MAX1366 [MAXIM]

Microcontroller-Interface, 4.5-/3.5-Digit Panel Meters with 4–20mA Output;
MAX1366
型号: MAX1366
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Microcontroller-Interface, 4.5-/3.5-Digit Panel Meters with 4–20mA Output

微控制器
文件: 总36页 (文件大小:937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3977; Rev 0; 1/06  
Microcontroller-Interface,  
4.5-/3.5-Digit Panel Meters with 4–20mA Output  
General Description  
Features  
The MAX1366/MAX1368 low-power, 4.5- and 3.5-digit,  
panel meters feature an integrated sigma-delta analog-  
to-digital converter (ADC), LED display drivers, voltage  
digital-to-analog converter (DAC), and a 4–20mA (or 0  
to 16mA) current driver.  
Microcontroller (µC)-Interface, Digital Panel Meter  
20-Bit Sigma-Delta ADC  
4.5-Digit Resolution (±±1,111 Count, MAꢀ±ꢁ33)  
ꢁ.5-Digit Resolution (±±111 Count, MAꢀ±ꢁ36)  
No Integrating/Autozeroing Capacitors  
±00MInput Impedance  
The MAX1366/MAX1368’s analog input voltage range is  
programmable to either 2ꢀ or 200mꢀ. The MAX1368  
drives a 3.5-digit ( 1999 count) display and the  
MAX1366 drives a 4.5-digit ( 19,999 count) display.  
The ADC output directly drives the LED display as well  
as the voltage DAC, which, in turn, drives the 4–20mA  
(or 0 to 16mA) current-loop output.  
±200mꢂ or ±2.000ꢂ Input Range  
LED Display  
Common-Cathode 7-Segment LED Driver  
Programmable LED Current (0 to 20mA)  
2.5Hz Update Rate  
In normal operation, the 0 to 16mA/4–20mA current-  
loop output follows the 2ꢀ or 200mꢀ analog input to  
drive remote panel-meter displays, data loggers, and  
other industrial controllers. For added flexibility, the  
MAX1366/MAX1368 allow direct access to the ADC  
result, DAC output, and the ꢀ/I converter input.  
Output DAC and Current Driver  
±±5-Bit DAC ꢃith ±4-Bit Linear ꢂ/I Converter  
Selectable 0 to ±3mA or 4–20mA Current Output  
Unipolar/Bipolar Modes  
±50µA ꢄero Scale, ±40ppmꢅS/ꢆC (typ)  
±0.5ꢇ ꢈain Error, ±25ppmꢅS/ꢆC (typ)  
Separate 7ꢂ to ꢁ0ꢂ Supply for Current-Loop  
Output  
The sigma-delta ADC does not require external preci-  
sion integrating capacitors, autozero capacitors, crystal  
oscillators, charge pumps, or other circuitry commonly  
required in dual-slope ADC panel-meter circuits. On-  
chip analog input and reference buffers allow direct  
interface with high-impedance signal sources. Excellent  
common-mode rejection and digital filtering provides  
greater than 100dB rejection of simultaneous 50Hz and  
60Hz line noise. Other features include data hold and  
peak detection and overrange/underrange detection.  
2.7ꢂ to 5.25ꢂ ADC/DAC Supply  
4.75ꢂ to 5.25ꢂ ꢂ/I Converter Supply  
Internal 2.046ꢂ Reference or External Reference  
SPI™-/QSPI™-/MICROWIRE™-Compatible Serial  
The MAX1366/MAX1368 require a 2.7ꢀ to 5.25ꢀ supply,  
a 4.75ꢀ to 5.25ꢀ ꢀ/I supply, and a 7ꢀ to 30ꢀ loop sup-  
ply. They are available in a space-saving (7mm x  
7mm), 48-pin TQFP package and operate over the  
extended (-40°C to +85°C) temperature range.  
Interface  
46-Pin, 7mm x 7mm TQꢅP Package  
Ordering Information  
Applications  
Industrial Process Control  
Automated Test Equipment  
Data-Acquisition Systems  
Digital Panel Meters  
PART  
TEMP RANꢈE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAꢈE  
48 TQFP  
MAꢀ±ꢁ33ECM  
MAꢀ±ꢁ36ECM  
48 TQFP  
Digital ꢀoltmeters  
Selector Guide  
Digital Multimeters  
RESOLUTION  
PART  
PACKAꢈE CODE  
(DIꢈITS)  
Pin Configuration appears at end of data sheet.  
MAX1366ECM  
MAX1368ECM  
C48-6  
C48-6  
4.5  
3.5  
Typical Operating Circuits appear at end of data sheet.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ABSOLUTE MAꢀIMUM RATINꢈS  
(With reference to GND, unless otherwise specified.)  
SEG_ to LEDG.........................................-0.3ꢀ to (ꢀ  
DIG_ to LEDG..........................................-0.3ꢀ to (ꢀ  
+ 0.3ꢀ)  
+ 0.3ꢀ)  
LEDꢀ  
LEDꢀ  
Aꢀ , Dꢀ  
-0.3ꢀ to +6.0ꢀ  
DD  
DD ....................................................................  
AIN+, AIN-, REF+, REF-.........................ꢀ  
REG_FORCE, CMP, DAC_ꢀDD, DACꢀOUT,  
CONꢀ_IN, 4-20OUT.............................-0.3ꢀ to (Aꢀ  
EN_BPM, EN_I, REFSELE, DACDATA_SEL,  
CLK, EOC, CS_DAC, SCLK, DIN  
DOUT.....................................................-0.3ꢀ to (Dꢀ  
NEGꢀ .......................................................-2.6ꢀ to (Aꢀ  
LED_EN....................................................-0.3ꢀ to (Dꢀ  
SET...........................................................-0.3ꢀ to (Aꢀ  
to (Aꢀ  
+ 0.3ꢀ)  
+ 0.3ꢀ)  
LOWBATT ................................................-0.3ꢀ to (Aꢀ + 0.3ꢀ)  
NEGꢀ  
DD  
DD  
REF_DAC .................................................-0.3ꢀ to (Aꢀ  
+ 0.3ꢀ)  
DD  
DACꢀOUT................................................-0.3ꢀ to (Aꢀ + 0.3ꢀ)  
DD  
DD  
DIG_ Sink Current .............................................................300mA  
DIG_ Source Current...........................................................50mA  
SEG_ Sink Current ..............................................................50mA  
SEG_ Source Current..........................................................50mA  
Maximum Current Input into Any Other Pin ........................50mA  
+ 0.3ꢀ)  
+ 0.3ꢀ)  
+ 0.3ꢀ)  
+ 0.3ꢀ)  
DD  
DD  
DD  
DD  
Continuous Power Dissipation (T = +70°C)  
A
REG_AMP, REG_ꢀDD ...........................................-0.3ꢀ to +6.0ꢀ  
LEDG.....................................................................-0.3ꢀ to +0.3ꢀ  
GND_DAC .............................................................-0.3ꢀ to +0.3ꢀ  
GND_ꢀ/I.................................................................-0.3ꢀ to +0.3ꢀ  
48-Pin TQFP (derate 22.7mW/°C above +70°C).....1818.2mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Aꢀ  
= Dꢀ  
= DAC_ꢀDD = +2.7ꢀ to +5.25ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external  
REF-  
DD  
DD  
LEDꢀ  
REF+  
reference), ꢀ  
noted. All specifications are at T = T  
= 7ꢀ, ꢀ  
= +5.0ꢀ, C  
= 0.1µF, REF- = GND, C  
. Typical values are at T = +25°C, unless otherwise noted.)  
= 0.1µF. Internal clock mode, unless otherwise  
EXT  
REG_AMP  
REF+  
NEGꢀ  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
ADC ACCURACY  
MAX1366  
-19,999  
-1999  
+19,999  
+1999  
Noise-Free Resolution  
Integral Nonlinearity (Note 1)  
Range-Change Ratio  
Counts  
Counts  
MAX1368  
2.000ꢀ range  
200mꢀ range  
1
1
INL  
(ꢀ  
AIN+  
(ꢀ  
AIN+  
- ꢀ  
- ꢀ  
= 0.100ꢀ) on 200mꢀ range;  
= 0.100ꢀ) on 2.0ꢀ range  
AIN-  
AIN-  
10:1  
Ratio  
Rollover Error  
- ꢀ  
= full scale  
= 0 (Note 2)  
= 0 (Note 4)  
1
Counts  
AIN+  
AIN-  
Output Noise  
10  
µꢀ  
P-P  
Offset Error (Zero Input Reading)  
Gain Error  
- ꢀ  
-0  
+0  
Counts  
%FSR  
AIN+  
AIN-  
(Note 3)  
- ꢀ  
-0.5  
+0.5  
Offset Drift (Zero Reading Drift)  
Gain Drift  
0.1  
1
µꢀ/°C  
AIN+  
AIN-  
ppm/°C  
INPUT CONꢂERSION RATE  
External Clock Frequency  
External Clock Duty Cycle  
4.9152  
MHz  
%
40  
60  
Internal clock  
External clock, f  
5
5
Update Rate  
Hz  
= 4.9152MHz  
CLK  
ANALOꢈ INPUTS (AIN+, AIN-) (bypass to ꢈND ꢃith 0.±µꢅ or greater capacitors)  
RANGE bit = 0  
AIN Input ꢀoltage Range (Note 5)  
-2.0  
-0.2  
+2.0  
+0.2  
RANGE bit = 1  
2
_______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ELECTRICAL CHARACTERISTICS (continued)  
(Aꢀ  
= Dꢀ  
= DAC_ꢀDD = +2.7ꢀ to +5.25ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external  
REF-  
DD  
DD  
LEDꢀ  
REF+  
reference), ꢀ  
noted. All specifications are at T = T  
= 7ꢀ, ꢀ  
= +5.0ꢀ, C  
= 0.1µF, REF- = GND, C  
. Typical values are at T = +25°C, unless otherwise noted.)  
= 0.1µF. Internal clock mode, unless otherwise  
EXT  
REG_AMP  
REF+  
NEGꢀ  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
AIN Absolute Input ꢀoltage  
Range to GND  
-2.2  
+2.2  
Internal clock mode,  
50Hz and 60Hz 2%  
100  
100  
150  
Normal-Mode 50Hz and 60Hz  
Rejection (Simultaneously)  
dB  
dB  
External clock mode,  
50Hz and 60Hz 2%, f  
= 4.9152MHz  
CLK  
Common-Mode 50Hz and 60Hz  
Rejection (Simultaneously)  
For 50Hz and 60Hz 2%, R  
10kΩ  
<
SOURCE  
CMR  
CMR  
Common-Mode Rejection  
Input Leakage Current  
Input Capacitance  
At DC  
100  
10  
dB  
nA  
pF  
nA  
10  
Average Dynamic Input Current  
(Note 6)  
-20  
+20  
LOW-BATTERY ꢂOLTAꢈE MONITOR (LOWBATT)  
LOWBATT Trip Threshold  
2.048  
10  
LOWBATT Leakage Current  
pA  
mꢀ  
Hysteresis  
20  
INTERNAL REꢅERENCE (REꢅ- = ꢈND, INTREꢅ = Dꢂ  
)
DD  
REF Input ꢀoltage  
Aꢀ  
= 5ꢀ  
DD  
2.007  
2.048  
1
2.089  
REF  
REF Output Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC  
40  
ppm/°C  
ꢀREF  
Load Regulation  
Line Regulation  
I
= 0 to 300µA, I  
= 0 to 30µA  
6
µꢀ/µA  
µꢀ/ꢀ  
SOURCE  
SINK  
50  
0.1Hz to 10Hz  
10Hz to 10kHz  
25  
Noise ꢀoltage  
µꢀ  
P-P  
400  
EꢀTERNAL REꢅERENCE (INTREꢅ BIT = 0)  
REF Input ꢀoltage  
Differential, (ꢀ  
- ꢀ  
)
2.048  
REF+  
REF-  
Absolute REF+, REF- Input  
ꢀoltage to GND (ꢀ  
must be  
-2.2  
+2.2  
REF+  
)
greater than ꢀ  
REF-  
Internal clock mode,  
50Hz and 60Hz 2%  
100  
120  
150  
Normal-Mode 50Hz and 60Hz  
Rejection (Simultaneously)  
dB  
dB  
External clock mode,  
50Hz and 60Hz 2%, f  
= 4.9152MHz  
CLK  
Common-Mode 50Hz and 60Hz  
Rejection (Simultaneously)  
For 50Hz and 60Hz 2%, R  
10kΩ  
<
SOURCE  
CMR  
CMR  
Common-Mode Rejection  
Input Leakage Current  
At DC  
100  
10  
dB  
nA  
_______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ELECTRICAL CHARACTERISTICS (continued)  
(Aꢀ  
= Dꢀ  
= DAC_ꢀDD = +2.7ꢀ to +5.25ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external  
REF-  
DD  
DD  
LEDꢀ  
REF+  
reference), ꢀ  
noted. All specifications are at T = T  
= 7ꢀ, ꢀ  
= +5.0ꢀ, C  
= 0.1µF, REF- = GND, C  
. Typical values are at T = +25°C, unless otherwise noted.)  
= 0.1µF. Internal clock mode, unless otherwise  
EXT  
REG_AMP  
REF+  
NEGꢀ  
to T  
A
MIN  
MAX A  
PARAMETER  
Input Capacitance  
SYMBOL  
CONDITIONS  
MIN  
-20  
TYP  
MAꢀ  
+20  
UNITS  
pF  
10  
Average Dynamic Input Current  
CHARꢈE PUMP  
(Note 6)  
nA  
Output ꢀoltage  
NEGꢀ  
C
= 0.1µF to GND  
-2.60  
-10  
-2.42  
-2.30  
NEGꢀ  
DIꢈITAL INPUTS (SCLK, DIN, CS, CLK)  
Input Current  
I
IN  
= 0 or Dꢀ  
+10  
µA  
IN  
DD  
0.3 x  
Input Low ꢀoltage  
INL  
Dꢀ  
DD  
0.7 x  
Input High ꢀoltage  
INH  
Dꢀ  
DD  
Input Hysteresis  
Dꢀ = 3ꢀ  
200  
mꢀ  
HYS  
DD  
DIꢈITAL OUTPUTS (DOUT, EOC)  
Output Low ꢀoltage  
I
I
= 1mA  
0.4  
OL  
SINK  
0.8 x  
Output High ꢀoltage  
= 200µA  
SOURCE  
OH  
D
ꢀDD  
Tri-State Leakage Current  
I
-10  
+10  
µA  
pF  
L
Tri-State Output Capacitance  
ADC POWER SUPPLY (Note ±0)  
C
15  
OUT  
Aꢀ  
Dꢀ  
ꢀoltage  
ꢀoltage  
Aꢀ  
Dꢀ  
2.70  
2.70  
5.25  
5.25  
DD  
DD  
DD  
DD  
Power-Supply Rejection Aꢀ  
Power-Supply Rejection Dꢀ  
PSR  
PSR  
(Note 7)  
(Note 7)  
80  
dB  
dB  
DD  
A
D
100  
DD  
640  
305  
320  
180  
20  
Aꢀ Current (Notes 8, 9)  
I
µA  
DD  
AꢀDD  
Standby mode  
Dꢀ  
Dꢀ  
= +5.25ꢀ  
= +3.3ꢀ  
DD  
DD  
Dꢀ Current (Notes 8, 9)  
DD  
I
µA  
DꢀDD  
Standby mode  
DAC POWER SUPPLY  
DAC Supply ꢀoltage  
DAC Supply Current  
2.70  
4.75  
5.25  
0.21  
DAC_ꢀDD  
0.10  
mA  
LINEAR REꢈULATOR AND ꢂ/I CONꢂERTER POWER REQUIREMENTS  
REG_AMP Supply ꢀoltage  
REG_AMP Supply Current  
REG_ꢀDD ꢀoltage  
5.25  
0.30  
mA  
REG_AMP  
0.19  
5.20  
REG_ꢀDD  
4
_______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ELECTRICAL CHARACTERISTICS (continued)  
(Aꢀ  
= Dꢀ  
= DAC_ꢀDD = +2.7ꢀ to +5.25ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external  
REF-  
DD  
DD  
LEDꢀ  
REF+  
reference), ꢀ  
noted. All specifications are at T = T  
= 7ꢀ, ꢀ  
= +5.0ꢀ, C  
= 0.1µF, REF- = GND, C  
. Typical values are at T = +25°C, unless otherwise noted.)  
= 0.1µF. Internal clock mode, unless otherwise  
EXT  
REG_AMP  
REF+  
NEGꢀ  
to T  
A
MIN  
MAX A  
PARAMETER  
REG_ꢀDD Supply Current  
LED DRIꢂERS (Table 7)  
LED Supply ꢀoltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
Includes 20mA programmed current  
25.2  
27.4  
mA  
2.70  
5.25  
10  
LEDꢀ  
LED Shutdown Supply Current  
I
µA  
SHDN  
Seven segments and decimal point on,  
LED Supply Current  
Display Scan Rate  
I
176  
180  
mA  
Hz  
LEDꢀ  
R
= 25kΩ  
SET  
MAX1366  
MAX1368  
512  
640  
f
OSC  
Segment Current Slew Rate  
DIG_ ꢀoltage Low  
I
/t  
25  
mA/µs  
SEG  
I
= 176mA  
DIG_  
0.178  
0.300  
10  
DIG  
Segment-Drive Source-Current  
Matching  
I  
3
%
SEG  
SEG  
Segment-Drive Source Current  
LED Drivers Bias Current  
Interdigit Blanking Time  
4-20OUT OUTPUT ACCURACY  
Zero-Scale Error  
I
- ꢀ  
= 0.6ꢀ, R = 25kΩ  
SET  
15.0  
21.5  
120  
4
25.5  
mA  
µA  
µs  
LEDꢀ  
SEG  
From Aꢀ  
DD  
4mA or 0mA, at +25°C  
4mA or 0mA, at +25°C  
10  
40  
0.2  
25  
2
50  
0.5  
4
µA  
ppmFS/°C  
%FS  
Zero-Scale Error Tempco  
Gain Error  
Gain-Error Tempco  
ppmFS/°C  
µA  
Span Linearity  
Power-Supply Rejection  
Signal Path Noise  
PSR  
= 7ꢀ to 36ꢀ  
4
µA/ꢀ  
EXT  
10pF to AGND on 4-20OUT  
Limited to 12.5 x ꢀ / 1.28kΩ  
2.0  
20  
µA  
RMS  
4–20mA Current Limit  
mA  
REF  
TIMINꢈ CHARACTERISTICS (Notes ±±, ±2, ꢅigure 6)  
SCLK Operating Frequency  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
DIN-to-SCLK Setup  
f
Dꢀ = 2.7ꢀ  
0
100  
100  
50  
0
4.2  
MHz  
ns  
SCLK  
DD  
t
CH  
t
ns  
CL  
DS  
DH  
t
ns  
DIN-to-SCLK Hold  
t
ns  
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Fall to DOUT ꢀalid  
t
50  
0
ns  
CSS  
CSH  
t
ns  
t
C
= 50pF, Figures 11, 12  
LOAD  
120  
ns  
DO  
_______________________________________________________________________________________  
5
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ELECTRICAL CHARACTERISTICS (continued)  
(Aꢀ  
= Dꢀ  
= DAC_ꢀDD = +2.7ꢀ to +5.25ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external  
REF-  
DD  
DD  
LEDꢀ  
REF+  
reference), ꢀ  
noted. All specifications are at T = T  
= 7ꢀ, ꢀ  
= +5.0ꢀ, C  
= 0.1µF, REF- = GND, C  
. Typical values are at T = +25°C, unless otherwise noted.)  
= 0.1µF. Internal clock mode, unless otherwise  
EXT  
REG_AMP  
REF+  
NEGꢀ  
to T  
A
MIN  
MAX A  
PARAMETER  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
SYMBOL  
CONDITIONS  
= 50pF, Figures 11, 12  
= 50pF, Figures 11, 12  
MIN  
TYP  
MAꢀ  
120  
UNITS  
ns  
t
C
C
TR  
Dꢀ  
LOAD  
LOAD  
t
120  
ns  
Note ±: Integral nonlinearity is the deviation of the analog value at any code from its theoretical value after nulling the gain error  
and offset error.  
Note 2: Offset calibrated. See OFFSET_CAL1 AND OFFSET_CAL2 in the On-Chips Registers section.  
Note ꢁ: Offset nulled.  
Note 4: Offset-drift error is eliminated by recalibration at the new temperature.  
Note 5: The input voltage range for the analog inputs is given with respect to the voltage on the negative input of the differential pair.  
Note 3:  
or ꢀ  
= -2.2ꢀ to +2.2ꢀ. ꢀ  
or ꢀ  
= -2.2ꢀ to +2.2ꢀ. All input structures are identical. Production tested on  
AIN+  
AIN-  
REF+  
REF-  
AIN+ and REF+ only. ꢀ  
must always be greater than ꢀ  
.
REF-  
REF+  
Note 7: Measured at DC by changing the power-supply voltage from 2.7ꢀ to 5.25ꢀ and measuring the effect on the conversion  
error with external reference. PSRR at 50Hz and 60Hz exceeds 120dB with filter notches at 50Hz and 60Hz (Figure 1).  
Note 6: CLK and SCLK are disabled.  
Note 1: LED drivers are disabled.  
Note ±0: Power-supply currents are measured with all digital inputs at either GND or Dꢀ and with the device in internal clock mode.  
DD  
Note ±±: All input signals are specified with t  
= t = 5ns (10% to 90% of Dꢀ ) and are timed from a voltage level of 50% of  
FALL DD  
RISE  
Dꢀ , unless otherwise noted.  
DD  
Note ±2: See the serial-interface timing diagrams (Figures 7–11).  
Typical Operating Characteristics  
(A  
ꢀDD  
= D  
= +5ꢀ, ꢀ  
= +5.0ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external reference),  
ꢀDD  
DAC_ꢀDD  
LEDꢀ  
REF+  
REF-  
EXT  
= 7ꢀ, C  
= 0.1µF, REF- = GND, C = 0.1µF, RANGE bit = 1, internal clock mode. T = +25°C, unless otherwise noted.)  
REF+  
NEGꢀ A  
MAX1366  
OFFSET ERROR vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
1000  
0.19  
0.14  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.09  
AV  
DD  
AV  
DD  
0.04  
DV  
DD  
-0.01  
-0.06  
-0.11  
-0.16  
DV  
DD  
DAC_VDD  
35  
DAC_VDD  
4.2  
2.7  
3.2  
3.7  
4.7  
5.2  
-40  
-15  
10  
60  
85  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
3
_______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Typical Operating Characteristics  
(A  
ꢀDD  
= D  
= +5ꢀ, ꢀ  
= +5.0ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external reference),  
ꢀDD  
DAC_ꢀDD  
LEDꢀ  
REF+  
REF-  
EXT  
= 7ꢀ, C  
= 0.1µF, REF- = GND, C = 0.1µF, RANGE bit = 1, internal clock mode. T = +25°C, unless otherwise noted.)  
REF+  
NEGꢀ A  
MAX1366  
MAX1366  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
MAX1366  
OFFSET ERROR vs. TEMPERATURE  
0.6  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.10  
0.08  
0.06  
0.04  
0.02  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.2  
-0.10  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
MAX1366  
MAX1366  
NOISE DISTRIBUTION  
( 200mV INPUT RANGE) INL vs. OUTPUT CODE  
( 2V INPUT RANGE) INL vs. OUTPUT CODE  
25  
20  
15  
10  
5
1.0  
1.0  
0.5  
0
0.5  
0
-0.5  
-1.0  
-0.5  
-1.0  
0
-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
NOISE (LSB)  
-20,000  
-10,000  
0
10,000  
20,000  
-20,000  
-10,000  
0
10,000  
20,000  
OUTPUT CODE  
OUTPUT CODE  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
DATA OUTPUT RATE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.050  
2.049  
2.048  
2.047  
2.046  
2.045  
2.044  
5.10  
2.054  
2.053  
2.052  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
2.051  
2.050  
2.049  
2.048  
2.047  
2.046  
2.045  
2.044  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
-40  
-15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
70  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Typical Operating Characteristics  
(A  
ꢀDD  
= D  
= +5ꢀ, ꢀ  
= +5.0ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external reference),  
ꢀDD  
DAC_ꢀDD  
LEDꢀ  
REF+  
REF-  
EXT  
= 7ꢀ, C  
= 0.1µF, REF- = GND, C = 0.1µF, RANGE bit = 1, internal clock mode. T = +25°C, unless otherwise noted.)  
REF+  
NEGꢀ A  
DATA OUTPUT RATE  
vs. SUPPLY VOLTAGE  
OFFSET ERROR  
vs. COMMON-MODE VOLTAGE  
V
STARTUP SCOPE SHOT  
NEG  
5.020  
0.20  
0.15  
0.10  
0.05  
0
5.015  
V
DD  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
2V/div  
1V/div  
V
NEG  
-0.05  
-0.10  
-0.15  
-0.20  
4.980  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
-2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0  
20ms/div  
SUPPLY VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
DAC ZERO-CODE OFFSET ERROR  
vs. TEMPERATURE  
CHARGE-PUMP OUTPUT VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
SEGMENT CURRENT  
vs. SUPPLY VOLTAGE  
30  
25  
20  
15  
10  
5
-2.40  
-2.42  
-2.44  
-2.46  
-2.48  
-2.50  
0.4  
R
ISET  
= 25kΩ  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
0
-40  
-15  
10  
35  
60  
85  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Typical Operating Characteristics (continued)  
(A  
ꢀDD  
= D  
= +5ꢀ, ꢀ  
= +5.0ꢀ, GND = 0, LEDG = 0, ꢀ  
= +2.7ꢀ to +5.25ꢀ, ꢀ  
- ꢀ  
= 2.048ꢀ (external reference),  
ꢀDD  
DAC_ꢀDD  
LEDꢀ  
REF+  
REF-  
EXT  
= 7ꢀ, C  
= 0.1µF, REF- = GND, C  
= 0.1µF, RANGE bit = 1, internal clock mode. T = +25°C, unless otherwise noted.)  
REF+  
NEGꢀ  
A
DAC GAIN ERROR  
vs. TEMPERATURE  
4-20OUT ZERO-SCALE ERROR  
STEP RESPONSE  
vs. TEMPERATURE  
MAX1366/68 toc20  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
50  
40  
EXTERNAL REFERENCE = 2.048V  
500mV/div  
10mA/div  
CONV_IN  
= 1V  
30  
20  
10  
0
4-20OUT  
= 21.7mA  
-10  
-20  
-30  
-40  
-50  
-40  
-15  
10  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80  
100µs/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4-20OUT vs. DAC CODE  
(4-20OUT SPAN LINEARITY)  
4-20OUT GAIN ERROR  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION  
vs. CURRENT OUTPUT (4-20OUT)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
40  
150  
100  
50  
EXTERNAL REFERENCE = 2.048V  
30  
4–20mA MODE  
20  
10  
0
0
OFFSET ENABLED  
(EN_I = HIGH)  
0 TO 16mA MODE  
-10  
-20  
-30  
-40  
-50  
-50  
-100  
-150  
-0.5  
-20,000  
-10,000  
0
10,000  
20,000  
-40 -20  
0
20  
40  
60  
80  
4
6
8
10 12 14 16 18 20  
DAC CODE (COUNTS)  
TEMPERATURE (°C)  
4-20OUT OUTPUT CURRENT (mA)  
_______________________________________________________________________________________  
1
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Pin Description  
PIN  
NAME  
ꢅUNCTION  
Positive Analog Input. Positive side of fully differential analog input. Bypass AIN+ to GND with a  
0.1µF or greater capacitor.  
1
AIN+  
Negative Analog Input. Negative side of fully differential analog input. Bypass AIN- to GND with a  
0.1µF or greater capacitor.  
2
3
4
AIN-  
GND  
Ground. Connect to star ground.  
Analog Positive Supply ꢀoltage. Connect Aꢀ  
to GND with a 0.1µF capacitor.  
to a +2.7ꢀ to +5.25ꢀ power supply. Bypass Aꢀ  
DD  
DD  
Aꢀ  
Dꢀ  
DD  
Digital Positive Supply ꢀoltage. Connect Dꢀ to a +2.7ꢀ to +5.25ꢀ power supply. Bypass Dꢀ  
DD  
DD  
5
6
DD  
to GND with a 0.1µF capacitor.  
Segment Current Set. Connect to ground through a resistor to set the segment current. See Table  
7 for segment-current selection.  
SET  
7
REG_ꢀDD  
REG_FORCE  
REG_AMP  
CMP  
ꢀ/I Converter Regulated Supply Output. REG_ ꢀDD is typically 2.5ꢀ.  
REG_ꢀDD Control. Drives the gate of external depletion mode FET.  
Regulator/Reference Buffer Supply. Connect to a 4.75ꢀ to 5.25ꢀ power supply.  
Regulator Compensation Node. Connect a 0.1µF capacitor from CMP to REG_FORCE.  
DAC Analog Supply. Connect DAC_ꢀDD to a +2.7ꢀ to +5.25ꢀ power supply.  
DAC ꢀoltage Output. DAC output impedance is typically 6.2k.  
ꢀ/I Converter Input  
8
9
10  
11  
12  
13  
14  
15  
16  
DAC_ꢀDD  
DACꢀOUT  
CONꢀ_IN  
4–20OUT  
GND_DAC  
GND_ꢀ/I  
4–20mA (0 to 16mA) Current-Loop Output. Referenced to GND.  
DAC Analog Ground. Connect to star ground.  
ꢀ/I Converter Analog Ground. Connect to star ground.  
ꢀ-to-I Converter/DAC Reference Input. Connect a voltage source for external reference operation  
or leave floating for internal reference. Bypass REF_DAC with a 0.1µF capacitor to GND for either  
internal or external reference operation.  
17  
REF_DAC  
18  
19  
EN_BPM  
EN_I  
Active-High ꢀ/I-Converter Bipolar-Mode Enable. Set high for bipolar mode. Set low for unipolar mode.  
Active-High ꢀ/I-Converter 4mA Offset Enable. Set low for 0 to 16mA output. Set high for 4–20mA  
DAC External Reference Selection. Set low for internal reference. Set high for external reference.  
Leave REF_DAC unconnected when REFSELE is low.  
20  
REFSELE  
DAC Data-Source Select. Set high to select DAC register. Set low to have the DAC follow the ADC  
output.  
21  
22  
DACDATA_SEL  
CS_DAC  
DAC SPI Chip Select. See Table 8.  
External Clock Input. When the EXTCLK register bit is set to one, CLK is the master clock input for  
the modulator, filter, and DAC. When the EXTCLK register bit is reset to zero, the internal clock is  
used. The default power-on state is EXTCLK = 0 (internal clock mode). Connect CLK to GND or  
23  
24  
CLK  
Dꢀ  
when using internal clock.  
DD  
Active-Low End-of-Conversion Logic Output. A logic-low at EOC indicates that a new ADC result is  
available in the ADC result register.  
EOC  
±0 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Pin Description (continued)  
PIN  
NAME  
ꢅUNCTION  
Serial Clock Input. Apply an external clock to SCLK to facilitate communication through the serial  
bus. SCLK may idle high or low.  
25  
SCLK  
Serial Data Output. DOUT presents serial data in response to register queries. Data shifts out on  
the falling edge of SCLK. DOUT goes high impedance when CS is high.  
26  
27  
DOUT  
DIN  
Serial Data Input. Data present at DIN is shifted into the internal registers in response to a rising  
edge at SCLK when CS is low.  
28  
29  
30  
31  
32  
33  
34  
35  
36  
CS  
Active-Low Chip-Select Input. Forcing CS low activates the serial interface. (See Table 8.)  
LEDG  
DIG0  
DIG1  
DIG2  
DIG3  
DIG4  
SEGA  
SEGB  
LED Segment-Drivers Ground  
Digit 0 Driver Out (Connected to GLED for the MAX1368)  
Digit 1 Driver Out  
Digit 2 Driver Out  
Digit 3 Driver Out  
Digit 4 Driver Out  
Segment A Driver  
Segment B Driver  
LED-Display Segment-Driver Supply. Connect to a +2.7ꢀ to +5.25ꢀ supply. Bypass with a 0.1µF  
capacitor to LEDG.  
37  
LEDꢀ  
38  
39  
40  
41  
42  
43  
SEGC  
SEGD  
SEGE  
SEGF  
Segment C Driver  
Segment D Driver  
Segment E Driver  
Segment F Driver  
SEGG  
SEGDP  
Segment G Driver  
Segment Decimal-Point Driver  
Active-High LED Enable. The MAX1366/MAX1368 display driver turns off when LED_EN is low.  
The MAX1366/MAX1368 LED-display driver turns on when LED_EN is high.  
44  
45  
46  
LED_EN  
NEGꢀ  
-2.5ꢀ Charge-Pump ꢀoltage Output. Connect a 0.1µF capacitor to GND.  
Low-Battery-ꢀoltage Monitor. When the LOWBATT input voltage is lower than 2.048ꢀ, the  
LOWBATT bit in the status register is set to one.  
LOWBATT  
Negative Reference ꢀoltage Input. For internal reference operation, connect REF- to GND. For  
external reference operation, bypass REF- to GND with a 0.1µF capacitor and  
47  
48  
REF-  
set ꢀ  
from -2.2ꢀ to +2.2ꢀ (ꢀ  
> ꢀ  
).  
REF-  
REF-  
REF+  
Positive Reference ꢀoltage Input. For internal reference operation, connect a 4.7µF capacitor from  
REF+ to GND. For external reference operation, bypass REF+ to GND with a 0.1µF capacitor and  
REF+  
set ꢀ  
from -2.2ꢀ to +2.2ꢀ, provided that ꢀ  
> ꢀ  
.
REF-  
REF+  
REF+  
______________________________________________________________________________________ ±±  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Functional Diagram  
AV  
DV  
CLK SCLK DIN DOUT CS CS_DAC  
EOC DACDATA_SEL SET  
LEDV  
DD  
DD  
SERIAL I/O AND CONTROL  
+2.5V  
SEGA  
AIN+  
AIN-  
SEGG  
LED  
DRIVER  
ADC  
DIG0(1)  
DIG4(4)  
DISPLAY REGISTER  
ADC REGISTER  
DAC REGISTER  
INPUT  
BUFFER  
LED_EN  
LEDG  
DAC_VDD  
DACVOUT  
CONV_IN  
REF+  
REF-  
CS_DAC DIN SCLK  
CURRENT  
SUMMER  
AND  
OUTPUT  
DAC  
V/I  
CONVERTER  
-2.5V  
4-20OUT  
2.048V  
BANDGAP  
REFERENCE  
AMPLIFIER  
DAC REF  
BUFFER  
EN_I  
OFFSET  
GENERATOR  
CHARGE  
PUMP  
NEGV  
-2.5V  
EN_BPM  
5V REGULATOR  
MAX1366  
(MAX1368)  
GND  
REFSELE REF_DAC REG_AMP CMP REG_FORCE REG_VDD  
Detailed Description  
For added flexibility, the MAX1366/MAX1368 allow  
direct access to the ADC register, LED display register,  
and DAC output register using the SPI interface.  
The MAX1366/MAX1368 low-power, highly integrated  
ADCs with LED drivers convert a 2ꢀ differential input  
voltage (one count is equal to 100µꢀ for the MAX1366  
and 1mꢀ for the MAX1368) with a sigma-delta ADC and  
output the result to an LED display. An additional  
200mꢀ input range (one count is equal to 10µꢀ for the  
MAX1366 and 100µꢀ for the MAX1368) is available to  
measure small signals with finer resolution.  
The MAX1366/MAX1368 include a 2.048ꢀ reference,  
internal charge pump, and a high-accuracy on-chip  
oscillator. The devices feature on-chip buffers for the dif-  
ferential input signal and external-reference inputs,  
allowing direct interface with high-impedance signal  
sources. In addition, they use continuous internal offset  
calibration and offer > 100dB of 50Hz and 60Hz line-  
noise rejection. Other features include data hold and  
peak detection and overrange/underrange detection.  
In addition to displaying the results on an LED display,  
these devices feature a DAC and ꢀ-to-I converter for  
4–20mA (or 0 to 16mA) current output that proportional-  
ly follows the ADC input. The MAX1366/MAX1368 use  
an external depletion-mode nMOS transistor to regulate  
7ꢀ to 30ꢀ for the ꢀ/I converter. Use the 4–20mA (or 0 to  
16mA) output to drive a remote display, data logger,  
PLC input, or other 4–20mA devices in a current loop.  
Analog Input Protection  
The MAX1366/MAX1368 provide internal protection  
diodes that limit the analog input range on AIN+, AIN-,  
REF+, and REF- from NEGꢀ to (Aꢀ  
+ 0.3ꢀ). If the  
DD  
analog input exceeds this range, limit the input current  
to 10mA.  
The MAX1366/MAX1368 interface with a µC using an  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
±2 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Internal Analog Input/Reference Buffers  
0
The MAX1366/MAX1368 analog input/reference buffers  
allow the use of high-impedance signal sources. The  
-40  
input buffers’ common-mode input range allows the ana-  
log inputs and the reference to range from -2.2ꢀ to +2.2ꢀ.  
-80  
Modulator  
The MAX1366/MAX1368 perform analog-to-digital con-  
versions using a single-bit, 3rd-order, sigma-delta mod-  
-120  
ulator. The sigma-delta modulator converts the input  
signal into a digital pulse train whose average duty  
-160  
cycle represents the digitized signal information. The  
modulator quantizes the input signal at a much higher  
-200  
sample rate than the bandwidth of the input. The  
0
10  
20  
30  
40  
50  
60  
MAX1366/MAX1368 modulator provides 3rd-order fre-  
quency shaping of the quantization noise resulting from  
the single-bit quantizer. The modulator is fully differen-  
tial for maximum signal-to-noise ratio and minimum sus-  
ceptibility to power-supply noise. A single-bit data  
stream is then presented to the digital filter to remove  
the frequency-shaped quantization noise.  
FREQUENCY (Hz)  
4
Figure 1. Frequency Response of the SINC Filter (Notch at 60Hz)  
ratio (OSR) for the MAX1368 is 128 and the OSR for the  
MAX1366 is 1024. The output data rate for the digital fil-  
ter corresponds to the positioning of the first notch of  
the filter’s frequency response. The notches of the  
SINC4 filter are repeated at multiples of the first notch  
frequency. The SINC4 filter provides an attenuation of  
better than 100dB at these notches. For example, 50Hz  
is equal to 10 times the first notch frequency and 60Hz  
is equal to 12 times the first notch frequency. For large  
step changes at the input, allow a settling time of  
800ms before valid data is read.  
Digital Filtering  
The MAX1366/MAX1368 contain an on-chip digital low-  
pass filter that processes the data stream from the  
modulator using a SINC4 response:  
4
sin(x)  
x
The SINC4 filter has a settling time of four output data  
periods (4 x 200ms). The MAX1366/MAX1368 have  
25% overrange capability built into the modulator and  
Clock Modes  
Configure the MAX1366/MAX1368 to use either the  
internal oscillator or an externally applied clock to drive  
the modulator, filter, and DAC. Set the EXTCLK bit in  
the control register to zero to put the device in internal  
clock mode. Set the EXTCLK bit to one to put the  
device in external clock mode. When using the internal  
digital filter. The digital filter is optimized for the f  
CLK  
equal to 4.9152MHz. The frequency response of the  
SINC4 filter is calculated as follows:  
4
N  
1  
1(1Z  
)
H(z)=  
H(f)=  
oscillator, connect CLK to GND or Dꢀ . The  
DD  
N
(1Z  
)
MAX1366/MAX1368 operate with a 4.9152MHz clock to  
achieve maximum rejection of 50Hz/60Hz common-  
mode, power-supply, and normal-mode noise.  
4
f
sin Nπ  
f
1
N
m
Internal Clock Mode  
The MAX1366/MAX1368 contain an internal oscillator.  
The power-up condition for the MAX1366/MAX1368 is  
internal clock operation with the EXTCLK bit in the con-  
trol register equal to zero. Using the internal oscillator  
saves board space by removing the need for an exter-  
nal clock source.  
πf  
sin  
f
m
where N is the oversampling ratio, and f = N x output  
m
data rate = 5Hz.  
Filter Characteristics  
Figure 1 shows the filter frequency response. The  
SINC4 characteristic -3dB cutoff frequency is 0.228  
times the first notch frequency (5Hz). The oversampling  
External-Clock Mode  
For external clock operation, set the EXTCLK bit in the  
control register to one and drive CLK with a 4.9152MHz  
______________________________________________________________________________________ ±ꢁ  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Table ±. LED Priority Table  
A
A
A
A
A
DISPLAY ꢂALUES  
ꢅORM  
SEꢈ_SEL SPI/ADC HOLD PEAK  
F
E
F
F
E
F
E
B
B
B
B
B
G
G
G
G
F
C
C
C
C
C
D
E
DP  
LED segment  
registers  
DP  
DP  
DP  
DP  
1
0
X
1
X
X
X
X
D
D
D
D
G
DIGIT 4  
DIGIT 3  
DIGIT 2  
DIGIT 1  
DIGIT 0  
LED display register  
(user written)  
0
0
0
0
1
0
0
X
1
0
LED display register  
Peak register  
Figure 2. Segment Connection for the MAX1366 (4.5 Digits)  
0
0
ADC result register  
A
A
A
A
X = Don’t care.  
F
E
F
F
E
B
B
B
B
G
G
G
F
C
C
C
C
Figure 4 shows a typical common-cathode configura-  
tion for two digits. In common-cathode configuration,  
the cathodes of all LEDs in a digit are connected  
together. Each segment driver of the MAX1366/  
MAX1368 connects to its corresponding LED’s anodes.  
For example, segment driver SEGA connects to all LED  
segments designated as A. Similar configurations are  
used for other segment drivers.  
D
E
DP  
DP  
DP  
DP  
D
D
D
G
DIGIT 4  
DIGIT 3  
DIGIT 2  
DIGIT 1  
Figure 3. Segment Connection for the MAX1368 (3.5 Digits)  
clock source for best 50Hz/60Hz rejection perfor-  
mance. Other external clock frequencies allow for cus-  
tom conversion rates. A 2.4576MHz clock signal  
reduces the conversion rate and the LED update rate  
by a factor of two while keeping good 50Hz/60Hz noise  
rejection. The MAX1366/MAX1368 operate with an  
external clock source of up to 5.05MHz.  
The MAX1366/MAX1368 use a multiplexing scheme to  
drive one digit at a time. The scan rate is fast enough to  
make the digits appear to be lit. Figure 5 shows the  
data-timing diagram for the MAX1366/MAX1368 where  
t is the display scan period (typically around 1/512Hz  
or 1.9531ms). t  
time each digit is on and is calculated as follows:  
in Figure 5 denotes the amount of  
ON  
Charge Pump  
The MAX1366/MAX1368 contain an internal charge pump  
to provide the negative supply voltage for the internal  
analog input/reference buffers. The bipolar input range of  
the analog input/reference buffers allows this device to  
accept negative inputs with high source impedances.  
Connect a 0.1µF capacitor from NEGꢀ to GND.  
t
5
1.95312ms  
5
t
=
=
= 390.60µs  
ON  
Decimal-Point Control  
The MAX1366/MAX1368 allow for full decimal-point  
control and feature leading-zero suppression.  
LED Driver (Table 1)  
The MAX1366 has a 4.5-digit common-cathode display  
driver, and the MAX1368 has a 3.5-digit common-cath-  
ode display driver.  
Use the DPON, DPSET1, and DPSET2 bits in the con-  
trol register to set the value of the decimal point (Tables  
2 and 3). The MAX1366/MAX1368 overrange and  
underrange display is shown in Table 4.  
Figures 2 and 3 show the connection schemes for a  
standard seven-segment LED display. The LED update  
rate is 2.5Hz.  
Current Output  
The MAX1366/MAX1368 feature a 4–20mA (0 to 16mA)  
current output for driving remote panel meters, data log-  
gers, and process controllers in industrial applications.  
The DAC output is proportional to the input of the ADC  
and LED display. In the simplest configuration, connect  
DAC_ꢀOUT directly to CONꢀ_IN to have the current out-  
put (4–20mA or 0 to 16mA) follow the analog inputs.  
The MAX1366/MAX1368 automatically display the results  
of the ADC, if desired. The MAX1366/MAX1368 also  
allow independent control of the LED driver through the  
serial interface, allowing for data processing of the ADC  
result before showing the result on the LED. Additionally,  
each LED segment can be individually controlled (see  
the LED Segment-Display Register sections).  
±4 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
SEGDP  
SEGG  
SEGF  
SEGE  
SEGD  
SEGC  
SEGB  
SEGA  
A
B
C
D
E
F
G
DP  
A
B
C
D
E
F
G
DP  
DIGIT 1  
A
DIGIT 2  
A
F
E
F
B
B
G
G
C
C
E
DP  
DP  
D
D
Figure 4. 2-Digit Common-Cathode Configuration  
t
ON  
DIGIT 4 (MSD)  
INTERDIGIT  
BLANKING TIME  
DIGIT 2  
DIGIT 1  
DIGIT 0 (LSD)  
t
DATA  
4
MSD  
3
2
1
0
LSD  
4
3
2
1
0
4
Figure 5. LED Voltage Waveform  
Table ꢁ. Decimal-Point Control Table—  
MAꢀ±ꢁ36  
Table 2. Decimal-Point Control Table—  
MAꢀ±ꢁ33  
DISPLAY ꢄERO INPUT  
DISPLAY  
OUTPUT  
ꢄERO INPUT  
READINꢈ  
DPON  
DPSET± DPSET2  
DPON DPSET± DPSET2  
OUTPUT  
READINꢈ  
1
1
1
1
0
0
1
1
0
1
0
1
1888  
188.8  
18.88  
1.888  
0.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
18888  
18888  
18888  
18888  
1888.8  
188.88  
18.888  
1.8888  
0
0
0.0  
0.00  
0.000  
0
0
0.0  
0.00  
0.000  
0.0000  
______________________________________________________________________________________ ±5  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
CS OR CS_DAC  
t
t
CSH  
CSS  
t
CSH  
t
CH  
SCLK  
t
DS  
t
DH  
DIN  
t
t
t
TR  
DV  
DO  
DOUT  
Figure 6. ADC and DAC Timing Diagram  
CS  
SCLK  
1
0
RS4 RS3 RS2 RS1 RS0  
CONTROL BYTE  
x
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BYTE  
DIN  
DOUT  
Figure 7. Serial-Interface, 16-Bit, Write Timing Diagram  
Custom signal conditioning can be inserted between  
DAC_ꢀOUT and CONꢀ_IN, or CONꢀ_IN can be driven  
independently by a voltage source if desired. See  
Figures 20–23 for the transfer functions of the DAC and  
ꢀ/I converter.  
Table 4. LED During Overrange and  
Underrange Conditions  
CONDITION  
Overrange  
MAꢀ±ꢁ36  
1---  
MAꢀ±ꢁ33  
1----  
Note: The MAX1366/MAX1368 expect a 6k(typ)  
source impedance from the voltage source driving  
CONꢀ_IN.  
Underrange  
-1---  
-1----  
Current Offset  
Set EN_I high for a current span of 4–20mA. Set EN_I  
low for a current span of 0 to 16mA. See Table 5 for  
current output.  
Bipolar Mode  
Set EN_BPM high to engage bipolar operation. In bipo-  
lar mode, the current output at 4-20OUT (4–20mA or 0  
to 16mA) maps the analog input voltage ( 2ꢀ or  
200mꢀ). In bipolar mode, a 0ꢀ analog input maps to  
midscale (12mA). See Table 5 for current output. Also  
see Figures 21 and 22.  
Unipolar Mode  
Set EN_BPM low to engage unipolar operation. In unipo-  
lar mode, the current output at 4-20OUT (4–20mA or 0 to  
16mA) maps the analog input voltage (0 to 2ꢀ or 0 to  
200mꢀ). Negative voltages at the analog input result in a  
4mA or 0mA output, depending on the EN_I setting. See  
Table 5 for current output. See Figures 21 and 22.  
±3 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
CS  
CS_DAC  
SCLK  
1
0
RS4 RS3 RS2 RS1 RS0  
CONTROL BYTE  
X
D7 D6 D5 D4 D3 D2 D1 D0  
DATA BYTE  
DIN  
DOUT  
Figure 8. Serial-Interface, 8-Bit, Write Timing Diagram  
CS  
CS_DAC  
SCLK  
1
1
RS4 RS3 RS2 RS1 RS0  
CONTROL BYTE  
X
DIN  
DATA BYTE  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
Figure 9. Serial-Interface, 16-Bit, Read Timing Diagram  
Table 5. Current-Output Table  
CURRENT OUTPUT (mA)  
ANALOꢈ INPUT  
UNIPOLAR MODE  
(EN_I = LOW)  
UNIPOLAR MODE  
(EN_I = HIꢈH)  
BIPOLAR MODE  
(EN_I = LOW)  
BIPOLAR MODE  
(EN_I = HIꢈH)  
Negative Full Scale  
0ꢀ  
0
0
4
4
0
8
4
12  
20  
Positive Full Scale  
16  
20  
16  
______________________________________________________________________________________ ±7  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
CS  
CS_DAC  
SCLK  
1
1
RS4 RS3 RS2 RS1 RS0  
CONTROL BYTE  
X
DIN  
DATA BYTE  
D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
Figure 10. Serial-Interface, 8-Bit, Read Timing Diagram  
CS  
CS_DAC  
SCLK  
D14  
D9  
D8  
D5 D4 D3  
D1 D0  
D15  
D13 D12 D11 D10  
D7 D6  
D2  
DIN  
DATA BYTE  
Figure 11. DAC Serial Interface  
DV  
DD  
DV  
DD  
6kΩ  
6kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
C
50pF  
C
50pF  
LOAD  
LOAD  
6kΩ  
C
LOAD  
50pF  
C
50pF  
LOAD  
6kΩ  
GND  
GND  
GND  
GND  
A) V TO HIGH IMPEDANCE  
B) HIGH IMPEDANCE TO  
AND V TO V  
B) HIGH IMPEDANCE TO  
AND V TO V  
B) V TO HIGH IMPEDANCE  
OH  
OL  
V
OH  
V
OL  
OL  
OH  
OH  
OL  
Figure 12. Load Circuits for Disable Time  
Figure 13. Load Circuits for Enable Time  
±6 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ANALOG SUPPLY  
FERRITE  
BEAD  
10µF  
0.1µF  
10µF  
0.1µF  
AV  
DD  
DV  
DD  
REF+  
0.1µF  
0.1µF  
R
REF  
MAX1366  
MAX1368  
REF-  
4–20mA/0 TO 16mA  
CURRENT-LOOP  
OUTPUT  
ACTIVE  
GAUGE  
4-20OUT  
R
R
AIN+  
AIN-  
SCLK  
DIN  
DOUT  
CS  
0.1µF  
DUMMY  
GAUGE  
0.1µF  
EOC  
GND  
Figure 14. Strain-Gauge Application with the MAX1366/MAX1368  
TEMP  
SENSOR  
THERMOCOUPLE  
JUNCTION  
MAX1366  
MAX1368  
AIN+  
AIN-  
SPI  
µC  
0.1µF  
+5V  
NEGV  
+2.048V  
REF+  
REF-  
MAX6062  
4–20mA/0 TO 16mA  
CURRENT-LOOP OUTPUT  
4-20OUT  
GND  
0.47µF  
Figure 15. Thermocouple Application with the MAX1366/MAX1368  
______________________________________________________________________________________ ±1  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ADC  
RESULT  
ADC  
RESULT  
LED  
LED  
1 - - - -  
19,999  
> 4E1Fh  
4E1Fh  
1 - - -  
1999  
> 7CFh  
7CFh  
2
1
0002h  
2
1
002h  
0001h  
0000h  
001h  
000h  
0
0
- 0 FFFFh  
- 0  
- 1  
- 2  
FFFh  
FFEh  
FFDh  
- 1  
- 2  
FFFEh  
FFFDh  
B1E0h  
-19,999  
830h  
-1999  
< B1E0h  
- 1 - - - -  
- 1 - - - < 830h  
-100µV 0 +100µV  
+100µV  
0
-100µV  
-2V  
+2V  
-200mV  
+200mV  
ANALOG INPUT VOLTAGE  
ANALOG INPUT VOLTAGE  
Figure 18. MAX1368 Transfer Function— 200mV Range  
Figure 16. MAX1366 Transfer Function— 2V Range  
LED  
ADC  
RESULT  
ADC  
RESULT  
LED  
1 - - - -  
19,999  
> 4E1Fh  
4E1Fh  
1 - - -  
1999  
> 7CFh  
7CFh  
2
1
0002h  
002h  
2
1
0001h  
0000h  
001h  
000h  
0
0
- 0 FFFFh  
FFFh  
FFEh  
- 0  
- 1  
- 1  
- 2  
FFFEh  
FFFDh  
- 2 FFDh  
B1E0h  
-19,999  
830h  
-1999  
< B1E0h  
- 1 - - - -  
< 830h  
- 1 - - -  
-10µV 0 +10µV  
-1mV 0  
+1mV  
-200mV  
+200mV  
-2V  
+2V  
ANALOG INPUT VOLTAGE  
ANALOG INPUT VOLTAGE  
Figure 17. MAX1366 Transfer Function— 200mV Range  
Figure 19. MAX1368 Transfer Function— 2V Range  
The FET breakdown and saturation voltages determine  
the usable range of loop voltages (ꢀ ). The external  
5.2V Linear Regulator with Compensation  
The MAX1366/MAX1368 feature a 5.2ꢀ linear regulator.  
The 5.2ꢀ regulator consists of an op amp and connec-  
tions to an external depletion-mode FET. The 5.2ꢀ reg-  
ulator regulates the loop voltage that powers the  
voltage-to-current converter and the rest of the trans-  
mitter circuitry. The regulator output voltage is available  
at REG_ꢀDD and is given by the equation:  
EXT  
FET parameters such as ꢀ  
(off), I  
, and transcon-  
GS  
DSS  
ductance must be chosen so that the op amp output on  
the REG_FORCE pin can control the FET operating  
point while swinging in the range from ꢀREG_AMP to  
REG_ꢀDD. See the Selecting Depletion Mode FET  
section in the Applications Information section.  
Connect a 0.1µF capacitor between CMP and  
REG_FORCE to ensure stable operation of the regulator.  
= 2.54 x ꢀ  
REF+  
REG_ꢀDD  
20 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
UNIPOLAR:  
BIPLOLAR:  
UNIPOLAR:  
BIPLOLAR:  
CURRENT  
OFFSET  
DISABLED  
(EN_I = 0)  
1.25  
16  
8
0
0
- FS  
+ FS  
0
- FS  
FS = FULL SCALE  
0
+ FS  
ADC OUTPUT CODE  
ADC OUTPUT CODE  
FS = FULL SCALE  
Figure 22. Output Current (4-20OUT) vs. ADC Output Code  
(Current Offset Disabled)  
Figure 20. DAC Output Voltage vs. ADC Output Code  
UNIPOLAR:  
BIPLOLAR:  
OFFSET ENABLED:  
OFFSET DISABLED:  
CURRENT  
OFFSET  
ENABLED  
(EN_I = 1)  
20  
12  
20  
16  
4
0
4
0
- FS  
+ FS  
0
1. 25  
V/I CONVERTER INPUT ( V )  
0
ADC OUTPUT CODE  
FS = FULL SCALE  
Figure 21. Output Current (4-20OUT) vs. ADC Output Code  
(Current Offset Enabled)  
Figure 23. 4-20OUT Output Current vs. V/I Converter Input  
Voltage  
Leading-Zero Suppression  
The MAX1366/MAX1368 include a leading-zero sup-  
pression circuitry to turn off unnecessary zeros. For  
example, when DPSET1 and DPSET2 = [0,0], 0.0 is dis-  
played instead of 000.0 (MAX1366). This feature saves  
a substantial amount of power by not lighting unneces-  
sary LEDs.  
Interdigit Blanking  
The MAX1366/MAX1368 also include interdigit-blanking  
circuitry. Without this feature, it is possible to see a faint  
digit next to a digit that is completely on. The  
interdigit-blanking circuitry prevents ghosting over into  
the next digit for a short period of time. The typical  
interdigit blanking time is 4µs.  
______________________________________________________________________________________ 2±  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
registers are accessed next, and whether a read or  
Applications Information  
write operation takes place. Transitions on the serial  
Power-On Reset  
At power-on, the serial interface, logic, LED drivers,  
digital filter, modulator, and DAC circuits reset. The  
registers return to their default values.  
clock after the command byte transfer, cause a write or  
read from the device until the correct number of bits  
have been transferred (8 or 16). Once this has  
occurred, the MAX1366/MAX1368 wait for the next  
command byte. CS must not go high between data  
transfers. If CS is toggled before the end of a write or  
read operation, the device mode may be unknown.  
Clock in 32 zeros to clear the device state and reset the  
interface so it is ready to receive a new command byte.  
Serial Interface  
The SPI/QSPI/MICROWIRE serial interface consists of a  
chip select (CS), a serial clock (SCLK), a data in (DIN),  
a data out (DOUT), DAC chip select (CS_DAC), and an  
EOC output. CS and CS_DAC enable access to regis-  
ters in the MAX1366/MAX1368. CS allows a read and  
write to all registers of the MAX1366/MAX1368 exclud-  
ing the DAC register and CS_DAC enables a write to  
the DAC register (see Table 8). EOC provides an end-  
To write to the DAC register, pull CS_DAC low and  
clock in 16 data bits. Data bits are clocked in MSB first  
(see the DAC Operation section).  
On-Chip Registers (Excluding  
DAC Register)  
of-conversion signal with a period of 200ms (f  
=
CLK  
4.9152MHz). The MAX1366/MAX1368 update the ADC  
register when EOC goes high. Data is valid in the ADC  
register when EOC returns low. The serial interface pro-  
vides access to 13 on-chip registers, allowing control to  
all the power modes and functional blocks. Table 6 lists  
the address and read/write accessibility of all the regis-  
ters excluding the DAC register.  
The MAX1366/MAX1368 contain 12 on-chip registers.  
These registers configure the various functions of the  
device and allow independent reading of the ADC  
results and writing to the LED display. Table 6 lists the  
address and size of each register. The first of these  
registers is the status register. The 8-bit status register  
contains the status flags for the ADC. The second reg-  
ister is the 16-bit control register. This register sets the  
LED display controls, range modes, power-down  
modes, offset calibration, and the reset register func-  
tion (CLR). The third register is the 16-bit overrange  
register, which sets the overrange limit of the analog  
input. The fourth register is the 16-bit underrange regis-  
ter, which sets the underrange limit of the analog input.  
Registers 5 through 7 contain the display data for the  
individual segments of the LED. The eighth register  
contains the custom offset value. The ninth register  
contains the 16 MSBs of the ADC conversion result.  
The 10th register contains the LED data. The 11th reg-  
ister contains the peak analog input value. The last reg-  
ister contains the lower 4 LSBs of the 20-bit ADC  
conversion result.  
A logic-high on CS and CS_DAC tri-states DOUT and  
causes the MAX1366/MAX1368 to ignore any signals  
on SCLK and DIN. To clock data in or out of the internal  
shift register, drive CS or CS_DAC low. SCLK synchro-  
nizes the data transfer. The rising edge of SCLK clocks  
DIN into the shift register, and the falling edge of SCLK  
clocks DOUT out of the shift register. DIN and DOUT  
are transferred MSB first (data is left justified). Figures  
6–10 show the detailed serial-interface timing diagrams  
for the 8- and 16-bit read/write operations.  
All communication with the MAX1366/MAX1368, with  
exception of the DAC register, begins with a command  
byte on DIN, where the first logic one on DIN is recog-  
nized as the START bit (MSB) for the command byte.  
The following seven clock cycles load the command  
into a shift register. These 7 bits specify which of the  
22 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Table 3. Register-Address Table  
REꢈISTER  
ADDRESS RS[4:0]  
00000  
NAME  
WIDTH  
8
ACCESS  
Read only  
R/W  
1
2
Status register  
Control register  
00001  
16  
16  
16  
16  
16  
8
3
00010  
Overrange register  
R/W  
4
00011  
Underrange register  
R/W  
5
00100  
LED segment-display register 1  
LED segment-display register 2  
LED segment-display register 3  
ADC custom offset register  
ADC result register (16 MSBs)  
LED data register  
R/W  
6
00101  
R/W  
7
00110  
R/W  
8
00111  
16  
16  
16  
16  
8
R/W  
9
01000  
R/W  
10  
11  
12  
01001  
R/W  
01010  
Peak register  
R/W  
10100  
ADC result register 2 (4 LSBs)  
Reserved  
R/W  
All other addresses  
Table 7. Segment-Current Selection  
Table 1. ꢅET Characteristics  
R
(k)  
I
(mA)  
ꢅET TYPE  
n-CHANNEL DEPLETION MODE  
30mA  
(ꢀ * - REG_ꢀDD) min  
ISET  
SEꢈ  
25  
20  
I
DS  
50  
100  
10  
5
Bꢀ  
DS  
EXT  
REG_ꢀDD max  
30mA x (ꢀ - REG_ꢀDD) min  
PINCHOFF  
500  
1
Power dissipation  
*V is the 7V to 30V loop voltage.  
EXT  
> 2500  
LED driver disabled  
EXT  
Table 6. CS and CS_DAC Table  
DESCRIPTION  
CS  
CS_DAC  
Reserved.  
0
0
Read or write to on-chip registers  
excluding the DAC register.  
0
1
1
1
0
1
Write to the DAC register only.  
DOUT is high impedance. DIN and  
SCLK are ignored.  
______________________________________________________________________________________ 2ꢁ  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Control and Status Registers  
Command Byte (Write Only)  
MSB  
Bit 7  
LSB  
Bit 0  
X
Bit 6  
Bit 5  
RS4  
Bit 4  
RS3  
Bit 3  
RS2  
Bit 2  
RS1  
Bit 1  
RS0  
START(1)  
R/W  
START: Start bit. The first 1 clocked into the MAX1366/  
MAX1368 is the first bit of the command byte.  
only. Write commands to a read-only register are  
ignored.  
(R/W): Read/Write. Set this bit to 1 to read from the  
specified register. Set this bit to zero to write to the  
selected register. Note that certain registers are read  
(RS4–RS0): Register address bits. RS4 to RS0 specify  
which register is accessed.  
ꢀ: Don’t care.  
Status Register (Read Only)  
MSB  
LSB  
SIGN  
OꢀER  
UNDER  
LOW_BATT  
DRDY  
0
0
0
Default values: 00h  
This register contains the status of the conversion  
results.  
value in the underrange register). Clears by reading the  
status register, unless the condition remains true.  
SIꢈN: Latched negative-polarity indicator. Latches high  
when the result is negative. Clears by reading the sta-  
tus register, unless the condition remains true.  
LOW_BATT: Low-battery bit. Latches high if the volt-  
age at the LOWBATT is lower than 2.048ꢀ (typ). Clears  
by reading the status register, unless the condition  
remains true.  
OꢂER: Overrange bit. Latches high if an overrange  
condition occurs (the ADC result is larger than the  
value in the overrange register). Clears by reading the  
status register, unless the condition remains true.  
DRDY: Data-ready bit. Latches high to indicate a com-  
pleted conversion result with valid data. Read the ADC  
result register to clear this bit.  
UNDER: Underrange bit. Latches high if an underrange  
condition occurs (the ADC result is less than the  
Control Register (Read/Write)  
MSB  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
PD_ANA  
LSB  
SPI/ADC  
EXTCLK  
INTREF  
DPON  
DPSET2  
DPSET1  
PD_DIG  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
CLR  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OFFSET_  
CAL2  
HOLD  
PEAK  
RANGE  
SEG_SEL  
OFFSET_CAL1  
ENABLE  
Default values: 0000h  
This register is the primary control register for the  
MAX1366/MAX1368. It is a 16-bit read/write register. It  
is used to indicate the desired clock and reference  
source. It sets the LED display controls, range modes,  
power-down modes, offset calibration, and the reset  
register function (CLR).  
ENABLE: (Default = 1.) LED driver enable bit. When set  
to 1, the MAX1366/MAX1368 enables the LED display  
drivers. A 0 in this location disables the LED dis-  
play drivers.  
OꢅꢅSET_CAL2: (Default = 0.) Enhanced offset-calibra-  
tion start bit (RANGE = 1). To achieve the lowest possi-  
ble offset in the 200mꢀ input range, perform an  
enhanced offset calibration by setting this bit to 1. The  
calibration takes about nine cycles (1800ms). After the  
calibration completes, set this bit to zero to resume  
ADC conversions.  
24 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
PD_DIꢈ: (Default = 0.) Power-down digital select bit.  
When set to 1, the digital circuits (digital filter and LED  
drivers) go into power-down mode. This also resets the  
values of the internal SRAM in the digital filter to zeros.  
When set to zero, the device returns to full power-up  
mode. When powering down PD_DIG, power down the  
LED segment drivers by clearing the ENABLE bit to zero.  
OꢅꢅSET_CAL±: (Default = 0.) Automatic offset-calibra-  
tion enable bit. When set to 1, the MAX1366/  
MAX1368 disable automatic offset calibration. When  
this bit is set to zero, automatic offset calibration is  
enabled.  
SEꢈ_SEL: (Default = 0.) SEG_SEL segment selection  
bit. When set to 1, the LED segment drivers use the  
LED segment registers to display individual segments  
that can form letters or numbers or other information on  
the display. The LED data register is not displayed.  
Send the data first to the LED segment-display regis-  
ters and then set this bit high.  
DPSET[2:±]: (Default = 00.) Decimal-point selection  
bits (Table 2 and 3).  
DPON: (Default = 0.) Decimal-point enable bit (Tables  
2 and 3).  
INTREꢅ: (Default = 0.) Reference select bit. For internal  
reference operation, set INTREF to 1. For external refer-  
ence operation, set INTREF to zero.  
CLR: (Default = 0.) Clear all registers bit. When set to  
1, all registers reset to their power-on reset states after  
CS makes a low-to-high transition.  
EꢀTCLK: (Default = 0.) External clock select bit. The  
EXTCLK bit controls selection of the internal clock or an  
external clock source. A 1 in this location selects the  
signal at the CLK input as the clock source. A zero in  
this location selects and powers up the internal clock  
oscillator.  
RANꢈE: (Default = 0.) Input range select bit. When set  
to zero, the input voltage range is 2ꢀ. When set to 1,  
the input voltage range is 200mꢀ.  
PEAK: (Default = 0.) Peak bit. When set to 1 (and the  
HOLD bit is set to zero), the LED shows the result  
stored in the peak register (see Table 6).  
SPI/ADC: (Default = 0.) Display select bit. The SPI/ADC  
bit controls selection of the data fed into LED data reg-  
ister. A 1 in this location selects SPI/QSPI/MICROWIRE  
data (user writes this data to the LED data register). A  
zero in this location selects the ADC result register  
data, unless hold or peak functions are active (Table 1).  
HOLD: (Default = 0.) Hold bit. When set to 1, the LED  
register does not update from the ADC conversion  
results and holds the last result on the LED. The  
MAX1366/MAX1368 continue to perform conversions  
during HOLD (Table 1).  
Note: When changing any one of the following control  
bits: OFFSET_CAL1, RANGE, PD_ANA, PD_DIG,  
INTREF, and EXTCLK, wait 800ms before reading the  
ADC results.  
PD_ANA: (Default = 0.) Power-down analog select bit.  
When set to 1, the analog circuits (analog modulator  
and ADC input buffers) go into the power-down mode.  
When set to zero, the device is in full power-up mode.  
Overrange Register (Read/Write)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values:  
7CF0h (for 3.5-digit, +1999)  
4E1Fh (for 4.5-digit, +19,999)  
dashes for the MAX1366 or a 1 followed by three dash-  
es for the MAX1368 (Table 4).  
The data is represented in two’s-complement format.  
The overrange register is a 16-bit read/write register (D15  
is the MSB). When the conversion result exceeds the  
value in the overrange register, the OꢀER bit in the status  
register latches to 1. The LED shows a 1 followed by four  
______________________________________________________________________________________ 25  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Underrange Register (Read/Write)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values:  
8300h (for 3.5-digit, -2000)  
B1E0h (for 4.5-digit, -20,000)  
The underrange data register is 16-bit read/write regis-  
ter (D15 is the MSB). When the conversion result falls  
below the value in the underrange register, the UNDR  
bit in the status register sets to 1. The LED shows a -1  
followed by four dashes for the MAX1366 or a -1 fol-  
lowed by three dashes for the MAX1368 (Table 4).  
The data is represented in two’s-complement format.  
Default values: 0000h  
LED Segment-Display Register 1 (Read/Write)  
MSB  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
X
Bit 8  
B0  
A1  
G1  
D1  
F1  
E1  
DP2  
LSB  
Bit 0  
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
C0  
A0  
G0  
D0  
F0  
E0  
DP1  
LED segment-display register 1 is a 16-bit read/write  
register. When the LED bit (in the control register) is set  
to 1, the MAX1366/MAX1368 provide direct access to  
individual LED segments. The bits in the LED segment-  
display register determine if a segment is on or off.  
Write a zero to turn on a segment and a 1 to turn off a  
segment.  
C0: Segment C driver bit of digit 0. The default value  
turns on the LED segment.  
B0: Segment B driver bit of digit 0. The default value  
turns on the LED segment.  
ꢀ: Don’t care.  
DP2: Segment DP driver bit of digit 2. The default value  
turns on the LED segment.  
DP±: Segment DP driver bit of digit 1. The default value  
turns on the LED segment.  
E±: Segment E driver bit of digit 1. The default value  
turns on the LED segment.  
E0: Segment E driver bit of digit 0. The default value  
turns on the LED segment.  
ꢅ±: Segment F driver bit of digit 1. The default value  
turns on the LED segment.  
ꢅ0: Segment F driver bit of digit 0. The default value  
turns on the LED segment.  
D±: Segment D driver bit of digit 1. The default value  
turns on the LED segment.  
D0: Segment D driver bit of digit 0. The default value  
turns on the LED segment.  
ꢈ±: Segment G driver bit of digit 1. The default value  
turns on the LED segment.  
ꢈ0: Segment G driver bit of digit 0. The default value  
turns on the LED segment.  
A±: Segment A driver bit of digit 1. The default value  
turns on the LED segment.  
A0: Segment A driver bit of digit 0. The default value  
turns on the LED segment.  
23 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
LED Segment-Display Register 2 (Read/Write)  
MSB  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
G2  
F3  
E3  
DP4  
MINUS  
B2  
C2  
A2  
LSB  
Bit 0  
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
X
Bit 2  
Bit 1  
D2  
F2  
E2  
DP3  
B1  
C1  
Default values: 0000h  
LED segment-display register 2 is a 16-bit read/write  
register. When the SEG_SEL bit (in the control register)  
is set to 1, the MAX1366/MAX1368 provide direct  
access to individual LED segments. The bits in the LED  
segment-display register determine if a segment is on  
or off. Write a zero to turn on a segment and a 1 to turn  
off a segment.  
ꢅ2: Segment F driver bit of digit 2. The default value  
turns on the LED segment.  
D2: Segment D driver bit of digit 2. The default value  
turns on the LED segment.  
ꢈ2: Segment G driver bit of digit 2. The default value  
turns on the LED segment.  
A2: Segment A driver bit of digit 2. The default value  
turns on the LED segment.  
C±: Segment C driver bit of digit 1. The default value  
turns on the LED segment.  
C2: Segment C driver bit of digit 2. The default value  
turns on the LED segment.  
B±: Segment B driver bit of digit 1. The default value  
turns on the LED segment.  
B2: Segment B driver bit of digit 2. The default value  
MINUS: Segment minus driver bit. The default value  
turns on the LED minus segment. Setting this bit to 1  
enables the plus sign on the LED display.  
turns on the LED segment.  
DP4: Segment DP driver bit of digit 4. The default value  
turns on the LED segment (MAX1366 only).  
DPꢁ: Segment DP driver bit of digit 3. The default value  
turns on the LED segment.  
Eꢁ: Segment E driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
E2: Segment E driver bit of digit 2. The default value  
turns on the LED segment.  
ꢅꢁ: Segment F driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
LED Segment-Display Register 3 (Read/Write)  
MSB  
LSB  
X
X
BC_  
B3  
C3  
A3  
G3  
D3  
Default values: 00h  
LED segment-display register 3 is an 8-bit read/write  
register. When the SEG_SEL bit (in the control register)  
is set to 1, the MAX1366/MAX1368 provide direct  
access to individual LED segments. The bits in the LED  
segment-display register determine if a segment is on  
or off. Write a zero to turn on a segment and a 1 to turn  
off a segment.  
Aꢁ: Segment A driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
Cꢁ: Segment C driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
Bꢁ: Segment B driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
BC_: Segment B and C driver bit of digit 3 (3.5 digits)  
or digit 4 (4.5 digits). The default value turns on the LED  
segment.  
Dꢁ: Segment D driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
ꢈꢁ: Segment G driver bit of digit 3. The default value  
turns on the LED segment (MAX1366 only).  
ꢀ: Don’t care.  
______________________________________________________________________________________ 27  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
ADC Custom Offset-Calibration Register 3 (Read/Write)  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values: 0000h  
In addition to automatic offset calibration, the  
MAX1366/MAX1368 offer a user-defined custom offset  
16-bit read/write register. The final result of the ADC  
conversion is the input after autocalibration minus  
the value in the custom offset. The custom offset value  
is stored in this register. D15 is the MSB. The data is  
represented in two’s-complement format.  
ADC Result Register 1 (Read Only)  
LSB  
(MAꢀ±ꢁ36)  
LSB  
(MAꢀ±ꢁ33)  
MSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values: 0000h  
ADC result register 1 is a 16-bit read-only register. This  
register stores the 16 MSBs of the ADC result. The data  
is represented in two’s-complement format.  
For the MAX1366, the data is 16-bit and D15 is the  
MSB. For the MAX1368, the data is 12-bit, D15 is the  
MSB, and D4 is the LSB.  
ADC Result Register 2 (Read Only)  
MSB  
LSB  
D3  
D2  
D1  
D0  
0
0
0
0
Default values: 00h  
ADC result register 2 is an 8-bit read-only register. This  
register stores the 4 LSBs of the ADC result.  
Use this result with the result in ADC result register 1 to  
form a 20-bit two’s-complement conversion result.  
LED Data Register (Read/Write)  
LSB  
(MAꢀ±ꢁ36)  
LSB  
(MAꢀ±ꢁ33)  
MSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values: 0000h  
The LED data register is a 16-bit read/write register.  
This register updates from ADC result register 1 or from  
the serial interface by selecting the SPI/ADC bit in the  
control register. The data is represented in two’s-com-  
plement format.  
For the MAX1366, the data is 16-bit and D15 is the  
MSB. For the MAX1368, the data is 12-bit, D15 is the  
MSB, and D4 is the LSB, followed by 4 trailing sub-bits.  
26 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
LED Data Register (Read/Write)  
LSB  
(MAꢀ±ꢁ36)  
LSB  
(MAꢀ±ꢁ33)  
MSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default values: B1E0h  
The peak data register is a 16-bit read-only register.  
Set the PEAK bit to 1 to enable the PEAK function. This  
register stores the peak value of the ADC conversion  
result. First, the current ADC result is saved to the  
PEAK register, then the new ADC conversion result is  
compared to this value. If the new value is larger than  
the value in the peak register, the MAX1366/MAX1368  
save the new value to the peak register. If the new  
value is less than the value in the peak register, the  
value in the peak register remains unchanged. Set the  
PEAK bit to zero to clear the value in the PEAK register.  
The data is represented in two’s-complement format.  
For the MAX1366, the data is 16-bit and D15 is the  
MSB. For the MAX1368, the data is 12-bit, D15 is the  
MSB, and D4 is the LSB followed by 4 trailing sub-bits.  
Register (Read/Write) section). The default power-on  
state sets the MAX1366/MAX1368 to use the external  
reference with the INTREF bit cleared to zero.  
DAC Operation  
For the MAX1366/MAX1368, a voltage proportional to  
the ADC input is available at DACꢀOUT. Connect  
DACꢀOUT to CONꢀ_IN for normal operation. (See  
Figure 20 for DAC transfer function).  
For internal-reference operation, set the INTREF bit to  
one connect REF- to GND, and bypass REF+ to GND  
,
with a 4.7µF capacitor. The internal reference provides  
a nominal 2.048ꢀ source between REF+ and GND. The  
internal-reference temperature coefficient is typically  
40ppm/°C.  
In normal operation, pull DACDATA_SEL low to use the  
ADC output as the DAC input. Pull DACDATA_SEL high  
to allow data to be written to the DAC register using the  
SPI/QSPI/MICROWIRE interface. Once DACDATA_SEL  
is pulled high, the three digital inputs (CS_DAC, DIN,  
and SCLK) load the digital input data serially into the  
DAC. (See Figure 11.)  
For external-reference operation, set INTREF to GND.  
REF+ and REF- are fully differential. For a valid external-  
reference input, ꢀ  
must be greater than ꢀ  
.
REF-  
REF+  
Bypass REF+ and REF- with a 0.1µF or greater capaci-  
tor to GND in external-reference mode.  
To clock data into the DAC shift register, drive CS_DAC  
low. SCLK synchronizes the data transfer. Immediately,  
following CS_DAC high-to-low transition, the data shifts  
synchronously into the serial shift register on the rising  
edge of the serial clock input (SCLK). After 16 data bits  
have been loaded into the serial input register, the data  
latches to the DAC register on the rising edge of  
CS_DAC. The DAC output updates on the next conver-  
sion clock (2.5Hz). DIN is transferred MSB first.  
Figure 14 shows the MAX1366/MAX1368 operating  
with an external single-ended differential reference. In  
this figure, REF- is connected to the top of the strain  
gauge and REF+ is connected to the midpoint of the  
resistor-divider of the supply.  
Figure 15 shows the MAX1366/MAX1368 operating with  
an external single-ended reference. In this figure, REF-  
is connected to GND and REF+ is driven with an exter-  
nal 2.048ꢀ reference. Bypass REF+ to GND with a  
0.1µF capacitor.  
Reference  
ADC Reference  
The MAX1366/MAX1368 reference sets the full-scale  
range of the ADC transfer function. With a nominal  
2.048ꢀ reference, the ADC full-scale range is 2ꢀ with  
DAC Reference  
The DAC of the MAX1366/MAX1368 accepts either an  
external reference or an internal reference. For external-  
reference operation, disable the DAC reference buffer by  
RANGE = GND. With RANGE = Dꢀ  
the full-scale  
DD,  
range is 200mꢀ. A decreased reference voltage  
decreases full-scale range (see the Transfer Functions  
section).  
setting REFSELE to Dꢀ  
to REF_DAC.  
and connect a voltage source  
DD  
The MAX1366/MAX1368 accept either an external ref-  
erence or an internal reference (INTREF). The INTREF  
logic selects the reference mode (see the Control  
For internal-reference operation, enable the DAC refer-  
ence buffer by setting REFSELE to GND. In this mode,  
leave REFDAC floating.  
______________________________________________________________________________________ 21  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
In either internal or external reference operation,  
bypass REF_DAC with a 0.1µF capacitor to GND.  
Choose a reference with output impedance (load regu-  
lation equivalent) of 100mor less, such as the  
MAX6126. For best performance, use an external  
source from the ADC and DAC.  
the analog input range to have an absolute value of  
anywhere between -2.2ꢀ and +2.2ꢀ.  
Thermocouple Measurement  
Figure 15 shows a connection from a thermocouple to  
the MAX1366/MAX1368. In this application, the  
MAX1366/MAX1368 take advantage of the on-chip input  
buffers that allow large source impedances on the front  
end. The decoupling capacitors reduce noise pickup  
from the thermocouple leads. To place the differential  
voltage from the thermocouple at a suitable common-  
mode voltage, the AIN- input of the MAX1366/MAX1368  
is biased to GND. Use an external temperature sensor,  
such as the DS75, and a microcontroller to perform cold-  
junction temperature compensation.  
Offset Calibration  
The MAX1366/MAX1368 offer on-chip offset calibration.  
The device offset calibrates during every conversion  
when the OFFSET_CAL1 bit is zero in the control regis-  
ter. Enhanced offset calibration is only needed in the  
MAX1366 when the RANGE bit = 1. It is performed on  
demand by setting the OFFSET_CAL2 bit to 1.  
Enhanced Offset Calibration  
Enhanced offset calibration is a more accurate calibra-  
tion method that is needed in the case of the 200mꢀ  
range and 4.5-digit resolution. The MAX1366 performs  
enhanced calibration on demand by setting the  
OFFSET_CAL2 bit to 1.  
Transfer Functions  
ADC Transfer Functions  
Figures 16–19 show the transfer functions of the  
MAX1366/MAX1368. The output data is stored in the  
ADC data register in two’s complement.  
The transfer function for the MAX1366 with AIN+ - AIN-  
Power-Down Modes  
The MAX1366/MAX1368 feature independent power-down  
control of the analog and digital LED driver’s circuitry.  
0 and RANGE = GND is:  
ꢀ  
AIN−  
AIN+  
(1) COUNT = 1.024  
x 20,000  
Writing a 1 to the PD_DIG and PD_ANA bits in the con-  
trol word, powers down the analog and digital circuitry,  
reducing the supply current to 268µA (typ). PD_DIG  
powers down the digital filter, while PD_ANA powers  
down the analog modulator and ADC input buffers.  
Writing a zero to the ENABLE bit in the control word  
powers down the LED drivers.  
ꢀ  
REF+  
REF−  
The transfer function for the MAX1366 with AIN+ - AIN-  
< 0 and RANGE = GND is:  
ꢀ  
AIN−  
AIN+  
(2) COUNT = 1.024  
x 20,000 +1  
ꢀ  
REF+  
REF−  
Peak  
The MAX1366/MAX1368 feature peak-detection circuitry.  
When activated (PEAK bit = 1), the devices display  
only the highest voltage measured to the LED.  
The transfer function for the MAX1368 with AIN+ - AIN-  
0 and RANGE = GND is:  
ꢀ  
AIN−  
ꢀ  
AIN+  
(3) COUNT = 1.024  
x 2000  
Hold  
The MAX1366/MAX1368 feature data-hold circuitry.  
When activated (HOLD bit = 1), the device holds the  
current reading on the LED.  
REF+ REF−  
The transfer function for the MAX1368 with AIN+ - AIN-  
< 0 and RANGE = GND is:  
ꢀ  
AIN−  
AIN+  
Low Battery  
The MAX1366/MAX1368 feature a low-battery detection  
input. When the voltage at LOWBATT drops below  
2.048ꢀ (typ), LOWBATT in the status register goes high.  
(4) COUNT = 1.024  
x 2000 +1  
ꢀ  
REF+  
REF−  
The transfer function for the MAX1366 with AIN+ - AIN-  
0 and RANGE = Dꢀ  
is:  
DD  
Strain-Gauge Measurement  
Connect the differential inputs of the MAX1366/  
MAX1368 to the bridge network of the strain gauge. In  
Figure 14, the analog supply voltage powers the bridge  
network and the MAX1366/MAX1368, along with the  
reference voltage. The MAX1366/MAX1368 handle an  
analog input voltage range of 200mꢀ and 2ꢀ full  
scale. The analog/reference inputs of the parts allow  
ꢀ  
AIN−  
AIN+  
(5) COUNT = 1.024  
x 20,000 x10  
ꢀ  
REF+  
REF−  
ꢁ0 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
The transfer function for the MAX1366 with AIN+ - AIN-  
Figure 23 shows the MAX1366/MAX1368 transfer func-  
tion of the output current (4-20OUT) versus the input  
voltage of the ꢀ/I converter.  
< 0 and RANGE = Dꢀ  
is:  
DD  
ꢀ  
AIN−  
AIN+  
(6) COUNT = 1.024  
x 20,000 x 10+1  
The transfer function for the MAX1366/MAX1368 with  
the current offset enabled (EN_I is high) is:  
ꢀ  
REF+  
REF−  
The transfer function for the MAX1368 with AIN+ - AIN-  
16mA  
1.25  
IOUT ≅  
x ꢀ  
+4mA  
CON_IN  
0 and RANGE = Dꢀ  
is:  
DD  
ꢀ  
AIN−  
AIN+  
(7) COUNT = 1.024  
x 2000 x 10  
The transfer function for the MAX1366/MAX1368 with  
the current offset disabled (EN_I is low) is:  
ꢀ  
REF+  
REF−  
The transfer function for the MAX1368 with AIN+ - AIN-  
16mA  
1.25  
IOUT ≅  
x ꢀ  
CON_IN  
< 0 and RANGE = Dꢀ  
is:  
DD  
ꢀ  
AIN−  
AIN+  
(8) COUNT = 1.024  
x 2000 x 10+1  
Supplies, Layout, and Bypassing  
ꢀ  
REF+  
REF−  
Power up Aꢀ  
and Dꢀ before applying an analog  
DD  
DD  
input and external-reference voltage to the device. If  
this is not possible, limit the current into these inputs to  
50mA. When the analog and digital supplies come from  
the same source, isolate the digital supply from the  
analog supply with a low-value resistor (10) or ferrite  
bead. For best performance, ground the MAX1366/  
MAX1368 to the analog ground plane of the circuit  
board. Avoid running digital lines under the device as  
this can couple noise onto the IC. Run the analog  
ground plane under the MAX1366/MAX1368 to mini-  
mize coupling of digital noise. Make the power-supply  
lines to the MAX1366/MAX1368 as wide as possible to  
provide low-impedance paths and reduce the effects of  
glitches on the power-supply line. Shield fast-switching  
signals, such as clocks, with digital ground to avoid  
radiating noise to other sections of the board. Avoid  
running clock signals near the analog inputs. Avoid  
crossover of digital and analog signals. Running traces  
that are on opposite sides of the board at right angles to  
each other reduces feedthrough effects. A microstrip  
technique is best, but is not always possible with dou-  
ble-sided boards. With this technique, the component  
side of the board is dedicated to ground planes while  
signals are placed on the solder side. Good decoupling  
is important when using high-resolution ADCs.  
Decouple the supplies with 0.1µF ceramic capacitors to  
GND. Place these components as close to the device  
as possible to achieve the best decoupling.  
DAC Transfer Functions  
Figure 20 shows the DAC transfer function for the  
MAX1366/MAX1368 in unipolar and bipolar modes.  
The transfer function for the DAC in the MAX1366/  
MAX1368 unipolar mode is:  
Note: The input at ꢀ  
expects a source impe-  
CONꢀ_IN  
dence of typically 6kwhen driving ꢀ  
externally.  
CONꢀ_IN  
N
=
x ꢀ  
REF  
DACꢀOUT  
32,7681  
where N = two’s complement ADC output code.  
In unipolar mode, ꢀ  
is equal to 0ꢀ for all two’s  
DACꢀOUT  
complement ADC codes less than zero (see Figure 21).  
The transfer function for the DAC in the MAX1366/  
MAX1368 in bipolar mode is:  
N+19,999  
=
x ꢀ  
REF  
DACꢀOUT  
6536  
where N = two’s complement ADC output.  
Writing into the DAC Independently  
A user can independently write to the DAC but cannot  
input codes greater than +19,999 or less than -19,999.  
In bipolar mode, a -19,999 DAC code provides 4mA  
(0mA) output current and a +19,999 DAC code pro-  
vides a 20mA (16mA) output current.  
Selecting Segment Current  
A resistor from ISET to ground sets the current for each  
LED segment. See Table 7 for more detail. Use the fol-  
lowing formula to set the segment current:  
1.20ꢀ  
Voltage-to-Current Transfer Function  
Figures 20 and 21 show the MAX1366/MAX1368 trans-  
fer function of the output current (4-20OUT) versus the  
ADC output code.  
I
=
x 400  
SEG  
R
ISET  
______________________________________________________________________________________ ꢁ±  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
R
values below 25kincrease the I  
. However,  
Table 9 provides the FET characteristics for selecting  
an external DMOS transistor. The DN25D FET transistor  
from Supertex meets all the requirements of Table 7.  
Other suitable transistors include ND2020L and  
ND2410L from Siliconix.  
ISET  
SEG  
the internal current-limit circuit limits the I  
to less than  
SEG  
30mA. At higher I  
device is not guaranteed. In addition, the power dissipat-  
ed may exceed the package power-dissipation limit.  
values, proper operation of the  
SEG  
Connect a 0.1µF capacitor between CMP and  
REG_FORCE to ensure stable regulator compensation.  
Choosing Supply Voltage to Minimize  
Power Dissipation  
The MAX1366/MAX1368 drive a peak current of 25.5mA  
into LEDs with a 2.2ꢀ forward-voltage drop when operat-  
ed from a supply voltage of at least 3.0ꢀ. Therefore, the  
minimum voltage drop across the internal LED drivers is  
0.8ꢀ (3.0ꢀ - 2.2ꢀ = 0.8ꢀ). The MAX1366/MAX1368 sink  
when the outputs are operating and the LED segment  
drivers are at full current (8 x 25.5mA = 204mA). For a  
3.3ꢀ supply, the MAX1366/MAX1368 dissipate 224.4mW  
((3.3ꢀ - 2.2ꢀ) x 204 = 224.4mW). If a higher supply volt-  
age is used, the driver absorbs a higher voltage, and the  
driver’s power dissipation increases accordingly.  
However, if the LEDs used have a higher forward-voltage  
drop than 2.2ꢀ, the supply voltage must be raised  
accordingly to ensure that the driver always has at least  
0.8ꢀ headroom. For an LEDꢀ supply voltage of 2.7ꢀ, the  
maximum LED forward voltage is 1.9ꢀ to ensure 0.8ꢀ dri-  
ver headroom. The voltage drop across the drivers with  
a nominal +5ꢀ supply (5.0ꢀ - 2.2ꢀ = 2.8ꢀ) is almost  
three times the drop across the drivers with a nominal  
3.3ꢀ supply (3.3ꢀ - 2.2ꢀ = 1.1ꢀ). Therefore, the driver’s  
power dissipation increases three times. The power dis-  
sipation in the part causes the junction temperature to  
rise accordingly. In the high ambient temperature case,  
the total junction temperature may be very high (>  
+125°C). At higher junction temperatures, the ADC per-  
formance degrades. To ensure the dissipation limit for  
the MAX1366/MAX1368 is not exceeded and the ADC  
performance is not degraded; a diode can be inserted  
between the power supply and LEDꢀ.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. This straight line is either a  
best-straight-line fit or a line drawn between the end  
points of the transfer function, once offset and gain  
errors have been nullified. INL for the MAX1366/  
MAX1368 is measured using the end-point method.  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. A DNL error specification of  
less than 1 LSB guarantees no missing codes and a  
monotonic transfer function.  
Rollover Error  
Rollover error is defined as the absolute-value differ-  
ence between a near positive full-scale reading and  
near negative full-scale reading. Rollover error is tested  
by applying a full-scale positive voltage, swapping  
AIN+ and AIN-, and adding the results.  
Zero-Input Reading  
Ideally, with AIN+ connected to AIN-, the MAX1366/  
MAX1368 LED displays zero. Zero-input reading is the  
measured deviation from the ideal zero and the actual  
measured point.  
Gain Error  
Gain error is the amount of deviation between the mea-  
sured full-scale transition point and the ideal full-scale  
transition point.  
Selecting Depletion-Mode FET  
An external depletion-mode FET (DMOS) works in con-  
junction with the regulator circuit to supply the ꢀ/I con-  
verter with loop power. REG_FORCE regulates the gate  
of the DMOS so that the drain voltage is 5.2ꢀ (typ) and  
allows the 4–20mA (0 to 16mA) loop to be directly pow-  
ered from a 7ꢀ to 30ꢀ supply. DMOS I consists of the  
DS  
current output at 4-20OUT, a 4mA offset current, and  
1mA (typ) consumed by the ꢀ/I converter.  
Common-Mode Rejection (CMR)  
CMR is the ability of a device to reject a signal that is  
common to both input terminals. The common-mode  
signal can be either an AC or a DC signal or a combi-  
nation of the two. CMR is often expressed in decibels.  
Normal-Mode 50Hz and 60Hz Rejection  
(Simultaneously)  
For offset-enabled mode (EN_I = 1):  
Normal-mode rejection is a measure of how much output  
changes when 50Hz and 60Hz signals are injected into  
only one of the differential inputs. The MAX1366/  
MAX1368 sigma-delta converter uses its internal digital  
filter to provide normal-mode rejection to both 50Hz and  
60Hz power-line frequencies simultaneously.  
I
= I  
+ 4mA + 1mA  
4-20OUT  
DS  
For offset-disabled mode (EN_I = 0):  
= I + 1mA  
I
DS  
4-20OUT  
where I is the current in the DMOS.  
DS  
ꢁ2 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Power-Supply Rejection (PSR)—ADC  
PSR is a measure of the data converter’s level of immu-  
nity to power-supply fluctuations. PSR assumes that the  
converter’s linearity is unaffected by changes in the  
power-supply voltage. Power-supply rejection ratio  
(PSRR) is the ratio of the input signal change to the  
change in the converter output. PSRR is typically mea-  
sured in dB.  
Power-Supply Rejection—V/I Converter  
PSR is a measure of the data converter’s level of immu-  
nity to power-supply fluctuations. PSR assumes that the  
converter’s linearity is unaffected by changes in the  
power-supply voltage. Note that the ꢀ/I converter cur-  
rent output (4–20mA) power-supply rejection is with  
respect to the 7ꢀ to 30ꢀ loop supply.  
MAX1366 Typical Operating Circuit  
DAC_VDD  
SUPPLY VOLTAGE  
IN  
MAX6126  
OUTF  
0.1µF  
OUTS  
GNDS  
GND  
0.1µF  
SEGA–SEGDP  
SEGMENT  
CONNECTIONS  
DIG0–DIG4  
DIGIT  
CONNECTIONS  
GND_DAC  
REF_DAC  
DACVOUT  
AIN+  
AIN-  
V
EXT  
7V TO 30V  
V
IN  
0.1µF  
CONV_IN  
EN_BPM  
CMP  
DEPLETION-  
MODE  
FET  
REG_FORCE  
EN_I  
REG_VDD  
REG_AMP  
4.75V TO  
5.25V  
DACDATA_SEL  
REFSELE  
4-20OUT  
DV  
DD  
4–20mA/0 TO 16mA  
CURRENT-LOOP OUTPUT  
MAX1366  
4–20mA  
PLC INPUT  
CLK  
R
L
ADC  
SCLK  
CS  
DIN  
LOWBATT  
µC  
LEDV  
LED_EN  
0.1µF  
DOUT  
EOC  
DV  
DD  
10µF  
0.1µF  
DAC_VDD  
AV  
CS_DAC  
DD  
L
ISO  
0.1µF  
SET  
NEGV  
GND REF- REF+  
LEDG GND_V/I  
2.7V TO  
5.25V  
10µF  
0.1µF  
10µF  
25kΩ  
______________________________________________________________________________________ ꢁꢁ  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
MAX1368 Typical Operating Circuit  
DAC_VDD  
SUPPLY VOLTAGE  
IN  
MAX6126  
OUTF  
0.1µF  
OUTS  
GND  
GNDS  
0.1µF  
SEGA–SEGDP  
SEGMENT  
CONNECTIONS  
DIGO  
DIG1–DIG4  
DIGIT  
CONNECTIONS  
GND_DAC  
REF_DAC  
DACVOUT  
AIN+  
AIN-  
V
EXT  
V
IN  
7V TO 30V  
0.1µF  
CONV_IN  
EN_BPM  
CMP  
DEPLETION-  
MODE  
FET  
REG_FORCE  
EN_I  
REG_VDD  
REG_AMP  
4.75V TO  
5.25V  
DACDATA_SEL  
DV  
DD  
REFSELE  
CLK  
4-20OUT  
4–20mA/0 TO 16mA  
CURRENT-LOOP OUTPUT  
MAX1368  
4–20mA  
PLC INPUT  
SCLK  
CS  
R
ADC  
L
µC  
DIN  
DOUT  
EOC  
LOWBATT  
LEDV  
LED_EN  
0.1µF  
CS_DAC  
DV  
DD  
10µF  
0.1µF  
DAC_VDD  
AV  
DD  
L
ISO  
SET  
NEGV  
GND REF- REF+  
LEDG GND_V/I  
0.1µF  
2.7V TO  
5.25V  
10µF  
0.1µF  
10µF  
25kΩ  
ꢁ4 ______________________________________________________________________________________  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Pin Configuration  
TOP VIEW  
AIN+  
AIN-  
GND  
1
2
36 SEGB  
35 SEGA  
34 DIG4  
33 DIG3  
32 DIG2  
31 DIG1  
30 DIG0  
29 LEDG  
3
AV  
DD  
DV  
DD  
4
5
SET  
REG_VDD  
REG_FORCE  
REG_AMP  
CMP  
6
MAX1366  
MAX1368  
7
8
CS  
9
28  
27  
26  
25  
DIN  
10  
11  
12  
DAC_VDD  
DACVOUT  
DOUT  
SCLK  
TQꢅP  
Chip Information  
TRANSISTOR COUNT: 83,463  
PROCESS: CMOS  
______________________________________________________________________________________ ꢁ5  
Microcontroller-Interface, 4.5-/3.5-Digit Panel  
Meters with 4–20mA Output  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to ꢃꢃꢃ.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 32/48L LQFP, 7x7x1.4mm  
1
21-0054  
F
2
PACKAGE OUTLINE, 32/48L LQFP, 7x7x1.4mm  
2
21-0054  
F
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ ꢁ3  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1366ECM

Analog Circuit, 1 Func, CMOS, PQFP48, PLASTIC, QFP-48
MAXIM

MAX1366ECM+

Analog Circuit, 1 Func, CMOS, PQFP48, PLASTIC, QFP-48
MAXIM

MAX1366ECM+T

Analog Circuit, 1 Func, CMOS, PQFP48, PLASTIC, QFP-48
MAXIM

MAX1366ECM-T

Analog Circuit, 1 Func, CMOS, PQFP48, PLASTIC, QFP-48
MAXIM

MAX1367

Stand-Alone, 4.5-/3.5-Digit Panel Meters with 4-20mA Output
MAXIM

MAX1367ECM

Stand-Alone, 4.5-/3.5-Digit Panel Meters with 4-20mA Output
MAXIM

MAX1367ECM+

Analog Circuit, 1 Func, CMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, TQFP-48
MAXIM

MAX1367ECM+T

Analog Circuit, 1 Func, CMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, TQFP-48
MAXIM

MAX1367ECM-T

Analog Circuit, 1 Func, CMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, TQFP-48
MAXIM

MAX1368

Microcontroller-Interface, 4.5-/3.5-Digit Panel Meters with 4–20mA Output
MAXIM

MAX1368ECM

Microcontroller-Interface, 4.5-/3.5-Digit Panel Meters with 4–20mA Output
MAXIM

MAX1368ECM+

Analog Circuit, 1 Func, CMOS, PQFP48, PLASTIC, QFP-48
MAXIM