1FF  
1FE  
ZS = 0  
ZS = 0  
-FS =  
V
1024  
REF  
1 LSB =  
-V  
REF  
2
V
1024  
REF  
1 LSB =  
3FC  
3FB  
001  
000  
3FF  
3FE  
004  
003  
002  
001  
000  
201  
200  
-FS  
0
+FS  
0
1
2
3
4
FS  
FS - 1.5 LSB  
-FS + 0.5 LSB  
+FS - 1.5 LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 5. Unipolar Transfer Function  
Figure 6. Bipolar Transfer Function  
Selecting Unipolar or Bipolar Mode  
(MAX1392 Only)  
Applications Information  
Starting a Conversion  
A falling edge on CS initiates the power-up sequence  
and begins acquiring the analog input as long as OE is  
also asserted low. On the 3rd SCLK falling edge, the  
analog input is held for conversion. The most significant  
bit (MSB) decision is made and clocked onto DOUT on  
the 4th SCLK falling edge. Valid DOUT data is available  
to be clocked into the master (microcontroller (µC)) on  
the following SCLK rising edge. The rest of the bits are  
decided and clocked out to DOUT on each successive  
SCLK falling edge. See Figures 8 and 9 for conversion  
timing diagrams.  
Drive UNI/BIP high to select unipolar mode or pull  
UNI/BIP low to select bipolar mode. UNI/BIP can be  
connected to V  
for logic high, to GND for logic low,  
DD  
or actively driven. UNI/BIP needs to be stable for t  
UBS  
prior to the first rising edge of SCLK after the CS falling  
edge (see Figure 1) for a valid conversion result when  
being actively driven.  
Selecting Analog Input AIN1 or AIN2  
(MAX1395 Only)  
Pull CH1/CH2 low to select AIN1 or drive CH1/CH2  
high to select AIN2 for conversion. CH1/CH2 can be  
connected to V  
for logic high, to GND for logic low,  
DD  
Once a conversion has been initiated, CS can go high at  
any time. Further falling edges of CS do not reinitiate an  
acquisition cycle until the current conversion completes.  
Once a conversion completes, the first falling edge of CS  
begins another acquisition/conversion cycle.  
or actively driven. CH1/CH2 needs to be stable for t  
CHS  
prior to the first rising edge of SCLK after the CS falling  
edge (see Figure 1) for a valid conversion result when  
being actively driven.  
10 ______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
0.1µF capacitor to GND for best performance (see the  
AutoShutdown Mode  
The ADC automatically powers down on the SCLK  
falling edge that clocks out the LSB. This is the falling  
edge after the 13th SCLK. DOUT goes low when the  
LSB has been clocked into the master (µC) on the 16th  
rising SCLK edge.  
Typical Operating Circuit).  
Serial Interface  
The MAX1392/MAX1395 serial interface is fully compati-  
ble with SPI, QSPI, and MICROWIRE (see Figure 7). If a  
serial interface is available, set the µC’s serial interface  
in master mode so the µC generates the serial clock.  
Choose a clock frequency between 100kHz and 5MHz.  
CS and OE can be connected together and driven  
simultaneously. OE can also be connected to GND if the  
DOUT bus is not shared and driven independently.  
Alternatively, drive OE high to force the MAX1392/  
MAX1395 into power-down. Whenever OE goes high,  
the ADC powers down and disables DOUT regardless  
of CS, SCLK, or the state of the ADC. DOUT enters a  
high-impedance state after t  
.
DOD  
External Reference  
SPI and MICROWIRE  
When using SPI or MICROWIRE, make the µC the bus  
master and set CPOL = 0 and CPHA = 0 or CPOL = 1  
and CPHA = 1. (These are the bits in the SPI or  
MICROWIRE control register.) Two consecutive 1-byte  
reads are required to get the entire 10-bit result from  
the ADC. The MAX1392/MAX1395 shut down after  
clocking the LSB and DOUT becomes high impedance.  
DOUT transitions on SCLK’s falling edge and is  
clocked into the µC on the SCLK’s rising edge. See  
Figure 7 for connections and Figures 8 and 9 for timing  
diagrams. The conversion result contains 4 zeros, fol-  
lowed by the 10 data bits with the data in MSB-first for-  
mat. When using CPOL = 0 and CPHA = 0 or CPOL = 1  
and CPHA = 1, the MSB of the data is clocked into the  
µC on the SCLK’s fifth rising edge. To be compatible  
with SPI and MICROWIRE, connect CS and OE togeth-  
er and drive simultaneously.  
The MAX1392/MAX1395 use an external reference  
between 0.6V and (V  
+ 50mV). Bypass REF with a  
DD  
I/O  
OE  
CS  
SCK  
SCLK  
MAX1392  
MAX1395  
MISO  
I/O  
DOUT  
UNI/BIP  
(CH1/CH2)*  
a) SPI  
CS  
OE  
CS  
SCK  
SCLK  
MAX1392  
QSPI  
Unlike SPI, which requires two 1-byte reads to acquire  
the 10 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles necessary to clock in the  
data. The MAX1392/MAX1395 require a minimum of 14  
clock cycles from the µC to clock out the 10 bits of  
data. See Figure 7 for connections and Figures 8 and 9  
for timing diagrams. The conversion result contains 4  
zeros, followed by the 10 data bits with the data in  
MSB-first format. The MAX1392/MAX1395 shut down  
after clocking out the LSB. DOUT then becomes high  
impedance. When using CPOL = 0 and CPHA = 0 or  
CPOL = 1 and CPHA = 1, the MSB of the data is  
clocked into the µC on the SCLK’s fifth rising edge. To  
be compatible with QSPI, connect CS and OE together  
and drive simultaneously.  
MAX1395  
MISO  
I/O  
DOUT  
UNI/BIP  
(CH1/CH2)*  
b) QSPI  
I/O  
SK  
OE  
CS  
SCLK  
MAX1392  
MAX1395  
SI  
DOUT  
I/O  
UNI/BIP  
(CH1/CH2)*  
DSP Interface  
Figure 10 shows the timing for DSP operation. Figure 11  
shows the connections between the MAX1392/  
MAX1395 and several common DSPs.  
c) MICROWIRE  
*INDICATES THE MAX1395  
Figure 7. Common Serial-Interface Connections to the  
MAX1392/MAX1395  
______________________________________________________________________________________ 11  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
SAMPLING INSTANT  
POWER-UP  
AND ACQUIRE  
HOLD  
AND CONVERT  
ADC  
STATE  
POWER-  
DOWN  
POWER-DOWN  
(t  
)
(t  
)
ACQ  
CONV  
UNI (AIN2)*  
UNI/BIP  
(CH1/CH2)*  
BIPOLAR (AIN1)*  
CS = OE  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
HIGH-Z  
HIGH-Z  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT  
*INDICATES THE MAX1395  
Figure 8. Serial-Interface Timing for SPI/QSPI (CPOL = CPHA = 1) and MICROWIRE (G6 = 0, G5 = 1)  
SAMPLING INSTANT  
POWER-UP  
AND ACQUIRE  
HOLD  
AND CONVERT  
ADC  
STATE  
POWER-  
DOWN  
POWER-DOWN  
(t  
)
(t  
)
ACQ  
CONV  
UNI (AIN2)*  
UNI/BIP  
(CH1/CH2)*  
BIPOLAR (AIN1)*  
CS = OE  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
HIGH-Z  
HIGH-Z  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT  
*INDICATES THE MAX1395  
Figure 9. Serial-Interface Timing for SPI/QSPI (CPOL = CPHA = 0) and MICROWIRE (G6 = 0, G5 = 0)  
12 ______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
SAMPLING INSTANT  
POWER-UP  
AND ACQUIRE  
HOLD  
AND CONVERT  
POWER-  
DOWN  
POWER-  
DOWN  
ADC  
STATE  
(t  
)
(t  
)
ACQ  
CONV  
OE  
UNI/BIP  
(CH1/CH2)*  
BIPOLAR (AIN1)*  
UNI (AIN2)*  
CS  
SCLK  
DOUT  
FS  
16  
16  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1
2
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
*INDICATES THE MAX1395  
Figure 10. DSP Serial-Timing Diagram  
As shown in Figure 11, drive the MAX1392/MAX1395  
chip-select input (CS) with the DSP’s frame-sync signal.  
OE may be connected to GND or driven independently.  
For continuous conversion operation, keep OE low and  
make the CS falling edge coincident with the 14th  
falling edge of the SCLK. Fourteen-bit data transfers  
can also be performed with compatible DSPs.  
Figure 13 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at the MAX1392/MAX1395s’ GND  
pin or use the ground plane.  
High-frequency noise in the power supply (V  
)
DD  
to GND  
degrades the ADC’s performance. Bypass V  
DD  
with a 0.1µF capacitor as close to the device as possi-  
ble. Minimize capacitor lead lengths for best supply  
noise rejection. To reduce the effects of supply noise, a  
10resistor can be connected as a lowpass filter to  
attenuate supply noise.  
Unregulated Two-Cell or Single Lithium  
LiMnO Cell Operation  
2
Low operating voltage (1.5V to 3.6V) and ultra-low-power  
consumption make the MAX1392/MAX1395 ideal for low  
cost, unregulated, battery-powered applications without  
the need for a DC-DC converter. Power the MAX1392/  
MAX1395 directly from two alkaline/NiMH/NiCd cells in  
series or a single lithium coin cell as shown in the Typical  
Operating Circuit.  
Exposed Pad  
The MAX1392/MAX1395 TDFN package has an  
exposed pad on the bottom of the package. This pad is  
not internally connected. Connect the exposed pad to  
the GND pin on the MAX1392/MAX1395 or leave float-  
ing for proper electrical performance.  
Fresh alkaline cells have a voltage of approximately  
1.5V per cell (3V with 2 cells in series) and approach  
end of life at 0.8V (1.6V with 2 cells in series). A typical  
2xAA alkaline discharge curve is shown in Figure 12a.  
A typical CR2032 lithium (LiMnO ) coin cell discharge  
2
curve is shown in Figure 12b.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For the MAX1392/  
MAX1395, this straight line is between the end points of  
the transfer function once offset and gain errors have  
been nullified. INL deviations are measured at every  
step and the worst-case deviation is reported in the  
Electrical Characteristics section.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Board layout  
must ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
______________________________________________________________________________________ 13  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
I/O  
FSX  
FSR  
CLKX  
CLKR  
DR  
OE  
CS  
MAX1392  
MAX1395  
SCLK  
DOUT  
I/O  
UNI/BIP  
(CH1/CH2)*  
a) TMS320C541 CONNECTION DIAGRAM  
T = +25°C  
A
I/O  
TFS  
OE  
CS  
0
100 200 300 400 500 600 700  
DAYS  
RFS  
MAX1392  
MAX1395  
SCLK  
SCLK  
DOUT  
Figure 12a. Typical 2xAA Discharge Curve at 100ksps  
DR  
I/O  
UNI/BIP  
(CH1/CH2)*  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
b) ADSP218x CONNECTION DIAGRAM  
I/O  
SC2  
SLK  
SDR  
I/O  
OE  
CS  
MAX1392  
MAX1395  
SCLK  
DOUT  
UNI/BIP  
(CH1/CH2)*  
T = +25°C  
A
1.6  
c) DSP563xx CONNECTION DIAGRAM  
0
10  
20  
30  
40  
50  
*INDICATES THE MAX1395  
DAYS  
Figure 11. Common DSP Connections to the MAX1392/MAX1395  
Figure 12b. Typical CR2032 Discharge Curve at 100ksps  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. A DNL error specification of  
less than 1 LSB guarantees no missing codes and a  
monotonic transfer function. For the MAX1392/  
MAX1395, DNL deviations are measured at every step  
and the worst-case deviation is reported in the  
Electrical Characteristics section.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus the RMS distortion. RMS  
noise includes all spectral components to the Nyquist  
frequency excluding the fundamental, the first five har-  
monics (HD2–HD5), and the DC offset. RMS distortion  
includes the first five harmonics (HD2–HD5).  
SIGNAL  
2
RMS  
SINAD = 20 × log  
2
NOISE  
+ DISTORTION  
RMS  
RMS  
14 ______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 6th-order  
harmonics.  
6
POWER SUPPLY  
Spurious-Free Dynamic Range (SFDR)  
V
DD  
V
DD  
GND  
SFDR is a dynamic figure of merit that indicates the  
lowest usable input signal amplitude. SFDR is the ratio  
of the RMS amplitude of the fundamental (maximum  
signal component) to the RMS value of the next-largest  
spurious component, excluding DC offset. SFDR is  
specified in decibels relative to the carrier (dBc).  
STAR  
GROUND  
POINT  
10Ω  
(OPTIONAL)  
Intermodulation Distortion (IMD)  
IMD is the ratio of the RMS sum of the intermodulation  
products to the RMS sum of the two fundamental input  
tones. This is expressed as:  
V
DD  
GND  
DV  
DGND  
DD  
DIGITAL  
CIRCUITRY  
DATA  
MAX1392/MAX1395  
2
2
2
2
V
+ V  
+.....+ V  
+ V  
IMN  
IM1  
IM2  
IM3  
IMD = 20 × log  
2
2
V
+ V  
2
1
Figure 13. Power-Supply Grounding Connections  
The fundamental input tone amplitudes (V and V ) are  
1 2  
at -6.5dBFS. Fourteen intermodulation products (V _)  
IM  
are used in the MAX1392/MAX1395 IMD calculation.  
The intermodulation products are the amplitudes of the  
Signal-to-Noise Ratio (SNR)  
SNR is a dynamic figure of merit that indicates the con-  
verter’s noise performance. For a waveform perfectly  
reconstructed from digital samples, the theoretical  
maximum SNR is the ratio of the full-scale analog input  
(RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum analog-to-digital  
noise is caused by quantization error only and results  
directly from the ADC’s resolution (N bits):  
output spectrum at the following frequencies, where f  
IN1  
and f  
are the fundamental input tone frequencies:  
IN2  
• 2nd-order intermodulation products:  
+ f , f - f  
f
IN1  
IN2 IN2 IN1  
• 3rd-order intermodulation products:  
2 x f - f , 2 x f - f , 2 x f + f , 2 x f  
+ f  
+ f  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN2  
IN2  
IN1  
• 4th-order intermodulation products:  
3 x f - f , 3 x f - f , 3 x f + f , 3 x f  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN1  
In reality, there are other noise sources such as thermal  
noise, reference noise, and clock jitter that also  
degrade SNR. SNR is computed by taking the ratio of  
the RMS signal to the RMS noise. RMS noise includes  
all spectral components to the Nyquist frequency  
excluding the fundamental, the first five harmonics, and  
the DC offset.  
• 5th-order intermodulation products:  
3 x f - 2 x f , 3 x f - 2 x f , 3 x f + 2 x  
IN1  
IN1  
, 3 x f  
IN2  
+ 2 x f  
IN2  
IN1  
f
IN2  
IN2 IN1  
Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk indicates how well each  
analog input is isolated from the others. The channel-to-  
channel crosstalk for the MAX1395 is measured by  
applying DC to channel 2 while an AC sine wave is  
applied to channel 1. An FFT is taken for channel 1 and  
channel 2 and the difference (in dB) is reported as the  
channel-to-channel crosstalk.  
Total Harmonic Distortion (THD)  
THD is a dynamic figure of merit that indicates how much  
harmonic distortion the converter adds to the signal.  
THD is the ratio of the RMS sum of the first five harmon-  
ics of the fundamental signal to the fundamental itself.  
This is expressed as:  
2
2
2
2
2
V
+ V  
+ V  
+ V  
+ V  
6
2
3
4
5
THD = 20 × log  
V
1
______________________________________________________________________________________ 15  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Aperture Delay  
The MAX1392/MAX1395 sample data on the falling  
edge of its third SCLK cycle (Figure 14). In actuality,  
there is a small delay between the falling edge of the  
THIRD FALLING EDGE  
sampling clock and the actual sampling instant.  
Aperture delay (t ) is the time defined between the  
AD  
SCLK  
falling edge of the sampling clock and the instant when  
an actual sample is taken.  
t
AD  
ANALOG  
INPUT  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
t
AJ  
the aperture delay (Figure 14).  
SAMPLED  
DATA  
DC Power-Supply Rejection Ratio (PSRR)  
DC PSRR is defined as the change in the positive full-  
scale transfer function point caused by a full range vari-  
T/H  
(INTERNAL  
SIGNAL)  
TRACK  
HOLD  
ation in the analog power-supply voltage (V ).  
DD  
Figure 14. T/H Aperture Timing  
Chip Information  
TRANSISTOR COUNT: 9106  
Typical Operating Circuit  
PROCESS: BiCMOS  
0.1µF  
2 x AA CELLS  
REF  
INPUT  
V
DD  
REF  
OE  
CS  
CPU  
VOLTAGE  
0.1µF  
MAX1392  
MAX1395  
SS  
+
-
AIN+ (AIN1)*  
SCL  
SCLK  
DOUT  
INPUT  
VOLTAGE  
AIN- (AIN2)*  
GND  
MISO  
UNI/BIP  
(CH1/CH2)*  
*INDICATES THE MAX1395 ONLY  
16 ______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Pin Configurations  
TOP VIEW  
TOP VIEW  
9
8
7
10  
6
V
1
2
3
4
5
10 SCLK  
DD  
AIN-  
AIN+  
GND  
REF  
9
8
7
6
DOUT  
CS  
MAX1392  
MAX1392  
OE  
UNI/BIP  
1
3
4
5
2
µMAX  
3mm x 3mm TDFꢂ  
TOP VIEW  
TOP VIEW  
9
8
7
10  
6
V
1
2
3
4
5
10 SCLK  
DD  
AIN2  
AIN1  
GND  
REF  
9
8
7
6
DOUT  
CS  
MAX1395  
MAX1395  
OE  
CH1/CH2  
1
3
4
5
2
µMAX  
3mm x 3mm TDFꢂ  
______________________________________________________________________________________ 17  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
0.40 0.05  
0.40 0.05  
0.30 0.05  
0.30 0.05  
0.30 0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
1.70 0.10 2.30 0.10 0.40 BSC  
1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
0.20 0.05  
0.20 0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
18 ______________________________________________________________________________________  
1.5V to 3.6V, 357ksps, 1-Channel True-Differential/  
2-Channel Single-Ended, 10-Bit, SAR ADCs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢀmaxim-icꢀcom/packages.)  
e
4X S  
10  
10  
INCHES  
DIM MIN  
MAX  
MILLIMETERS  
MIN  
-
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.090  
0.270  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.200  
BOTTOM VIEW  
0.498 REF  
S
TOP VIEW  
α
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1392_09

1.5V to 3.6V, 357ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 10-Bit, SAR ADCs
MAXIM

MAX1393

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393ETB

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393ETB+

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393ETB+T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1393ETB-T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1393EUB

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393EUB-T

A/D Converter, 12-Bit, 1 Channel, BICMOS, PDSO10
MAXIM

MAX1393MTB

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393MTB+T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX1393MUB

1.5V to 3.6V, 312.5ksps, 1-Channel True-Differential/ 2-Channel Single-Ended, 12-Bit, SAR ADCs
MAXIM

MAX1393MUB-T

暂无描述
MAXIM