MAX1305ECM+ [MAXIM]

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges; 8 /4 / 2通道, 12位,同时采样ADC ,提供± 10V , ± 5V , 0〜 + 5V模拟输入范围
MAX1305ECM+
型号: MAX1305ECM+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges
8 /4 / 2通道, 12位,同时采样ADC ,提供± 10V , ± 5V , 0〜 + 5V模拟输入范围

文件: 总37页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3052; Rev 4; 8/09  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
General Description  
Features  
o Up to Eight Channels of Simultaneous Sampling  
The MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–  
MAX1314 12-bit, analog-to-digital converters (ADCs) offer  
eight, four, or two independent input channels.  
Independent track-and-hold (T/H) circuitry provides simul-  
taneous sampling for each channel. The MAX1304/  
MAX1305/MAX1306 provide a 0 to +5V input range with  
6V fault-tolerant inputs. The MAX1308/MAX1309/  
MAX1310 provide a 5V input range with 16.5V fault-tol-  
erant inputs. The MAX1312/MAX1313/MAX1314 have a  
10V input range with 16.5V fault-tolerant inputs. These  
ADCs convert two channels in 0.9µs, and up to eight  
channels in 1.98µs, with an 8-channel throughput of  
456ksps per channel. Other features include a 20MHz T/H  
input bandwidth, internal clock, internal (+2.5V) or external  
(+2.0V to +3.0V) reference, and power-saving modes.  
8ns Aperture Delay  
100ps Channel-to-Channel T/H Match  
o Extended Input Ranges  
0 to +5V (MAX1304/MAX1305/MAX1306)  
-5V to +5V (MAX1308/MAX1309/MAX1310)  
-10V to +10V (MAX1312/MAX1313/MAX1314)  
o Fast Conversion Time  
One Channel in 0.72µs  
Two Channels in 0.9µs  
Four Channels in 1.26µs  
Eight Channels in 1.98µs  
o High Throughput  
1075ksps/Channel for One Channel  
901ksps/Channel for Two Channels  
680ksps/Channel for Four Channels  
456ksps/Channel for Eight Channels  
A 20MHz, 12-bit, bidirectional parallel data bus pro-  
vides the conversion results and accepts digital inputs  
that activate each channel individually.  
o
1 LSB INL, 0.9 LSB DNL (max)  
o 84dBc SFDR, -86dBc THD, 71dB SINAD,  
All devices operate from a +4.75V to +5.25V analog supply  
and a +2.7V to +5.25V digital supply and consume 57mA  
total supply current when fully operational.  
f
IN  
= 500kHz at 0.4dBFS  
o 12-Bit, 20MHz, Parallel Interface  
o Internal or External Clock  
Each device is available in a 48-pin 7mm x 7mm TQFP  
package and operates over the extended -40°C to  
+85°C temperature range.  
o +2.5V Internal Reference or +2.0V to +3.0V  
External Reference  
o +5V Analog Supply, +3V to +5V Digital Supply  
Applications  
55mA Analog Supply Current  
1.3mA Digital Supply Current  
SIN/COS Position Encoder  
Multiphase Motor Control  
Shutdown and Power-Saving Modes  
o 48-Pin TQFP Package (7mm x 7mm Footprint)  
Multiphase Power Monitoring  
Power-Grid Synchronization  
Power-Factor Monitoring  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
48 TQFP  
Vibration and Waveform Analysis  
MAX1304ECM+  
MAX1304ECM/V+  
MAX1305ECM+  
MAX1306ECM+  
MAX1308ECM+  
MAX1308ECM/V+  
MAX1309ECM+  
MAX1309ECM/V+  
MAX1310ECM+  
MAX1312ECM+  
MAX1313ECM+  
MAX1314ECM+  
Selector Guide  
PART  
INPUT RANGE (V) CHANNEL COUNT  
MAX1304ECM  
MAX1305ECM  
MAX1306ECM  
MAX1308ECM  
MAX1309ECM  
MAX1310ECM  
MAX1312ECM  
MAX1313ECM  
MAX1314ECM  
0 to +5  
8
4
2
8
4
2
8
4
2
0 to +5  
0 to +5  
5
5
5
10  
10  
10  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
ABSOLUTE MAXIMUM RATINGS  
AV to AGND .........................................................-0.3V to +6V  
REF , REF, MSV to AGND.....................-0.3V to (AV + 0.3V)  
MS DD  
DD  
DV  
to DGND.........................................................-0.3V to +6V  
REF+, COM, REF- to AGND.....................-0.3V to (AV + 0.3V)  
Maximum Current into Any Pin Except AV , DV , AGND,  
DD DD  
DGND ........................................................................... 50mA  
DD  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
CH0–CH7, I.C. to AGND (MAX1304/MAX1305/MAX1306).... 6V  
CH0–CH7, I.C. to AGND (MAX1308/MAX1309/MAX1310).. 16.5V  
CH0–CH7, I.C. to AGND (MAX1312/MAX1313/MAX1314).. 16.5V  
D0–D11 to DGND ....................................-0.3V to (DV + 0.3V)  
EOC, EOLC, RD, WR, CS to DGND.........-0.3V to (DV + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
TQFP (derate 22.7mW/°C above +70°C)................1818.2mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
DD  
DD  
CONVST, CLK, SHDN, CHSHDN to DGND...-0.3V to (DV + 0.3V)  
INTCLK/EXTCLK to AGND.......................-0.3V to (AV + 0.3V)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C. See Figures 3 and 4.)  
A
PARAMETER  
STATIC PERFORMANCE (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
12  
Bits  
LSB  
LSB  
Integral Nonlinearity  
INL  
DNL  
(Note 2)  
0.5  
0.3  
3
1.0  
0.9  
16  
16  
20  
20  
Differential Nonlinearity  
No missing codes (Note 2)  
Unipolar, 0x000 to 0x001  
Bipolar, 0xFFF to 0x000  
Offset Error  
LSB  
LSB  
3
Unipolar, between all channels  
Bipolar, between all channels  
Unipolar, 0x000 to 0x001  
Bipolar, 0xFFF to 0x000  
9
Offset-Error Matching  
Offset-Error Temperature Drift  
9
7
ppm/°C  
7
Gain Error  
2
16  
14  
LSB  
LSB  
Gain-Error Matching  
Gain-Error Temperature Drift  
Between all channels  
3
4
ppm/°C  
DYNAMIC PERFORMANCE at f = 500kHz, A = -0.4dBFS (Note 2)  
IN  
IN  
Signal-to-Noise Ratio  
SNR  
SINAD  
THD  
68  
68  
71  
71  
-86  
84  
86  
dB  
dB  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Isolation  
-80  
dBc  
dBc  
dB  
SFDR  
80  
ANALOG INPUTS (CH0 through CH7)  
MAX1304/MAX1305/MAX1306  
0
+5  
+5  
Input Voltage  
V
V
MAX1308/MAX1309/MAX1310  
MAX1312/MAX1313/MAX1314  
-5  
CH  
-10  
+10  
680/2–MAX314  
2
_______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C. See Figures 3 and 4.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX1304/MAX1305/MAX1306  
MAX1308/MAX1309MAX1310  
MAX1312/MAX1313/MAX1314  
MIN  
TYP  
7.58  
8.66  
14.26  
0.54  
-0.12  
0.29  
-0.87  
0.56  
-0.85  
15  
MAX  
UNITS  
Input Resistance  
R
k  
CH  
CH  
(Note 3)  
V
V
V
V
V
V
= +5V  
= 0V  
0.72  
0.39  
0.74  
CH  
CH  
CH  
CH  
CH  
CH  
MAX1304/MAX1305/MAX1306  
MAX1308/MAX1309/MAX1310  
MAX1312/MAX1313/MAX1314  
-0.157  
-1.16  
-1.13  
= +5V  
= -5V  
Input Current  
(Note 3)  
I
mA  
pF  
= +10V  
= -10V  
Input Capacitance  
C
CH  
TRACK/HOLD  
One channel selected for conversion  
1075  
901  
680  
456  
983  
821  
618  
413  
20  
Two channels selected for conversion  
Four channels selected for conversion  
Eight channels selected for conversion  
One channel selected for conversion  
Two channels selected for conversion  
Four channels selected for conversion  
Eight channels selected for conversion  
External-Clock Throughput Rate  
(Note 4)  
f
TH  
ksps  
Internal-Clock Throughput Rate  
(Note 4, Table 1)  
f
ksps  
TH  
AD  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
MHz  
MHz  
ns  
20  
t
8
Aperture-Delay Matching  
Aperture Jitter  
100  
50  
ps  
t
ps  
RMS  
AJ  
INTERNAL REFERENCE  
REF Output Voltage  
V
2.475  
2.475  
2.500  
30  
2.525  
2.525  
V
REF  
Reference Output-Voltage  
Temperature Drift  
ppm/°C  
REF  
Output Voltage  
V
2.500  
3.850  
2.600  
1.350  
V
V
V
V
MS  
REFMS  
REF+ Output Voltage  
COM Output Voltage  
REF- Output Voltage  
V
REF+  
V
COM  
V
REF-  
V
V
-
REF+  
Differential Reference Voltage  
2.500  
V
-
REF  
_______________________________________________________________________________________  
3
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C. See Figures 3 and 4.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE (REF and REF  
are externally driven)  
MS  
REF Input Voltage Range  
REF Input Resistance  
REF Input Capacitance  
V
2.0  
2.5  
5
3.0  
3.0  
V
kΩ  
pF  
V
REF  
R
(Note 5)  
(Note 6)  
REF  
15  
REF  
REF  
REF  
Input Voltage Range  
Input Resistance  
V
2.0  
2.5  
MS  
MS  
MS  
REFMS  
R
5
kΩ  
pF  
V
REFMS  
Input Capacitance  
15  
REF+ Output Voltage  
COM Output Voltage  
REF- Output Voltage  
V
V
V
V
= +2.5V  
= +2.5V  
= +2.5V  
3.850  
2.600  
1.350  
REF+  
REF  
REF  
REF  
V
V
COM  
V
V
REF-  
V
V
-
REF+  
Differential Reference Voltage  
V
= +2.5V  
2.500  
V
REF  
-
REF  
DIGITAL INPUTS (D0–D7, RD, WR, CS, CLK, SHDN, CHSHDN, CONVST)  
Input-Voltage High  
Input-Voltage Low  
Input Hysteresis  
Input Capacitance  
Input Current  
V
0.7 x DV  
V
V
IH  
DD  
V
0.3 x DV  
DD  
IL  
20  
15  
mV  
pF  
µA  
C
IN  
I
V
= 0 or DV  
0.02  
1
IN  
IN  
DD  
CLOCK-SELECT INPUT (INTCLK/EXTCLK)  
Input-Voltage High  
Input-Voltage Low  
V
0.7 x AV  
V
V
IH  
DD  
V
0.3 x AV  
DD  
IL  
DIGITAL OUTPUTS (D0–D11, EOC, EOLC)  
Output-Voltage High  
V
I
I
= 0.8mA, Figure 1  
DV - 0.6  
DD  
V
V
OH  
SOURCE  
Output-Voltage Low  
V
= 1.6mA, Figure 1  
SINK  
0.4  
1
OL  
D0–D11 Tri-State Leakage Current  
RD = high or CS = high  
0.06  
15  
µA  
D0–D11 Tri-State Output  
Capacitance  
RD = high or CS = high  
pF  
POWER SUPPLIES  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
V
V
DD  
DD  
MAX1304/MAX1305/MAX1306,  
all channels selected  
55  
54  
54  
60  
60  
60  
MAX1308/MAX1309/MAX1310,  
all channels selected  
Analog Supply Current  
I
mA  
AVDD  
MAX1312/MAX1313/MAX1314,  
all channels selected  
680/2–MAX314  
4
_______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C. See Figures 3 and 4.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX1304/MAX1305/MAX1306,  
all channels selected  
1.3  
2.6  
2.6  
2.6  
Digital Supply Current  
(C = 100pF) (Note 7)  
MAX1308/MAX1309/MAX1310,  
all channels selected  
I
1.3  
1.3  
mA  
DVDD  
LOAD  
MAX1312/MAX1313/MAX1314,  
all channels selected  
I
SHDN = DV , V  
= float  
0.6  
0.02  
50  
10  
1
AVDD  
DD CH  
Shutdown Current  
(Note 8)  
µA  
dB  
I
SHDN = DV , RD = WR = high  
DD  
DVDD  
Power-Supply Rejection Ratio  
PSRR  
AV  
= +4.75V to +5.25V  
DD  
TIMING CHARACTERISTICS (Figure 1)  
Internal clock, Figure 7  
External clock, Figure 8  
Internal clock, Figure 7  
External clock, Figure 8  
800  
12  
900  
225  
ns  
Time to First Conversion Result  
Time to Subsequent Conversions  
t
CONV  
CLK  
Cycles  
200  
3
ns  
t
NEXT  
CLK  
Cycles  
CONVST Pulse-Width Low  
(Acquisition Time)  
t
(Note 9) Figures 6–10  
0.1  
1000.0  
µs  
ACQ  
CS Pulse Width  
RD Pulse-Width Low  
RD Pulse-Width High  
WR Pulse-Width Low  
CS to WR  
t
Figure 6  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
t
Figures 7, 8, 9  
Figures 7, 8, 9  
Figure 6  
RDL  
RDH  
WRL  
CTW  
WTC  
t
t
t
t
Figure 6  
(Note 10)  
(Note 10)  
(Note 10)  
(Note 10)  
WR to CS  
Figure 6  
CS to RD  
t
t
Figures 7, 8, 9  
Figures 7, 8, 9  
CTR  
RTC  
RD to CS  
Data Access Time  
(RD Low to Valid Data)  
t
Figures 7, 8, 9  
30  
30  
ns  
ACC  
Bus Relinquish Time (RD High)  
CLK Rise to EOC Delay  
t
Figures 7, 8, 9  
Figure 8  
5
ns  
ns  
ns  
ns  
ns  
REQ  
t
20  
20  
20  
EOCD  
CLK Rise to EOLC Fall Delay  
t
Figure 8  
EOLCD  
CONVST Fall to EOLC Rise Delay  
t
Figures 7, 8, 9  
Internal clock, Figure 7  
CVEOLCD  
50  
EOC Pulse Width  
t
EOC  
CLK  
Cycle  
External clock, Figure 8  
1
_______________________________________________________________________________________  
5
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C. See Figures 3 and 4.)  
A
PARAMETER  
Input-Data Setup Time  
Input-Data Hold Time  
External CLK Period  
SYMBOL  
CONDITIONS  
MIN  
10  
TYP  
MAX  
UNITS  
ns  
t
t
Figure 6  
DTW  
WTD  
Figure 6  
10  
ns  
t
Figures 8, 9  
0.05  
10.00  
µs  
CLK  
Logic sensitive to rising edges,  
Figures 8, 9  
External CLK High Period  
External CLK Low Period  
t
20  
ns  
ns  
CLKH  
Logic sensitive to rising edges,  
Figures 8, 9  
t
20  
CLKL  
External Clock Frequency  
Internal Clock Frequency  
CONVST High to CLK Edge  
f
(Note 11)  
0.1  
20  
MHz  
MHz  
ns  
CLK  
f
15  
INT  
t
Figures 8, 9  
20  
CNTC  
Note 1: For the MAX1304/MAX1305/MAX1306, V = 0 to +5V. For the MAX1308/MAX1309/MAX1310, V = -5V to +5V. For the  
IN  
IN  
MAX1312/MAX1313/MAX1314, V = -10V to +10V.  
IN  
Note 2: All channel performance is guaranteed by correlation to a single channel test.  
Note 3: The analog input resistance is terminated to an internal bias point (Figure 5). Calculate the analog input current using:  
V
V  
CH_  
BIAS  
I
=
CH_  
R
CH_  
for V  
within the input voltage range.  
CH  
Note 4: Throughput rate is given per channel. Throughput rate is a function of clock frequency (f  
). The external clock through-  
CLK  
put rate is specified with f  
= 16.67MHz and the internal clock throughput rate is specified with f  
= 15MHz. See the  
CLK  
CLK  
Data Throughput section for more information.  
Note 5: The REF input resistance is terminated to an internal +2.5V bias point (Figure 2). Calculate the REF input current using:  
VREF 2.5V  
IREF  
for V  
=
RREF  
within the input voltage range.  
REF  
Note 6: The REF input resistance is terminated to an internal +2.5V bias point (Figure 2). Calculate the REF input current using:  
MS  
MS  
VREFMS 2.5V  
IREFMS  
=
RREFMS  
for V  
within the input voltage range.  
REFMS  
Note 7: All analog inputs are driven with a -0.4dBFS 500kHz sine wave.  
Note 8: Shutdown current is measured with the analog input floating. The large amplitude of the maximum shutdown current speci-  
fication is due to automated test equipment limitations.  
Note 9: CONVST must remain low for at least the acquisition period. The maximum acquisition time is limited by internal capacitor droop.  
Note 10: CS to WR and CS to RD are internally AND together. Setup and hold times do not apply.  
Note 11: Minimum CLK frequency is limited only by the internal T/H droop rate. Limit the time between the rising edge of CONVST  
and the falling edge of EOLC to a maximum of 1ms.  
680/2–MAX314  
6
_______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Typical Operating Characteristics  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
OFFSET ERROR  
vs. TEMPERATURE  
1.0  
0.8  
16  
12  
8
0.6  
0.4  
4
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-4  
-8  
-12  
-16  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
-40  
-15  
10  
35  
60  
85  
°
DD  
TEMPERATURE ( C)  
GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
GAIN ERROR  
vs. TEMPERATURE  
1
0
16  
12  
8
-1  
4
-2  
-3  
-4  
-5  
0
-4  
-8  
-12  
-16  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
-40  
-15  
10  
35  
60  
85  
°
TEMPERATURE ( C)  
DD  
_______________________________________________________________________________________  
7
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SMALL-SIGNAL BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
LARGE-SIGNAL BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
2
0
2
0
A
= -20dBFS  
A = -0.5dBFS  
IN  
IN  
-2  
-2  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-12  
-10  
-12  
0.1  
1
10  
100  
0.1  
1
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT  
(2048-POINT DATA RECORD)  
OUTPUT HISTOGRAM (DC INPUT)  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
5497  
f
f
A
= 1.04167Msps  
= 500kHz  
TH  
IN  
= -0.05dBFS  
IN  
SNR = 70.7dB  
SINAD = 70.6dB  
THD = -87.5dBc  
SFDR = 87.1dBc  
1611  
1084  
0
0
2044  
2045  
2046  
2047  
2048  
0
100  
200  
300  
400  
500  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
680/2–MAX314  
8
_______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK FREQUENCY  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
0
5
10  
f
15  
(MHz)  
20  
25  
0
5
10  
f
15  
(MHz)  
20  
25  
CLK  
CLK  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. CLOCK FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
0
5
10  
15  
(MHz)  
20  
25  
0
5
10  
15  
(MHz)  
20  
25  
f
f
CLK  
CLK  
_______________________________________________________________________________________  
9
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. REFERENCE VOLTAGE  
SIGNAL-TO-NOISE RATIO  
vs. REFERENCE VOLTAGE  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
V
V
REF  
REF  
TOTAL HARMONIC DISTORTION  
vs. REFERENCE VOLTAGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. REFERENCE VOLTAGE  
-70  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
100  
95  
90  
85  
80  
75  
70  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
V
REF  
V
REF  
680/2–MAX314  
10 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
57  
C
= 50pF  
LOAD  
T
= +85°C  
A
T
T
= +85°C  
A
A
56  
55  
54  
53  
52  
51  
T
= +25°C  
A
= +25°C  
= -40°C  
T
= -40°C  
A
T
A
2.5  
3.0  
3.5  
4.0  
DV (V)  
4.5  
5.0  
5.5  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
DD  
AV (V)  
DD  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
DIGITAL SHUTDOWN CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
22  
20  
18  
16  
14  
12  
10  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
2.5  
3.0  
3.5  
4.0  
DV (V)  
4.5  
5.0  
5.5  
DD  
DD  
DIGITAL SUPPLY CURRENT  
vs. NUMBER OF CHANNELS SELECTED  
ANALOG SUPPLY CURRENT  
vs. NUMBER OF CHANNELS SELECTED  
1.0  
60  
55  
50  
45  
40  
35  
30  
CHSHDN = 0  
CHSHDN = 0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
NUMBER OF CHANNELS SELECTED  
NUMBER OF CHANNELS SELECTED  
______________________________________________________________________________________ 11  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 16.67MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
INTERNAL CLOCK CONVERSION TIME  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL CLOCK CONVERSION TIME  
vs. TEMPERATURE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
820  
800  
780  
t
CONV  
t
CONV  
t
NEXT  
t
NEXT  
200  
180  
160  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
-40  
-15  
10  
35  
60  
85  
DD  
TEMPERATURE (°C)  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
3.0  
MAX1304/MAX1305/MAX1306  
MAX1308/MAX1309/MAX1310  
MAX1312/MAX1313/MAX1314  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-6  
-4  
-2  
0
2
4
6
-20 -15 -10 -5  
0
5
10 15 20  
-20 -15 -10 -5  
0
5
10 15 20  
680/2–MAX314  
V
(V)  
CH_  
V
(V)  
V
(V)  
CH_  
CH_  
12 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Pin Description  
PIN  
MAX1304  
MAX1308  
MAX1312  
MAX1305  
MAX1309  
MAX1313  
MAX1306  
MAX1310  
MAX1314  
NAME  
FUNCTION  
Analog Power Input. AV  
is the power input for the analog section of the  
DD  
converter. Apply +5V to AV . Connect all AV  
pins together. See the Layout,  
DD  
1, 15, 17  
1, 15, 17  
1, 15, 17  
AV  
DD  
DD  
Grounding, and Bypassing section for additional information.  
2, 3, 14,  
16, 23  
2, 3, 14,  
16, 23  
2, 3, 14,  
16, 23  
Analog Ground. AGND is the power return for AV . Connect all AGND  
DD  
pins together.  
AGND  
4
5
4
5
4
5
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
Midscale Voltage Bypass. For the unipolar MAX1304/MAX1305/MAX1306,  
connect a 2.2µF and a 0.1µF capacitor from MSV to AGND. For the bipolar  
MAX1308/MAX1309/MAX1310/MAX1312/MAX1313/MAX1314, connect  
MSV to AGND.  
6
6
6
MSV  
7
8
7
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Channel 2 Analog Input  
Channel 3 Analog Input  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
8
9
10  
11  
12  
Clock-Mode Select Input. Connect INTCLK/EXTCLK to AV  
internal clock. Connect INTCLK/EXTCLK to AGND to use an external clock  
connected to CLK.  
to select the  
DD  
INTCLK/  
EXTCLK  
13  
18  
13  
13  
Midscale Reference Bypass or Input. REF  
the internal +2.5V bandgap reference buffer.  
For the MAX1304/MAX1305/MAX1306 unipolar devices, V  
the unity-gain buffer that drives MSV. MSV sets the midpoint of the input voltage  
range. For internal reference operation, bypass REF with a 0.01µF  
capacitor to AGND. For external reference operation, drive REF  
connects through a 5kresistor to  
MS  
is the input to  
REFMS  
MS  
18  
18  
REF  
with an  
MS  
MS  
external voltage from +2V to +3V.  
For the MAX1308/MAX1309/MAX1310/MAX1312/MAX1313/MAX1314 bipolar  
devices, connect REF to REF. For internal reference operation, bypass the  
MS  
REF /REF node with a 0.01µF capacitor to AGND. For external reference  
MS  
operation, drive the REF /REF node with an external voltage from +2V to +3V.  
MS  
ADC Reference Bypass or Input. REF connects through a 5kresistor to the  
internal +2.5V bandgap reference buffer.  
For internal reference operation, bypass REF with a 0.01µF capacitor.  
For external reference operation with the MAX1304/MAX1305/MAX1306  
unipolar devices, drive REF with an external voltage from +2V to +3V.  
For external reference operation with the MAX1308/MAX1309/MAX1310/  
19  
19  
19  
REF  
MAX1312/MAX1313/MAX1314 bipolar devices, connect REF  
to REF and  
MS  
drive the REF /REF node with an external voltage from +2V to +3V.  
MS  
______________________________________________________________________________________ 13  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Pin Description (continued)  
PIN  
MAX1304  
MAX1308  
MAX1312  
MAX1305  
MAX1309  
MAX1313  
MAX1306  
MAX1310  
MAX1314  
NAME  
FUNCTION  
Positive Reference Bypass. Bypass REF+ with a 0.1µF capacitor to AGND. Also  
bypass REF+ to REF- with a 2.2µF and a 0.1µF capacitor.  
20  
21  
20  
21  
20  
21  
REF+  
COM  
REF-  
V
= V  
+ V  
/ 2.  
REF  
REF+  
COM  
Reference Common Bypass. Bypass COM to AGND with a 2.2µF and a 0.1µF  
capacitor. V = 13 / 25 x AV  
.
DD  
COM  
Negative Reference Bypass. Bypass REF- with a 0.1µF capacitor to AGND.  
Also bypass REF- to REF+ with a 2.2µF and a 0.1µF capacitor.  
22  
22  
22  
V
= V  
- V  
/ 2.  
REF+  
COM  
REF  
Digital Ground. DGND is the power return for DV . Connect all DGND  
DD  
pins together.  
24, 39  
25, 38  
24, 39  
25, 38  
24, 39  
25, 38  
DGND  
Digital Power Input. DV  
powers the digital section of the converter, including  
DD  
DV  
the parallel interface. Apply +2.7V to +5.25V to DV . Bypass DV  
to DGND  
DD  
DD  
DD  
with a 0.1µF capacitor. Connect all DV  
pins together.  
DD  
26  
27  
28  
29  
30  
31  
32  
33  
26  
27  
28  
29  
30  
31  
32  
33  
26  
27  
28  
29  
30  
31  
32  
33  
D0  
Digital I/O 0 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 1 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 2 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 3 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 4 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 5 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 6 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
Digital I/O 7 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or CS = 1.  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Digital Output 8 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or  
CS = 1.  
34  
35  
36  
37  
40  
34  
35  
36  
37  
40  
34  
35  
36  
37  
40  
D8  
D9  
Digital Output 9 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or  
CS = 1.  
Digital Output 10 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or  
CS = 1.  
D10  
D11  
EOC  
Digital Output 11 of 12-Bit Parallel Data Bus. High impedance when RD = 1 or  
CS = 1.  
End-of-Conversion Output. EOC goes low to indicate the end of a conversion. It  
returns high on the next rising CLK edge or the falling CONVST edge.  
End-of-Last-Conversion Output. EOLC goes low to indicate the end of the  
41  
41  
41  
EOLC last conversion. It returns high when CONVST goes low for the next  
conversion sequence.  
42  
43  
42  
43  
42  
43  
RD  
Read Input. Pulling RD low initiates a read command of the parallel data bus.  
Write Input. Pulling WR low initiates a write command for configuring the device  
with D0–D7.  
WR  
680/2–MAX314  
14 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Pin Description (continued)  
PIN  
MAX1304  
MAX1308  
MAX1312  
MAX1305  
MAX1309  
MAX1313  
MAX1306  
MAX1310  
MAX1314  
NAME  
FUNCTION  
Chip-Select Input. Pulling CS low activates the digital interface. Forcing CS high  
places D0–D11 in high-impedance mode.  
44  
45  
44  
45  
44  
45  
CS  
Conversion Start Input. Driving CONVST high initiates the conversion process.  
The analog inputs are sampled on the rising edge of CONVST.  
CONVST  
External Clock Input. For external clock operation, connect INTCLK/EXTCLK to  
DGND and drive CLK with an external clock signal from 100kHz to 20MHz. For  
46  
47  
46  
47  
46  
47  
CLK  
internal clock operation, connect INTCLK/EXTCLK to DV  
and connect CLK to  
DD  
DGND.  
Shutdown Input. Driving SHDN high initiates device shutdown. Connect SHDN  
to DGND for normal operation.  
SHDN  
Active-Low Analog-Input Channel-Shutdown Input. Drive CHSHDN low to  
power down analog inputs that are not selected for conversion in the  
configuration register. Drive CHSHDN high to power up all analog input  
channels regardless of whether they are selected for conversion in the  
configuration register. See the Channel Shutdown (CHSHDN) section for more  
information.  
48  
48  
48  
CHSHDN  
9, 10,  
11, 12  
7, 8, 9,  
10, 11, 12  
I.C.  
Internally connected. Connect I.C. to AGND.  
Detailed Description  
The MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–  
MAX1314 are 12-bit ADCs. The devices offer 8, 4, or 2  
independently selectable input channels, each with  
dedicated T/H circuitry. Simultaneous sampling of all  
active channels preserves relative phase information  
making these devices ideal for motor control and power  
monitoring. Three input ranges are available, 0 to +5V,  
5V and 10V. The 0 to +5V devices provide 6V fault-  
tolerant inputs. The 5V and 10V devices provide  
V
DD  
I
OL  
= 1.6mA  
1.6V  
DEVICE PIN  
16.5V fault-tolerant inputs. Two-channel conversion  
results are available in 0.9µs. Conversion results from  
all eight channels are available in 1.98µs. The 8-chan-  
nel throughput is 456ksps per channel. Internal or  
external reference and clock capability offer great flexi-  
bility, and ease of use. A write-only configuration regis-  
ter can mask out unused channels and a shutdown  
feature reduces power. A 20MHz, 12-bit, parallel data  
bus outputs the conversion results. Figure 2 shows the  
functional diagram of these ADCs.  
100pF  
I
= 0.8mA  
OH  
Figure 1. Digital Load Test Circuit  
______________________________________________________________________________________ 15  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
MAX1304–MAX1306  
MAX1308–MAX1310  
MAX1312–MAX1314  
DV  
DD  
AV  
DD  
D11  
D8  
CH0  
T/H  
T/H  
8 x 12  
SRAM  
OUTPUT  
DRIVERS  
12-BIT  
ADC  
8 x 1  
MUX  
D7  
CH7  
D0  
MSV  
CONFIGURATION  
REGISTER  
WR  
*
CS  
REF+  
COM  
REF-  
RD  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
5k  
5kΩ  
INTCLK/EXTCLK  
REF  
CLK  
CHSHDN  
REF  
MS  
EOC  
2.500V  
EOLC  
DGND  
AGND  
*SWITCH CLOSED ON UNIPOLAR DEVICES, OPEN ON BIPOLAR DEVICES  
Figure 2. Functional Diagram  
680/2–MAX314  
16 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
25, 38  
+5V  
+2.7V TO +5.25V  
DV  
DD  
0.1µF  
0.1µF  
0.1µF  
1
15  
17  
0.1µF  
AV  
AV  
AV  
DD  
DD  
DD  
24, 39  
48  
DGND  
GND  
CHSHDN  
SHDN  
CLK  
47  
46  
45  
44  
43  
42  
41  
40  
6
18  
19  
MSV  
BIPOLAR  
CONFIGURATION  
0.01µF  
REF  
REF  
MS  
CONVST  
CS  
DIGITAL  
INTERFACE  
AND  
MAX1308  
MAX1312  
CONTROL  
WR  
0.1µF  
20  
REF+  
REF-  
RD  
0.1µF  
2.2µF  
EOLC  
EOC  
22  
0.1µF  
2.2µF  
0.1µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
21  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
12  
11  
10  
9
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
PARALLEL  
DIGITAL  
OUTPUT  
BIPOLAR  
ANALOG  
INPUTS  
8
7
5
4
13  
INTCLK/EXTCLK  
Figure 3. Typical Bipolar Operating Circuit  
______________________________________________________________________________________ 17  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
+5V  
0.1µF  
25, 38  
1
15  
17  
+2.7V TO +5.25V  
DV  
DD  
AV  
AV  
AV  
DD  
DD  
DD  
0.1µF  
0.1µF  
0.1µF  
24, 39  
48  
DGND  
GND  
2.2µF  
0.1µF  
CHSHDN  
SHDN  
CLK  
6
MSV  
REF  
47  
46  
45  
44  
43  
42  
41  
40  
0.01µF  
0.01µF  
UNIPOLAR  
CONFIGURATION  
18  
19  
CONVST  
CS  
MS  
DIGITAL  
INTERFACE  
AND  
MAX1304  
REF  
CONTROL  
WR  
0.1µF  
RD  
20  
REF+  
REF-  
EOLC  
EOC  
0.1µF  
2.2µF  
22  
0.1µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
2.2µF  
0.1µF  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
21  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
12  
11  
10  
9
PARALLEL  
DIGITAL  
OUTPUT  
UNIPOLAR  
ANALOG  
INPUTS  
8
7
5
4
13  
INTCLK/EXTCLK  
Figure 4. Typical Unipolar Operating Circuit  
680/2–MAX314  
18 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
acquisition time must be limited to 1ms. Accuracy with  
conversion times longer than 1ms cannot be guaran-  
teed due to capacitor droop in the input circuitry.  
MAX1304–MAX1306  
MAX1308–MAX1310  
MAX1312–MAX1314  
Due to the analog input resistive divider formed by R1  
and R2 in Figure 5, any significant analog input source  
AV  
resistance (R  
more, R  
) results in gain error. Further-  
DD  
SOURCE  
C
HOLD  
causes distortion due to nonlinear  
OVERVOLTAGE  
PROTECTION  
CLAMP  
SOURCE  
analog input currents. Limit R  
of 100.  
to a maximum  
SOURCE  
2.5pF  
*R  
SOURCE  
R1  
CH_  
Selecting an Input Buffer  
To improve the input signal bandwidth under AC condi-  
tions, drive the input with a wideband buffer (>50MHz)  
that can drive the ADC’s input capacitance (15pF) and  
settle quickly. For example, the MAX4431 or the  
MAX4265 can be used for the 0 to +5V unipolar devices,  
or the MAX4350 can be used for 5V bipolar inputs.  
C
SAMPLE  
ANALOG  
SIGNAL  
SOURCE  
UNDERVOLTAGE  
PROTECTION  
CLAMP  
R2  
V
BIAS  
*MINIMIZE R  
TO AVOID GAIN ERROR AND DISTORTION.  
SOURCE  
Most applications require an input buffer to achieve 12-bit  
accuracy. Although slew rate and bandwidth are impor-  
tant, the most critical input buffer specification is settling  
time. The simultaneous sampling of multiple channels  
requires an acquisition time of 100ns. At the beginning of  
the acquisition, the ADC internal sampling capacitor array  
connects to the analog inputs, causing some distur-  
bance. Ensure the amplifier is capable of settling to at  
least 12-bit accuracy during this interval. Use a low-noise,  
low-distortion, wideband amplifier that settles quickly and  
is stable with the ADC’s 15pF input capacitance.  
PART INPUT RANGE (V) R1 (k) R2 (k)  
V
(V)  
BIAS  
MAX1304  
MAX1305  
MAX1306  
0 TO +5  
3.33  
6.67  
5.00  
2.86  
2.35  
0.90  
2.50  
2.06  
MAX1308  
MAX1309  
MAX1310  
5
MAX1312  
MAX1313  
MAX1314  
10  
13.33  
R1 | | R2 = 2kΩ  
See the Maxim website at www.maxim-ic.com for appli-  
cation notes on how to choose the optimum buffer  
amplifier for your ADC application.  
Figure 5. Single-Channel, Equivalent Analog Input T/H Circuit  
Analog Inputs  
Input Bandwidth  
The input-tracking circuitry has a 20MHz small-signal  
bandwidth, making it possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
Track and Hold (T/H)  
To preserve phase information across the multichannel  
MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–  
MAX1314, all input channels have dedicated T/H ampli-  
fiers. Figure 5 shows the equivalent analog input T/H  
circuit for one channel.  
The input T/H circuit is controlled by the CONVST input.  
When CONVST is low, the T/H circuit tracks the analog  
input. When CONVST is high the T/H circuit holds the  
analog input. The rising edge of CONVST is the analog  
Input Range and Protection  
The MAX1304/MAX1305/MAX1306 provide a 0 to +5V  
input voltage range with fault protection of 6V. The  
MAX1308/MAX1309/MAX1310 provide a 5V input volt-  
age range with fault protection of 16.5V. The  
MAX1312/MAX1313/MAX1314 provide a 10V input  
voltage range with fault protection of 16.5V. Figure 5  
shows the single-channel equivalent input circuit.  
input sampling instant. There is an aperture delay (t  
)
AD  
of 8ns and a 50ps  
aperture jitter (t ). The aperture  
RMS  
AJ  
delay of each dedicated T/H input is matched within  
100ps of each other.  
To settle the charge on C  
to 12-bit accuracy,  
SAMPLE  
use a minimum acquisition time (t  
) of 100ns.  
ACQ  
Therefore, CONVST must be low for at least 100ns.  
Although longer acquisition times allow the analog input  
to settle to its final value more accurately, the maximum  
______________________________________________________________________________________ 19  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Data Throughput  
Clock Modes  
The MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–  
MAX1314 provide a 15MHz internal conversion clock.  
Alternatively, an external clock can be used.  
The data throughput (f ) of the MAX1304–MAX1306/  
TH  
MAX1308–MAX1310/MAX1312–MAX1314 is a function  
of the clock speed (f  
). In internal clock mode, f  
=
CLK  
CLK  
15MHz (typ). In external clock mode, 100kHz f  
CLK  
Internal Clock  
Internal clock mode frees the microprocessor from the  
burden of running the ADC conversion clock. For inter-  
20MHz. When reading during conversion (Figures 7 and  
8), calculate f as follows:  
TH  
1
nal clock operation, connect INTCLK/EXTCLK to AV  
DD  
fTH  
=
12 + 3 x (N1) + 1  
and connect CLK to DGND. Note that INTCLK/EXTCLK  
is referenced to AV , not DV  
tACQ + tQUIET  
+
.
DD  
fCLK  
DD  
where N is the number of active channels and t  
is  
External Clock  
QUIET  
the period of bus inactivity before the rising edge of  
CONVST. See the Starting a Conversion section for  
more information.  
For external clock operation, connect INTCLK/EXTCLK  
to AGND and connect an external clock source to CLK.  
Note that INTCLK/EXTCLK is referenced to AV , not  
DD  
DV . The external clock frequency can be up to  
DD  
Table 1 uses the above equation and shows the total  
throughput as a function of the number of channels  
selected for conversion.  
20MHz. Linearity is not guaranteed with clock frequen-  
cies below 100kHz due to droop in the T/H circuits.  
Table 1. Throughput vs. Channels Sampled: f  
= 15MHz, t  
= 100ns, t  
= 50ns  
CLK  
ACQ  
QUIET  
CHANNELS  
SAMPLED  
(N)  
CLOCK CYCLES  
UNTIL  
CLOCK CYCLE  
FOR READING  
TOTAL  
TOTAL  
THROUGHPUT  
PER CHANNEL  
CONVERSION  
TIME (ns)  
THROUGHPUT  
(ksps)  
LAST RESULT  
LAST CONVERSION  
(f  
TH  
)
1
2
3
4
5
6
7
8
12  
15  
18  
21  
24  
27  
30  
33  
1
1
1
1
1
1
1
1
800  
983  
983  
821  
705  
618  
550  
495  
451  
413  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
1643  
2117  
2474  
2752  
2975  
3157  
3310  
680/2–MAX314  
20 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
However, the new configuration does not take effect  
until the next CONVST falling edge. At power-up all  
Applications Information  
Digital Interface  
The bidirectional parallel digital interface allows for setting  
the 8-bit configuration register (see the Configuration  
Register section) and reading the 12-bit conversion  
result. The interface includes the following control signals:  
chip select (CS), read (RD), write (WR), end of conversion  
(EOC), end of last conversion (EOLC), conversion start  
(CONVST), shutdown (SHDN), channel shutdown  
(CHSHDN), internal clock select (INTCLK/EXTCLK), and  
external clock input (CLK). Figures 6, 7, 8, 9, Table 2, and  
the Timing Characteristics show the operation of the inter-  
face. D0–D7 are bidirectional, and D8–D11 are output  
only. D0–D11 go high impedance when RD = 1 or CS = 1.  
channels default active. Shutdown does not change the  
configuration register. The configuration register may  
be written to in shutdown. See the Channel Shutdown  
(CHSHDN) section for information about using the con-  
figuration register for power saving.  
CONVST  
CONFIGURATION  
REGISTER UPDATES  
RD  
t
CS  
Configuration Register  
Enable channels as active by writing to the configura-  
tion register through I/O lines D0–D7 (Table 2). The bits  
in the configuration register map directly to the chan-  
nels, with D0 controlling channel zero, and D7 control-  
ling channel seven. Setting any bit high activates the  
corresponding input channel, while resetting any bit  
low deactivates the corresponding channel. On the  
devices with less than eight channels, some of the bits  
have no function (Table 2).  
CS  
t
WRL  
t
t
WTC  
CTW  
WR  
t
DTW  
D0–D7  
To write to the configuration register, pull CS and WR  
low, load bits D0 through D7 onto the parallel bus, and  
force WR high. The data are latched on the rising edge  
of WR (Figure 6). Write to the configuration register at  
any point during the conversion sequence. At power-  
up, write to the configuration register to select the  
active channels before beginning a conversion.  
DATA-IN  
t
WTD  
Figure 6. Write Timing  
Table 2. Configuration Register  
BIT/CHANNEL  
PART  
STATE  
NUMBER  
D0/CH0  
D1/CH1  
D2/CH2  
D3/CH3  
D4/CH4  
D5/CH5  
D6/CH6  
D7/CH7  
MAX1304  
MAX1308  
MAX1312  
MAX1305  
MAX1309  
MAX1313  
MAX1306  
MAX1310  
MAX1314  
ON  
OFF  
ON  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
X
1
0
1
0
X
X
1
0
X
X
X
X
1
0
X
X
X
X
1
0
X
X
X
X
1
0
X
X
X
X
OFF  
ON  
OFF  
X = Don’t care (must be 1 or 0).  
______________________________________________________________________________________ 21  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
SAMPLE  
INSTANT  
t
ACQ  
CONVST  
HOLD  
TRACK  
TRACK  
t
t
CONV  
NEXT  
EOC  
t
EOC  
t
CVEOLCD  
EOLC  
t
50ns  
QUIET  
CS*  
t
t
t
CTR  
RDH  
RTC  
RD  
t
t
RDL  
ACC  
CH0  
CH1  
D0–D11  
t
REQ  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 7. Read During Conversion—Channel 0 and Channel 1 Selected, Internal Clock  
the first CLK pulse must occur within 10µs from the  
rising edge of CONVST. Additionally, the external clock  
frequency must be greater than 100kHz to avoid T/H  
droop-degrading accuracy. The first conversion result  
is available for read when EOC goes low on the rising  
edge of the 13th clock cycle. Subsequent conversion  
results are available after every third clock cycle there-  
after (Figures 8 and 9).  
Starting a Conversion  
To start a conversion using internal clock mode, pull  
CONVST low for the acquisition time (t  
). The T/H  
ACQ  
acquires the signal while CONVST is low, and conver-  
sion begins on the rising edge of CONVST. The end-of-  
conversion signal (EOC) pulses low whenever a  
conversion result becomes available for read. The end-  
of-last-conversion signal (EOLC) goes low when the last  
conversion result is available (Figure 7).  
In both internal and external clock modes, hold  
CONVST high until the last conversion result is read. If  
CONVST goes low in the middle of a conversion, the  
current conversion is aborted and a new conversion is  
initiated. Furthermore, there must be a period of bus  
To start a conversion using external clock mode, pull  
CONVST low for the acquisition time (t  
). The T/H  
ACQ  
acquires the signal while CONVST is low. The rising  
edge of CONVST is the sampling instant. Apply an  
external clock to CLK to start the conversion. To avoid  
T/H droop degrading the sampled analog input signals,  
inactivity (t  
) for 50ns or longer before the falling  
QUIET  
edge of CONVST for the specified ADC performance.  
680/2–MAX314  
22 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
SAMPLE  
INSTANT  
t
ACQ  
HOLD  
13  
CONVST  
CLK  
TRACK  
TRACK  
t
t
t
CLKL  
CLK  
CLKH  
t
CNTC  
1
2
3
12  
14  
15  
16  
17  
18  
19  
1
t
t
EOCD  
t
NEXT  
EOCD  
EOC  
t
t
CONV  
EOC  
t
t
CVEOLCD  
EOLCD  
EOLC  
CS*  
t
50ns  
QUIET  
t
t
t
RTC  
CTR  
RDH  
RD  
t
t
RDL  
ACC  
CH3  
CH7  
D0–D11  
t
REQ  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 8. Read During Conversion—Channel 3 and Channel 7 Selected, External Clock  
high to release the digital bus. In internal clock mode,  
the next EOC falling edge occurs within 225ns. In exter-  
nal clock mode, the next EOC falling edge occurs in  
three CLK cycles. When the last result is available  
EOLC goes low.  
Reading a Conversion Result  
Reading During a Conversion  
Figures 7 and 8 show the interface signals to initiate a  
read operation during a conversion cycle. These figures  
show two channels selected for conversion. If more  
channels are selected, the results are available succes-  
sively at every EOC falling edge. CS can be low at all  
times, low during the RD cycles, or the same as RD.  
Reading After Conversion  
Figure 9 shows the interface signals for a read operation  
after a conversion with all eight channels enabled. At  
the falling of EOLC, driving CS and RD low places the  
first conversion result onto the parallel bus. Successive  
low pulses of RD place the successive conversion  
results onto the bus. When the last conversion results in  
the sequence are read, additional read pulses wrap the  
pointer back to the first converted result.  
After initiating a conversion by bringing CONVST high,  
wait for EOC to go low. In internal clock mode, EOC  
goes low within 900ns. In external clock mode, EOC  
goes low on the rising edge of the 13th CLK cycle. To  
read the conversion result, drive CS and RD low to  
latch data to the parallel digital output bus. Bring RD  
______________________________________________________________________________________ 23  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
CONVST  
EOC  
ONLY LAST PULSE SHOWN  
t
CVEOLCD  
t
EOC  
EOLC  
CS*  
t
RTC  
t
CTR  
t
t
RDH  
t
= 50ns  
RDL  
QUIET1  
RD  
D0–D11  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
t
t
REQ  
ACC  
* CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 9. Read After Conversion—Eight Channels Selected, External Clock  
Exiting shutdown (falling edge of SHDN) starts a con-  
version in the same way as the rising edge of CONVST.  
After coming out of shutdown, initiate a dummy conver-  
sion and discard the results. After the dummy conver-  
sion, allow the 1ms wake-up time to expire before  
initiating the first accurate conversion.  
Power-Up Reset  
At power-up, all channels are selected for conversion  
(see the Configuration Register section). After applying  
power, allow the 1ms wake-up time to elapse and then  
initiate a dummy conversion and discard the results.  
After the dummy conversion is complete, accurate con-  
versions can be obtained.  
Channel Shutdown (CHSHDN)  
The channel-shutdown feature allows analog input  
channels to be powered down when they are not  
selected for conversion. Powering down channels that  
are not selected for conversion reduces the analog  
supply current by 2.9mA per channel. To power down  
channels that are not selected for conversion, pull  
CHSHDN low. See the Configuration Register section  
for information on selecting and deselecting channels  
for conversion.  
Power-Saving Modes  
Shutdown Mode  
During shutdown the internal reference and analog  
circuits in the device shutdown and the analog supply  
current drops to 0.6µA (typ). Select shutdown mode  
using the SHDN input. Set SHDN high to enter shut-  
down mode. SHDN takes precedence over CHSHDN.  
Entering and exiting shutdown mode does not change  
the configuration byte. However, a new configuration  
byte can be written while in shutdown mode by follow-  
ing the standard write procedure shown in Figure 6.  
The drawback of powering down analog inputs that are  
not selected for conversion is that it takes time to power  
them up. Figure 10 shows how a dummy conversion is  
used to power up an analog input in external clock  
mode. After selecting a new channel in the configura-  
tion register, initiate a dummy conversion and discard  
the results. After the dummy conversion, allow the 1ms  
EOC and EOLC are high when the MAX1304–MAX1306/  
MAX1308–MAX1310/MAX1312–MAX1314 are shut down.  
The state of the digital outputs D0–D11 is independent  
of the state of SHDN. If CS and RD are low, the digital  
outputs D0–D11 are active regardless of SHDN. The  
digital outputs only go high impedance when CS or RD  
is high. When the digital outputs are powered down, the  
digital supply current drops to 20nA.  
wake-up time (t  
) to expire before initiating the first  
WAKE  
accurate conversion.  
680/2–MAX314  
24 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
CS*  
t
t
ACQ  
ACQ  
CONVST  
WR  
CONFIGURATION  
REGISTER  
DUMMY  
CONVERSION  
START  
FIRST ACCURATE  
CONVERSION  
START  
UPDATES  
CONFIGURATION REGISTER  
POWERS UP ONE OR  
MORE CHANNELS  
DATA  
IN  
D0–D7  
t
1ms  
WAKE  
1
2
3
4
5
12  
13  
1
CLK  
EOC  
EOLC  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 10. Powering Up an Analog Input Channel with a Dummy Conversion and Wake-Up Time (CHSHDN = 0, External-Clock  
Mode, One Channel Selected)  
CS*  
t
t
ACQ  
ACQ  
CONVST  
WR  
CONFIGURATION  
REGISTER  
FIRST ACCURATE  
CONVERSION START  
SECOND ACCURATE  
CONVERSION START  
UPDATES  
CONFIGURATION REGISTER  
POWERS UP ONE OR  
MORE CHANNELS  
DATA  
IN  
D0–D7  
1
2
3
4
5
12  
13  
1
CLK  
EOC  
EOLC  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 11. Powering Up an Analog Input Channel Directly (CHSHDN = 1, External-Clock Mode, One Channel Selected)  
______________________________________________________________________________________ 25  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
To avoid the timing requirements associated with pow-  
ering up an analog channel, force CHSHDN high. With  
CHSHDN high, each analog input is powered up  
regardless of whether it is selected for conversion in  
the configuration register. Note that shutdown mode  
takes precedence over the CHSHDN mode.  
erence voltage by driving REF with a +2.0V to +3.0V  
external reference. As shown in Figure 2, the REF input  
impedance is 5k. For more information about using  
external references see the Transfer Functions section.  
Midscale ꢀoltage (MSꢀ)  
The voltage at MSV (V  
) sets the midpoint of the ADC  
MSV  
Reference  
transfer functions. For the 0 to +5V input range (unipolar  
devices), the midpoint of the transfer function is +2.5V.  
For the 5V and 10V input range devices, the midpoint  
of the transfer function is zero.  
Internal Reference  
The internal reference circuits provide for analog input  
voltages of 0 to +5V for the unipolar MAX1304/  
MAX1305/MAX1306, 5V for the bipolar MAX1308/  
MAX1309/MAX1310 or 10V for the bipolar MAX1312/  
MAX1313/MAX1314. Install external capacitors for ref-  
erence stability, as indicated in Table 3 and shown in  
Figures 3 and 4.  
As shown in Figure 2, there is a unity-gain buffer  
between REF  
and MSV in the unipolar MAX1304/  
MS  
MAX1305/MAX1306. This midscale buffer sets the mid-  
point of the unipolar transfer functions to either the inter-  
nal +2.5V reference or an externally applied voltage at  
REF . V  
follows V  
within 3mV.  
MS MSV  
REFMS  
As illustrated in Figure 2, the internal reference voltage  
The midscale buffer is not active for the bipolar  
devices. For these devices, MSV must be connected to  
is 2.5V (V  
). This 2.5V is internally buffered to create  
REF  
the voltages at REF+ and REF-. Table 4 shows the volt-  
ages at COM, REF+, and REF-.  
AGND or externally driven. REF  
must be bypassed  
MS  
with a 0.01µF capacitor to AGND.  
External Reference  
External reference operation is achieved by overriding  
the internal reference voltage. Override the internal ref-  
See the Transfer Functions section for more information  
about MSV.  
Table 3. Reference Bypass Capacitors  
INPUT VOLTAGE RANGE  
LOCATION  
UNIPOLAR (µF)  
BIPOLAR (µF)  
N/A  
MSV Bypass Capacitor to AGND  
2.2 || 0.1  
0.01  
REF  
Bypass Capacitor to AGND  
0.01  
MS  
REF Bypass Capacitor to AGND  
REF+ Bypass Capacitor to AGND  
REF+ to REF- Capacitor  
0.01  
0.01  
0.1  
0.1  
2.2 || 0.1  
0.1  
2.2 || 0.1  
0.1  
REF- Bypass Capacitor to AGND  
COM Bypass Capacitor to AGND  
2.2 || 0.1  
2.2 || 0.1  
N/A = Not applicable. Connect MSV directly to AGND.  
Table 4. Reference Voltages  
CALCULATED VALUE (V) CALCULATED VALUE (V) CALCULATED VALUE (V)  
= 2.000V, = 2.500V, = 3.000V,  
V
REF  
V
REF  
V
REF  
PARAMETER  
EQUATION  
(
(
)
(
)
)
AV = 5.0V  
DD  
AV = 5.0V  
DD  
AV = 5.0V  
DD  
V
V
= 13 / 25 x AV  
DD  
2.600  
3.600  
1.600  
2.000  
2.600  
3.850  
1.350  
2.500  
2.600  
4.100  
1.100  
3.000  
COM  
COM  
V
V
= V  
= V  
+ V  
/ 2  
REF  
REF+  
REF+  
COM  
COM  
V
V
- V  
/ 2  
REF-  
REF-  
REF  
680/2–MAX314  
V
- V  
V
- V = V  
REF+ REF  
REF+  
REF-  
REF-  
26 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
The input range is centered about V  
, internally set  
Transfer Functions  
MSV  
to +2.5V. For a custom midscale voltage, drive REF  
MS  
Unipolar 0 to +5V Devices  
Table 5 and Figure 12 show the offset binary transfer  
function for the MAX1304/MAX1305/MAX1306 with a 0  
to +5V input range. The full-scale input range (FSR) is  
two times the voltage at REF. The internal +2.5V refer-  
ence gives a +5V FSR, while an external +2V to +3V  
reference allows an FSR of +4V to +6V, respectively.  
Calculate the LSB size using:  
with an external voltage source and MSV will follow  
REF . Noise present on MSV or REF directly cou-  
ples into the ADC result. Use a precision, low-drift volt-  
age reference with adequate bypassing to prevent MSV  
from degrading ADC performance. For maximum FSR,  
do not violate the absolute maximum voltage ratings of  
the analog inputs when choosing MSV.  
MS  
MS  
Determine the input voltage as a function of V  
MSV  
,
REF  
V
, and the output code in decimal using:  
2 x V  
REF  
1 LSB =  
12  
2
V
CH_  
= LSB x CODE + V  
- 2.500V  
10  
MSV  
which equals 1.22mV when using a 2.5V reference.  
Table 5. 0 to 5V Unipolar Code Table  
DECIMAL  
INPUT VOLTAGE  
EQUIVALENT  
DIGITAL OUTPUT  
CODE  
BINARY  
DIGITAL  
OUTPUT CODE  
(V)  
2 x V  
REF  
V
= +2.5V  
= +2.5V  
REF  
0xFFF  
0xFFE  
0xFFD  
0xFFC  
(
)
V
REFMS  
(CODE  
)
10  
1111 1111 1111  
= 0xFFF  
4095  
4094  
2049  
2048  
2047  
1
+4.9994 0.5 LSB  
+4.9982 0.5 LSB  
+2.5018 0.5 LSB  
+2.5006 0.5 LSB  
+2.4994 0.5 LSB  
+0.0018 0.5 LSB  
+0.0006 0.5 LSB  
0x801  
0x800  
0x7FF  
1111 1111 1110  
= 0xFFE  
1000 0000 0001  
= 0x801  
1000 0000 0000  
= 0x800  
0x0003  
0x0002  
0x0001  
0x0000  
2 x V  
212  
REF  
1 LSB =  
0111 1111 1111  
= 0x7FF  
0000 0000 0001  
= 0x001  
0
1
2
2046 2048 2050  
(MSV)  
4093 4095  
3
INPUT VOLTAGE (LSBs)  
0000 0000 0000  
= 0x000  
0
Figure 12. 0 to +5V Unipolar Transfer Function  
______________________________________________________________________________________ 27  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Bipolar 5V Devices  
Table 6 and Figure 13 show the two’s complement trans-  
fer function for the 5V input range MAX1308/MAX1309/  
MAX1310. The FSR is four times the voltage at REF. The  
internal +2.5V reference gives a +10V FSR, while an  
external +2V to +3V reference allows an FSR of +8V to  
+12V respectively. Calculate the LSB size using:  
The input range is centered about V  
. Normally,  
MSV  
MSV = AGND, and the input is symmetrical about zero.  
For a custom midscale voltage, drive MSV with an  
external voltage source. Noise present on MSV directly  
couples into the ADC result. Use a precision, low-drift  
voltage reference with adequate bypassing to prevent  
MSV from degrading ADC performance. For maximum  
FSR, do not violate the absolute maximum voltage rat-  
ings of the analog inputs when choosing MSV.  
4 x V  
REF  
1 LSB =  
12  
2
Determine the input voltage as a function of V  
,
REF  
V
MSV  
, and the output code in decimal using:  
which equals 2.44mV when using a 2.5V reference.  
V
CH_  
= LSB x CODE + V  
10 MSV  
Table 6. 5V Bipolar Code Table  
DECIMAL  
TWO’s  
COMPLEMENT  
DIGITAL OUTPUT  
CODE  
INPUT VOLTAGE  
(V)  
EQUIVALENT  
DIGITAL OUTPUT  
CODE  
4 x V  
REF  
0x7FF  
0x7FE  
0x7FD  
0x7FC  
V
= +2.5V  
REF  
V
(
)
= 0  
MSV  
(CODE  
)
10  
0111 1111 1111 =  
0x7FF  
+2047  
+2046  
+1  
+4.9988 0.5 LSB  
+4.9963 0.5 LSB  
+0.0037 0.5 LSB  
+0.0012 0.5 LSB  
-0.0012 0.5 LSB  
-4.9963 0.5 LSB  
-4.9988 0.5 LSB  
0x001  
0x000  
0xFFF  
0111 1111 1110 =  
0x7FE  
0000 0000 0001 =  
0x001  
0000 0000 0000 =  
0x000  
0
0x803  
0x802  
0x801  
0x800  
4 x V  
212  
REF  
1 LSB =  
1111 1111 1111 =  
0xFFF  
-1  
1000 0000 0001 =  
0x801  
-2048 -2046  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+2045 +2047  
IN LSBs)  
MSV  
-2047  
-2048  
- V  
CH_  
1000 0000 0000 =  
0x800  
Figure 13. 5V Bipolar Transfer Function  
680/2–MAX314  
28 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Bipolar 10V Devices  
Table 7 and Figure 14 show the two’s complement trans-  
fer function for the 10V input range MAX1312/  
MAX1313/MAX1314. The FSR is eight times the voltage at  
REF. The internal +2.5V reference gives a +20V FSR,  
while an external +2V to +3V reference allows an FSR of  
+16V to +24V, respectively. Calculate the LSB size using:  
The input range is centered about V  
. Normally,  
MSV  
MSV = AGND, and the input is symmetrical about zero.  
For a custom midscale voltage, drive MSV with an  
external voltage source. Noise present on MSV directly  
couples into the ADC result. Use a precision, low-drift  
voltage reference with adequate bypassing to prevent  
MSV from degrading ADC performance. For maximum  
FSR, do not violate the absolute maximum voltage rat-  
ings of the analog inputs when choosing MSV.  
8 x V  
REF  
1 LSB =  
12  
2
Determine the input voltage as a function of V  
,
REF  
V
MSV  
, and the output code in decimal using:  
which equals 4.88mV with a +2.5V internal reference.  
V
CH_  
= LSB x CODE + V  
10 MSV  
Table 7. 10V Bipolar Code Table  
DECIMAL  
TWO’s  
COMPLEMENT  
DIGITAL OUTPUT  
CODE  
INPUT VOLTAGE  
(V)  
EQUIVALENT  
DIGITAL OUTPUT  
CODE  
8 x V  
REF  
0x7FF  
0x7FE  
0x7FD  
0x7FC  
V
= +2.5V  
REF  
V
(
)
= 0  
MSV  
(CODE  
)
10  
0111 1111 1111 =  
0x7FF  
+2047  
+2046  
+1  
+9.9976 0.5 LSB  
+9.9927 0.5 LSB  
+0.0073 0.5 LSB  
0.0024 0.5 LSB  
-0.0024 0.5 LSB  
-9.9927 0.5 LSB  
-9.9976 0.5 LSB  
0x001  
0x000  
0xFFF  
0111 1111 1110 =  
0x7FE  
0000 0000 0001 =  
0x001  
0000 0000 0000 =  
0x000  
0
0x803  
0x802  
0x801  
0x800  
8 x V  
212  
REF  
1 LSB =  
1111 1111 1111 =  
0xFFF  
-1  
1000 0000 0001 =  
0x801  
-2048 -2046  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+2045 +2047  
IN LSBs)  
MSV  
-2047  
-2048  
- V  
CH_  
1000 0000 0000 =  
0x800  
Figure 14. 10V Bipolar Transfer Function  
______________________________________________________________________________________ 29  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
rithms that realign sequentially sampled data into a  
simultaneous sample set. Additionally, the variety of  
input voltage ranges allows for flexibility when choosing  
current sensors and position encoders.  
3-Phase Motor Controller  
The MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–  
MAX1314 are ideally suited for motor-control systems  
(Figure 15). The devices’ simultaneously sampled  
inputs eliminate the need for complicated DSP algo-  
MAX1308  
DSP  
12-BIT  
ADC  
T/H  
IGBT CURRENT DRIVERS  
I
PHASE1  
CURRENT  
SENSOR  
I
PHASE3  
I
PHASE2  
3-PHASE ELECTRIC MOTOR  
PHASE 1  
PHASE 2  
PHASE 3  
POSITION  
ENCODER  
Figure 15. 3-Phase Motor Control  
680/2–MAX314  
30 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
ously sampled eight channels eliminate the need for  
complicated DSP algorithms that realign sequentially  
sampled data into a simultaneous sample set.  
3-Phase Power-Monitoring System  
The 8-channel devices are well suited for use in  
3-phase power monitoring (Figure 16). The simultane-  
MAX1312  
12-BIT  
ADC  
T/H  
MICROCONTROLLER  
BUFFERS  
AND INPUT  
PROTECTION  
V
V
P3  
V
P1  
V
P2  
I
P3  
I
P2  
I
Pn  
I
P1  
NEUTRAL  
CURRENT  
TRANSFORMER  
PHASE 1  
LOAD  
NEUTRAL  
POWER  
GRID  
CURRENT  
TRANSFORMER  
LOAD  
LOAD  
CURRENT  
TRANSFORMER  
PHASE 2  
PHASE 3  
CURRENT  
TRANSFORMER  
Figure 16. 3-Phase Power Monitoring  
______________________________________________________________________________________ 31  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Layout, Grounding, and Bypassing  
For best performance use PC boards. Board layout must  
ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines paral-  
lel to one another (especially clock lines), and do not run  
digital lines underneath the ADC package.  
DIGITAL  
GROUND  
POINT  
ANALOG SUPPLY  
+5V RETURN  
DIGITAL SUPPLY  
RETURN +3V TO +5V  
Figure 17 shows the recommended system ground con-  
nections. Establish an analog ground point at AGND and  
a digital ground point at DGND. Connect all analog  
grounds to the analog ground point. Connect all digital  
grounds to the digital ground point. For lowest noise  
operation, make the power-supply ground returns as low  
impedance and as short as possible. Connect the analog  
ground point to the digital ground point at one location.  
ANALOG  
GROUND  
POINT  
OPTIONAL  
FERRITE  
BEAD  
High-frequency noise in the power supplies degrades  
the ADC’s performance. Bypass the analog power  
plane to the analog ground plane with a 2.2µF capaci-  
AV  
DD  
DGND  
AGND  
DV  
DGND  
DV  
DD  
DD  
DIGITAL  
CIRCUITRY  
DATA  
MAX1304–MAX1306  
MAX1308–MAX1310  
MAX1312–MAX1314  
tor within one inch of the device. Bypass each AV  
to  
DD  
AGND pair of pins with a 0.1µF capacitor as close to  
the device as possible. AV to AGND pairs are pin 1  
DD  
to pin 2, pin 14 to pin 15, and pin 16 to pin 17.  
Likewise, bypass the digital power plane to the digital  
ground plane with a 2.2µF capacitor within one inch of  
Figure 17. Power-Supply Grounding and Bypassing  
the device. Bypass each DV  
to DGND pair of pins  
DD  
with a 0.1µF capacitor as close to the device as possi-  
ble. DV to DGND pairs are pin 24 to pin 25, and pin  
38 to pin 39. If a supply is very noisy use a ferrite bead  
as a lowpass filter as shown in Figure 17.  
DD  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Typically the point at which  
offset error is specified is either at or near the zero-  
scale point of the transfer function or at or near the mid-  
scale point of the transfer function.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For these devices, this  
straight line is drawn between the endpoints of the  
transfer function, once offset and gain errors have  
been nullified.  
For the unipolar devices (MAX1304/MAX1305/  
MAX1306), the ideal zero-scale transition from 0x000 to  
0x001 occurs at 1 LSB above AGND (Figure 12, Table 5).  
Unipolar offset error is the amount of deviation between  
the measured zero-scale transition point and the ideal  
zero-scale transition point.  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. For these devices, the DNL of  
each digital output code is measured and the worst-  
case value is reported in the electrical characteristics  
table. A DNL error specification of less than 1 LSB  
guarantees no missing codes and a monotonic  
transfer function.  
For the bipolar devices (MAX1308/MAX1309/MAX1310/  
MAX1312/MAX1313/MAX1314), the ideal midscale tran-  
sition from 0xFFF to 0x000 occurs at MSV (Figures 14  
and 13, Tables 7 and 6). The bipolar offset error is the  
amount of deviation between the measured midscale  
transition point and the ideal midscale transition point.  
680/2–MAX314  
32 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. For the MAX1304–  
MAX1306/MAX1308–MAX1310/MAX1312–MAX1314, the  
gain error is the difference of the measured full-scale  
and zero-scale transition points minus the difference of  
the ideal full-scale and zero-scale transition points.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed as:  
SINAD 1.76  
ENOB =  
6.02  
For the unipolar devices (MAX1304/MAX1305/  
MAX1306), the full-scale transition point is from 0xFFE  
to 0xFFF and the zero-scale transition point is from  
0x000 to 0x001.  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first five harmon-  
ics to the fundamental itself. This is expressed as:  
For the bipolar devices (MAX1308/MAX1309/MAX1310/  
MAX1312/MAX1313/MAX1314), the full-scale transition  
point is from 0x7FE to 0x7FF and the zero-scale transi-  
tion point is from 0x800 to 0x801.  
2
2
2
2
2
V
+ V + V + V + V  
3 5 6  
4
2
=
THD 20 x log  
V
1
where V is the fundamental amplitude, and V through  
6
order harmonics.  
1
2
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
V
are the amplitudes of the 2nd- through 6th-  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the fundamen-  
tal (maximum signal component) to the RMS value of the  
next largest spurious component, excluding DC offset.  
SFDR is specified in decibels relative to the carrier (dBc).  
SNR  
= 6.02 × N + 1.76  
dB dB  
dB[max]  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the others. The channel-to-  
channel isolation for these devices is measured by  
applying DC to channel 1 through channel 7 while an  
AC 500kHz, -0.4dBFS sine wave is applied to channel  
0. An FFT is taken for channel 0 and channel 1 and the  
difference (in dB) of the 500kHz magnitudes is reported  
as the channel-to-channel isolation.  
In reality, there are other noise sources such as thermal  
noise, reference noise, and clock jitter.  
For these devices, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS signal  
to the RMS noise plus distortion. RMS noise plus distor-  
tion includes all spectral components to the Nyquist fre-  
quency excluding the fundamental and the DC offset.  
Aperature Delay  
Aperture delay (t ) is the time delay from the CONVST  
AD  
rising edge to the instant when an actual sample is taken.  
SIGNAL  
(NOISE + DISTORTION)  
RMS  
SINAD(dB) = 20 x log  
RMS  
______________________________________________________________________________________ 33  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Aperture Jitter  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so that the signal’s slew rate does not limit the  
ADC’s performance. The input frequency is then swept  
up to the point where the amplitude of the digitized  
conversion result has decreased by -3dB.  
Aperture Jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
Jitter is a concern when considering an ADC’s dynamic  
performance, e.g., SNR. To reconstruct an analog input  
from the ADC digital outputs, it is critical to know the  
time at which each sample was taken. Typical applica-  
tions use an accurate sampling clock signal that has  
low jitter from sampling edge to sampling edge. For a  
system with a perfect sampling clock signal, with no  
clock jitter, the SNR performance of an ADC is limited  
by the ADC’s internal aperture jitter as follows:  
Full-Power Bandwidth  
A large, -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
1
DC Power-Supply Rejection (PSRR)  
DC PSRR is defined as the change in the positive full-  
scale transfer function point caused by a 5% variation  
=
SNR 20 x log  
2 x π x f x t  
IN  
AJ  
in the analog power-supply voltage (AV ).  
DD  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the aperture jitter.  
680/2–MAX314  
34 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Pin Configurations  
TOP VIEW  
AVDD  
AGND  
AGND  
CH0  
1
2
36 D10  
35 D9  
34 D8  
33 D7  
32 D6  
31 D5  
30 D4  
29 D3  
AV  
1
2
36 D10  
35 D9  
34 D8  
33 D7  
32 D6  
31 D5  
30 D4  
29 D3  
DD  
AGND  
AGND  
CH0  
CH1  
MSV  
CH2  
CH3  
I.C.  
3
3
4
4
CH1  
5
5
MSV  
CH2  
6
6
MAX1304  
MAX1308  
MAX1312  
MAX1305  
MAX1309  
MAX1313  
7
7
CH3  
8
8
CH4  
D2  
D1  
D0  
DV  
D2  
D1  
D0  
DV  
9
28  
27  
26  
25  
9
28  
27  
26  
25  
CH5  
I.C.  
10  
11  
12  
10  
11  
12  
CH6  
I.C.  
CH7  
I.C.  
DD  
DD  
8-CHANNEL TQFP  
4-CHANNEL TQFP  
AVDD  
AGND  
AGND  
CH0  
CH1  
MSV  
I.C.  
1
2
36 D10  
35 D9  
34 D8  
33 D7  
32 D6  
31 D5  
30 D4  
29 D3  
3
4
5
6
MAX1306  
MAX1310  
MAX1314  
7
I.C.  
8
I.C.  
D2  
D1  
D0  
9
28  
27  
26  
25  
I.C.  
10  
11  
12  
I.C.  
I.C.  
DVDD  
2-CHANNEL TQFP  
______________________________________________________________________________________ 35  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
TRANSISTOR COUNT: 50,000  
to www.maxim-ic.com/packages.  
PROCESS: 0.6µm BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
48 TQFP  
C48+6  
21-0054  
680/2–MAX314  
36 ______________________________________________________________________________________  
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs  
with ±10, ±±, and 0 to +±ꢀ Analog Input Ranges  
680/2–MAX314  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
4
8/09  
Added automotive part numbers  
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 37  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1306

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with 【10V, 【5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1306ECM

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with 【10V, 【5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1306ECM+

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1306ECM+T

ADC, Proprietary Method, 12-Bit, 1 Func, 2 Channel, Parallel, Word Access, BICMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MO-136, TQFP-48
MAXIM

MAX1306ECM-T

ADC, Proprietary Method, 12-Bit, 1 Func, 2 Channel, Parallel, Word Access, BICMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, TQFP-48
MAXIM

MAX1307

1075ksps, 12-Bit, Parallel-Output ADCs with ±10V, ±5V, and 0 to 5V Analog Input Ranges
MAXIM

MAX1307ECM

1075ksps, 12-Bit, Parallel-Output ADCs with ±10V, ±5V, and 0 to 5V Analog Input Ranges
MAXIM

MAX1308

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with 【10V, 【5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX13080E

ESD保护、失效保护、热插拔、RS-485/RS-422收发器
MAXIM

MAX13080EAPD

+5.0V, 15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers
MAXIM

MAX13080EAPD+

5.0V, ±15kV ESD-Protected, Fail-Safe,Hot-Swap, RS-485/RS-422 Transceivers
MAXIM

MAX13080EASD

+5.0V, 15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers
MAXIM