MAX12935CAWE+ [MAXIM]

Two-Channel, Fast, Low-Power, 5kVRMS Digital Isolators;
MAX12935CAWE+
型号: MAX12935CAWE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Two-Channel, Fast, Low-Power, 5kVRMS Digital Isolators

信息通信管理 光电二极管
文件: 总21页 (文件大小:1335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
General Description  
Benefits and Features  
Robust Galvanic Isolation for Fast Digital Signals  
The MAX12934-MAX12935 are fast, low-power, 2-chan-  
nel digital galvanic isolators using Maxim’s proprietary  
process technology. These devices transfer digital signals  
between circuits with different power domains while using  
as little as 0.65mW per channel at 1Mbps with a 1.8V  
supply.  
• 200 Mbps Data Rate  
• Withstands 5kV  
for 60s (V  
)
RMS  
ISO  
• Continuously Withstands 848V  
• Withstands ±10kV Surge Between GNDA and  
GNDB with 1.2/50µs Waveform  
(V  
)
RMS IOWM  
• High CMTI (50kV/µs Typical)  
The two channels of the MAX12935 transfer data in opposite  
directions, making the MAX12935 ideal for isolating the  
TX and RX lines of a transceiver. The two channels of the  
MAX12934 transfer data in the same direction.  
Low Power Consumption  
• 1.3mW per Channel at 2Mbps with V  
• 3.3mW per Channel at 100Mbps with V  
= 3.3V  
DD  
= 1.8V  
DD  
The MAX12934/MAX12935 have an isolation rating  
Options to Support a Broad Range of Applications  
• 2 Data Rates (25Mbps/200Mbps)  
of 5kV  
for 60 seconds. Both devices are available with a  
RMS  
maximum data rate of either 25Mbps or 200Mbps and  
with outputs that are either default-high or default-low.  
The default is the state the output assumes when the  
input is not powered or if the input is open-circuit. See  
the Ordering Information and Product Selector Guide for  
suffixes associated with each option. Independent 1.71V  
to 5.5V supplies on each side of the isolator also make  
the devices suitable for use as level translators.  
2 Channel Direction Configurations  
• 2 Output Default States (High or Low)  
Applications  
Fieldbus Communications for Industrial Automation  
Isolated RS232, RS-485/RS-422, CAN  
General Isolation Application  
Battery Management  
Medical Systems  
The MAX12934/MAX12935 are available in a 16-pin,  
wide-body SOIC package. The package material has a  
minimum comparative tracking index (CTI) of 600V, which  
gives it a group I rating in creepage tables. All devices  
are rated for operation at ambient temperatures of -40°C  
to +125°C.  
Safety Regulatory Approvals  
(see Safety Regulatory Approvals)  
UL According to UL1577  
cUL According to CSA Bulletin 5A  
Ordering Information and Product Selector Guide appears  
at end of data sheet.  
Functional Diagrams  
MAX12934  
MAX12935  
V
V
V
V
DDB  
DDA  
IN1  
DDB  
DDA  
OUT1  
OUT1  
IN1  
OUT2  
GNDB  
OUT2  
GNDB  
IN2  
IN2  
GNDA  
GNDA  
19-100137; Rev 2; 11/20  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Absolute Maximum Ratings  
V
to GNDA........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DDA  
V
to GNDB........................................................-0.3V to +6V  
Wide SOIC (derate 14.1mW/°C above +70°C) ......1126.8mW  
Operating Temperature Range......................... -40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
DDB  
IN_ on Side A to GNDA...........................................-0.3V to +6V  
IN_ on Side B to GNDB ..........................................-0.3V to +6V  
OUT_ on Side A to GNDA......................-0.3V to (V  
OUT_ on Side B to GNDB .....................-0.3V to (V  
Short-Circuit Duration  
+ 0.3V)  
+ 0.3V)  
DDA  
DDA  
OUT_ on side A to GNDA,  
OUT_ on side B to GNDB.........................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 16 Wide SOIC  
Package Code  
W16MS-11  
21-0042  
Outline Number  
Land Pattern Number  
90-0107  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
71°C/W  
23°C/W  
JA  
Junction to Case (θ  
)
JC  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
DC Electrical Characteristics  
(V  
V
- V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
DDA  
GNDA  
GNDA  
DDB  
GNDB A  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
V
V
Relative to GNDA  
Relative to GNDB  
rising  
1.71  
1.71  
5.5  
5.5  
DDA  
Supply Voltage  
V
DDB  
Undervoltage-Lockout  
Threshold  
Undervoltage-Lockout  
Threshold Hysteresis  
V
V
1.5  
1.6  
45  
1.66  
V
UVLO_  
DD_  
V
mV  
UVLO_HYST  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
DC Electrical Characteristics (continued)  
(V  
V
- V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
DDA  
GNDA  
GNDA  
DDB  
GNDB A  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.32  
0.31  
0.3  
MAX  
0.58  
0.54  
0.53  
0.39  
1.26  
1.20  
1.18  
1.01  
3.00  
2.91  
2.88  
2.62  
0.83  
0.79  
0.76  
0.67  
1.83  
1.40  
1.22  
1.00  
4.99  
3.39  
2.69  
2.04  
UNITS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 5V  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
1MHz square  
wave, C = 0pF  
L
0.29  
0.81  
0.8  
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDA  
0.78  
0.77  
2.15  
2.09  
2.06  
2
50MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
Supply Current (MAX12934_)  
(Note 2)  
0.5  
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
0.47  
0.45  
0.4  
1MHz square  
wave, C = 0pF  
L
1.37  
1.02  
0.87  
0.71  
4.21  
2.81  
2.21  
1.69  
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDB  
50MHz square  
wave, C = 0pF  
= 3.3V  
= 2.5V  
= 1.8V  
L
Maxim Integrated  
3  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
DC Electrical Characteristics (continued)  
(V  
V
- V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
DDA  
GNDA  
GNDA  
DDB  
GNDB A  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.42  
0.39  
0.38  
0.36  
1.07  
0.89  
0.81  
0.73  
3.06  
2.37  
2.08  
1.82  
0.42  
MAX  
0.70  
0.67  
0.64  
0.56  
1.52  
1.29  
1.19  
1.03  
3.87  
3.06  
2.72  
2.33  
0.70  
UNITS  
V
= 5V  
DDA  
V
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
1MHz square  
wave, C = 0pF  
L
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDB  
V
V
V
V
V
V
V
V
V
V
V
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDA  
50MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
Supply Current (MAX12935_)  
(Note 2)  
V
V
V
V
V
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
0.39  
0.38  
0.36  
1.07  
0.89  
0.81  
0.73  
3.06  
2.37  
2.08  
1.82  
0.67  
0.64  
0.56  
1.52  
1.29  
1.19  
1.03  
3.87  
3.06  
2.72  
2.33  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
1MHz square  
wave, C = 0pF  
L
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
mA  
I
DDB  
50MHz square  
= 3.3V  
= 2.5V  
= 1.8V  
wave, C = 0pF  
L
LOGIC INPUTS AND OUTPUTS  
2.25V ≤ V  
1.71V ≤ V  
2.25V ≤ V  
1.71V ≤ V  
≤ 5.5V  
0.7 x V  
DD_  
DD_  
DD_  
DD_  
DD_  
Input High Voltage  
V
V
V
IH  
< 2.25V  
≤ 5.5V  
0.75 x V  
DD_  
0.8  
0.7  
Input Low Voltage  
Input Hysteresis  
V
IL  
< 2.25V  
MAX1293_B/E  
MAX1293_C/F  
410  
80  
-5  
5
V
mV  
HYS  
Input Pullup Current (Note 3)  
Input Pulldown Current (Note 3)  
Input Capacitance  
I
IN_, MAX1293_B/C  
IN_, MAX1293_E/F  
-10  
1.5  
-1.5  
10  
µA  
µA  
pF  
PU  
PD  
I
C
IN_, f  
= 1MHz  
2
IN  
SW  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
DC Electrical Characteristics (continued)  
(V  
V
- V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, T = -40°C to +125°C, unless otherwise noted. Typical values are at  
DDA  
DDA  
GNDA  
GNDA  
DDB  
GNDB A  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 4mA source  
MIN  
TYP  
MAX  
UNITS  
Output Voltage High (Note 4)  
Output Voltage Low (Note 4)  
V
I
I
V - 0.4  
DD_  
V
V
OH  
OUT  
OUT  
V
= 4mA sink  
0.4  
OL  
Dynamic Characteristics MAX1293_B/E  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
IN_ = GND_ or V (Note 4)  
MIN  
TYP  
MAX  
UNITS  
Common-Mode Transient Im-  
munity  
50  
CMTI  
kV/µs  
DD_  
Maximum Data Rate  
Minimum Pulse Width  
Glitch Rejection  
DR  
25  
Mbps  
ns  
MAX  
PW  
40  
MIN  
ns  
10  
17  
29  
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
17.4  
17.6  
18.3  
20.7  
16.9  
17.2  
17.8  
19.8  
23.9  
24.4  
25.8  
29.6  
23.4  
24.2  
25.4  
29.3  
0.4  
32.5  
33.7  
36.7  
43.5  
33.6  
35.1  
38.2  
45.8  
4
DD_  
≤ 3.6V  
DD_  
t
PLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
≤ 2.75V  
DD_  
≤ 1.89V  
DD_  
Propagation Delay  
(Figure 1)  
ns  
ns  
ns  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
DD_  
t
PHL  
2.25V ≤ V  
DD_  
1.71V ≤ V  
≤ 1.89V  
DD_  
Pulse Width Distortion  
PWD  
4.5V ≤ V  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
15.1  
15  
DD_  
3.0V ≤ V  
DD_  
t
SPLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
15.4  
20.5  
13.9  
14.2  
16  
DD_  
≤ 1.89V  
DD_  
Propagation Delay Skew  
Part-to-Part (same channel)  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
DD_  
t
SPHL  
2.25V ≤ V  
DD_  
1.71V ≤ V  
≤ 1.89V  
21.8  
DD_  
Propagation Delay Skew  
Channel-to-Channel  
(Same Direction)  
t
2
2
SCSLH  
ns  
t
SCSHL  
MAX12934 only  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Dynamic Characteristics MAX1293_B/E (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
t
2
SCOLH  
Propagation Delay Skew  
Channel-to-Channel  
(Opposite Direction)  
MAX12935 Only  
t
2
SCOHL  
Peak Eye Diagram Jitter  
T
25Mbps  
4.5V ≤ V  
3.0V ≤ V  
250  
ps  
JIT(PK)  
≤ 5.5V  
≤ 3.6V  
1.6  
2.2  
3
DD_  
DD_  
Rise Time  
(Figure 1)  
t
ns  
ns  
R
2.25V ≤ V  
1.71V ≤ V  
≤ 2.75V  
≤ 1.89V  
DD_  
DD_  
4.5  
1.4  
2
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
DD_  
DD_  
Fall Time  
(Figure 1)  
t
F
2.25V ≤ V  
≤ 2.75V  
≤ 1.89V  
2.8  
5.1  
DD_  
DD_  
1.71V ≤ V  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Dynamic Characteristics MAX1293_C/F  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
IN_ = GND_ or V (Note 4)  
MIN  
TYP  
50  
MAX  
UNITS  
Common-Mode Transient  
Immunity  
CMTI  
kV/µs  
DD_  
2.25V ≤ V _ ≤ 5.5V  
200  
150  
DD  
Maximum Data Rate  
Minimum Pulse Width  
DR  
Mbps  
ns  
MAX  
1.71V ≤ V _ ≤ 1.89V  
DD  
2.25V ≤ V _ ≤ 5.5V  
5
DD  
PW  
MIN  
1.71V ≤ V _ ≤ 1.89V  
6.67  
9.2  
DD  
4.5V ≤ V _ ≤ 5.5V  
4.1  
4.2  
4.9  
7.1  
4.3  
4.4  
5.1  
7.2  
5.4  
5.9  
DD  
3.0V ≤ V _ ≤ 3.6V  
10.2  
13.4  
20.3  
9.4  
DD  
t
PLH  
2.25V ≤ V _ ≤ 2.75V  
7.1  
DD  
1.71V ≤ V _ ≤ 1.89V  
10.9  
5.6  
DD  
Propagation Delay  
(Figure 1)  
ns  
ns  
ns  
4.5V ≤ V _ ≤ 5.5V  
DD  
3.0V ≤ V _ ≤ 3.6V  
6.2  
10.5  
14.1  
21.7  
2
DD  
t
PHL  
2.25V ≤ V _ ≤ 2.75V  
7.3  
DD  
1.71V ≤ V _ ≤ 1.89V  
10.9  
0.3  
DD  
Pulse Width Distortion  
PWD  
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
3.7  
DD_  
4.3  
DD_  
t
SPLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
6
DD_  
≤ 1.89V  
10.3  
3.8  
DD_  
Propagation Delay Skew  
Part-to-Part (Same Channel)  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
4.7  
DD_  
t
SPHL  
2.25V ≤ V  
6.5  
DD_  
1.71V ≤ V  
≤ 1.89V  
11.5  
DD_  
Propagation Delay Skew  
Channel-to-Channel (Same  
Direction) MAX12934 Only  
t
t
2
2
2
2
SCSLH  
SCSHL  
SCOLH  
SCOHL  
ns  
ns  
Propagation Delay Skew  
Channel-to-Channel (Opposite  
Direction) MAX12935 Only  
t
t
Peak Eye Diagram Jitter  
Clock Jitter RMS  
T
200Mbps  
90  
ps  
ps  
JIT(PK)  
500kHz Clock Input Rising/Falling  
Edges  
T
6.5  
JCLK(RMS)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Dynamic Characteristics MAX1293_C/F (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
≤ 5.5V  
MIN  
TYP  
MAX  
1.6  
2.2  
3
UNITS  
4.5V ≤ V  
3.0V ≤ V  
DD_  
DD_  
≤ 3.6V  
Rise Time  
(Figure 1)  
t
ns  
R
2.25V ≤ V  
1.71V ≤ V  
≤ 2.75V  
≤ 1.89V  
DD_  
DD_  
4.5  
1.4  
2
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
DD_  
DD_  
Fall Time  
(Figure 1)  
t
ns  
F
2.25V ≤ V  
≤ 2.75V  
≤ 1.89V  
2.8  
5.1  
DD_  
DD_  
1.71V ≤ V  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Not production tested. Guaranteed by design and characterization.  
Note 3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to their  
respective ground (GNDA or GNDB), unless otherwise noted.  
Note 4: CMTI is the maximum sustainable common-mode voltage slew rate while maintaining the correct output. CMTI applies to  
both rising and falling common-mode voltage edges. Tested with the transient generator connected between GNDA and  
GNDB (V  
= 1000V).  
CM  
ESD Protection  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ESD  
Human Body Model, all pins  
±3  
kV  
V
DDA  
50%  
50%  
0.1µF  
0.1µF  
GNDA  
t
t
PHL  
V
V
PLH  
DDA  
DDB  
V
V
DDB  
DDA  
V
DDB  
MAX12934  
MAX12935  
50%  
50%  
50Ω  
GNDB  
IN_  
OUT_  
C
L
t
TEST  
SOURCE  
SCSLH  
90%  
t
SCSHL  
R
L
V
GNDA  
GNDB  
DDB  
50%  
10%  
50%  
GNDB  
(A)  
t
t
F
R
(B)  
Figure 1. Test Circuit (A) and Timing Diagram (B)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Safety Regulatory Approvals  
UL  
The MAX12934–MAX12935 wide-body SOIC are certified under UL1577. For more details, refer to file E351759.  
Rated up to 5000V isolation voltage for single protection.  
RMS  
cUL (Equivalent to CSA notice 5A)  
The MAX12934-MAX12935 wide-body SOIC are certified up to 5000V  
for single protection. For more details, refer to file E351759.  
RMS  
Table 1. Insulation Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
Method B1 = V x 1.875  
VALUE  
UNITS  
IORM  
Partial Discharge Test Voltage  
V
2250  
V
PR  
P
P
(t = 1s, partial discharge < 5pC)  
Maximum Repetitive Peak  
Isolation Voltage  
V
(Note 5)  
1200  
848  
V
IORM  
IOWM  
Maximum Working Isolation  
Voltage  
Continuous RMS voltage  
(Note 5)  
V
V
V
RMS  
Maximum Transient Isolation  
Voltage  
V
t = 1s (Note 5)  
8400  
5000  
10  
V
P
IOTM  
Maximum Withstand Isolation  
Voltage  
V
f
= 60Hz, duration = 60s (Note 5, 6)  
SW  
ISO  
RMS  
Basic Insulation, 1.2/50µs pulse per  
IEC 61000-4-5 (Note 5, 8)  
Maximum Surge Isolation Voltage  
V
kV  
IOSM  
12  
V
V
V
= 500V, T = 25°C  
> 10  
IO  
A
11  
Insulation Resistance  
R
C
= 500V, 100°C ≤ T ≤ 125°C  
> 10  
IO  
IO  
IO  
A
9
= 500V at T = 150°C  
S
> 10  
IO  
Barrier Capacitance Side A to Side B  
Minimum Creepage Distance  
Minimum Clearance Distance  
Internal Clearance  
f
= 1MHz (Note 7)  
2
8
pF  
SW  
CPG  
CLR  
mm  
mm  
mm  
8
Distance through insulation  
Material Group I (IEC 60112)  
0.015  
>600  
40/125/21  
Comparative Tracking Index  
Climate Category  
CTI  
Pollution Degree  
(DIN VDE 0110, Table 1)  
2
Note 5: V  
, V  
, V  
, V  
, and V  
are defined by the IEC 60747-5-5 standard.  
ISO IOTM IOSM IOWM  
IORM  
Note 6: Product is qualified at V  
for 60s and 100% production tested at 120% of V  
for 1s.  
ISO  
ISO  
Note 7: Capacitance is measured with all pins on side A and side B tied together.  
Note 8: Devices are immersed in oil during surge characterization.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
determine the junction temperature. Thermal imped-  
ance values (θ and θ ) are available in the Package  
Information section of the data sheet and power dissipa-  
tion calculations are discussed in the Calculating Power  
Dissipation section. Calculate the junction temperature  
Safety Limits  
JA  
JC  
Damage to the IC can result in a low-resistance path  
to ground or to the supply and, without current limiting,  
the MAX12934–MAX12935 could dissipate excessive  
amounts of power. Excessive power dissipation can dam-  
age the die and result in damage to the isolation barrier,  
potentially causing downstream issues. Table 2 shows the  
safety limits for the MAX12934–MAX12935.  
(T ) as:  
J
T = T + (P x θ )  
JA  
J
A
D
Figure 2 and Figure 3 show the thermal derating curves  
for the safety power limiting and the safety current limiting  
of the devices. Ensure that the junction temperature does  
not exceed 150°C.  
The maximum safety temperature (T ) for the device is  
S
the 150°C maximum junction temperature specified in  
the Absolute Maximum Ratings. The power dissipation  
(P ) and junction-to-ambient thermal impedance (θ  
D
)
JA  
THERMAL DERATING CURVE  
FOR SAFETY CURRENT LIMITING  
THERMAL DERATING CURVE  
FOR SAFETY POWER LIMITING  
1800  
350  
MULTILAYER BOARD  
300  
16 WIDE SOIC PACKAGE,  
MULTILAYER BOARD  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
250  
200  
150  
100  
50  
0
0
25  
50  
75 100 125 150 175 200  
0
25  
50  
75 100 125 150 175 200  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve for Safety Current Limiting  
Figure 2. Thermal Derating Curve for Safety Power  
Limiting—16 Wide SOIC  
Table 2. Safety Limiting Values for the MAX12934–MAX12935  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MAX  
UNITS  
Safety Current on Any Pin  
(No Damage to Isolation Barrier)  
I
T = 150°C, T = 25°C  
300  
mA  
S
J
A
Total Safety Power Dissipation  
Maximum Safety Temperature  
P
T = 150°C, T = 25°C  
1760  
150  
mW  
°C  
S
J
A
T
S
Maxim Integrated  
10  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
Typical Operating Characteristics  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, GNDA = GNDB, T = +25°C, unless otherwise noted.)  
A
DDA  
GNDA  
DDB  
GNDB  
SIDE A SUPPLY CURRENT  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
vs. DATA RATE  
toc01  
toc02  
toc03  
1.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12934C/F  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12934B/E  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12935B/E  
0.8  
0.6  
0.4  
0.2  
0.0  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
toc04  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
toc05  
toc06  
1.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12935C/F  
DRIVING ONE CHANNEL ON SIDE A  
= 0pF, OTHER CHANNEL IS HIGH,  
MAX12934B/E  
DRIVING ONE CHANNEL ON SIDE A  
C = 15pF, OTHER CHANNEL IS HIGH,  
L
C
L
MAX12934B/E  
0.8  
0.6  
0.4  
0.2  
0.0  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDB  
DDB  
DDB  
DDB  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDB  
DDB  
DDB  
DDB  
V
V
V
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
SIDE B SUPPLY CURRENT  
vs. DATA RATE  
SIDE B SUPPLY CURRENT  
vs. DATA RATE  
toc07  
toc08  
toc09  
1.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12.0  
10.0  
8.0  
DRIVING ONE CHANNEL ON SIDE A  
CL=0pF, OTHER CHANNEL IS HIGH,  
MAX12934C/F  
DRIVING ONE CHANNEL ON SIDE A  
CL=15pF, OTHER CHANNEL IS HIGH,  
MAX12934C/F  
DRIVING ONE CHANNEL ON SIDE A  
= 0pF, OTHER CHANNEL IS HIGH  
MAX12935B/E  
C
L
0.8  
0.6  
0.4  
0.2  
0.0  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
6.0  
4.0  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
2.0  
0.0  
0
5
10  
15  
20  
25  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
Typical Operating Characteristics (continued)  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, GNDA = GNDB, T = +25°C, unless otherwise noted.)  
A
DDA  
GNDA  
DDB  
GNDB  
SIDE B SUPPLY CURRENT  
SIDE B SUPPLY CURRENT  
vs. DATA RATE  
vs. DATA RATE  
toc10  
toc11  
toc12  
2.500  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
DRIVING ONE CHANNEL ON SIDE A  
CL = 15pF, OTHER CHANNEL IS HIGH  
MAX12935B/E  
DRIVING ONE CHANNEL ON SIDE A  
CL=0pF, OTHER CHANNEL IS HIGH  
MAX12935C/F  
DRIVING ONE CHANNEL ON SIDE A  
CL=15pF, OTHER CHANNEL IS HIGH  
MAX12935C/F  
2.000  
1.500  
1.000  
0.500  
0.000  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
VDDA = 5.0V  
VDDA = 3.3V  
VDDA = 2.5V  
VDDA = 1.8V  
0
5
10  
15  
20  
25  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATIONDELAY  
vs. VDDA VOLTAGE  
toc13  
toc14  
toc15  
15.0  
12.0  
9.0  
35  
30  
25  
20  
15  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
V
= V  
DDB  
INA TO OUTB,  
MAX1293_B/E  
VDDA = VDDB  
INA TO OUTB  
MAX1293_C/F  
DDA  
VDDB = 3.3V  
INA TO OUTB  
MAX1293_B/E  
6.0  
MAX1293_C/F  
VDDA = 1.8V  
VDDA = 1.8V  
VDDA = 2.5V  
VDDA = 3.3V  
VDDA = 5.5V  
VDDA = 2.5V  
VDDA = 3.3V  
VDDA = 5.5V  
3.0  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
1.5  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VDDA VOLTAGE (V)  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
Typical Operating Characteristics (continued)  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, GNDA = GNDB, T = +25°C, unless otherwise noted.)  
DDA  
GNDA  
DDB  
GNDB A  
PROPAGATIONDELAY  
vs. VDDB VOLTAGE  
MINIMUM PULSE WIDTH  
MINIMUM PULSE WIDTH  
toc18  
toc17  
toc16  
35.0  
MAX1293_C/F  
5ns PULSE  
MAX1293_B/E  
40ns pulse  
VDDA = 3.3V  
INA TO OUTB  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
IN__  
IN__  
1V/div  
1V/div  
1V/div  
MAX1293_B/E  
MAX1293_C/F  
OUT__  
OUT__  
1V/div  
0.0  
5ns/div  
20ns/div  
1.5  
2.5  
3.5  
4.5  
5.5  
VDDB VOLTAGE (V)  
EYE DIAGRAM at 200Mbps  
MAX1293_C/F  
CLOCKJITTER RMS ON RISING EDGE  
MAX1293_C/F  
CLOCKJITTER RMS ON FALLING EDGE  
MAX1293_C/F  
toc19  
toc20  
toc21  
VDDB = 3.6V  
500kHz Clock Input  
tJCLK(RMS) = 6.5ps  
500kHz Clock Input  
tJCLK(RMS) = 6.3ps  
600mV/div  
OUT_  
400mV/div  
OUT_  
400mV/div  
1ns/div  
125ps/div  
125ps/div  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Pin Configurations  
+
+
W-16  
SOIC IC  
MAX12934  
W-16  
SOIC IC  
MAX12935  
GNDA  
1
GNDB  
N.C.  
GNDA  
N.C.  
GNDB  
N.C.  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
N.C.  
2
V
V
V
DDA  
V
DDA  
IN1  
3
4
5
6
7
8
DDB  
DDB  
OUT1  
OUT2  
N.C.  
OUT1  
IN2  
IN1  
IN2  
N.C.  
OUT2  
N.C.  
N.C.  
GNDA  
N.C.  
N.C.  
GNDA  
N.C.  
N.C.  
GNDB  
GNDB  
I
I
Pin Description  
PIN  
NAME  
FUNCTION  
Power Supply for side A. Bypass V  
REFERENCE  
MAX12934  
MAX12935  
with  
DDA  
3
3
V
GNDA  
DDA  
a 0.1µF ceramic capacitor to GNDA.  
Logic input for channel 1  
Logic output of channel 1  
Logic input for channel 2  
Ground reference for side A  
Ground reference for side B  
Logic output of channel 2  
Logic output of channel 1  
Logic input for channel 1  
4
4
IN1  
OUT1  
IN2  
GNDA  
GNDA  
GNDA  
5
5
1, 7  
9, 16  
12  
1, 7  
9, 16  
12  
GNDA  
GNDB  
OUT2  
OUT1  
IN1  
GNDB  
GNDB  
GNDB  
13  
13  
Power Supply for side B. Bypass V  
a 0.1µF ceramic capacitor to GNDB.  
with  
DDB  
14  
14  
V
GNDB  
DDB  
2, 6, 8, 10, 11, 15  
2, 6, 8, 10, 11, 15  
N.C.  
Not internally connected  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Typical Application Circuits  
2.5V  
3.3V  
0.1µF  
0.1µF  
MICRO  
CONTROLLER  
TRANSCEIVER  
MAX12935  
V
V
V
V
DD  
DD  
DDA  
DDB  
A
B
RX  
OUT1  
IN1  
RXD  
Y
Z
TXD  
TX  
OUT2  
GNDB  
IN2  
GND  
GNDA  
GND  
The devices have two supply inputs (V  
and V  
)
DDB  
DDA  
Detailed Description  
that independently set the logic levels on either side of  
device. V and V are referenced to GNDA and  
The MAX12934/MAX12935 are a family of 2-channel  
digital isolators. The MAX12934 transfers digital signals  
between circuits with different power domain in one  
direction, which is convenient for applications such as  
digital I/O. The MAX12935 transfers digital signals in  
opposite directions, which is necessary for isolated  
RS-485 or other UART applications.  
DDA  
DDB  
GNDB, respectively. The MAX12934/MAX12935 family  
also features a refresh circuit to ensure output accuracy  
when an input remains in the same state indefinitely.  
Digital Isolation  
The device family provides galvanic isolation for digital  
signals that are transmitted between two ground domains.  
Devices are available in the 16-pin wide body SOIC  
package and are rated for up to 5kV  
isolation  
The devices withstand differences of up to 5kV  
for  
RMS  
RMS  
voltage for 60 seconds. This family of digital isola-  
tors offers low-power operation, high electromagnetic  
interference (EMI) immunity, and stable temperature  
performance through Maxim’s proprietary process technology.  
The devices isolate different ground domains and block  
high-voltage/high-current transients from sensitive or  
human interface circuitry.  
up to 60 seconds, and up to 1200V  
isolation.  
of continuous  
PEAK  
Level-Shifting  
The wide supply voltage range of both V  
allows the MAX12934/MAX12935 family to be used for  
level translation in addition to isolation. V and V  
can be independently set to any voltage from 1.71V to  
5.5V. The supply voltage sets the logic level on the  
corresponding side of the isolator.  
and V  
DDA  
DDB  
DDA  
DDB  
Devices are available with data rates from DC to 25Mbps  
(B/E versions) or 200Mbps (C/F versions). Each device  
can be ordered with default-high or default-low outputs.  
The default is the state the output assumes when the  
input is not powered or if the input is open circuit.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Unidirectional Channels  
Startup and Undervoltage Lockout  
Each channel of the MAX12934/MAX12935 is  
unidirectional; it only passes data in one direction, as  
indicated in the functional diagram. Each device features  
two unidirectional channels that operate independently  
with guaranteed data rates from DC up to 25Mbps (B/E  
versions), or DC to 200Mbps (C/F versions). The output  
driver of each channel is push-pull, eliminating the need  
for pullup resistors. The outputs are able to drive both TTL  
and CMOS logic inputs.  
The V  
and V  
supplies are both internally  
DDA  
DDB  
monitored for undervoltage conditions. Undervoltage  
events can occur during power-up, power-down, or during  
normal operation due to a sagging supply voltage. When  
an undervoltage condition is detected on either supply, all  
outputs go to their default states regardless of the state of  
the inputs (Table 3). Figure 4 through Figure 7 show the  
behavior of the outputs during power-up and power-down.  
Table 3. Output Behavior During Undervoltage Conditions  
V
V
V
V
V
OUTB_  
IN_  
VDDA  
VDDB  
OUTA_  
1
Powered  
Powered  
Powered  
Powered  
1
1
0
X
X
0
0
Undervoltage  
Powered  
Powered  
Default  
Default  
Default  
Default  
Undervoltage  
VDDA  
VDDB  
VDDA  
VDDB  
2V/div  
2V/div  
OUT_A  
OUT_B  
OUT_A  
OUT_B  
200µs/div  
200µs/div  
Figure 4. Undervoltage Lockout Behavior (MAX1293_B/C High)  
Figure 5. Undervoltage Lockout Behavior (MAX1293_B/C Low)  
VDDA  
VDDA  
2V/div  
2V/div  
VDDB  
VDDB  
OUT_A  
OUT_A  
OUT_B  
OUT_B  
200µs/div  
200µs/div  
Figure 6. Undervoltage Lockout Behavior (MAX1293_E/F High)  
Figure 7. Undervoltage Lockout Behavior (MAX1293_E/F Low)  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
I
= C × f  
× V  
SW DD  
CL  
L
Application Information  
where  
is the current required to drive the capacitive load.  
Power-Supply Sequencing  
The MAX12934/MAX12935 do not require special power  
supply sequencing. The logic levels are set independently  
I
CL  
C is the load capacitance on the isolator’s output pin.  
L
on either side by V  
and V  
. Each supply can be  
f is the switching frequency (bits per second/2).  
SW  
DDA  
DDB  
present over the entire specified range regardless of the  
level or presence of the other supply.  
V
is the supply voltage on the output side of the isolator.  
DD  
Current into a resistive load depends on the load resistance,  
the supply voltage and the average duty cycle of the data  
waveform. The DC load current can be conservatively  
estimated by assuming the output is always high.  
Power-Supply Decoupling  
To reduce ripple and the chance of introducing data  
errors, bypass V  
and V  
with 0.1µF low-ESR  
DDA  
DDB  
I
= V ÷ R  
DD L  
RL  
ceramic capacitors to GNDA and GNDB, respectively.  
Place the bypass capacitors as close to the power supply  
input pins as possible.  
where  
is the current required to drive the resistive load.  
I
RL  
Layout Considerations  
V
DD  
is the supply voltage on the output side of the isolator.  
The PCB designer should follow some critical  
recommendation in order to get the best performance  
from the design.  
R is the load resistance on the isolator’s output pin.  
L
Example (shown in Figure 10): A MAX12935F is operating  
with V  
= 2.5V, V  
= 3.3V, channel 1 operating at  
DDA  
DDB  
Keep the input/output traces as short as possible. To  
100Mbps with a 15pF capacitive load, and channel 2  
operating at 20Mbps with a 10pF capacitive load. Refer  
keep signal paths low-inductance, avoid using vias.  
to Table 4 and Table 5 for V  
calculation worksheets.  
and V  
supply current  
Have a solid ground plane underneath the high-  
DDA  
DDB  
speed signal layer.  
V
must supply:  
Keep the area underneath the MAX12934/MAX12935  
free from ground and signal planes. Any galvanic or  
metallic connection between the field-side and logic-  
side defeats the isolation.  
DDA  
Channel 1 is an output channel operating at 2.5V and  
100Mbps, consuming 1.02mA, estimated from Figure 9.  
Channel 2 is an input channel operating at 2.5V and  
20Mbps, consuming 0.33mA, estimated from Figure 8.  
Calculating Power Dissipation  
I
on channel 1 for 15pF capacitor at 2.5V and 100Mbps  
CL  
The required current for a given supply (V  
or V  
)
DDB  
DDA  
is 1.875mA.  
can be estimated by summing the current required for  
each channel. The supply current for a channel depends  
on whether the channel is an input or an output, the channel’s  
data rate, and the capacitive or resistive load if it is an  
output. The typical current for an input or output at any  
data rate can be estimated from the graphs in Figure 8  
and Figure 9. Please note that the data in Figure 8  
and Figure 9 are extrapolated from the supply current  
measurements in a typical operating condition.  
Total current for side A = 1.02 + 0.33 + 1.875 = 3.225mA,  
typical  
V
must supply:  
DDB  
Channel 1 is an input channel operating at 3.3V and  
100Mbps, consuming 1.13mA, estimated from Figure 8.  
Channel 2 is an output channel operating at 3.3V and  
20Mbps, consuming 0.42mA, estimated from Figure 9.  
I
on channel 2 for 10pF capacitor at 3.3V and 20Mbps  
CL  
The total current for a single channel is the sum of the  
“no load” current (shown in Figure 8 and Figure 9) which  
is a function of Voltage and Data Rate, and the “load  
current” which depends upon the type of load. Current  
into a capacitive load is a function of the load capacitance,  
the switching frequency, and the supply voltage.  
is 0.33mA.  
Total current for side B = 1.13 + 0.42 + 0.33 = 1.88mA,  
typical  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
SUPPLY CURRENT PER INPUT CHANNEL  
vs. DATA RATE  
SUPPLY CURRENT PER OUTPUT CHANNEL  
vs. DATA RATE  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5
4
3
2
1
0
VDD_ = 1.8V  
V
= 2.5V  
DD_
V
= 3.3V  
DD_
V
= 5.0V  
DD_
CL = 0pF  
VDD_ = 1.8V  
V
DD_ = 2.5V  
VDD_ = 3.3V  
= 5.0V  
V
DD_
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
0
25  
50  
75 100 125 150 175 200  
DATA RATE (Mbps)  
Figure 8. Supply Current per Input Channel Versus Data Rate  
Figure 9. Supply Current per Output Channel Versus Data Rate  
2.5V  
3.3V  
VDDA  
VDDB  
MAX12935F  
100Mbps  
100Mbps  
OUT1  
IN1  
15pF  
20Mbps  
OUT2  
20Mbps  
IN2  
10pF  
GNDB  
GNDA  
Figure 10. Example Circuit for Supply Current Calculation  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV Digital Isolators  
RMS  
Table 4. Side A Supply Current Calculation Worksheet  
SIDE A  
V
= 2.5V  
DDA  
FREQUENCY  
LOAD  
TYPE  
CHANNEL IN/OUT  
LOAD  
“NO LOAD” CURRENT (mA)  
LOAD CURRENT (mA)  
(Mbps)  
1
2
OUT  
IN  
100  
20  
Capacitive  
15pF  
1.02  
0.33  
2.5V x 50MHz x 15pF = 1.875mA  
Total:  
3.225mA  
Table 5. Side B Supply Current Calculation Worksheet  
SIDE B  
V
= 3.3V  
DDB  
FREQUENCY  
LOAD  
TYPE  
CHANNEL IN/OUT  
LOAD  
“NO LOAD” CURRENT (mA)  
LOAD CURRENT (mA)  
(Mbps)  
1
2
IN  
100  
20  
1.13  
0.42  
OUT  
Capacitive  
Total:  
10pF  
3.3V x 10MHz x 10pF = 0.33mA  
1.88mA  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
Product Selector Guide  
MAX1293 5 B A W E +  
CHANNEL  
CONFIGURATION  
4: 2/0  
MAX DATA RATE  
DEVICE CONFIGURATION  
5: 1/1  
25 Mbps  
200Mbps  
MAXIMUM DATA RATE  
DEFAULT OUTPUT  
(SEE TABLE)  
DEFAULT-HIGH OUTP UT  
DEFAULT-LOW OUTPUT  
B
E
C
F
TEMP RANGE: -40°C TO +125°C  
PACKAGE  
W: W SOIC  
PINS  
E: 16  
LEAD-FREE/RoHS COMPLIANT  
Ordering Information  
ISOLATION  
VOLTAGE  
CHANNEL  
PART  
DATA RATE  
(Mbps)  
DEFAULT  
OUTPUT  
TEMP  
RANGE  
PIN-  
PACKAGE  
CONFIGURATION  
(KV  
)
RMS  
MAX12934BAWE+*  
MAX12934CAWE+*  
MAX12934EAWE+*  
MAX12934FAWE+*  
MAX12935BAWE+  
MAX12935CAWE+  
MAX12935EAWE+*  
MAX12935FAWE+*  
2/0  
2/0  
2/0  
2/0  
1/1  
1/1  
1/1  
1/1  
25  
200  
25  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
5
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
16 Wide SOIC  
5
5
200  
25  
5
5
200  
25  
5
5
200  
5
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX12934/MAX12935  
Two-Channel, Fast, Low-Power,  
5kV  
Digital Isolators  
RMS  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
8/17  
Initial release  
Removed future product designation from MAX12935CAWE+ in the Ordering  
Information table  
1
2
7/20  
19  
Updated General Description, Dynamic Characteristics MAX1293_B/E, Dynamic  
Characteristics MAX1293_C/F, Safety Regulatory Approvals, Typical Operating  
Circuits, and Layout Considerations sections; added Safety Limits and Product  
Selector Guide sections; added new Figure 2‒3 and renumbered subsequent figures;  
replaced Figure 8‒9; updated Table 1; added Table 2 and renumbered subsequent  
tables; added Product Selector Guide  
11/20  
1, 5–10, 14–19  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY