MAX126AEAX+ [MAXIM]

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36;
MAX126AEAX+
型号: MAX126AEAX+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36

光电二极管
文件: 总16页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1319; Rev 1; 1/98  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX125/MAX126 are high-speed, multichannel,  
14-bit data-acquisition systems (DAS) with simultane-  
ous track/holds (T/Hs). These devices contain a 14-bit,  
s, successive-approximation analog-to-digital con-  
verter (ADC), a +2.5V reference, a buffered reference  
input, and a bank of four simultaneous-sampling T/H  
amplifiers that preserve the relative phase information  
of the sampled inputs. The MAX125/MAX126 have two  
multiplexed inputs for each T/H, allowing a total of eight  
inputs. In addition, the converter is overvoltage tolerant  
to ±17V; a fault condition on any channel will not harm  
the IC. Available input ranges are ±5V (MAX125) and  
±2.5V (MAX126).  
Four Simultaneous-Sampling T/H Amplifiers with  
Two Multiplexed Inputs (eight single-ended inputs  
total)  
3µs Conversion Time per Channel  
Throughput: 250ksps (1 channel)  
142ksps (2 channels)  
100ksps (3 channels)  
76ksps (4 channels)  
Input Range: ±5V (MAX125)  
±2.5V (MAX126)  
Fault-Protected Input Multiplexer (±17V)  
±5V Supplies  
An on-board sequencer converts one to four channels  
per CONVST pulse. In the default mode, one T/H output  
(CH1A) is converted. An interrupt signal (INT) is pro-  
vided after the last conversion is complete. Convert  
two, three, or four channels by reprogramming the  
MAX125/MAX126 throug h the b id ire c tiona l p a ra lle l  
interface. Once programmed, the MAX125/MAX126  
continue to convert the specified number of channels  
per CONVST pulse until they are reprogrammed. The  
channels are converted sequentially, beginning with  
CH1. The INT signal always follows the end of the last  
conversion in a conversion sequence. The ADC con-  
verts each assigned channel in 3µs and stores the  
result in an internal 14x4 RAM. Upon completion of the  
conversions, data can be accessed by applying suc-  
cessive pulses to the RD pin. Four successive reads  
access four data words sequentially.  
Internal +2.5V or External Reference Operation  
Programmable On-Board Sequencer  
High-Speed Parallel DSP Interface  
______________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX125ACAX  
MAX125BCAX  
MAX125CCAX  
MAX125AEAX  
MAX125BEAX  
MAX125CEAX  
MAX126ACAX  
MAX126BCAX  
MAX126CCAX  
MAX126AEAX  
MAX126BEAX  
MAX126CEAX  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
36 SSOP*  
36 SSOP*  
36 SSOP  
36 SSOP*  
36 SSOP*  
36 SSOP  
36 SSOP*  
36 SSOP*  
36 SSOP  
36 SSOP*  
36 SSOP*  
36 SSOP  
±2  
±4  
±4  
±2  
±4  
±4  
±2  
±4  
±4  
±2  
±4  
±4  
The parallel interfaces data-access and bus-release  
timing specifications are compatible with most popular  
digital signal processors and 16-bit/32-bit microproces-  
sors, so the MAX125/MAX126 conversion results can  
be accessed without resorting to wait states.  
________________________Ap p lic a t io n s  
Multiphase Motor Control  
Power-Grid Synchronization  
Power-Factor Monitoring  
*Contact factory for availability.  
Digital Signal Processing  
Vibration and Waveform Analysis  
Typical Operating Circuit appears at end of data sheet.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
ABSOLUTE MAXIMUM RATINGS  
AV to AGND ...........................................................-0.3V to 6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
AV to AGND ............................................................0.3V to -6V  
DV to DGND ...........................................................-0.3V to 6V  
DD  
SSOP (derate 11.8mW/°C above +70°C) .....................941mW  
Operating Temperature Ranges  
SS  
AGND to DGND.......................................................-0.3V to 0.3V  
CH_ _ to AGND....................................................................±17V  
REFIN, REFOUT to AGND ..........................................-0.3V to 6V  
MAX125_CAX/MAX126_CAX...............................0°C to +70°C  
MAX125_EAX/MAX126_EAX ............................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec)................................300°C  
Digital Inputs/Outputs to DGND ..............-0.3V to (DV + 0.3V)  
DD  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= +5V ±5%, AV = -5V ±5%, DV  
= +5V ±5%, V  
= 2.5V, AGND = DGND = 0V, 4.7µF capacitor from REFOUT to  
DD  
SS  
DD  
REFIN  
5/MAX126  
AGND, 0.1µF capacitor from REFIN to AGND, f  
noted.)  
= 16MHz, external clock, 50% duty cycle, T = T  
to T , unless otherwise  
MAX  
CLK  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
N
All channels  
14  
Bits  
MAX125A/MAX126A  
±2  
±4  
±1  
Integral Nonlinearity  
(Note 2)  
INL  
LSB  
MAX12_B/C  
±2  
MAX12_A/B, guaranteed monotonic to 14 bits  
Differential Nonlinearity  
DNL  
LSB  
mV  
MAX125C/MAX126C,  
guaranteed monotonic to 13 bits  
±2  
T
A
= +25°C  
±5  
±15  
±25  
5
Bipolar Zero Error  
T
A
= T to T  
MIN MAX  
Bipolar Zero-Error Match  
Zero-Code Tempco  
Between all channels  
1.2  
±5  
±5  
mV  
ppm/°C  
T
A
= +25°C  
±10  
±15  
5
Gain Error  
mV  
T
A
= T to T  
MIN MAX  
Gain Error Match  
Between all channels  
1.2  
±5  
mV  
Gain Error Tempco  
ppm/°C  
DYNAMIC PERFORMANCE (f  
= 16MHz, f = 10.06kHz) (Notes 1, 3)  
IN  
CLK  
MAX125  
MAX126  
72  
70  
75  
72  
Signal-to-Noise Plus  
Distortion (Note 4)  
Single-channel mode,  
channel 1A, 250ksps  
SINAD  
THD  
dB  
dB  
dB  
dB  
Total Harmonic  
Distortion (Notes 4, 5)  
Single-channel mode, channel 1A, 250ksps  
Single-channel mode, channel 1A, 250ksps  
Single-channel mode, channel 1A, 250ksps  
-89  
90  
-80  
Spurious-Free Dynamic  
Range (Note 4)  
SFDR  
80  
Channel-to-Channel  
Isolation (Note 6)  
80  
2
_______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V ±5%, AV = -5V ±5%, DV  
= +5V ±5%, V  
= 2.5V, AGND = DGND = 0V, 4.7µF capacitor from REFOUT to  
DD  
SS  
DD  
REFIN  
AGND, 0.1µF capacitor from REFIN to AGND, f  
noted.)  
= 16MHz, external clock, 50% duty cycle, T = T  
to T , unless otherwise  
MAX  
CLK  
A
MIN  
PARAMETER  
ANALOG INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX125  
MAX126  
±5  
Input Voltage Range  
Input Current  
V
V
IN  
±2.5  
MAX125, V = ±5V  
IN  
I
IN  
±667  
16  
µA  
MAX126, V = ±2.5V  
IN  
Input Capacitance  
TRACK/HOLD  
C
(Note 7)  
pF  
IN  
Acquisition Time  
t
1
µs  
MHz  
MHz  
mV/ms  
ns  
ACQ  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Droop Rate  
8
0.5  
2
Aperture Delay  
5
Aperture Jitter  
30  
500  
psRMS  
ps  
Aperture-Delay Matching  
REFERENCE OUTPUT (Note 8)  
Output Voltage  
V
T
= +25°C  
2.475  
2.500  
±1  
2.525  
V
%
REFOUT  
A
External Load Regulation  
REFOUT Tempco  
0mA < I  
< 1mA  
LOAD  
(Note 9)  
30  
ppm/°C  
External Capacitive  
Bypass at REFIN  
0.1  
4.7  
µF  
µF  
External Capacitive  
Bypass at REFOUT  
22  
REFERENCE INPUT  
Input Voltage Range  
Input Current  
2.50 ±10%  
10  
V
REFIN = 2.5V  
(Note 10)  
±10  
10  
µA  
k  
pF  
Input Resistance  
Input Capacitance  
EXTERNAL CLOCK  
External Clock Frequency  
(Note 7)  
0.1  
2.4  
16  
MHz  
DIGITAL INPUTS (CONVST, RD, WR, CS, CLK, A0–A3) (Note 1)  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
IL  
0.8  
±1  
CONVST, RD, WR, CS, CLK  
Input Current  
I
IN  
µA  
pF  
A0–A3  
±10  
15  
Input Capacitance  
C
(Note 7)  
IN  
_______________________________________________________________________________________  
3
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= +5V ±5%, AV = -5V ±5%, DV  
= +5V ±5%, V  
= 2.5V, AGND = DGND = 0V, 4.7µF capacitor from REFOUT to  
DD  
SS  
DD  
REFIN  
AGND, 0.1µF capacitor from REFIN to AGND, f  
noted.)  
= 16MHz, external clock, 50% duty cycle, T = T  
to T , unless otherwise  
MAX  
CLK  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (D0–D13, INT) (Note 1)  
Output High Voltage  
V
I
= 1mA  
4
V
V
OH  
OUT  
Output Low Voltage  
V
OL  
I
= -1.6mA  
0.4  
OUT  
Three-State Leakage Current  
D0–D13  
±10  
µA  
Three-State Output  
Capacitance  
(Note 7)  
10  
pF  
POWER REQUIREMENTS  
Positive Supply Voltage  
Negative Supply Voltage  
Digital Supply Voltage  
AV  
4.75  
-5.25  
4.75  
5
-5  
5
5.25  
-4.75  
5.25  
25  
V
V
DD  
AV  
SS  
5/MAX126  
DV  
V
DD  
Positive Supply Current  
Negative Supply Current  
Digital Supply Current  
I(AV  
)
17  
-13  
3
mA  
mA  
mA  
mA  
mA  
mA  
LSB  
LSB  
mW  
DD  
I(AV  
)
-17  
-1  
SS  
I(DV  
)
5
3
DD  
Shutdown Positive Current  
Shutdown Negative Current  
Shutdown Digital Current  
Positive Supply Rejection  
Negative Supply Rejection  
Power Dissipation  
3
PSRR+  
PSRR-  
(Note 11)  
(Note 11)  
(Note 12)  
±1  
±2  
±2  
250  
165  
4
_______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
TIMING CHARACTERISTICS (Figure 4)  
(AV = +5V, AV = -5V, DV = +5V, AGND = DGND = 0V, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
SS  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
30  
0
TYP  
MAX  
UNITS  
ns  
t
CONVST Pulse Width  
CS to WR Setup Time  
CS to WR Hold Time  
WR Low Pulse Width  
CS to CONVST Delay  
Address Setup Time  
Address Hold Time  
RD to INT Delay  
CW  
t
ns  
CWS  
t
0
ns  
CWH  
t
30  
125  
30  
0
ns  
WR  
t
ns  
CSD  
t
ns  
AS  
t
ns  
AH  
t
ID  
25pF load  
30  
ns  
Delay Time Between Reads  
CS to RD Setup Time  
CS to RD Hold Time  
RD Low Pulse Width  
Data-Access Time  
t
40  
0
ns  
RD  
t
ns  
CRS  
CRH  
t
0
ns  
t
30  
ns  
RD  
t
25pF load (Note 13)  
25pF load (Note 14)  
Mode 1, 1 channel  
Mode 2, 2 channel  
Mode 3, 3 channel  
Mode 4, 4 channel  
Mode 1, 1 channel  
Mode 2, 2 channel  
Mode 3, 3 channel  
Mode 4, 4 channel  
Exiting shutdown  
30  
45  
3
ns  
DA  
DH  
Bus-Relinquish Time  
t
5
ns  
6
Conversion Time  
t
µs  
CONV  
9
12  
250  
142  
100  
76  
Conversion Rate/Channel  
Start-Up Time  
ksps  
µs  
5
Note 1: AV = +5V, AV = -5V, DV = +5V, V  
= 2.500V (external), V = ±5V (MAX125) or ±2.5V (MAX126).  
IN  
DD  
SS  
DD  
REFIN  
Note 2: Relative accuracy is the analog values deviation at any code from its theoretical value after the full-scale range has been  
calibrated.  
Note 3: CLK synchronized with CONVST.  
Note 4:  
f
= 10.06kHz, V = ±5V (MAX125) or ±2.5V (MAX126).  
IN IN  
Note 5: First five harmonics.  
Note 6: All inputs except CH1A driven with ±5V (MAX125) or ±2.5V (MAX126) 10kHz signal; CH1A connected to AGND and digitized.  
Note 7: Guaranteed by design. Not production tested.  
Note 8: AV = +5V, AV = -5V, DV = +5V, V = 0V (all channels).  
DD  
SS  
DD  
IN  
Note 9: Temperature drift is defined as the change in output voltage from +25°C to T  
TC = [REFOUT/REFOUT] / T.  
or T . It is calculated as  
MAX  
MIN  
Note 10: See Figure 2.  
Note 11: Defined as the change in positive full scale caused by a ±5% variation in the nominal supply voltage. Tested with one input  
at full scale and all others at AGND. V = 2.5V (internal).  
REFIN  
Note 12: Tested with V = AGND on all channels, V  
= 2.5V (internal).  
IN  
REFIN  
Note 13: The data-access time is defined as the time required for an output to cross 0.8V or 2.0V. It is measured using the circuit of  
Figure 1. The measured number is then extrapolated back to determine the value with a 25pF load.  
Note 14: The bus-relinquish time is derived from the measured time taken for the data outputs to change 0.5V when loaded with the  
circuit of Figure 1. The measured number is then extrapolated back to remove the effects of charging/discharging the 120pF  
capacitor. Thus, the time given is the parts true bus-relinquish time, independent of the external bus loading capacitance.  
_______________________________________________________________________________________  
5
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
______________________________________________________________P in De s c rip t io n  
PIN  
1, 2  
3, 4  
5
NAME  
FUNCTION  
Channel 2 Multiplexed Inputs, single-ended  
CH2B, CH2A  
CH1B, CH1A  
Channel 1 Multiplexed Inputs, single-ended  
+5V ±5% Analog Supply Voltage  
AV  
DD  
6
REFIN  
REFOUT  
AGND  
External Reference Input/Internal Reference Output. Bypass with a 0.1µF capacitor to AGND.  
Reference-Buffer Output. Bypass with a 4.7µF capacitor to AGND.  
Analog Ground. Both pins must be tied to ground.  
Data Bits. D13 = MSB.  
7
8, 36  
916  
17  
D13–D6  
DV  
+5V ±5% Digital Supply Voltage  
DD  
5/MAX126  
18  
DGND  
D5, D4  
D3/A3–D0/A0  
CLK  
Digital Ground  
19, 20  
21–24  
25  
Data Bits  
Bidirectional Data Bits/Address Bits. D0/A0 = LSB.  
Clock Input (duty cycle must be 30% to 70%).  
Chip-Select Input (active-low)  
26  
CS  
27  
Write Input (active-low)  
WR  
28  
Read Input (active-low)  
RD  
29  
Conversion-Start Input. Rising edge initiates sampling and conversion sequence.  
Interrupt Output. Falling edge indicates the end of a conversion sequence.  
-5V ±5% Analog Supply Voltage  
CONVST  
INT  
30  
31  
AV  
SS  
32, 33  
34, 35  
CH4A, CH4B  
CH3A, CH3B  
Channel 4 Multiplexed Inputs, single-ended  
Channel 3 Multiplexed Inputs, single-ended  
_______________De t a ile d De s c rip t io n  
The MAX125/MAX126 use a successive-approximation  
conversion technique and four simultaneous-sampling  
track/hold (T/H) amplifiers to convert analog signals into  
14-bit digital outputs. Each T/H has two multiplexed  
inputs, allowing a total of eight inputs. Each T/H output  
is converted and stored in memory to be accessed  
sequentially by the parallel interface with successive  
re a d c yc le s . The MAX125/MAX126 inte rna l mic ro-  
sequencer can be programmed to digitize one, two,  
three, or four inputs sampled simultaneously from either  
of the two banks of four inputs (see Figure 2).  
1.6mA  
TO OUTPUT  
PIN  
1.6V  
120pF  
1.0mA  
The c onve rs ion timing a nd c ontrol s e q ue nc e s a re  
derived from a 16MHz external clock, the CONVST  
Figure 1. Load Circuit for Access Time and Bus Relinquish Time  
6
_______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
REFIN  
AGND  
REFOUT  
BANDGAP REFERENCE  
2.50V  
10k  
CH1A  
CH1B  
A
B
MUX  
MUX  
MUX  
MUX  
T/H  
T/H  
CH2A  
CH2B  
A
B
V
REF  
MUX  
COMP  
CH3A  
A
B
T/H  
T/H  
CH3B  
CH4A  
14-BIT  
DAC  
A
B
SAR  
CH4B  
V
REF  
14x4  
RAM  
D0/A0 (LSB)  
D1/A1  
AV  
DD  
AGND  
D2/A2  
THREE-STATE  
OUTPUT  
DRIVERS  
AV  
SS  
D3/A3  
D13 (MSB)  
CONTROL LOGIC  
MAX125  
MAX126  
BUS INTERFACE  
CLK  
CONVST  
INT  
CS  
RD  
WR  
DV  
DD  
DGND  
Figure 2. Functional Diagram  
_______________________________________________________________________________________  
7
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
HOLD  
FROM MICROSEQUENCER  
C
7pF  
HOLD  
BUFFER  
TRACK  
HOLD  
CH_A  
5k  
S1A  
S2A  
TRACK  
C
IN  
5k  
S3A  
MUX  
S1B  
S2B  
5k  
CH_B  
5/MAX126  
C
IN  
5k  
S3B  
REFOUT  
DAC  
SAR  
MAX125  
MAX126  
Figure 3. Equivalent Input Circuit  
signal, and the programmed mode. The T/H amplifiers  
hold the input voltages at the CONVST rising edge.  
Additional CONVST pulses are ignored until the last  
conversion for the sample is complete. The ADC con-  
verts each assigned channel in 3µs and stores the  
result in an internal 4x14-bit memory.  
An a lo g In p u t Ra n g e a n d In p u t P ro t e c t io n  
The MAX125s input range is ±5V, and the MAX126s  
input range is ±2.5V. The input resistance for both parts  
is 10k. An input protection structure allows input volt-  
ages to ±17V without harming the IC. This protection is  
also active in shutdown mode.  
At the end of the last conversion, INT goes low and the  
T/H amplifiers begin to track the inputs again. The data  
can be accessed by applying successive pulses to the  
RD pin. Successive reads access data words sequen-  
tially. The memory is not random-access; data from  
CH1 is a lwa ys re a d firs t. Afte r a c c e s s ing a ll p ro-  
grammed channels, the address pointer selects CH1  
again. Additional read pulses cycle through the data  
words. CS can be held low during successive reads.  
Tra c k /Ho ld s  
The MAX125/MAX126 feature four simultaneous T/Hs.  
Each T/H has two multiplexed inputs. A T-switch input  
configuration provides excellent hold-mode isolation.  
Allow 1µs acquisition time for 14-bit accuracy.  
The T/H aperture delay is typically 10ns. The 500ps  
aperture-delay mismatch between the T/Hs allows the  
relative phase information of up to four different inputs  
to be preserved. Figure 3 shows the equivalent input  
circuit, illustrating the ADCs sampling architecture.  
Only one of four T/H stages with its two multiplexed  
inputs (CH_A and CH_B) is shown. All switches are in  
track configuration for channel A. An internal buffer  
charges the hold capacitor to minimize the required  
acquisition time between conversions. The analog input  
a pp e a rs a s a 10kre sistor in p a ra lle l with a 16pF  
capacitor.  
In p u t Ba n d w id t h  
The T/Hs input tracking circuitry has an 8MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
us ing und e rs a mp ling te c hniq ue s . To a void hig h-  
frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
8
_______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
t
CW  
CONVST  
INT  
t
t
CONV  
ACQ  
t
ID  
t
CWH  
t
t
CSD  
CWS  
CS  
RD  
t
CRS  
t
CRH  
t
RD  
t
t
WR  
RD  
WR  
t
DA  
t
DH  
DATA  
CH1  
CH2  
CH3  
CH4  
DATA IN  
t
AS  
t
AH  
Figure 4. Timing Diagram  
RD inputs and forces the interface into a high-Z state.  
Figure 4 details the interface timing.  
CS  
P ro g ra m m in g Mo d e s  
The MAX125/MAX126 have eight conversion modes  
plus power-down, which are programmed through a  
bidirectional parallel interface. At power-up, the devices  
d e fa ult to the mod e Inp ut Mux A/Sing le -Cha nne l  
Conversion. The user can select between two banks  
(mux inputs A or mux inputs B) of four simultaneous-  
sampled input channels, as illustrated in Figure 2. An  
internal microsequencer can be programmed to convert  
one, two, three, or four channels of the selected bank  
per sample. For a single-channel conversion, CH1 is  
digitized, and then INT goes low to indicate completion  
of the conversion. For multichannel conversions, INT  
goes low after the last channel has been digitized.  
WR  
A0  
(LSB)  
A1  
A2  
A3  
To input data into the MAX125/MAX126, pull CS low,  
program the bidirectional pins A0–A3 (Table 1), and  
pulse WR low. Data is latched into the devices on the  
WR or CS rising edge. The ADC is now ready to convert.  
Once programmed, the ADCs continue operating in the  
same mode until they are reprogrammed or until power  
is removed. Figure 5 shows an example of program-  
ming a four-channel conversion using Input Mux A.  
Figure 5. Programming a Four-Channel Conversion, Input Mux A  
Between conversions, the buffer input is connected to  
channel 1 of the selected track/hold bank. When a  
channel is not selected, switches S1, S2, and S3 are  
placed in hold mode to improve channel-to-channel  
isolation.  
Dig it a l In t e rfa c e  
Input data (A0–A3) and output data (D0–D13) are multi-  
plexed on a three-state bidirectional interface. This par-  
allel I/O can easily be interfaced with a microprocessor  
(µP) or DSP. CS, WR, and RD control the write and read  
operations. CS is the standard chip-select signal, which  
enables the controller to address the MAX125/MAX126  
as an I/O port. When CS is high, it disables the WR and  
Starting a Conversion  
After programming the MAX125/MAX126 as outlined in  
the Programming Modes section, pulse CONVST low to  
initiate a conversion sequence. The analog inputs are  
sampled at the CONVST rising edge. Do not start a  
new conversion while the conversion is in progress.  
Monitor the INT output. A falling edge indicates the end  
of a conversion sequence.  
_______________________________________________________________________________________  
9
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
Table 1. Modes of Operation  
CONVERSION  
TIME (µs)  
A3  
A2  
A1  
A0  
MODE  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
3
6
Input Mux A/Single-Channel Conversion (default at power-up)  
Input Mux A/Two-Channel Conversion  
Input Mux A/Three-Channel Conversion  
Input Mux A/Four-Channel Conversion  
Input Mux B/Single-Channel Conversion  
Input Mux B/Two-Channel Conversion  
Input Mux B/Three-Channel Conversion  
Input Mux B/Four-Channel Conversion  
Power-Down  
9
12  
3
6
9
12  
X = Dont care  
5/MAX126  
address pointer is reset to CH_1. For multichannel con-  
ve rs ions , up to four RD fa lling e d g e s s e q ue ntia lly  
access the data for channels 1 through 4. For n chan-  
nels converted (1 < n 4), the address pointer is reset  
to CH_1 after n RD pulses. Do not perform a read oper-  
ation during conversion, as it will corrupt the conver-  
sions accuracy.  
REFOUT  
7
6
(2.5V)  
(2.5V)  
TO DAC  
4.7µF  
A = 1  
V
__________Ap p lic a t io n s In fo rm a t io n  
REFIN  
10k  
Ex t e rn a l Clo c k  
The MAX125/MAX126 require a TTL-compatible clock  
up to 16MHz for p rop e r op e ra tion. The c loc k d uty  
cycles range is between 30% and 70%.  
MAX125  
MAX126  
0.1µF  
In t e rn a l a n d Ex t e rn a l Re fe re n c e  
The MAX125/MAX126 can be used with an internal or  
external reference voltage. An external reference can  
be connected directly at REFIN. An internal buffer with  
a gain of +1 provides 2.5V at REFOUT.  
2.5V  
Internal Reference  
The full-scale range with the internal reference is ±5V  
for the MAX125 and ±2.5V for the MAX126. Bypass  
REFIN with a 0.1µF capacitor to AGND and bypass the  
REFOUT pin with a 4.7µF (min) capacitor to AGND  
(Figure 6). The maximum value to compensate the ref-  
erence buffer is 22µF. Larger values are acceptable if  
low-ESR capacitors are used.  
Figure 6. Internal Reference  
Reading a Conversion  
Digitized data from up to four channels are stored in  
memory to be read out through the parallel interface.  
After receiving an INT signal, the user can access up to  
four conversion results by performing up to four read  
operations.  
External Reference  
For operation over a wide temperature range, an exter-  
nal 2.5V reference with tighter specifications improves  
a c c ura c y. The MAX6325 is a n e xc e lle nt c hoic e  
to ma tc h the MAX125/MAX126 a c c ura c y ove r the  
commercial and extended temperature ranges with a  
With CS low, the c onve rs ion re s ult from CH_1 is  
accessed, and INT is reset high on the first RD falling  
edge. On the RD rising edge, the internal address  
p ointe r is a d va nc e d . If a s ing le c onve rs ion is p ro-  
g ra mme d , only one RD p uls e is re q uire d , a nd the  
10 ______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
OUTPUT CODE  
REFOUT  
7
(2.5V)  
011 . . . 111  
011 . . . 110  
TO DAC  
4.7µF  
000 . . . 010  
000 . . . 001  
000 . . . 000  
A = 1  
V
4V  
16384  
REFOUT  
1LSB =  
(2.5V)  
REFIN  
10k  
6
MAX125  
MAX126  
OUT  
111 . . . 111  
111 . . . 110  
111 . . . 101  
MAX6325  
100 . . . 001  
100 . . . 000  
2.5V  
ZERO  
- FS  
+FS - 1LSB  
INPUT VOLTAGE (LSB)  
FS = 2 x V  
(MAX125)  
REFOUT  
FS = V  
(MAX126)  
REFOUT  
Figure 7. External Reference  
Figure 8. Bipolar Transfer Function  
1ppm/°C (max) temperature drift. Connect an external  
reference at REFIN as shown in Figure 7. The minimum  
impedance is 7kfor DC currents in both normal oper-  
ation and shutdown. Bypass REFOUT with a 4.7µF low-  
ESR capacitor.  
buffers settling time and the bypass capacitors value  
dominate the power-up delay. With the recommended  
4.7µF at REFOUT, the power-up delay is typically 5µs.  
Tra n s fe r Fu n c t io n  
The MAX125/MAX126 have bipolar input ranges. Fig-  
ure 8 shows the bipolar/output transfer function. Code  
transitions occur at successive-integer least significant  
bit (LSB) values. Output coding is twos-complement  
b ina ry with 1LSB = 610µV for the MAX125 a nd  
1LSB = 305µV for the MAX126.  
P o w e r-On Re s e t  
When power is first applied, the internal power-on-reset  
c irc uitry a c tiva te s the MAX125/MAX126 with INT =  
high, ready to convert. The default conversion mode is  
Inp ut Mux A/Sing le -Cha nne l Conve rs ion. Se e the  
Programming Modes section if other configurations are  
desired.  
Ou t p u t De m u lt ip le x e r  
An output demultiplexer circuit is useful for isolating  
data from one channel in a four-channel conversion  
sequence. Figure 9s circuit uses the external 16MHz  
clock and the INT signal to generate four RD pulses  
and a latch clock to save data from the desired chan-  
nel. CS must be low during the four RD pulses. The  
c ha nne l is s e le c te d with the b ina ry c od ing of two  
switches. A 16-bit 16373 latch simplifies layout.  
After the power supplies have been stabilized, the reset  
time is 5µs ; no c onve rs ions s hould b e p e rforme d  
during this phase. At power-up, data in memory is  
undefined.  
S o ft w a re P o w e r-Do w n  
Software power-down is activated by setting bit A3 of  
the control word high (Table 1). It is asserted after the  
WR or CS rising edge, at which point the ADC immedi-  
ately powers down to a low quiescent-current state.  
Mo t o r-Co n t ro l Ap p lic a t io n s  
Vector motor control requires monitoring of the individ-  
ual phase currents. In their most basic application, the  
MAX125/MAX126 simultaneously sample two currents  
(CH1A and CH2A, Figure 10) and preserve the neces-  
sary relative phase information. Only two of the three  
phase currents have to be digitized, because the third  
component can be mathematically derived with a coor-  
dinate transformation.  
AV  
drops to less than 1.5mA, and AV is reduced  
DD  
SS  
to less than 1mA. The ADC blocks and reference buffer  
are turned off, but the digital interface and the refer-  
ence remain active for fast power-up recovery. Wake  
up the MAX125/MAX126 b y writing a c ontrol word  
(A0–A3, Table 1). The bidirectional interface interprets  
a logic zero at A3 as the start signal and powers up in  
the mode selected by A0, A1, and A2. The reference  
______________________________________________________________________________________ 11  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
V
CC  
V
CC  
HC161  
1/2 HC74  
Q
PRE  
D
CLR  
ENP  
RD  
P = Q  
G
Q
ENT  
LOAD  
HC688  
CLR  
V
(LSB) 0  
1
CC  
A
B
C
P0  
P1  
P2  
P3  
2
3
INT  
D
RCO  
P4  
P5  
P6  
P7  
5/MAX126  
EXTERNAL  
CLOCK  
V
CC  
Q0  
Q1  
Q2  
Q3  
LATCH  
CLOCK  
(TO 16373 LATCH)  
10k  
Q4  
Q5  
Q6  
Q7  
CH1  
0
1
0
1
0
0
1
1
EXTERNAL  
CLOCK  
CH2  
CH3  
CH4  
Figure 9. Output Demultiplexer Circuit  
The circuit of Figure 10 shows a typical vector motor-  
control application using all available inputs of the  
MAX125/MAX126. CH1A a nd CH2A a re c onne c te d  
to two isolated Hall-effect current sensors and are a  
p a rt of the c urre nt (torq ue ) fe e d b a c k loop . The  
MAX125/MAX126 digitize the currents and deliver raw  
data to the following DSP and controller stages, where  
the vector processing takes place. Sensorless vector  
control uses a computer model for the motor and an  
algorithm to split each output current into its magnetiz-  
ing (stator current) and torque-producing (rotor current)  
components.  
If a 2- to 3-phase conversion is not practical, three cur-  
rents can be sampled simultaneously with the addition  
of a third s e ns or (not s hown). Op tiona l volta g e  
(position) feedback can be derived by measuring two  
phase voltages (CH3A, CH4A). Typically, an isolated  
differential amplifier is used between the motor and the  
MAX125/MAX126. Again, the third phase voltage can  
be derived from the magnitude (phase voltage) and its  
relative phase.  
For optimum speed control and good load regulation  
close to zero speed, additional velocity and position  
feedback are derived from an encoder or resolver and  
12 ______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
MAIN DC  
RESOLVER/  
ENCODER  
EXTERNAL  
SETPOINTS  
AC  
MOTOR  
POWER  
STAGE  
CONTROLLER  
R/E  
A
B
A
B
14  
AUX  
CH1  
CH2  
CH3  
CH4  
DSP  
MAX125  
MAX126  
MAIN DC  
TEMP  
A
B
A
B
14 BIT ADC +  
MICRO-  
SEQUENCER  
VELOCITY  
FEEDBACK  
µC  
Figure 10. Vector Motor Control  
brought to the MAX125/MAX126 at CH4B. The addi-  
tional channels can be used to evaluate slower analog  
inputs, such as the main DC bus voltage (CH2B), tem-  
perature sensors (CH3B), or other analog inputs (AUX,  
CH1B).  
connect that point to the system analog ground plane  
to avoid interference from other digital noise sources. If  
DGND is connected to the system digital ground, digi-  
tal noise may get through to the ADCs analog portion.  
The AGND pins must be connected directly to a low-  
impedance ground plane. Extra impedance between  
the pins and the ground plane increases crosstalk and  
degrades INL.  
P o w e r-S u p p ly Byp a s s in g  
a n d Gro u n d Ma n a g e m e n t  
For optimum system performance, use printed circuit  
b oa rd s with s e p a ra te a na log a nd d ig ita l g round  
planes. Wire-wrapped boards are not recommended.  
Connect the two ground planes together at the low-  
impedance power-supply source. Connect DGND and  
AGND together at the IC. For the best ground connec-  
tion, connect the DGND and AGND pins together and  
Bypass AV and AV with 0.1µF ceramic capacitors  
DD  
SS  
to AGND. Mount them with short leads close to the  
device. Ferrite beads may also be used to further iso-  
late the analog and digital power supplies. Bypass  
DV with a 0.1µF ceramic capacitor to DGND.  
DD  
______________________________________________________________________________________ 13  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
__________________P in Co n fig u ra t io n  
__________Typ ic a l Op e ra t in g Circ u it  
TOP VIEW  
CH1A  
CH1B  
CH2A  
CH2B  
CH3A  
CH3B  
CH4A  
CH4B  
CH2B  
CH2A  
CH1B  
CH1A  
1
2
3
4
5
6
7
8
9
36 AGND  
35 CH3B  
34 CH3A  
33 CH4B  
32 CH4A  
D0/A0  
D1/A1  
D2/A2  
D3/A3  
D4  
D5  
D6  
D7  
D8  
AV  
DD  
MAX125  
MAX126  
MAX125  
MAX126  
REFIN  
REFOUT  
AGND  
31 AV  
SS  
+5V  
AV  
DD  
30 INT  
D9  
0.1µF  
D10  
D11  
D12  
D13  
CONVST  
29  
AGND  
0.1µF  
D13 (MSB)  
28 RD  
5/MAX126  
AV  
SS  
-5V  
D12 10  
D11 11  
D10 12  
D9 13  
D8 14  
D7 15  
D6 16  
27 WR  
26 CS  
+5V  
REFIN  
DV  
DD  
0.1µF  
4.7µF  
0.1µF  
25 CLK  
24 D0/A0 (LSB)  
23 D1/A1  
22 D2/A2  
21 D3/A3  
20 D4  
REFOUT  
DGND  
CLK CONVST INT CS RD WR  
DV 17  
DD  
DGND 18  
19 D5  
16MHz  
SSOP  
CONTROL INTERFACE  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 4219  
SUBSTRATE CONNECTED TO AV  
SS  
14 ______________________________________________________________________________________  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
5/MAX126  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
2 x 4 -Ch a n n e l, S im u lt a n e o u s -S a m p lin g  
1 4 -Bit DAS  
NOTES  
5/MAX126  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX126AEAX+T

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM

MAX126BCAX

2x4-Channel, Simultaneous-Sampling 14-Bit DAS
MAXIM

MAX126BCAX+

暂无描述
MAXIM

MAX126BEAX

2x4-Channel, Simultaneous-Sampling 14-Bit DAS
MAXIM

MAX126BEAX+T

暂无描述
MAXIM

MAX126CCAX

2x4-Channel, Simultaneous-Sampling 14-Bit DAS
MAXIM

MAX126CCAX+

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM

MAX126CCAX+T

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM

MAX126CCAX+TD

ADC, Successive Approximation, 14-Bit, 1 Func, 4 Channel, Parallel, Word Access, PDSO36, 0.163 INCH, 0.80 MM PITCH, ROHS COMPLIANT, SSOP-36
MAXIM

MAX126CCAX-T

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM

MAX126CEAX

2x4-Channel, Simultaneous-Sampling 14-Bit DAS
MAXIM

MAX126CEAX+

Analog Circuit, PDSO36, 0.300 INCH, 0.80 MM PITCH, SSOP-36
MAXIM