MAX127ACAI+T [MAXIM]

Analog Circuit, 1 Func, PDSO28, SSOP-28;
MAX127ACAI+T
型号: MAX127ACAI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, PDSO28, SSOP-28

文件: 总16页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4773; Rev 0; 7/98  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX127/MAX128 a re multira ng e , 12-b it d a ta  
acquisition systems (DAS) that require only a single  
+5V supply for operation, yet accept signals at their  
analog inputs that may span above the power-supply  
rail and below ground. These systems provide eight  
analog input channels that are independently software  
programmable for a variety of ranges: ±10V, ±5V, 0 to  
+10V, 0 to +5V for the MAX127; and ±V , ±V /2, 0  
12-Bit Resolution, 1/2 LSB Linearity  
+5V Single-Supply Operation  
I2C-Compatible, 2-Wire Serial Interface  
Four Software-Selectable Input Ranges  
MAX127: 0 to +10V, 0 to +5V, ±10V, ±5V  
MAX128: 0 to +V  
, 0 to +V  
/2, ±V  
,
REF  
REF  
REF  
REF  
REF  
to +V  
, 0 to +V  
/2 for the MAX128. This range  
REF  
REF  
±V  
/2  
REF  
switching increases the effective dynamic range to 14  
bits and provides the flexibility to interface 420mA,  
±12V, and ±15V-powered sensors directly to a single  
+5V system. In addition, these converters are fault pro-  
tected to ±16.5V; a fault condition on any channel will  
not affect the conversion result of the selected channel.  
Other features include a 5MHz bandwidth track/hold,  
an 8ksps throughput rate, and the option of an internal  
4.096V or external reference.  
8 Analog Input Channels  
8ksps Sampling Rate  
±16.5V Overvoltage-Tolerant Input Multiplexer  
Internal 4.096V or External Reference  
Two Power-Down Modes  
24-Pin Narrow DIP or 28-Pin SSOP Packages  
The MAX127/MAX128 feature a 2-wire, I2C-compatible  
serial interface that allows communication among multi-  
ple devices using SDA and SCL lines.  
Typ ic a l Op e ra t in g Circ u it  
A hardware shutdown input (SHDN) and two software-  
programmable power-down modes (standby and full  
power-down) are provided for low-current shutdown  
between conversions. In standby mode, the reference-  
buffer remains active, eliminating start-up delays.  
+5V  
0.1µF  
The MAX127/MAX128 are available in 24-pin DIP or  
space-saving 28-pin SSOP packages.  
µC  
V
DD  
SCL SDA  
SHDN  
Ap p lic a t io n s  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Industrial Control Systems  
Data-Acquisition Systems  
Robotics  
1k  
ANALOG  
INPUTS  
MAX127  
MAX128  
Automatic Testing  
SCL  
SDA  
A0  
Battery-Powered Instruments  
Medical Instruments  
REF  
A1  
REFADJ  
A2  
4.7µF  
0.01µF  
AGND  
DGND  
Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX127ACNG 0°C to +70°C 24 Narrow Plastic DIP ±1/2  
MAX127ACNG 0°C to +70°C 24 Narrow Plastic DIP ±1  
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to AGND............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
AGND to DGND.....................................................-0.3V to +0.3V  
CH0–CH7 to AGND ......................................................... ±16.5V  
24-Pin Narrow DIP (derate 13.33mW/°C above +70°C)..1067mW  
28-Pin SSOP (derate 9.52mW/°C above +70°C) ...............762mW  
Operating Temperature Ranges  
REF to AGND..............................................-0.3V to (V + 0.3V)  
DD  
REFADJ to AGND.......................................-0.3V to (V + 0.3V)  
MAX127_ C_ _/MAX128_ C_ _.............................0°C to +70°C  
MAX127_ E_ _/MAX128_ E_ _ ..........................-40°C to +85°C  
Storage Temperature Range ............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) ............................+300°C  
DD  
A0, A1, A2 to DGND...................................-0.3V to (V + 0.3V)  
DD  
SHDN, SCL, SDA to DGND......................................-0.3V to +6V  
Max Current into Any Pin ....................................................50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF; external clock, f  
= 400kHz;  
REF  
CLK  
DD  
7/MAX128  
T
A
= T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY (Note 1)  
Resolution  
12  
Bits  
LSB  
LSB  
MAX127A/MAX128A  
MAX127B/MAX128B  
±1/2  
±1  
Integral Nonlinearity  
INL  
Differential Nonlinearity  
DNL  
±1  
MAX127A/MAX128A  
±3  
Unipolar  
Bipolar  
MAX127B/MAX128B  
MAX127A/MAX128A  
MAX127B/MAX128B  
±5  
Offset Error  
LSB  
LSB  
±5  
±10  
Unipolar  
Bipolar  
±0.1  
±0.3  
Channel-to-Channel Offset  
Error Matching  
MAX127A/MAX128A  
MAX127B/MAX128B  
MAX127A/MAX128A  
MAX127B/MAX128B  
±7  
±10  
±7  
Unipolar  
Bipolar  
Gain Error (Note 2)  
LSB  
±10  
Unipolar  
Bipolar  
3
5
Gain Tempco (Note 2)  
ppm/°C  
dB  
DYNAMIC SPECIFICATIONS (800Hz sine-wave input, ±10Vp-p (MAX127) or ±4.096Vp-p (MAX128), f  
= 8ksps)  
SAMPLE  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
70  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
THD  
Up to the 5th harmonic  
-87  
-80  
dB  
dB  
SFDR  
81  
4kHz, V = ±5V (Note 3)  
-86  
-96  
200  
10  
IN  
Channel-to-Channel Crosstalk  
dB  
DC, V = ±16.5V  
IN  
Aperture Delay  
Aperture Jitter  
ns  
ns  
2
_______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 400kHz;  
REF  
CLK  
DD  
T
A
= T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Track/Hold Acquisition Time  
3
µs  
±10V or ±V  
range  
5
REF  
±5V or ±V /2 range  
2.5  
2.5  
1.25  
REF  
-3dB  
rolloff  
Small-Signal Bandwidth  
MHz  
0 to 10V or 0 to V  
range  
REF  
0 to 5V or 0 to V /2 range  
REF  
0
0
10  
5
MAX127  
MAX128  
MAX127  
MAX128  
Unipolar,  
Table 3  
0
V
REF  
0
V
/2  
REF  
Input Voltage Range  
V
IN  
V
-10  
-5  
10  
5
Bipolar,  
Table 3  
-V  
REF  
V
REF  
-V /2  
REF  
V
/2  
REF  
0 to 10V range  
MAX127  
-10  
-10  
720  
360  
10  
Unipolar  
Bipolar  
0 to 5V range  
MAX128  
-10  
0.1  
Input Current  
I
IN  
±10V range  
MAX127  
-1200  
-600  
-1200  
-600  
720  
360  
10  
µA  
±5V range  
±V  
range  
REF  
MAX128  
±V /2 range  
10  
REF  
Unipolar  
Bipolar  
21  
16  
V  
I  
IN  
IN  
Input Resistance  
kΩ  
Input Capacitance  
(Note 4)  
40  
pF  
INTERNAL REFERENCE  
REFOUT Voltage  
V
T
= +25°C  
4.076  
4.096  
±15  
4.116  
V
REF  
A
MAX127_C/MAX128_C  
MAX127_E/MAX128_E  
REFOUT Tempco  
TC V  
ppm/°C  
REF  
±30  
Output Short-Circuit Current  
Load Regulation (Note 5)  
Capacitive Bypass at REF  
REFADJ Output Voltage  
REFADJ Adjustment Range  
Buffer Voltage Gain  
30  
10  
mA  
mV  
µF  
0 to 0.5mA output current  
Figure 12  
4.7  
2.465  
2.500  
±1.5  
2.535  
V
%
1.638  
V/V  
_______________________________________________________________________________________  
3
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 400kHz;  
REF  
CLK  
DD  
T
A
= T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
REFERENCE INPUT (buffer disabled, reference input applied to REF)  
Input Voltage Range  
2.4  
4.18  
400  
1
V
Normal, or STANDBY  
power-down mode  
V
4.18V  
=
REF  
Input Current  
µA  
FULL power-down mode  
Normal or STANDBY power-down mode  
FULL power-down mode  
10  
5
kΩ  
Input Resistance  
MΩ  
REFADJ Threshold for  
Buffer Disable  
V
DD  
- 0.5  
V
POWER REQUIREMENTS  
7/MAX128  
Supply Voltage  
V
4.75  
5.25  
18  
V
DD  
Normal mode, bipolar ranges  
Normal mode, unipolar ranges  
STANDBY power-down mode (Note 6)  
FULL power-down mode  
mA  
6
10  
Supply Current  
I
DD  
700  
120  
±0.1  
±0.5  
850  
220  
±0.5  
µA  
External reference = 4.096V  
Internal reference  
Power-Supply Rejection Ratio  
(Note 7)  
PSRR  
LSB  
TIMING  
External Clock Frequency Range  
Conversion Time  
f
0.4  
10.0  
8
MHz  
µs  
CLK  
t
6.0  
7.7  
CONV  
Throughput Rate  
ksps  
Bandgap Reference  
Start-Up Time  
Power-up (Note 8)  
200  
µs  
C
C
= 4.7µF  
= 33µF  
8
REF  
REF  
To 0.1mV, REF bypass  
capacitor fully discharged  
Reference Buffer Settling Time  
ms  
60  
DIGITAL INPUTS (SHDN, A2, A1, A0)  
Input High Threshold Voltage  
Input Low Threshold Voltage  
Input Leakage Current  
Input Capacitance  
V
2.4  
V
V
IH  
V
IL  
0.8  
I
IN  
V
= 0 or V  
DD  
±0.1  
0.2  
±10  
15  
µA  
pF  
V
IN  
C
(Note 4)  
IN  
Input Hysteresis  
V
HYS  
4
_______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; external clock, f  
= 400kHz;  
REF  
CLK  
DD  
T
A
= T  
to T  
; unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SDA, SCL)  
Input High Threshold Voltage  
Input Low Threshold Voltage  
Input Hysteresis  
V
0.7 x V  
V
IH  
DD  
V
IL  
0.3 x V  
V
V
DD  
V
HYS  
0.05 x V  
DD  
Input Leakage Current  
Input Capacitance  
I
V
= 0 or V  
±0.1  
±10  
15  
µA  
pF  
IN  
IN  
DD  
C
(Note 4)  
IN  
DIGITAL OUTPUTS (SDA)  
I
= 3mA  
0.4  
0.6  
15  
SINK  
Output Low Voltage  
V
V
OL  
I
= 6mA  
SINK  
Three-State Output Capacitance  
C
(Note 4)  
pF  
OUT  
TIMING CHARACTERISTICS  
(V  
= +4.75V to +5.25V; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; T = T  
to T  
;
REF  
A
MIN  
MAX  
DD  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETERS  
2-WIREFASTMODE
SCL Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between a  
STOP and START Condition  
t
1.3  
0.6  
BUF  
Hold Time (Repeated)  
START Condition  
t
t
µs  
HD,STA  
Low Period of the SCL Clock  
High Period of the SCL Clock  
t
1.3  
0.6  
µs  
µs  
LOW  
t
HIGH  
Set-Up Time for a Repeated  
START Condition  
0.6  
µs  
SU,STA  
Data Hold Time  
Data Setup Time  
t
0
0.9  
µs  
ns  
HD,DAT  
t
100  
SU,DAT  
20 +  
0.1 x C  
300  
300  
250  
Rise Time for Both SDA and SCL  
Signals (Receiving)  
t
C
C
C
= Total capacitance of one bus line in pF  
= Total capacitance of one bus line in pF  
= Total capacitance of one bus line in pF  
ns  
ns  
R
b
b
b
b
b
b
20 +  
0.1 x C  
Fall Time for Both SDA and SCL  
Signals (Receiving)  
t
F
F
20 +  
0.1 x C  
Fall Time for Both SDA and SCL  
Signals (Transmitting)  
t
ns  
µs  
pF  
ns  
Set-Up Time for STOP Condition  
t
0.6  
SU,STO  
Capacitive Load for Each  
Bus Line  
C
400  
50  
b
Pulse Width of Spike Suppressed  
t
SP  
0
_______________________________________________________________________________________  
5
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
TIMING CHARACTERISTICS (continued)  
(V  
= +4.75V to +5.25V; unipolar/bipolar range; external reference mode, V  
= 4.096V; 4.7µF at REF pin; T = T  
to T  
MIN MAX;  
DD  
REF  
A
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETERS  
2-WIRE STANDARD MODE  
SCL Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
100  
kHz  
µs  
SCL  
Bus Free Time Between a STOP  
and START Condition  
t
4.7  
4.0  
BUF  
Hold Time (Repeated) START  
Condition  
t
µs  
HD,STA  
Low Period of the SCL Clock  
High Period of the SCL Clock  
t
4.7  
4.0  
µs  
µs  
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition  
t
4.7  
µs  
SU, STA  
7/MAX128  
Data Hold Time  
Data Setup Time  
t
0
0.9  
µs  
ns  
HD, DAT  
t
250  
SU, DAT  
Rise Time for Both SDA and SCL  
Signals (Receiving)  
t
1000  
ns  
ns  
R
Fall Time for Both SDA and SCL  
Signals (Receiving)  
t
t
300  
250  
F
F
20 +  
0.1 x C  
Fall Time for Both SDA and SCL  
Signals (Transmitting)  
C = total capacitance of one bus line in pF,  
b
up to 6mA sink  
ns  
µs  
pF  
ns  
b
Setup Time for STOP Condition  
t
4.0  
SU, STO  
Capacitive Load for Each  
Bus Line  
C
400  
50  
b
Pulse Width of Spike Suppressed  
t
SP  
0
Note 1: Accuracy specifications tested at V = 5.0V. Performance at power-supply tolerance limits is guaranteed by Power-  
DD  
Supply Rejection test.  
Note 2: External reference: V  
= 4.096V, offset error nulled, ideal last-code transition = FS - 3/2LSB.  
REF  
Note 3: Ground on” channel, sine wave applied to all “off” channels.  
Note 4: Guaranteed by design. Not tested.  
Note 5: Use static external load during conversion for specified accuracy.  
Note 6: Tested using internal reference.  
Note 7: PSRR measured at full scale. Tested for the ±10V (MAX127) and ±4.096V (MAX128) input ranges.  
Note 8: Not subject to production testing. Provided for design guidance only.  
6
_______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= 4.096V; 4.7µF at REF; external clock, f = 400kHz; T = +25°C; unless otherwise noted.)  
CLK  
A
(V = +5V, external reference mode, V  
DD  
REF  
STANDBY SUPPLY CURRENT  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
vs. TEMPERATURE  
25  
6.5  
6.3  
6.1  
5.9  
5.7  
5.5  
750  
650  
20  
15  
10  
5
INTERNAL  
REFERENCE  
550  
450  
350  
250  
EXTERNAL  
REFERENCE  
150  
50  
0
0
1
2
3
4
5
6
7
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHANNEL-TO-CHANNEL OFFSET-ERROR  
MATCHING vs. TEMPERATURE  
FULL POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
NORMALIZED REFERENCE VOLTAGE  
vs. TEMPERATURE  
0.35  
0.30  
0.25  
150  
130  
1.001  
1.000  
BIPOLAR MODE  
EXTERNAL  
REFERENCE  
110  
90  
0.999  
0.998  
0.997  
0.996  
0.20  
0.15  
0.10  
0.05  
0
INTERNAL  
REFERENCE  
UNIPOLAR MODE  
70  
50  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHANNEL-TO-CHANNEL GAIN-ERROR  
MATCHING vs. TEMPERATURE  
INTEGRAL NONLINEARITY vs.  
DIGITAL CODE  
FFT PLOT  
0.8  
0.7  
0.6  
0.15  
0.10  
0.05  
0
0
-20  
V
= 5V  
= 800Hz  
DD  
f
IN  
f
= 8kHz  
SAMPLE  
UNIPOLAR MODE  
BIPOLAR MODE  
-40  
0.5  
0.4  
-60  
-0.05  
-0.10  
-0.15  
-80  
0.3  
0.2  
0.1  
-100  
-110  
-40  
-15  
10  
35  
60  
85  
0
819  
1638  
2457  
3276  
4095  
0
800  
1600  
2400  
3200  
4000  
TEMPERATURE (°C)  
DIGITAL CODE  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
DIP  
SSOP  
1, 2  
1, 2  
V
+5V Supply. Bypass with a 0.1µF capacitor to AGND.  
No Connect. No internal connection.  
DD  
4, 7, 8, 11, 22,  
24, 25, 28  
3, 9, 22, 24  
N.C.  
4
5
3
5
DGND  
SCL  
Digital Ground  
Serial Clock Input  
Address Select Inputs  
6, 8, 10  
6, 10, 12  
A0, A2, A1  
Open-Drain Serial Data I/O. Input data is clocked in on the rising edge of SCL,  
and output data is clocked out on the falling edge of SCL. External pull-up  
resistor required.  
7
9
SDA  
Shutdown Input. When low, device is in full power-down (FULLPD) mode.  
Connect high for normal operation.  
7/MAX128  
11  
13  
SHDN  
12  
14  
AGND  
Analog Ground  
13–20  
15–21, 23  
CH0–CH7  
Analog Input Channels  
Bandgap Voltage-Reference Output/External Adjust Pin. Bypass with a 0.01µF  
capacitor to AGND. Connect to V when using an external reference at REF.  
DD  
21  
23  
26  
27  
REFADJ  
REF  
Reference Buffer Output/ADC Reference Input. In internal reference mode, the  
reference buffer provides a 4.096V nominal output, externally adjustable at  
REFADJ. In external reference mode, disable the internal reference by pulling  
REFADJ to V and applying the external reference to REF.  
DD  
8
_______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
SDA  
A2  
A1  
A0  
SCL  
SERIAL INTERFACE LOGIC  
SHDN  
INT  
V
DD  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CLOCK  
AGND  
DGND  
ANALOG  
INPUT  
MUX  
AND SIGNAL  
CONDITIONING  
OUT  
IN  
CLOCK  
T/H  
12-BIT SAR ADC  
REF  
REF  
10k  
A =  
V
1.638  
2.5V  
REFERENCE  
MAX127  
MAX128  
REFADJ  
Figure 1. Block Diagram  
De t a ile d De s c rip t io n  
BIPOLAR  
VOLTAGE  
REFERENCE  
Co n ve rt e r Op e ra t io n  
S1  
The MAX127/MAX128 multirange, fault-tolerant ADCs  
use successive approximation and internal track/hold  
(T/H) circuitry to convert an analog signal to a 12-bit  
digital output. Figure 1 shows the block diagram for  
these devices.  
UNIPOLAR  
OFF  
5.12k  
R1  
CH_  
C
HOLD  
S2  
R2  
T/H  
OUT  
ON  
S3  
An a lo g -In p u t Tra c k /Ho ld  
The T/H circuitry enters its tracking/acquisition mode on  
the falling edge of the sixth clock in the 8-bit input con-  
trol word and enters its hold/conversion mode when the  
master issues a STOP condition. For timing information,  
see the Start a Conversion section.  
TRACK  
TRACK S4  
HOLD  
HOLD  
S1 = BIPOLAR/UNIPOLAR SWITCH  
S2 = INPUT MUX SWITCH  
S3, S4 = T/H SWITCH  
R1 = 12.5k(MAX127) OR 5.12k(MAX128)  
R2 = 8.67k(MAX127) OR (MAX128)  
In p u t Ra n g e a n d P ro t e c t io n  
The MAX127/MAX128 have software-selectable input  
ranges. Each analog input channel can be indepen-  
dently programmed to one of four ranges by setting the  
appropriate control bits (RNG, BIP) in the control byte  
(Table 1). The MAX127 has selectable input ranges  
Figure 2. Equivalent Input Circuit  
the d e vic e ma y b e c onfig ure d for unip ola r mod e .  
Overvoltage protection is active even if the device is in  
power-down mode or V = 0.  
DD  
extending to ±10V (±V  
has selectable input ranges extending to ±V . Note  
that when an external reference is applied at REFADJ,  
the voltage at REF is given by V  
x 2.441), while the MAX128  
REF  
Dig it a l In t e rfa c e  
REF  
The MAX127/MAX128 feature a 2-wire serial interface  
consisting of the SDA and SCL pins. SDA is the data  
I/O and SCL is the serial clock input, controlled by the  
ma s te r d e vic e . A2–A0 a re us e d to p rog ra m the  
MAX127/MAX128 to different slave addresses. (The  
MAX127/MAX128 only work as slaves.) The two bus  
lines (SDA and SCL) must be high when the bus is not  
in use. External pull-up resistors (1kor greater) are  
required on SDA and SCL to maintain I2C compatibility.  
Table 1 shows the input control-byte format.  
= 1.638 x V  
REF  
REFADJ  
(2.4 < V  
< 4.18). Figure 2 shows the equivalent  
REF  
input circuit.  
A resistor network on each analog input provides a  
±16.5V fault protection for all channels. This circuit lim-  
its the current going into or out of the pin to less than  
1.2mA, whether or not the channel is on. This provides  
an added layer of protection when momentary over-  
voltages occur at the selected input channel, and when  
a negative signal is applied at the input even though  
_______________________________________________________________________________________  
9
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 0  
(LSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
START  
SEL2  
SEL1  
SEL0  
RNG  
BIP  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
The logic "1" received after acknowledge of a write bit (R/W = 0) defines the  
beginning of the control byte.  
7 (MSB)  
START  
SEL2, SEL1,  
SEL0  
6, 5, 4  
These three bits select the desired "ON" channel (Table 2).  
3
RNG  
BIP  
Selects the full-scale input voltage range (Table 3).  
Selects unipolar or bipolar conversion mode (Table 3).  
These two bits select the power-down modes (Table 4).  
2
1, 0 (LSB)  
PD1, PD0  
7/MAX128  
Table 2. Channel Selection  
Table 4. Power-Down and Clock  
Selection  
SEL2  
SEL1  
SEL0  
CHANNEL  
CH0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
PD1  
PD0  
MODE  
CH1  
0
1
1
X
0
Normal Operation (always on)  
CH2  
Standby Power-Down Mode (STBYPD)  
Full Power-Down Mode (FULLPD)  
CH3  
1
CH4  
CH5  
CH6  
CH7  
Table 3. Range and Polarity Selection  
NEGATIVE FULL  
SCALE (V)  
ZERO  
INPUT RANGE (V)  
RNG  
BIP  
FULL SCALE (V)  
SCALE (V)  
MAX127  
0 to 5  
0 to 10  
±5  
0
1
0
1
0
0
1
1
0
0
0
0
V
x 1.2207  
REF  
V
REF x 2.4414  
V x 1.2207  
REF  
-V  
x 1.2207  
REF  
±10  
-V  
V
REF x 2.4414  
REF x 2.4414  
MAX128  
0 to V /2  
0
1
0
1
0
0
1
1
0
0
0
0
V
/2  
REF  
REF  
0 to V  
V
REF  
REF  
±V /2  
-V /2  
REF  
V
REF  
/2  
REF  
±V  
-V  
REF  
V
REF  
REF  
10 ______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
S la ve Ad d re s s  
The MAX127/MAX128 have a 7-bit-long slave address.  
The first four bits (MSBs) of the slave address have  
been factory programmed and are always 0101. The  
logic state of the address input pins (A2–A0) determine  
the three LSBs of the device address (Figure 3). A max-  
imum of eight MAX127/MAX128 devices can therefore  
be connected on the same bus at one time.  
Co n ve rs io n Co n t ro l  
The master signals the beginning of a transmission with  
a START condition (S), which is a high-to-low transition  
on SDA while SCL is high. When the master has fin-  
ished communicating with the slave, the master issues  
a STOP condition (P), which is a low-to-high transition  
on SDA while SCL is high (Figure 4). The bus is then  
free for another transmission. Figure 5 shows the timing  
d ia g ra m for s ig na ls on the 2-wire inte rfa c e . The  
address-byte, control-byte, and data-byte are transmit-  
ted between the START and STOP conditions. The SDA  
state is allowed to change only while SCL is low, except  
for the START and STOP conditions. Data is transmitted  
in 8-bit words. Nine clock cycles are required to trans-  
fer the data in or out of the MAX127/MAX128. (Figures  
9 and 10).  
A2–A0 may be connected to V  
or DGND, or they  
DD  
may be actively driven by TTL or CMOS logic levels.  
The eighth bit of the address byte determines whether  
the master is writing to or reading from the MAX127/  
MAX128 (R/W = 0 selects a write condition. R/W = 1  
selects a read condition).  
SLAVE ADDRESS  
0
1
0
1
A2  
A1  
A0 R/W  
LSB  
ACK  
SDA  
SCL  
SDA  
SCL  
START CONDITION  
STOP CONDITION  
SLAVE ADDRESS BITS A2, A1, AND A0 CORRESPOND TO THE LOGIC STATE  
OF THE ADDRESS INPUT PINS A2, A1, AND A0.  
Figure 3. Address Byte  
Figure 4. START and STOP Conditions  
SDA  
t
BUF  
t
,
t ,  
SU STA  
SU DAT  
t
,
HD STA  
t
,
SU STO  
t
t ,  
HD DAT  
LOW  
SCL  
t
HIGH  
t
,
HD STA  
t
R
t
F
START CONDITION  
REPEATED START CONDITION  
STOP CONDITION START CONDITION  
Figure 5. 2-Wire Serial-Interface Timing Diagram  
______________________________________________________________________________________ 11  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
Start a Conversion (Write Cycle)  
A conversion cycle begins with the master issuing a  
START c ond ition followe d b y s e ve n a d d re s s b its  
(Figure 3) and a write bit (R/W = 0). Once the eighth bit  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
1
8
1 1  
NO. OF BITS  
ha s b e e n re c e ive d a nd the a d d re s s ma tc he s , the  
MAX127/MAX128 (the slave) issues an acknowledge  
by pulling SDA low for one clock cycle (A = 0). The  
master then writes the input control byte to the slave  
(Figure 8). After this byte of data, the slave issues  
another acknowledge, pulling SDA low for one clock  
cycle. The master ends the write cycle by issuing a  
STOP condition (Figure 6).  
S SLAVE ADDRESS W A CONTROL-BYTE A P  
START CONDITION  
STOP CONDITION  
ACKNOWLEDGE  
WRITE  
ACKNOWLEDGE  
Figure 6. Write Cycle  
When the write bit is set (R/W = 0), acquisition starts as  
soon as Bit 2 (BIP) of the input control-byte has been  
latched and ends when a STOP condition has been  
issued. Conversion starts immediately after acquisition.  
The MAX127/MAX128s internal conversion clock fre -  
quency is 1.56MHz, resulting in a typical conversion  
time of 7.7µs. Figure 9 shows a complete write cycle.  
MASTER TO SLAVE  
SLAVE TO MASTER  
1
7
1
1
8
1
8
1 1  
NO. OF BITS  
S SLAVE ADDRESS R A DATA-BYTE A DATA-BYTE A P  
7/MAX128  
STOP CONDITION  
NOT ACKNOWLEDGE  
ACKNOWLEDGE  
READ  
START CONDITION  
Read a Conversion (Read Cycle)  
Once a conversion starts, the master does not need to  
wait for the conversion to end before attempting to read  
the data from the slave. Data access begins with the  
master issuing a START condition followed by a 7-bit  
address (Figure 3) and a read bit (R/W = 1). Once the  
eighth bit has been received and the address matches,  
the slave issues an acknowledge by pulling low on SDA  
for one clock cycle (A = 0) followed by the first byte of  
serial data (D11–D4, MSB first). After the first byte has  
been issued by the slave, it releases the bus for the  
master to issue an acknowledge (A = 0). After receiv-  
ing the acknowledge, the slave issues the second byte  
(D3–D0 and four zeros) followed by a NOT acknowl-  
edge (A= 1) from the master to indicate that the last  
data byte has been received. Finally, the master issues  
a STOP condition (P), ending the read cycle (Figure 7).  
Figure 7. Read Cycle  
START SEL2 SEL1 SEL0 RNG BIP  
PD1  
PD0 ACK  
LSB  
SDA  
SCL  
MSB  
START: FIRST LOGIC “1” RECEIVED AFTER ACKNOWLEDGE OF A WRITE.  
ACK:  
ACKNOWLEDGE BIT. THE MAX127/MAX128 PULL SDA LOW DURING THE  
9TH CLOCK PULSE.  
Figure 8. Command Byte  
SLAVE ADDRESS BYTE  
CONTROL BYTE  
0
1
A
9
S
BIP  
15  
PD1 PD0  
LSB  
A
W
SDA  
MSB  
LSB  
MSB  
SCL  
1
2
7
8
10  
11  
16  
17  
18  
ACQUISITION  
CONVERSION  
A/D STATE  
START  
CONDITION  
STOP  
CONDITION  
Figure 9. Complete 2-Wire Serial Write Transmission  
12 ______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
SLAVE ADDRESS BYTE  
1
MSB DATA BYTE  
LSB DATA BYTE  
FILLED WITH  
4 ZEROS  
0
A
9
D11  
D4  
A
D3  
D0  
A
R
MSB  
1
LSB  
MSB  
LSB  
LSB  
26  
MSB  
2
7
8
10  
11  
17  
18  
19  
22  
23  
27  
STOP  
START  
CONDITION  
CONDITION  
Figure 10. Complete 2-Wire Serial Read Transmission  
The MAX127/MAX128 ignore acknowledge and NOT-  
acknowledge conditions issued by the master during  
the read cycle. The device waits for the master to read  
the outp ut d a ta or wa its until a STOP c ond ition is  
issued. Figure 10 shows a complete read cycle.  
External Reference  
To use the REF input directly, disable the internal buffer  
by connecting REFADJ to V (Figure 11b). Using the  
DD  
REFADJ input eliminates the need to buffer the refer-  
e nc e e xte rna lly. Whe n the re fe re nc e is a p p lie d a t  
REFADJ, bypass REFADJ with a 0.01µF capacitor to  
AGND (Figure 11c).  
In unipolar input mode, the output is straight binary. For  
bipolar input mode, the output is twos complement. For  
output binary codes see the Transfer Function section.  
At REF and REFADJ, the input impedance is a mini-  
mum of 10kfor DC currents. During conversions, an  
e xte rna l re fe re nc e a t REF mus t b e a b le to d rive a  
400µA DC load, and must have an output impedance  
of 10or less. If the reference has higher input imped-  
ance or is noisy, bypass REF with a 4.7µF capacitor to  
AGND as close to the chip as possible.  
Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
The MAX127/MAX128 power up in normal operating  
mode, waiting for a START condition followed by the  
appropriate slave address. The contents of the input  
and output data registers are cleared at power-up.  
With an external reference voltage of less than 4.096V  
at REF or less than 2.5V at REFADJ, the increase in  
RMS noise to the LSB value (full-scale voltage/4096)  
results in performance degradation and loss of effec-  
tive bits.  
In t e rn a l o r Ex t e rn a l Re fe re n c e  
The MAX127/MAX128 operate with either an internal or  
an external reference (Figures 11a–11c). An external  
reference is connected to either REF or to REFADJ.  
P o w e r-Do w n Mo d e  
To save power, put the converter into low-current shut-  
down mode between conversions. Two programmable  
power-down modes are available, in addition to the  
hardware shutdown. Select STBYPD or FULLPD by pro-  
gramming PD0 and PD1 in the input control byte (Table  
4). When software power-down is asserted, it becomes  
effective only after the end of conversion. In all power-  
down modes, the interface remains active and conver-  
sion results may be read. Input overvoltage protection  
is active in all power-down modes.  
The REFADJ internal buffer gain is trimmed to 1.6384 to  
provide 4.096V at REF from a 2.5V reference.  
Internal Reference  
The internally trimmed 2.50V reference is amplified  
through the REFADJ buffer to provide 4.096V at REF.  
Bypass REF with a 4.7µF capacitor to AGND and bypass  
REFADJ with a 0.01µF capacitor to AGND (Figure 11a).  
The internal reference voltage is adjustable to ±1.5%  
(±65 LSBs) with the reference-adjust circuit of Figure 12.  
______________________________________________________________________________________ 13  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
REF  
C
4.7µF  
REF  
MAX127  
MAX128  
+5V  
510k  
100k  
24k  
REFADJ  
A = 1.638  
V
REFADJ  
0.01µF  
0.01µF  
MAX127  
MAX128  
10k  
2.5V  
Figure 11a. Internal Reference  
Figure 12. Reference-Adjust Circuit  
7/MAX128  
To power-up from a software initiated power-down, a  
START condition followed by the correct slave address  
must be received (with R/W = 0). The MAX127/MAX128  
power-up after receiving the next bit.  
REF  
4.096V  
C
REF  
MAX127  
MAX128  
4.7µF  
For hardware-controlled power-down (FULLPD), pull  
SHDN low. When hardware shutdown is asserted, it  
becomes effective immediately and any conversion in  
progress is aborted.  
A = 1.638  
V
V
DD  
REFADJ  
Ch o o s in g P o w e r-Do w n Mo d e s  
The bandgap reference and reference buffer remain  
active in STBYPD mode, maintaining the voltage on the  
4.7µF capacitor at REF. This is a “DC” state that does  
not degrade after standby power-down of any duration.  
10k  
2.5V  
In FULLPD mode, only the bandgap reference is active.  
Connect a 33µF capacitor between REF and AGND to  
maintain the reference voltage between conversions  
and to reduce transients when the buffer is enabled  
and disabled. Throughput rates down to 1ksps can be  
achieved without allotting extra acquisition time for ref-  
erence recovery prior to conversion. This allows con-  
version to begin immediately after power-down ends. If  
the discharge of the REF capacitor during FULLPD  
exceeds the desired limits for accuracy (less than a  
fraction of an LSB), run a STBYPD power-down cycle  
prior to starting conversions. Take into account that the  
reference buffer recharges the bypass capacitor at an  
80mV/ms slew rate, and add 50µs for settling time.  
Figure 11b. External Reference, Reference at REF  
REF  
C
4.7µF  
REF  
MAX127  
MAX128  
A = 1.638  
V
REFADJ  
2.5V  
0.01µF  
10k  
Auto-Shutdown  
Selecting STBYPD on every conversion automatically  
shuts the MAX127/MAX128 down after each conversion  
without requiring any start-up time on the next conversion.  
2.5V  
Figure 11c. External Reference, Reference at REFADJ  
14 ______________________________________________________________________________________  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
7/MAX128  
Tra n s fe r Fu n c t io n  
Output data coding for the MAX127/MAX128 is binary  
in unip ola r mod e with 1LSB = (FS/4096) a nd  
twos complement binary in bipolar mode with 1LSB =  
[(2 x FS ) / 4096]. Cod e tra ns itions oc c ur ha lfwa y  
between successive-integer LSB values. Figures 13a  
and 13b show the input/output (I/O) transfer functions  
for unipolar and bipolar operations, respectively. For  
full-scale (FS) values, refer to Table 3.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
Careful printed circuit board layout is essential for best  
s ys te m p e rforma nc e . For b e s t p e rforma nc e , us e a  
ground plane. To reduce crosstalk and noise injection,  
keep analog and digital signals separate. Connect ana-  
log g round s a nd DGND in a s ta r c onfig ura tion to  
AGND. For noise-free operation, ensure the ground  
return from AGND to the supply ground is low imped-  
a nc e a nd a s s hort a s p os s ib le . Conne c t the log ic  
|
|
grounds directly to the supply ground. Bypass V with  
DD  
0.1µF and 4.7µF capacitors to AGND to minimize high-  
and low-frequency fluctuations. If the supply is exces-  
sively noisy, connect a 5resistor between the supply  
OUTPUT CODE  
FS  
1 LSB =  
FULL-SCALE  
4096  
11... 111  
TRANSITION  
11... 110  
11... 101  
and V , as shown in Figure 14.  
DD  
SUPPLY  
GND  
+5V  
4.7µF  
R* = 5Ω  
00... 011  
00... 010  
00... 001  
00... 000  
0.1µF  
**  
V
DD  
+5V  
DGND  
AGND  
DGND  
FS  
0
1
2
3
DIGITAL  
CIRCUITRY  
3
FS - / LSB  
INPUT VOLTAGE (LSB)  
2
MAX127  
MAX128  
Figure 13a. Unipolar Transfer Function  
* OPTIONAL  
** CONNECT AGND AND DGND WITH A GROUND PLANE OR A SHORT TRACE.  
OUTPUT CODE  
2 FS  
4096  
1 LSB =  
011... 111  
011... 110  
Figure 14. Power-Supply Grounding Connection  
000... 001  
000... 000  
111... 111  
100... 010  
100... 001  
100... 000  
-FS  
0
+FS - 1 LSB  
INPUT VOLTAGE (LSB)  
Figure 13b. Bipolar Transfer Function  
______________________________________________________________________________________ 15  
Mu lt ira n g e , +5 V, 1 2 -Bit DAS w it h  
2 -Wire S e ria l In t e rfa c e  
Ord e rin g In fo rm a t io n (c o n t in u e d )  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4219  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
SUBSTRATE CONNECTED to AGND  
MAX127ACAI  
MAX127BCAI  
0°C to +70°C  
0°C to +70°C  
28 SSOP  
28 SSOP  
±1/2  
±1  
MAX127AENG -40°C to +85°C 24 Narrow Plastic DIP ±1/2  
MAX127BENG -40°C to +85°C 24 Narrow Plastic DIP ±1  
MAX127AEAI -40°C to +85°C 28 SSOP  
MAX127BEAI -40°C to +85°C 28 SSOP  
±1/2  
±1  
MAX128ACNG 0°C to +70°C  
24 Narrow Plastic DIP ±1/2  
24 Narrow Plastic DIP ±1  
MAX128BCNG 0°C to +70°C  
MAX128ACAI  
MAX128BCAI  
0°C to +70°C  
0°C to +70°C  
28 SSOP  
28 SSOP  
±1/2  
±1  
7/MAX128  
MAX128AENG -40°C to +85°C 24 Narrow Plastic DIP ±1/2  
MAX128BENG -40°C to +85°C 24 Narrow Plastic DIP ±1  
MAX128AEAI -40°C to +85°C 28 SSOP  
MAX128BEAI -40°C to +85°C 28 SSOP  
±1/2  
±1  
P in Co n fig u ra t io n s  
TOP VIEW  
V
1
2
3
4
5
6
7
8
28 N.C.  
27 REF  
26 REFADJ  
25 N.C.  
24 N.C.  
23 CH7  
22 N.C.  
21 CH6  
20 CH5  
19 CH4  
18 CH3  
17 CH2  
16 CH1  
15 CH0  
DD  
V
1
2
3
4
5
6
7
8
9
24 N.C.  
23 REF  
DD  
V
DD  
V
DD  
DGND  
N.C.  
SCL  
A0  
N.C.  
DGND  
SCL  
A0  
22 N.C.  
21 REFADJ  
MAX127  
MAX128  
MAX127  
MAX128  
20 CH7  
19 CH6  
18 CH5  
17 CH4  
16 CH3  
15 CH2  
14 CH1  
13 CH0  
N.C.  
N.C.  
SDA  
A2  
SDA 9  
A2 10  
N.C.  
A1 10  
SHDN 11  
AGND 12  
N.C. 11  
A1 12  
SHDN 13  
AGND 14  
DIP  
SSOP  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX127ACAI-T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX127ACNG

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX127ACNG+

暂无描述
MAXIM

MAX127ACNG-T

暂无描述
MAXIM

MAX127AEAI

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX127AEAI+T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX127AEAI/GH9

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX127AEAI/GH9-T

Analog Circuit, 1 Func, PDSO28, SSOP-28
MAXIM

MAX127AENG

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX127AENG+

Analog Circuit, 1 Func, PDIP24, PLASTIC, DIP-24
MAXIM

MAX127AENG-T

Analog Circuit, 1 Func, PDIP24, PLASTIC, DIP-24
MAXIM

MAX127BCAI

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM