MAX1257BETM+T [MAXIM]

暂无描述;
MAX1257BETM+T
型号: MAX1257BETM+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

传感器 温度传感器 先进先出芯片
文件: 总43页 (文件大小:561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3295; Rev 7; 2/12  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
General Description  
Features  
The MAX1220/MAX1257/MAX1258 integrate a 12-bit,  
multichannel, analog-to-digital converter (ADC), and a 12-  
bit, octal, digital-to-analog converter (DAC) in a single IC.  
These devices also include a temperature sensor and  
configurable general-purpose I/O ports (GPIOs) with a  
o 12-Bit, 225ksps ADC  
Analog Multiplexer with True-Differential  
Track/Hold (T/H)  
16 Single-Ended Channels or 8 Differential  
Channels (Unipolar or Bipolar)  
®
(MAX1257/MAX1258)  
25MHz SPI-/QSPI™-/MICROWIRE -compatible serial  
Eight Single-Ended Channels or Four Differential  
Channels (Unipolar or Bipolar) (MAX1220)  
Excellent Accuracy: 0ꢀ5 ꢁSB ꢂIꢁ, 0ꢀ5 ꢁSB DIꢁ  
interface. The ADC is available in 8 and 16 input-channel  
versions. The octal DAC outputs settle within 2.0µs and  
the ADC has a 225ksps conversion rate.  
o 12-Bit, Octal, 2µs Settling DAC  
All devices include an internal reference (2.5V or  
4.096V) for both the ADC and DAC. Programmable ref-  
erence modes allow the use of an internal reference, an  
external reference, or a combination of both. Features  
such as an internal 1°C accurate temperature sensor,  
FIFO, scan modes, programmable internal or external  
clock modes, data averaging, and AutoShutdown™  
allow users to minimize power consumption and proces-  
sor requirements. The low glitch energy (4nVs) and low  
digital feedthrough (0.5nVs) of the integrated octal  
DACs make these devices ideal for digital control of  
fast-response closed-loop systems.  
The devices are guaranteed to operate with a supply volt-  
age from +2.7V to +3.6V (MAX1257) and from +4.75V to  
+5.25V (MAX1220/MAX1258). These devices consume  
2.5mA at 225ksps throughput, only 22µA at 1ksps  
throughput, and under 0.2µA in the shutdown mode. The  
MAX1257/MAX1258 feature 12 GPIOs, while the  
MAX1220 offers four GPIOs that can be configured as  
inputs or outputs.  
Ultra-ꢁow Glitch Energy (4nV•s)  
Power-Up Options from Zero Scale or Full Scale  
Excellent Accuracy: 0ꢀ5 ꢁSB ꢂIꢁ  
o ꢂnternal Reference or External Single-Ended/  
Differential Reference  
ꢂnternal Reference Voltage 2ꢀ5V or 4ꢀ096V  
o ꢂnternal 1ꢃC Accurate Temperature Sensor  
o On-Chip FꢂFO Capable of Storing 16 ADC  
Conversion Results and One Temperature Result  
o On-Chip Channel-Scan Mode and ꢂnternal  
Data-Averaging Features  
o Analog Single-Supply Operation  
+2ꢀ7V to +3ꢀ6V or +4ꢀ75V to +5ꢀ25V  
o Digital Supply: +2ꢀ7V to AVDD  
o 25MHz, SPꢂ/QSPꢂ/MꢂCROWꢂRE Serial ꢂnterface  
o AutoShutdown Between Conversions  
o ꢁow-Power ADC  
2ꢀ5mA at 225ksps  
22µA at 1ksps  
The MAX1220 is available in a 36-pin TQFN package.  
The MAX1257/MAX1258 are available in 48-pin TQFN  
package. All devices are specified over the  
-40°C to +85°C temperature range.  
0ꢀ2µA at Shutdown  
o ꢁow-Power DAC: 1ꢀ5mA  
o Evaluation Kit Available (Order MAX1258EVKꢂT)  
Applications  
Controls for Optical Components  
Base-Station Control Loops  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corp.  
System Supervision and Control  
Data-Acquisition Systems  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations appear at end of data sheetꢀ  
Ordering Information/Selector Guide  
REF  
VOLTAGE  
(V)  
ANALOG  
SUPPLY  
VOLTAGE (V)  
RESOLUTION  
BITS**  
ADC  
CHANNELS  
DAC  
CHANNELS  
PART  
PIN-PACKAGE  
GPIOs  
MAX1220BETX+  
MAX1257BETM+  
MAX1258BETM+  
36 Thin QFN-EP*  
48 Thin QFN-EP*  
48 Thin QFN-EP*  
4.096  
2.5  
4.75 to 5.25  
2.7 to 3.6  
12  
12  
12  
8
8
8
8
4
16  
16  
12  
12  
4.096  
4.75 to 5.25  
Iote: All devices are specified over the -40°C to +85°C operating range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Number of resolution bits refers to both DAC and ADC.  
________________________________________________________________ Maxim ꢂntegrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at wwwꢀmaxim-icꢀcomꢀ  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
ABSOꢁUTE MAXꢂMUM RATꢂIGS  
AVDD to AGND ........................................................-0.3V to +6V  
DGND to AGND.....................................................-0.3V to +0.3V  
DVDD to AVDD......................................................-3.0V to +0.3V  
Digital Inputs to DGND.............................................-0.3V to +6V  
Continuous Power Dissipation (multilayer board, T = +70°C)  
A
36-Pin TQFN (6mm x 6mm)  
(derate 35.7mW/°C above +70°C)......................2857.1mW  
48-Pin TQFN (7mm x 7mm)  
Digital Outputs to DGND........................-0.3V to (V  
Analog Inputs, Analog Outputs and REF_  
to AGND .............................................-0.3V to (V  
Maximum Current into Any Pin (except AGND, DGND, AVDD,  
DVDD, and OUT_)...........................................................50mA  
Maximum Current into OUT_.............................................100mA  
+ 0.3V)  
(derate 40mW/°C above +70°C)............................3200mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature ...................................................+260°C  
DVDD  
+ 0.3V)  
AVDD  
Iote: If the package power dissipation is not exceeded, one output at a time may be shorted to AVDD, DVDD, AGND, or DGND  
indefinitely.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
SYMBOꢁ  
COIDꢂTꢂOIS  
ADC  
MꢂI  
TYP  
MAX  
UIꢂTS  
DC ACCURACY (Iote 1)  
Resolution  
12  
Bits  
LSB  
07/MAX1258  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
0.5  
1
1.0  
1.0  
4.0  
4.0  
DNL  
LSB  
LSB  
Gain Error  
(Note 2)  
0.1  
0.8  
0.1  
LSB  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
ppm/°C  
LSB  
DYIAMꢂC SPECꢂFꢂCATꢂOIS (10kHz sine-wave input, V = 2ꢀ5V  
(MAX1257), V = 4ꢀ096V (MAX1220/MAX1258),  
P-P  
ꢂI  
P-P  
ꢂI  
225ksps, f  
= 3ꢀ6MHz)  
CꢁK  
Signal-to-Noise Plus Distortion  
SINAD  
THD  
70  
dB  
Total Harmonic Distortion  
(Up to the Fifth Harmonic)  
-76  
dBc  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Linear Bandwidth  
SFDR  
IMD  
72  
76  
100  
1
dBc  
dBc  
kHz  
f
= 9.9kHz, f  
= 10.2kHz  
IN1  
IN2  
SINAD > 70dB  
-3dB point  
Full-Power Bandwidth  
MHz  
COIVERSꢂOI RATE (Iote 3)  
External reference  
0.8  
µs  
Conversion  
clock  
Power-Up Time  
t
PU  
Internal reference (Note 4)  
218  
cycles  
2
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
Acquisition Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
(Note 5)  
0.6  
µs  
ACQ  
Internally clocked  
Externally clocked  
5.5  
Conversion Time  
t
µs  
CONV  
3.6  
0.1  
40  
External Clock Frequency  
Duty Cycle  
f
Externally clocked conversion (Note 5)  
3.6  
60  
MHz  
%
CLK  
Aperture Delay  
30  
ns  
Aperture Jitter  
< 50  
ps  
ANALOG INPUTS  
Unipolar  
Bipolar  
0
V
REF  
REF  
1
Input Voltage Range (Note 6)  
V
-V  
/2  
+V  
/2  
REF  
Input Leakage Current  
Input Capacitance  
0.01  
24  
µA  
pF  
INTERNAL TEMPERATURE SENSOR  
T
T
= +25°C  
0.7  
1.0  
1/8  
A
Measurement Error (Notes 5, 7)  
°C  
= T  
to T  
3.0  
A
MIN  
MAX  
Temperature Resolution  
°C/LSB  
INTERNAL REFERENCE  
MAX1257  
MAX1220/MAX1258  
2.482  
4.066  
2.50  
2.518  
4.126  
REF1 Output Voltage (Note 8)  
V
4.096  
REF1 Voltage Temperature  
Coefficient  
TC  
30  
ppm/°C  
REF  
REF1 Output Impedance  
6.5  
k
V
V
= 2.5V  
0.39  
0.63  
REF  
REF1 Short-Circuit Current  
EXTERNAL REFERENCE  
REF1 Input Voltage Range  
mA  
= 4.096V  
REF  
V
AVDD  
V
V
REF mode 11 (Note 4)  
1
V
V
REF1  
+ 0.05  
V
AVDD  
REF mode 01  
REF mode 11  
1
0
REF2 Input Voltage Range  
(Note 4)  
+ 0.05  
REF2  
1
_______________________________________________________________________________________  
3
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
= 2.5V (MAX1257), f  
MIN  
TYP  
MAX  
UNITS  
V
REF  
=
25  
80  
SAMPLE  
V
= 4.096V (MAX1220/MAX1258),  
REF  
REF1 Input Current (Note 9)  
I
40  
80  
µA  
REF1  
REF2  
f
= 225ksps  
SAMPLE  
Acquisition between conversions  
0.01  
25  
1
V
REF  
= 2.5V (MAX1257), f  
=
80  
SAMPLE  
V
REF  
= 4.096V (MAX1220/MAX1258),  
REF2 Input Current  
I
40  
80  
1
µA  
f
= 225ksps  
SAMPLE  
Acquisition between conversions  
0.01  
DAC  
DC ACCURACY (Note 10)  
Resolution  
12  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
0.5  
4
DNL  
Guaranteed monotonic  
(Note 8)  
1.0  
10  
V
3
10  
5
OS  
ppm of  
FS/°C  
Offset-Error Drift  
Gain Error  
GE  
(Note 8)  
10  
LSB  
07/MAX1258  
ppm of  
FS/°C  
Gain Temperature Coefficient  
DAC OUTPUT  
8
V
V
-
-
AVDD  
0.02  
No load  
0.02  
0.1  
Output-Voltage Range  
V
AVDD  
0.1  
10k load to either rail  
DC Output Impedance  
Capacitive Load  
0.5  
(Note 11)  
1
nF  
V
= 2.7V, V  
= 2.5V (MAX1257),  
REF  
AVDD  
2000  
500  
gain error < 1%  
Resistive Load to AGND  
R
L
V
AVDD  
= 4.75V, V  
= 4.096V  
REF  
(MAX1220/MAX1258), gain error < 2%  
From power-down mode, V  
From power-down mode, V  
= 5V  
25  
21  
1
AVDD  
AVDD  
Wake-Up Time (Note 12)  
1k Output Termination  
100k Output Termination  
µs  
k
= 2.7V  
Programmed in from power-down mode  
At wake-up or programmed in  
power-down mode  
100  
k
4
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (Notes 5, 13)  
Output-Voltage Slew Rate  
SR  
Positive and negative  
3
V/µs  
µs  
Output-Voltage Settling Time  
t
To 1 LSB, 400 - C00 hex (Note 7)  
2
5
S
Code 0, all digital inputs from 0 to  
Digital Feedthrough  
0.5  
nVs  
nVs  
V
DVDD  
Major Code Transition Glitch  
Impulse  
Between codes 2047 and 2048  
From V  
4
660  
720  
260  
320  
REF  
Output Noise (0.1Hz to 50MHz)  
µV  
µV  
P-P  
P-P  
Using internal reference  
From V  
Output Noise (0.1Hz to  
500kHz)  
REF  
Using internal reference  
DAC-to-DAC Transition  
Crosstalk  
0.5  
nVs  
INTERNAL REFERENCE  
REF1 Output Voltage (Note 8)  
REF1 Temperature Coefficient  
REF1 Short-Circuit Current  
MAX1257  
2.482  
4.066  
2.5  
4.096  
30  
2.518  
4.126  
V
MAX1220/MAX1258  
TC  
ppm/°C  
mA  
REF  
V
V
= 2.5V  
0.39  
0.63  
REF  
= 4.096V  
REF  
EXTERNAL-REFERENCE INPUT  
REF1 Input Voltage Range  
REF1 Input Impedance  
V
R
REF modes 01, 10, and 11 (Note 4)  
0.7  
70  
V
V
REF1  
AVDD  
100  
130  
k  
REF1  
DIGITAL INTERFACE  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST, LDAC)  
Input-Voltage High  
V
V
DVDD  
V
DVDD  
V
DVDD  
= 2.7V to 5.25V  
= 3.6V to 5.25V  
= 2.7V to 3.6V  
2.4  
V
V
IH  
0.8  
0.6  
10  
Input-Voltage Low  
V
IL  
Input Leakage Current  
Input Capacitance  
I
0.01  
15  
µA  
pF  
L
C
IN  
DIGITAL OUTPUT (DOUT) (Note 14)  
Output-Voltage Low  
V
I
I
= 2mA  
0.4  
10  
V
V
OL  
SINK  
= 2mA  
SOURCE  
V
DVDD  
0.5  
-
Output-Voltage High  
V
OH  
Three-State Leakage Current  
µA  
pF  
Three-State Output  
Capacitance  
C
15  
OUT  
_______________________________________________________________________________________  
5
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUT (EOC) (Note 14)  
Output-Voltage Low  
V
I
I
= 2mA  
0.4  
V
V
OL  
SINK  
= 2mA  
SOURCE  
V
DVDD  
0.5  
-
Output-Voltage High  
V
OH  
Three-State Leakage Current  
10  
µA  
pF  
Three-State Output  
Capacitance  
C
15  
OUT  
DIGITAL OUTPUTS (GPIO_) (Note 14)  
I
I
= 2mA  
0.4  
0.8  
GPIOB_, GPIOC_ Output-  
Voltage Low  
SINK  
SINK  
V
= 4mA  
GPIOB_, GPIOC_ Output-  
Voltage High  
V
V
-
-
DVDD  
0.5  
I
I
I
= 2mA  
V
V
SOURCE  
GPIOA_ Output-Voltage Low  
GPIOA_ Output-Voltage High  
Three-State Leakage Current  
= 15mA  
0.8  
10  
SINK  
DVDD  
0.8  
= 15mA  
V
SOURCE  
µA  
pF  
Three-State Output  
C
15  
OUT  
DD  
Capacitance  
07/MAX1258  
POWER REQUIREMENTS (Note 15)  
Digital Positive-Supply Voltage  
DV  
2.7  
V
V
AVDD  
Idle, all blocks shut down  
0.2  
1
4
µA  
mA  
Digital Positive-Supply Current  
DI  
DD  
Only ADC on, external reference  
MAX1257  
2.7  
3.6  
5.25  
2
Analog Positive-Supply Voltage  
Analog Positive-Supply Current  
AV  
V
DD  
MAX1220/MAX1258  
4.75  
Idle, all blocks shut down  
0.2  
2.8  
2.6  
1.5  
-77  
-80  
0.1  
µA  
f
f
= 225ksps  
= 100ksps  
4.2  
Only ADC on,  
external reference  
SAMPLE  
SAMPLE  
AI  
DD  
mA  
dB  
All DACs on, no load, internal reference  
MAX1257, V = 2.7V  
4
REF1 Positive-Supply  
Rejection  
AVDD  
PSRR  
PSRD  
MAX1220/MAX1258, V  
MAX1257, V  
= 4.75V  
AVDD  
= 2.7V to  
0.5  
0.5  
0.5  
0.5  
AVDD  
Output  
code =  
FFFhex  
DAC Positive-Supply Rejection  
ADC Positive-Supply Rejection  
mV  
MAX1220/MAX1258,  
= 4.75V to 5.25V  
0.1  
V
AVDD  
MAX1257, V  
= 2.7V to  
0.06  
0.06  
AVDD  
Full-  
PSRA  
mV  
scale  
input  
MAX1220/MAX1258,  
= 4.75V to 5.25V  
V
AVDD  
6
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figures 6–13)  
SCLK Clock Period  
t
40  
16  
16  
ns  
ns  
ns  
CP  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
40/60 duty cycle  
60/40 duty cycle  
CH  
t
CL  
GPIO Output Rise/Fall After  
CS Rise  
t
C
LOAD  
= 20pF  
100  
ns  
GOD  
GPIO Input Setup Before CS  
Fall  
t
0
ns  
ns  
ns  
GSU  
LDAC Pulse Width  
t
20  
1.8  
10  
1.8  
10  
10  
0
LDACPWL  
C
C
C
C
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
= 20pF, SLOW = 0  
= 20pF, SLOW = 1  
12.0  
40  
SCLK Fall to DOUT Transition  
(Note 16)  
LOAD  
LOAD  
LOAD  
LOAD  
t
t
DOT  
12.0  
40  
SCLK Rise to DOUT Transition  
(Notes 16, 17)  
ns  
DOT  
CS Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Hold Time  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
CS Pulse-Width High  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSS  
t
2000  
CSH  
t
10  
0
DS  
t
DH  
t
50  
CSPWH  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
EOC Fall to CS Fall  
t
C
C
= 20pF  
= 20pF  
25  
DOD  
LOAD  
t
1.5  
30  
25.0  
DOE  
LOAD  
t
RDS  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference on  
(Note 18)  
65  
CKSEL = 01 (temp sense) or CKSEL =  
10 (temp sense), internal reference  
initially off  
140  
CS or CNVST Rise to EOC  
Fall—Internally Clocked  
Conversion Time  
t
µs  
DOV  
CKSEL = 01 (voltage conversion)  
9
9
CKSEL = 10 (voltage conversion),  
internal reference on (Note 18)  
CKSEL = 10 (voltage conversion),  
internal reference initially off  
80  
CKSEL = 00, CKSEL = 01 (temp sense)  
CKSEL = 01 (voltage conversion)  
40  
ns  
µs  
CNVST Pulse Width  
t
CSW  
1.4  
_______________________________________________________________________________________  
7
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
EꢁECTRꢂCAꢁ CHARACTERꢂSTꢂCS (continued)  
(V  
= V  
= 2.7V to 3.6V (MAX1257), external reference V  
= 2.5V (MAX1257), V  
= 4.75V to 5.25V, V = 2.7V to V  
DVDD AVDD  
AVDD  
DVDD  
REF  
AVDD  
(MAX1220/MAX1258), external reference V  
unless otherwise noted. Typical values are at V  
Outputs are unloaded, unless otherwise noted.)  
= 4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), T = -40°C to +85°C,  
REF  
CLK A  
= V  
= 3V (MAX1257), V  
= V = 5V (MAX1220/MAX1258), T = +25°C.  
DVDD A  
AVDD  
DVDD  
AVDD  
Iote 1: Tested at V  
= V  
= +2.7V (MAX1257), V  
= +2.7V, V  
= +5.25V (MAX1220/MAX1258).  
DVDD  
AVDD  
DVDD  
AVDD  
Iote 2: Offset nulled.  
Iote 3: No bus activity during conversion. Conversion time is defined as the number of conversion clock cycles multiplied by the  
clock period.  
Iote 4: See Table 5 for reference-mode details.  
Iote 5: Not production tested. Guaranteed by design.  
Iote 6: See the ADC/DAC References section.  
Iote 7: Fast automated test, excludes self-heating effects.  
Iote 8: Specified over the -40°C to +85°C temperature range.  
Iote 9: REFSEL[1:0] = 00 and when DACs are not powered up.  
Iote 10: DAC linearity, gain, and offset measurements are made between codes 115 and 3981.  
Iote 11: The DAC buffers are guaranteed by design to be stable with a 1nF load.  
Iote 12: Time required by the DAC output to power up and settle within 1 LSB in the external reference mode.  
Iote 13: All DAC dynamic specifications are valid for a load of 100pF and 10k.  
Iote 14: Only one digital output (either DOUT, EOC, or the GPIOs) can be indefinitely shorted to either supply at one time.  
Iote 15: All digital inputs at either V  
or DGND. V  
should not exceed V  
.
DVDD  
DVDD  
AVDD  
Iote 16: See the Reset Register section and Table 9 for details on programming the SLOW bit.  
Iote 17: Clock mode 11 only.  
Iote 18: First conversion after reference power-up is always timed as if the internal reference was initially off to ensure the internal  
reference has settled. Subsequent conversions are timed as shown.  
07/MAX1258  
8
_______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Typical Operating Characteristics  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SHUTDOWN CURRENT  
vs. TEMPERATURE  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
MAX1220/MAX1258  
MAX1257  
MAX1220/MAX1258  
MAX1257  
2.7  
4.750  
4.875  
5.000  
5.125  
5.250  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ADC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
MAX1257  
1024  
MAX1220/MAX1258  
MAX1220/MAX1258  
1024  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
ADC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC OFFSET ERROR  
vs. ANALOG SUPPLY VOLATGE  
1.00  
0.75  
0.50  
0.25  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.25  
-0.50  
-0.75  
-1.00  
MAX1220/MAX1258  
MAX1257  
MAX1257  
0
1024  
2048  
3072  
4096  
4.750  
4.875  
5.000  
5.125  
5.250  
2.7  
3.0  
3.3  
3.6  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
ADC OFFSET ERROR  
vs. TEMPERATURE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
ADC GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
2
1
1.0  
0.5  
0
1.0  
0.5  
0
MAX1220/MAX1258  
0
MAX1257  
-1  
-2  
-0.5  
-1.0  
-0.5  
-1.0  
MAX1220/MAX1258  
MAX1257  
-40  
-15  
10  
35  
60  
85  
4.750  
4.875  
5.000  
5.125  
5.250  
2.7  
3.0  
3.3  
3.6  
300  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
ADC GAIN ERROR  
vs. TEMPERATURE  
ADC EXTERNAL REFERENCE  
INPUT CURRENT vs. SAMPLING RATE  
ANALOG SUPPLY CURRENT  
vs. SAMPLING RATE  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2
1
MAX1220/MAX1258  
MAX1220/MAX1258  
MAX1257  
MAX1220/MAX1258  
07/MAX1258  
0
-1  
-2  
MAX1257  
MAX1257  
50  
-40  
-15  
10  
TEMPERATURE (°C)  
35  
60  
85  
0
50  
100  
SAMPLING RATE (ksps)  
150  
200  
250  
300  
0
100  
150  
200  
250  
SAMPLING RATE (ksps)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
1.88  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
MAX1220/MAX1258  
MAX1257  
MAX1220/MAX1258  
MAX1257  
-40  
-15  
10  
35  
60  
2.7  
3.0  
3.3  
3.6  
4.750  
4.875  
5.000  
5.125  
5.250  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
10 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DAC INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
0.4  
0.2  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-0.2  
-0.4  
MAX1220/MAX1258  
MAX1220/MAX1258  
MAX1257  
1024  
2047  
2050  
2053  
2056  
2059  
2062  
3.6  
5
0
1024  
2048  
3072  
4096  
2062  
85  
0
2048  
3072  
4096  
5.250  
85  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
DAC FULL-SCALE ERROR  
vs. ANALOG SUPPLY VOLTAGE  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
-0.2  
-0.4  
MAX1220/MAX1258  
EXTERNAL REFERENCE = 4.096V  
MAX1257  
EXTERNAL REFERENCE = 2.5V  
MAX1257  
2047  
2050  
2053  
2056  
2059  
4.750  
4.875  
5.000  
5.125  
2.7  
3.0  
3.3  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
DAC FULL-SCALE ERROR  
vs. TEMPERATURE  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
10  
8
10  
8
1.00  
0.75  
0.50  
0.25  
0
INTERNAL  
REFERENCE  
INTERNAL  
REFERENCE  
6
6
4
4
2
2
0
0
-0.25  
-0.50  
-0.75  
-1.00  
EXTERNAL  
REFERENCE = 2.5V  
EXTERNAL  
REFERENCE = 4.096V  
-2  
-4  
-6  
-2  
-4  
-6  
MAX1220/MAX1258  
MAX1220/MAX1258  
MAX1257  
-40  
-15  
10  
35  
60  
-40  
-15  
10  
35  
60  
0
1
2
3
4
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
______________________________________________________________________________________ 11  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
DAC FULL-SCALE ERROR  
vs. REFERENCE VOLTAGE  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
DAC FULL-SCALE ERROR  
vs. LOAD CURRENT  
5
0
5
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-5  
-5  
-10  
-15  
-10  
-15  
MAX1257  
0.5  
MAX1220/MAX1258  
MAX1257  
0.5  
0
5
10  
15  
20  
25  
30  
85  
85  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
REFERENCE VOLTAGE (V)  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
4.12  
4.11  
4.10  
4.09  
4.08  
2.52  
2.51  
2.50  
2.49  
2.48  
24.96  
24.94  
24.92  
24.90  
24.88  
24.86  
24.84  
07/MAX1258  
MAX1220/MAX1258  
MAX1257  
MAX1220/MAX1258  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
4.750  
4.875  
5.000  
5.125  
5.250  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
ADC REFERENCE SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLATAGE  
ADC REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
ADC REFERENCE SUPPLY CURRENT  
vs. TEMPERATURE  
25.1  
25.0  
24.9  
24.8  
24.7  
25.1  
25.0  
24.9  
24.8  
24.7  
41.0  
40.9  
40.8  
40.7  
40.6  
40.5  
MAX1220/MAX1258  
EXTERNAL REFERENCE = 4.096V  
MAX1257, EXTERNAL REFERENCE = 2.5V  
MAX1257  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
12 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
ADC FFT PLOT  
ADC IMD PLOT  
ADC CROSSTALK PLOT  
0
-20  
0
-20  
0
-20  
f
f
f
= 32.768kHz  
f
f
f
= 5.24288MHz  
= 9.0kHz  
= 11.0kHz  
= -6dBFS  
f
f
f
= 5.24288MHz  
= 10.080kHz  
= 8.0801kHz  
SAMPLE  
CLK  
IN1  
IN2  
CLK  
IN1  
IN2  
= 10.080kHz  
ANALOG_N  
= 5.24288MHz  
CLK  
SINAD = 71.27dBc  
SNR = 71.45dBc  
THD = 85.32dBc  
SFDR = 87.25dBc  
A
SNR = 72.00dBc  
THD = 85.24dBc  
ENOB = 11.65 BITS  
-40  
-40  
-40  
IN  
IMD = 82.99dBc  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
5
4
3
2
1
0
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
MAX1220/MAX1258  
GPIOA0–A3 OUTPUTS  
SINKING  
SINKING  
GPIOB0–B3,  
C0–C3 OUTPUTS  
SOURCING  
SOURCING  
DAC OUTPUT = MIDSCALE  
MAX1220/MAX1258  
DAC OUTPUT = MIDSCALE  
MAX1257  
0
20  
40  
60  
80  
100  
-30  
0
30  
60  
90  
-30  
-20  
0
10  
20  
30  
-10  
SOURCE CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
GPIO OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
GPIO OUTPUT VOLTAGE  
vs. SINK CURRENT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
MAX1257  
GPIOA0–A3 OUTPUTS  
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOB0–B3, C0–C3  
OUTPUTS  
GPIOA0–A3 OUTPUTS  
MAX1220/MAX1258  
GPIOA0–A3 OUTPUTS  
MAX1257  
50 60  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
______________________________________________________________________________________ 13  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
DAC-TO-DAC CROSSTALK  
= 10k, C = 100pF  
DAC-TO-DAC CROSSTALK  
R = 10k, C = 100pF  
LOAD  
TEMPERATURE SENSOR ERROR  
vs. TEMPERATURE  
R
LOAD  
LOAD  
LOAD  
MAX1220 toc47  
MAX1220 toc48  
1.00  
0.75  
0.50  
0.25  
0
V
OUTA  
V
OUTA  
1V/div  
2V/div  
-0.25  
-0.50  
-0.75  
-1.00  
V
OUTB  
V
OUTB  
10mV/div  
AC-COUPLED  
10mV/div  
AC-COUPLED  
MAX1257  
MAX1220/MAX1258  
100µs/div  
100µs/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DYNAMIC RESPONSE RISE TIME  
= 10k, C = 100pF  
DYNAMIC RESPONSE RISE TIME  
= 10k, C = 100pF  
DYNAMIC RESPONSE FALL TIME  
= 10k, C = 100pF  
MAX1220 toc51  
R
R
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc49  
MAX1220 toc50  
MAX1257  
MAX1257  
CS  
2V/div  
V
V
OUT_  
OUT_  
1V/div  
1V/div  
07/MAX1258  
V
OUT_  
CS  
1V/div  
CS  
1V/div  
2V/div  
MAX1220/MAX1258  
1µs/div  
1µs/div  
1µs/div  
DYNAMIC RESPONSE FALL TIME  
= 10k, C = 100pF  
MAJOR CARRY TRANSITION  
= 10k, C = 100pF  
MAJOR CARRY TRANSITION  
R = 10k, C = 100pF  
LOAD  
R
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc52  
MAX1220 toc53  
MAX1220 toc54  
CS  
2V/div  
CS  
2V/div  
CS  
1V/div  
V
V
OUT_  
20mV/div  
AC-COUPLED  
OUT_  
V
OUT_  
10mV/div  
AC-COUPLED  
2V/div  
MAX1257  
MAX1220/MAX1258  
1µs/div  
MAX1220/MAX1258  
1µs/div  
1µs/div  
14 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3V (MAX1257), external V  
= 2.5V (MAX1257), V  
= V  
= 5V (MAX1220/MAX1258), external V  
=
AVDD  
DVDD  
REF  
AVDD  
DVDD  
REF  
4.096V (MAX1220/MAX1258), f  
= 3.6MHz (50% duty cycle), f  
= 225ksps, C  
= 50pF, 0.1µF capacitor at REF,  
CLK  
SAMPLE  
LOAD  
T
A
= +25°C, unless otherwise noted.)  
DAC DIGITAL FEEDTHROUGH R  
= 10k,  
DAC DIGITAL FEEDTHROUGH R  
= 10k,  
NEGATIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
LOAD  
LOAD  
C
= 100pF, CS = HIGH, DIN = LOW  
C
LOAD  
= 100pF, CS = HIGH, DIN = LOW  
R
LOAD  
LOAD  
LOAD  
MAX1220 toc55  
MAX1220 toc56  
MAX1220 toc57  
MAX1257  
SCLK  
2V/div  
SCLK  
1V/div  
V
OUT_  
1V/div  
V
V
OUT_  
OUT_  
100mV/div  
100mV/div  
AC-COUPLED  
AC-COUPLED  
V
LDAC  
1V/div  
MAX1257  
MAX1220/MAX1258  
200ns/div  
200ns/div  
1µs/div  
NEGATIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
POSITIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
POSITIVE FULL-SCALE SETTLING TIME  
= 10k, C = 100pF  
MAX1220 toc60  
R
R
R
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc58  
MAX1220 toc59  
MAX1257  
V
V
LDAC  
LDAC  
2V/div  
2V/div  
V
OUT_  
1V/div  
V
OUT_  
V
OUT_  
2V/div  
2V/div  
V
LDAC  
1V/div  
MAX1220/MAX1258  
2µs/div  
MAX1220/MAX1258  
1µs/div  
1µs/div  
ADC REFERENCE FEEDTHROUGH  
= 10k, C = 100pF  
ADC REFERENCE FEEDTHROUGH  
= 10k, C = 100pF  
R
R
LOAD  
LOAD  
LOAD  
LOAD  
MAX1220 toc61  
MAX1220 toc62  
V
REF2  
V
REF2  
1V/div  
2V/div  
V
DAC-OUT  
V
DAC-OUT  
10mV/div  
AC-COUPLED  
2mV/div  
AC-COUPLED  
MAX1257  
MAX1220/MAX1258  
ADC REFERENCE SWITCHING  
ADC REFERENCE SWITCHING  
200µs/div  
200µs/div  
______________________________________________________________________________________ 15  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1257  
MAX1258  
MAX1220  
1, 2  
3
GPIOA0, GPIOA1 General-Purpose I/O A0, A1. GPIOA0, A1 can sink and source 15mA.  
Active-Low End-of-Conversion Output. Data is valid after the falling edge  
4
EOC  
of EOC.  
Digital Positive-Power Input. Bypass DVDD to DGND with a 0.1µF  
capacitor.  
4
5
7
8
DVDD  
DGND  
DOUT  
Digital Ground. Connect DGND to AGND.  
Serial-Data Output. Data is clocked out on the falling edge of the SCLK  
clock in modes 00, 01, and 10. Data is clocked out on the rising edge of  
the SCLK clock in mode 11. It is high impedance when CS is high.  
6
7
9
Serial-Clock Input. Clocks data in and out of the serial interface. (Duty  
cycle must be 40% to 60%.) See Table 5 for details on programming the  
clock mode.  
10  
11  
SCLK  
Serial-Data Input. DIN data is latched into the serial interface on the  
falling edge of SCLK.  
8
9–12, 16–19  
13  
DIN  
OUT0–OUT7  
AVDD  
12–15,  
22–25  
DAC Outputs  
Positive Analog Power Input. Bypass AVDD to AGND with a 0.1µF  
capacitor.  
18  
14  
19  
AGND  
N.C.  
Analog Ground  
07/MAX1258  
15, 23, 32, 33  
No Connection. Not internally connected.  
Active-Low Load DAC. LDAC is an asynchronous active-low input that  
updates the DAC outputs. Drive LDAC low to make the DAC registers  
transparent.  
20  
21  
26  
27  
LDAC  
CS  
Active-Low Chip-Select Input. When CS is low, the serial interface is  
enabled. When CS is high, DOUT is high impedance.  
Reset Select. Select DAC wake-up mode. Set RES_SEL low to wake up  
the DAC outputs with a 100kresistor to AGND or set RES_SEL high to  
22  
28  
RES_SEL  
wake up the DAC outputs with a 100kresistor to V  
high to power up the DAC input register to FFFh. Set RES_SEL low to  
power up the DAC input register to 000h.  
. Set RES_SEL  
REF  
24, 25  
GPIOC0, GPIOC1 General-Purpose I/O C0, C1. GPIOC0, C1 can sink 4mA and source 2mA.  
16 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1257  
MAX1258  
MAX1220  
Reference 1 Input. Reference voltage; leave unconnected to use the  
internal reference (2.5V for the MAX1257 or 4.096V for the  
MAX1220/MAX1258). REF1 is the positive reference in ADC external  
differential reference mode. Bypass REF1 to AGND with a 0.1µF  
capacitor in external reference mode only. See the ADC/DAC  
References section.  
26  
35  
REF1  
27–31, 34  
35  
AIN0–AIN5  
REF2/AIN6  
Analog Inputs  
Reference 2 Input/Analog Input 6. See Table 5 for details on  
programming the setup register. REF2 is the negative reference in the  
ADC external differential reference mode.  
Active-Low Conversion-Start Input/Analog Input 7. See Table 5 for details  
on programming the setup register.  
36  
CNVST/AIN7  
CNVST/AIN15  
Active-Low Conversion-Start Input/Analog Input 15. See Table 5 for  
details on programming the setup register.  
1
2, 3, 5, 6  
GPIOA0–GPIOA3 General-Purpose I/O A0–A3. GPIOA0–GPIOA3 can sink and source 15mA.  
16, 17,  
20, 21  
General-Purpose I/O B0–B3. GPIOB0–GPIOB3 can sink 4mA and  
GPIOB0–GPIOB3  
source 2mA.  
General-Purpose I/O C0–C3. GPIOC0–GPIOC3 can sink 4mA and  
29–32  
GPIOC0–GPIOC3  
source 2mA.  
33, 34, 36–47  
AIN0–AIN13  
Analog Inputs  
Reference 2 Input/Analog Input 14. See Table 5 for details on  
programming the setup register. REF2 is the negative reference in the  
ADC external differential reference mode.  
48  
REF2/AIN14  
Exposed Pad. Must be externally connected to AGND. Do not use as a  
ground connect.  
EP  
______________________________________________________________________________________ 17  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
(CPOL) and phase (CPHA) in the µC control registers to  
Detailed Description  
the same value. The MAX1220/MAX1257/MAX1258  
The MAX1220/MAX1257/MAX1258 integrate a 12-bit,  
operate with SCLK idling high or low, and thus operate  
multichannel, analog-to-digital converter (ADC), and a  
with CPOL = CPHA = 0 or CPOL = CPHA = 1. Set CS  
12-bit, octal, digital-to-analog converter (DAC) in a sin-  
low to latch any input data at DIN on the falling edge of  
gle IC. These devices also include a temperature sen-  
SCLK. Output data at DOUT is updated on the falling  
sor and configurable GPIOs with  
a 25MHz  
edge of SCLK in clock modes 00, 01, and 10. Output  
data at DOUT is updated on the rising edge of SCLK in  
clock mode 11. See Figures 6–11. Bipolar true-differen-  
tial results and temperature-sensor results are available  
in two’s complement format, while all other results are in  
binary.  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
The ADC is available in 8 and 16 input-channel  
versions. The octal DAC outputs settle within 2.0µs, and  
the ADC has a 225ksps conversion rate.  
All devices include an internal reference (2.5V or  
4.096V) providing a well-regulated, low-noise reference  
for both the ADC and DAC. Programmable reference  
modes for the ADC and DAC allow the use of an inter-  
nal reference, an external reference, or a combination  
of both. Features such as an internal 1°C accurate  
temperature sensor, FIFO, scan modes, programmable  
internal or external clock modes, data averaging, and  
AutoShutdown allow users to minimize both power con-  
sumption and processor requirements. The low glitch  
energy (4nVs) and low digital feedthrough (0.5nVs) of  
the integrated octal DACs make these devices ideal for  
digital control of fast-response closed-loop systems.  
A high-to-low transition on CS initiates the data-input  
operation. Serial communications to the ADC always  
begin with an 8-bit command byte (MSB first) loaded  
from DIN. The command byte and the subsequent data  
bytes are clocked from DIN into the serial interface on  
the falling edge of SCLK. The serial-interface and fast-  
interface circuitry is common to the ADC, DAC, and  
GPIO sections. The content of the command byte  
determines whether the SPI port should expect 8, 16, or  
24 bits and whether the data is intended for the ADC,  
DAC, or GPIOs (if applicable). See Table 1. Driving CS  
high resets the serial interface.  
These devices are guaranteed to operate with a supply  
voltage from +2.7V to +3.6V (MAX1257) and from  
+4.75V to +5.25V (MAX1220/MAX1258). These devices  
consume 2.5mA at 225ksps throughput, only 22µA at  
1ksps throughput, and under 0.2µA in the shutdown  
mode. The MAX1257/MAX1258 feature 12 GPIOs while  
the MAX1220 offers four GPIOs that can be configured  
as inputs or outputs.  
The conversion register controls ADC channel selec-  
tion, ADC scan mode, and temperature-measurement  
requests. See Table 4 for information on writing to the  
conversion register. The setup register controls the  
clock mode, reference, and unipolar/bipolar ADC con-  
figuration. Use a second byte, following the first, to  
write to the unipolar-mode or bipolar-mode registers.  
See Table 5 for details of the setup register and see  
Tables 6, 7, and 8 for setting the unipolar- and bipolar-  
mode registers. Hold CS low between the command  
byte and the second and third byte. The ADC averag-  
ing register is specific to the ADC. See Table 9 to  
address that register. Table 11 shows the details of the  
reset register.  
07/MAX1258  
Figure 1 shows the MAX1257/MAX1258 functional dia-  
gram. The MAX1220 only includes the GPIOA0,  
GPIOA1 and GPIOC0, GPIOC1 block. The output-con-  
ditioning circuitry takes the internal parallel data bus  
and converts it to a serial data format at DOUT, with the  
appropriate wake-up timing. The arithmetic logic unit  
(ALU) performs the averaging function.  
Begin a write to the DAC by writing 0001XXXX as a  
command byte. The last 4 bits of this command byte  
are don’t-care bits. Write another 2 bytes (holding CS  
low) to the DAC interface register following the com-  
mand byte to select the appropriate DAC and the data  
to be written to it. See the DAC Serial Interface section  
and Tables 10, 20, and 21.  
SPI-Compatible Serial Interface  
The MAX1220/MAX1257/MAX1258 feature a serial inter-  
face that is compatible with SPI and MICROWIRE  
devices. For SPI, ensure the SPI bus master (typically a  
microcontroller (µC)) runs in master mode so that it  
generates the serial clock signal. Select the SCLK fre-  
quency of 25MHz or less, and set the clock polarity  
18 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
DVDD  
AVDD  
GPIOB0– GPIOC0–  
GPIOB3 GPIOC3  
GPIOA0–  
GPIOA3  
MAX1257  
MAX1258  
GPIO  
CONTROL  
USER-PROGRAMMABLE  
I/O  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OSCILLATOR  
SCLK  
CS  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DIN  
SPI  
PORT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
DOUT  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
TEMPERATURE  
SENSOR  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
EOC  
LOGIC  
CONTROL  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
CNVST  
AIN0  
12-BIT  
SAR  
ADC  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
FIFO AND  
ALU  
INPUT  
REGISTER  
DAC  
REGISTER  
T/H  
AIN13  
REF2/  
AIN14  
CNVST/  
AIN15  
OUTPUT  
CONDITIONING  
12-BIT  
DAC  
INPUT  
REGISTER  
DAC  
REGISTER  
REF2  
INTERNAL  
REFERENCE  
REF1  
RES_SEL  
LDAC  
AGND  
DGND  
Figure 1. MAX1257/MAX1258 Functional Diagram  
______________________________________________________________________________________ 19  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 1ꢀ Command Byte (MSB First)  
ADDITIONAL  
REGISTER  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
NO. OF  
BYTES  
Conversion  
Setup  
1
0
0
0
0
0
0
0
0
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
TEMP  
0
1
0
0
0
0
0
0
0
CKSEL1  
CKSEL0  
REFSEL1 REFSEL0 DIFFSEL1 DIFFSEL0  
1
ADC  
1
0
0
0
0
0
0
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
0
2
DAC Select  
Reset  
1
0
0
0
0
0
X
1
0
0
0
0
X
X
X
RESET  
SLOW  
FBGON  
0
GPIO Configure  
GPIO Write  
0
0
0
0
1
1
0
0
1
0
1
0
1 or 2  
1 or 2  
1 or 2  
0
GPIO Read  
No Operation  
X = Don’t care.  
Write to the GPIOs by issuing a command byte to the  
appropriate register. Writing to the MAX1220 GPIOs  
requires 1 additional byte following the command byte.  
Writing to the MAX1257/MAX1258 requires 2 additional  
bytes following the command byte. See Tables 12–19  
for details on GPIO configuration, writes, and reads.  
See the GPIO Command section. Command bytes writ-  
ten to the GPIOs on devices without GPIOs are ignored.  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to configure CNVST/AIN_ to act as a conver-  
sion start and use it to request internally timed conver-  
sions, without tying up the serial bus. In clock mode 01,  
use CNVST to request conversions one channel at a  
time, thereby controlling the sampling speed without  
tying up the serial bus. Request and start internally  
timed conversions through the serial interface by writ-  
ing to the conversion register in the default clock mode,  
10. Use clock mode 11 with SCLK up to 3.6MHz for  
externally timed acquisitions to achieve sampling rates  
up to 225ksps. Clock mode 11 disables scanning and  
averaging. See Figures 6–9 for timing specifications on  
how to begin a conversion.  
Power-Up Default State  
The MAX1220/MAX1257/MAX1258 power up with all  
blocks in shutdown (including the reference). All regis-  
ters power up in state 00000000, except for the setup  
register and the DAC input register. The setup register  
powers up at 0010 1000 with CKSEL1 = 1 and  
REFSEL1 = 1. The DAC input register powers up to  
FFFh when RES_SEL is high and powers up to 000h  
when RES_SEL is low.  
07/MAX1258  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the last  
requested operation and is waiting for the next com-  
mand byte. EOC goes high when CS or CNVST go low.  
EOC is always high in clock mode 11.  
12-Bit ADC  
The MAX1220/MAX1257/MAX1258 ADCs use a fully  
differential successive-approximation register (SAR)  
conversion technique and on-chip track-and-hold (T/H)  
circuitry to convert temperature and voltage signals into  
12-bit digital results. The analog inputs accept both sin-  
gle-ended and differential input signals. Single-ended  
signals are converted using a unipolar transfer function,  
and differential signals are converted using a selec-  
table bipolar or unipolar transfer function. See the ADC  
Transfer Functions section for more data.  
Single-Ended or Differential Conversions  
The MAX1220/MAX1257/MAX1258 use a fully differen-  
tial ADC for all conversions. When a pair of inputs are  
connected as a differential pair, each input is connect-  
ed to the ADC. When configured in single-ended mode,  
the positive input is the single-ended channel and the  
negative input is referred to AGND. See Figure 2.  
In differential mode, the T/H samples the difference  
between two analog inputs, eliminating common-mode  
DC offsets and noise. IN+ and IN- are selected from the  
following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5,  
AIN6/AIN7, AIN8/AIN9, AIN10/AIN11, AIN12/AIN13,  
AIN14/AIN15. AIN0–AIN7 are available on all devices.  
AIN0–AIN15 are available on the MAX1257/MAX1258.  
ADC Clock Modes  
When addressing the setup, register bits 5 and 4 of the  
command byte (CKSEL1 and CKSEL0, respectively)  
control the ADC clock modes. See Table 5. Choose  
between four different clock modes for various ways to  
20 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
See Tables 5–8 for more details on configuring the  
inputs. For the inputs that are configurable as CNVST,  
REF2, and an analog input, only one function can be  
used at a time.  
AIN5–AIN15 (only negative inputs) in differential mode.  
For external T/H timing, use clock mode 01. After the  
T/H enters hold mode, the difference between the sam-  
pled positive and negative input voltages is converted.  
The input capacitance charging rate determines the  
time required for the T/H to acquire an input signal. If  
the input signal’s source impedance is high, the  
required acquisition time lengthens.  
Unipolar or Bipolar Conversions  
Address the unipolar- and bipolar-mode registers  
through the setup register (bits 1 and 0). See Table 5 for  
the setup register. See Figures 3 and 4 for the transfer-  
function graphs. Program a pair of analog inputs for dif-  
ferential operation by writing a one to the appropriate bit  
of the bipolar- or unipolar-mode register. Unipolar mode  
Any source impedance below 300does not signifi-  
cantly affect the ADC’s AC performance. A high-imped-  
ance source can be accommodated either by  
lengthening t  
(only in clock mode 01) or by placing  
ACQ  
sets the differential input range from 0 to V  
A nega-  
REF1.  
a 1µF capacitor between the positive and negative ana-  
log inputs. The combination of the analog-input source  
impedance and the capacitance at the analog input cre-  
ates an RC filter that limits the analog input bandwidth.  
tive differential analog input in unipolar mode causes the  
digital output code to be zero. Selecting bipolar mode  
sets the differential input range to  
V
REF1  
/ 2. The digital  
output code is binary in unipolar mode and two’s com-  
plement in bipolar mode.  
ꢂnput Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-  
signal bandwidth, making it possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequen-  
cy signals aliasing into the frequency band  
of interest.  
In single-ended mode, the MAX1220/MAX1257/  
MAX1258 always operate in unipolar mode. The analog  
inputs are internally referenced to AGND with a full-scale  
input range from 0 to the selected reference voltage.  
Analog ꢂnput (T/H)  
The equivalent circuit of Figure 2 shows the ADC input  
architecture of the MAX1220/MAX1257/MAX1258. In  
track mode, a positive input capacitor is connected to  
AIN0–AIN15 in single-ended mode and AIN0, AIN2,  
and AIN4–AIN14 (only positive inputs) in differential  
mode. A negative input capacitor is connected to  
AGND in single-ended mode or AIN1, AIN3, and  
Analog ꢂnput Protection  
Internal electrostatic-discharge (ESD) protection diodes  
clamp all analog inputs to AVDD and AGND, allowing  
the inputs to swing from (AGND - 0.3V) to (AVDD +  
0.3V) without damage. However, for accurate conver-  
sions near full scale, the inputs must not exceed AVDD  
by more than 50mV or be lower than AGND by 50mV. If  
an analog input voltage exceeds the supplies, limit the  
input current to 2mA.  
AIN0–AIN15  
(SINGLE-ENDED),  
AIN0, AIN2,  
REF1  
DAC  
ACQ  
AGND  
AIN4–AIN14  
(DIFFERENTIAL)  
CIN+  
ꢂnternal FꢂFO  
The MAX1220/MAX1257/MAX1258 contain a first-  
in/first-out (FIFO) buffer that holds up to 16 ADC results  
plus one temperature result. The internal FIFO allows  
the ADC to process and store multiple internally  
clocked conversions and a temperature measurement  
without being serviced by the serial bus.  
COMPARATOR  
HOLD  
CIN-  
AGND  
(SINGLE-ENDED),  
AIN1, AIN3,  
AIN5–AIN15  
(DIFFERENTIAL)  
If the FIFO is filled and further conversions are request-  
ed without reading from the FIFO, the oldest ADC  
results are overwritten by the new ADC results. Each  
result contains 2 bytes, with the MSB preceded by four  
leading zeros. After each falling edge of CS, the oldest  
available pair of bytes of data is available at DOUT,  
MSB first. When the FIFO is empty, DOUT is zero.  
ACQ  
ACQ  
HOLD  
HOLD  
AV / 2  
DD  
Figure 2. Equivalent Input Circuit  
______________________________________________________________________________________ 21  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
The first 2 bytes of data read out after a temperature  
measurement always contain the 12-bit temperature  
result, preceded by four leading zeros, MSB first. If  
another temperature measurement is performed before  
the first temperature result is read out, the old measure-  
ment is overwritten by the new result. Temperature  
results are in degrees Celsius (two’s complement), at a  
resolution of 8 LSB per degree. See the Temperature  
Measurements section for details on converting the dig-  
ital code to a temperature.  
The MAX1257 internal reference is 2.5V. The  
MAX1220/MAX1258 internal reference is 4.096V. When  
using an external reference on any of these devices,  
the voltage range is 0.7V to V  
.
AVDD  
DAC Transfer Function  
See Table 2 for various analog outputs from the DAC.  
DAC Power-On Wake-Up Modes  
The state of the RES_SEL input determines the wake-up  
state of the DAC outputs. Connect RES_SEL to AVDD  
or AGND upon power-up to be sure the DAC outputs  
wake up to a known state. Connect RES_SEL to AGND  
to wake up all DAC outputs at 000h. While RES_SEL is  
low, the 100kinternal resistor pulls the DAC outputs to  
AGND and the output buffers are powered down.  
Connect RES_SEL to AVDD to wake up all DAC outputs  
at FFFh. While RES_SEL is high, the 100kpullup  
12-Bit DAC  
In addition to the 12-bit ADC, the MAX1220/  
MAX1257/MAX1258 also include eight voltage-output,  
12-bit, monotonic DACs with less than 4 LSB integral  
nonlinearity error and less than 1 LSB differential nonlin-  
earity error. Each DAC has a 2µs settling time and ultra-  
low glitch energy (4nVs). The 12-bit DAC code is  
resistor pulls the DAC outputs to V  
buffers are powered down.  
and the output  
REF1  
unipolar binary with 1 LSB = V  
/4096.  
REF  
DAC Digital ꢂnterface  
DAC Power-Up Modes  
See Table 21 for a description of the DAC power-up  
and power-down modes.  
Figure 1 shows the functional diagram of the MAX1257/  
MAX1258. The shift register converts a serial 16-bit word  
to parallel data for each input register operating with a  
clock rate up to 25MHz. The SPI-compatible digital inter-  
face to the shift register consists of CS, SCLK, DIN, and  
DOUT. Serial data at DIN is loaded on the falling edge  
of SCLK. Pull CS low to begin a write sequence. Begin a  
write to the DAC by writing 0001XXXX as a command  
byte. The last 4 bits of the DAC select register are don’t-  
care bits. See Table 10. Write another 2 bytes to the  
DAC interface register following the command byte to  
select the appropriate DAC and the data to be written to  
it. See Tables 20 and 21.  
GPIOs  
In addition to the internal ADC and DAC, the  
MAX1257/MAX1258 also provide 12 general-purpose  
input/output channels, GPIOA0–GPIOA3, GPIOB0–  
07/MAX1258  
Table 2ꢀ DAC Output Code Table  
DAC COITEITS  
AIAꢁOG OUTPUT  
MSB  
ꢁSB  
The eight double-buffered DACs include an input and a  
DAC register. The input registers are directly connect-  
ed to the shift register and hold the result of the most  
recent write operation. The eight 12-bit DAC registers  
hold the current output code for the respective DAC.  
Data can be transferred from the input registers to the  
DAC registers by pulling LDAC low or by writing the  
appropriate DAC command sequence at DIN. See  
Table 20. The outputs of the DACs are buffered through  
eight rail-to-rail op amps.  
4095  
4096  
1111  
1111  
0000  
0000  
0111  
1111  
+V  
REF  
2049  
4096  
1000  
1000  
0111  
0001  
0000  
0111  
+V  
REF  
2048  
4096  
+V  
REF  
+V  
=
REF  
2
The MAX1220/MAX1257/MAX1258 DAC output voltage  
range is based on the internal reference or an external  
reference. Write to the setup register (see Table 5) to  
program the reference. If using an external voltage ref-  
erence, bypass REF1 with a 0.1µF capacitor to AGND.  
2047  
4096  
+V  
REF  
1
0000  
0000  
0000  
0000  
0001  
0000  
+V  
REF  
4096  
0
22 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
GPIOB3, and GPIOC0–GPIOC3. The MAX1220 includes  
four GPIO channels (GPIOA0, GPIOA1, GPIOC0,  
GPIOC1). Read and write to the GPIOs as detailed in  
Table 1 and Tables 12–19. Also, see the GPIO Command  
section. See Figures 11 and 12 for GPIO timing.  
mode, connect a 0.1µF capacitor to AGND. Set  
REFSEL[1:0] = 01 to program the ADC and DAC for  
external-reference mode. The DAC uses REF1 as its  
external reference, while the ADC uses REF2 as its  
external reference. Set REFSEL[1:0] = 11 to program  
the ADC for external differential reference mode. REF1  
is the positive reference and REF2 is the negative refer-  
ence in the ADC external differential mode.  
Write to the GPIOs by writing a command byte to the  
GPIO command register. Write a single data byte to the  
MAX1220 following the command byte. Write 2 bytes to  
the MAX1257/MAX1258 following the command byte.  
When REFSEL[1:0] = 00 or 10, REF2/AIN_ functions as  
an analog input channel. When REFSEL[1:0] = 01 or 11,  
REF2/AIN_ functions as the device’s negative reference.  
The GPIOs can sink and source current. The  
MAX1257/MAX1258 GPIOA0–GPIOA3 can sink and  
source up to 15mA. GPIOB0–GPIOB3 and GPIOC0–  
GPIOC3 can sink 4mA and source 2mA. The MAX1220  
GPIOA0 and GPIOA1 can sink and source up to 15mA.  
The MAX1220 GPIOC0 and GPIOC1 can sink 4mA and  
source 2mA. See Table 3.  
Temperature Measurements  
Issue a command byte setting bit 0 of the conversion  
register to one to take a temperature measurement.  
See Table 4. The MAX1220/MAX1257/MAX1258 perform  
temperature measurements with an internal diode-con-  
nected transistor. The diode bias current changes from  
68µA to 4µA to produce a temperature-dependent bias  
voltage difference. The second conversion result at 4µA  
is subtracted from the first at 68µA to calculate a digital  
value that is proportional to absolute temperature. The  
output data appearing at DOUT is the digital code  
above, minus an offset to adjust from Kelvin to Celsius.  
Clock Modes  
ꢂnternal Clock  
The MAX1220/MAX1257/MAX1258 can operate from an  
internal oscillator. The internal oscillator is active in  
clock modes 00, 01, and 10. Figures 6, 7, and 8 show  
how to start an ADC conversion in the three internally  
timed conversion modes.  
The reference voltage used for the temperature mea-  
surements is always derived from the internal reference  
source to ensure that 1 LSB corresponds to 1/8 of a  
degree Celsius. On every scan where a temperature  
measurement is requested, the temperature conversion  
is carried out first. The first 2 bytes of data read from  
the FIFO contain the result of the temperature measure-  
ment. If another temperature measurement is per-  
formed before the first temperature result is read out,  
the old measurement is overwritten by the new result.  
Temperature results are in degrees Celsius (two’s com-  
plement). See the Applications Information section for  
information on how to perform temperature measure-  
ments in each clock mode.  
Read out the data at clock speeds up to 25MHz  
through the SPI interface.  
External Clock  
Set CKSEL1 and CKSEL0 in the setup register to 11 to  
set up the interface for external clock mode 11. See  
Table 5. Pulse SCLK at speeds from 0.1MHz to  
3.6MHz. Write to SCLK with a 40% to 60% duty cycle.  
The SCLK frequency controls the conversion timing.  
See Figures 9a and 9b for clock mode 11 timing. See  
the ADC Conversions in Clock Mode 11 section.  
ADC/DAC References  
Address the reference through the setup register, bits 3  
and 2. See Table 5. Following a wake-up delay, set  
REFSEL[1:0] = 00 to program both the ADC and DAC  
for internal reference use. Set REFSEL[1:0] = 10 to pro-  
gram the ADC for internal reference. Set REFSEL[1:0] =  
10 to program the DAC for external reference, REF1.  
When using REF1 or REF2/AIN_ in external-reference  
Register Descriptions  
The MAX1220/MAX1257/MAX1258 communicate  
between the internal registers and the external circuitry  
through the SPI-compatible serial interface. Table 1  
details the command byte, the registers, and the bit  
Table 3ꢀ GPꢂO Maximum Sink/Source Current  
MAX1257/MAX1258 (mA)  
CURREIT  
MAX1220 (mA)  
GPꢂOA0–GPꢂOA3  
GPꢂOB0–GPꢂOB3  
GPꢂOC0–GPꢂOC3  
GPꢂOA0, GPꢂOA1  
GPꢂOC0, GPꢂOC1  
Sink  
15  
15  
4
2
4
2
15  
15  
4
2
Source  
______________________________________________________________________________________ 23  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
names. Tables 4–12 show the various functions within  
Table 4ꢀ Conversion Register*  
the conversion register, setup register, unipolar-mode  
BIT  
BIT  
FUNCTION  
register, bipolar-mode register, ADC averaging regis-  
ter, DAC select register, reset register, and GPIO com-  
mand register, respectively.  
NAME  
7 (MSB)  
Set to one to select conversion register.  
Analog-input channel select.  
Analog-input channel select.  
Analog-input channel select.  
Analog-input channel select.  
Scan-mode select.  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
6
5
4
3
2
1
Conversion Register  
Select active analog input channels, scan modes, and  
a single temperature measurement per scan by issuing  
a command byte to the conversion register. Table 4  
details channel selection, the four scan modes, and  
how to request a temperature measurement. Start a  
scan by writing to the conversion register when in clock  
mode 10 or 11, or by applying a low pulse to the  
CNVST pin when in clock mode 00 or 01. See Figures 6  
and 7 for timing specifications for starting a scan with  
CNVST.  
Scan-mode select.  
Set to one to take a single temp-  
erature measurement. The first  
conversion result of a scan contains  
temperature information.  
TEMP  
0 (LSB)  
*See below for bit details.  
A conversion is not performed if it is requested on a  
channel or one of the channel pairs that has been con-  
figured as CNVST or REF2. For channels configured as  
differential pairs, the CHSEL0 bit is ignored and the two  
pins are treated as a single differential channel.  
SELECTED  
CHANNEL  
(N)  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel and one result per differential pair  
within the selected scanning range (set by bits 2 and 1,  
SCAN1 and SCAN0), plus one temperature result, if  
selected. Select scan mode 10 to scan a single input  
channel numerous times, depending on NSCAN1 and  
NSCAN0 in the ADC averaging register (Table 9).  
Select scan mode 11 to return only one result from a  
single channel.  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
07/MAX1258  
AIN6  
AIN7  
AIN8  
Setup Register  
Issue a command byte to the setup register to config-  
ure the clock, reference, power-down modes, and ADC  
single-ended/differential modes. Table 5 details the bits  
in the setup-register command byte. Bits 5 and 4  
(CKSEL1 and CKSEL0) control the clock mode, acqui-  
sition and sampling, and the conversion start. Bits 3  
and 2 (REFSEL1 and REFSEL0) set the device for either  
internal or external reference. Bits 1 and 0 (DIFFSEL1  
and DIFFSEL0) address the ADC unipolar-mode and  
bipolar-mode registers and configure the analog input  
channels for differential operation.  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
SCAN MODE  
SCAN1 SCAN0  
(CHANNEL N IS SELECTED BY  
BITS CHSEL3–CHSEL0)  
0
0
0
1
Scans channels 0 through N.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The ADC  
averaging register sets the number of  
results.  
1
1
0
1
No scan. Converts channel N once only.  
24 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Table 5ꢀ Setup Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select setup register.  
Set to one to select setup register.  
6
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST configuration; resets to one at power-up.  
Clock mode and CNVST configuration.  
4
3
Reference-mode configuration.  
2
1
Reference-mode configuration.  
Unipolar-/bipolar-mode register configuration for differential mode.  
Unipolar-/bipolar-mode register configuration for differential mode.  
0 (LSB)  
*See below for bit details.  
Table 5aꢀ Clock Modes*  
CKSEꢁ1  
CKSEꢁ0  
COIVERSꢂOI CꢁOCK  
ACQUꢂSꢂTꢂOI/SAMPꢁꢂIG  
Internally timed.  
CNVST COIFꢂGURATꢂOI  
0
0
1
1
0
1
0
1
Internal  
Internal  
CNVST  
CNVST  
Externally timed by CNVST.  
Internally timed.  
Internal  
AIN15/AIN7  
AIN15/AIN7  
External (3.6MHz max)  
Externally timed by SCLK.  
*See the Clock Modes section.  
Table 5bꢀ Clock Modes 00, 01, and 10  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
COIFꢂGURATꢂOI  
REFSEꢁ1 REFSEꢁ0  
AUTOSHUTDOWI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 internal-conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN14/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External single-  
ended (REF1  
for DAC and  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
REF2 for ADC)  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 internal-  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
conversion clock cycles.  
1
1
0
1
AIN14/AIN6  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
Temperature delay of 244 internal-conversion clock cycles for the  
internal reference to settle after wake-up.  
REF2  
______________________________________________________________________________________ 25  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
The ADC reference is always on if any of the following  
conditions are true:  
3) At least one DAC is powered down through the  
100kto VREF and REFSEL[1:0] = 00.  
1) The FBGON bit is set to one in the reset register.  
If any of the above conditions exist, the ADC reference  
is always on, but there is a 188 clock-cycle delay  
before temperature-sensor measurements begin, if  
requested.  
2) At least one DAC output is powered up and  
REFSEL[1:0] (in the setup register) = 00.  
Table 5cꢀ Clock Mode 11  
VOꢁTAGE  
REFEREICE COIDꢂTꢂOIS  
OVERRꢂDE  
REF2  
AUTOSHUTDOWI  
REFSEꢁ1 REFSEꢁ0  
COIFꢂGURATꢂOI  
Internal reference turns off after scan is complete. If  
internal reference is turned off, there is a programmed  
delay of 218 external conversion clock cycles.  
AIN  
Internal (DAC  
and ADC)  
0
0
0
1
AIN14/AIN6  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
External single-  
Internal reference not used.  
Internal reference required. There is a programmed  
ended (REF1  
for DAC and  
REF2 for ADC)  
REF2  
AIN14/AIN6  
REF2  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
Default reference mode. Internal reference turns off  
after scan is complete. If internal reference is turned  
off, there is a programmed delay of 218 external  
conversion clock cycles.  
07/MAX1258  
AIN  
Internal (ADC)  
and external  
REF1 (DAC)  
1
1
0
1
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
AIN  
Internal reference not used.  
External  
differential  
(ADC), external  
REF1 (DAC)  
Internal reference required. There is a programmed  
delay of 244 external conversion clock cycles for the  
internal reference. Temperature-sensor output appears  
at DOUT after 188 further external clock cycles.  
Temperature  
Table 5dꢀ Differential Select Modes  
DꢂFFSEꢁ1 DꢂFFSEꢁ0  
FUICTꢂOI  
0
0
1
1
0
1
0
1
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.  
1 byte of data follows the command setup byte and is written to the unipolar-mode register.  
1 byte of data follows the command setup byte and is written to the bipolar-mode register.  
26 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Table 6ꢀ Unipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
UCH0/1  
BꢂT  
FUICTꢂOI  
Configure AIN0 and AIN1 for unipolar differential conversion.  
Configure AIN2 and AIN3 for unipolar differential conversion.  
Configure AIN4 and AIN5 for unipolar differential conversion.  
Configure AIN6 and AIN7 for unipolar differential conversion.  
Configure AIN8 and AIN9 for unipolar differential conversion.  
Configure AIN10 and AIN11 for unipolar differential conversion.  
Configure AIN12 and AIN13 for unipolar differential conversion.  
Configure AIN14 and AIN15 for unipolar differential conversion.  
7 (MSB)  
UCH2/3  
6
UCH4/5  
5
UCH6/7  
4
UCH8/9  
3
UCH10/11  
UCH12/13  
UCH14/15  
2
1
0 (LSB)  
Table 7ꢀ Bipolar-Mode Register (Addressed Through the Setup Register)  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
Set to one to configure AIN0 and AIN1 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN0 and AIN1 for unipolar  
single-ended conversion.  
BCH0/1  
7 (MSB)  
Set to one to configure AIN2 and AIN3 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN2 and AIN3 for unipolar  
single-ended conversion.  
BCH2/3  
BCH4/5  
6
Set to one to configure AIN4 and AIN5 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN4 and AIN5 for unipolar  
single-ended conversion.  
5
Set to one to configure AIN6 and AIN7 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN6 and AIN7 for unipolar  
single-ended conversion.  
BCH6/7  
4
Set to one to configure AIN8 and AIN9 for bipolar differential conversion. Set the corresponding bits  
in the unipolar-mode and bipolar-mode registers to zero to configure AIN8 and AIN9 for unipolar  
single-ended conversion.  
BCH8/9  
3
Set to one to configure AIN10 and AIN11 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN10 and AIN11 for  
unipolar single-ended conversion.  
BCH10/11  
BCH12/13  
BCH14/15  
2
1
Set to one to configure AIN12 and AIN13 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN12 and AIN13 for  
unipolar single-ended conversion.  
Set to one to configure AIN14 and AIN15 for bipolar differential conversion. Set the corresponding  
bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN14 and AIN15 for  
unipolar single-ended conversion.  
0 (LSB)  
______________________________________________________________________________________ 27  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Unipolar/Bipolar Registers  
The final 2 bits (LSBs) of the setup register control the  
unipolar-/bipolar-mode address registers. Set  
DIFFSEL[1:0] = 10 to write to the unipolar-mode regis-  
ter. Set bits DIFFSEL[1:0] = 11 to write to the bipolar-  
mode register. In both cases, the setup command byte  
must be followed by 1 byte of data that is written to the  
unipolar-mode register or bipolar-mode register. Hold  
CS low and run 16 SCLK cycles before pulling CS high.  
If the last 2 bits of the setup register are 00 or 01, nei-  
ther the unipolar-mode register nor the bipolar-mode  
register is written. Any subsequent byte is recognized  
as a new command byte. See Tables 6, 7, and 8 to pro-  
gram the unipolar- and bipolar-mode registers.  
Both registers power up at all zeros to set the inputs as  
16 unipolar single-ended channels. To configure a  
channel pair as single-ended unipolar, bipolar differen-  
tial, or unipolar differential, see Table 8.  
In unipolar mode, AIN+ can exceed AIN- by up to  
REF  
bipolar mode, either input can exceed the other by up  
Table 8ꢀ Unipolar/Bipolar Channel Function  
V
. The output format in unipolar mode is binary. In  
UIꢂPOꢁAR-  
to V  
/ 2. The output format in bipolar mode is two’s  
REF  
BꢂPOꢁAR-MODE  
REGꢂSTER BꢂT  
CHAIIEꢁ PAꢂR  
FUICTꢂOI  
MODE  
complement (see the ADC Transfer Functions section).  
REGꢂSTER BꢂT  
ADC Averaging Register  
Write a command byte to the ADC averaging register to  
configure the ADC to average up to 32 samples for  
each requested result, and to independently control the  
number of results requested for single-channel scans.  
0
0
1
1
0
1
0
1
Unipolar single-ended  
Bipolar differential  
Unipolar differential  
Unipolar differential  
Table 9ꢀ ADC Averaging Register*  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
7 (MSB)  
Set to zero to select ADC averaging register.  
6
Set to zero to select ADC averaging register.  
5
Set to one to select ADC averaging register.  
07/MAX1258  
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
4
Set to one to turn averaging on. Set to zero to turn averaging off.  
Configures the number of conversions for single-channel scans.  
Configures the number of conversions for single-channel scans.  
Single-channel scan count. (Scan mode 10 only.)  
Single-channel scan count. (Scan mode 10 only.)  
3
2
1
0 (LSB)  
*See below for bit details.  
FUICTꢂOI  
AVGOI  
IAVG1  
IAVG0  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs one conversion for each requested result.  
Performs four conversions and returns the average for each requested result.  
Performs eight conversions and returns the average for each requested result.  
Performs 16 conversions and returns the average for each requested result.  
Performs 32 conversions and returns the average for each requested result.  
ISCAI1  
ISCAI0  
FUICTꢂOI (APPꢁꢂES OIꢁY ꢂF SCAI MODE 10 ꢂS SEꢁECTED)  
Scans channel N and returns four results.  
0
0
1
1
0
1
0
1
Scans channel N and returns eight results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
28 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Table 9 details the four scan modes available in the  
ADC conversion register. All four scan modes allow  
averaging as long as the AVGON bit, bit 4 in the  
averaging register, is set to 1. Select scan mode 10 to  
scan the same channel multiple times. Clock mode 11  
disables averaging. For example, if AVGON = 1,  
NAVG[1:0] = 00, NSCAN[1:0] = 11, and SCAN[1:0] =  
10, 16 results are written to the FIFO, with each result  
being the average of four conversions of channel N.  
byte controls the DAC serial interface. See Table 20  
and the DAC Serial Interface section.  
Reset Register  
Write to the reset register (as shown in Table 11) to  
clear the FIFO or reset all registers (excluding the DAC  
and GPIO registers) to their default states. When the  
RESET bit in the reset register is set to 0, the FIFO is  
cleared. Set the RESET bit to one to return all the  
device registers to their default power-up state. All reg-  
isters power up in state 00000000, except for the setup  
register that powers up in clock mode 10 (CKSEL1 = 1  
and REFSEL1 = 1). The DAC and GPIO registers are  
not reset by writing to the reset register. Set the SLOW  
bit to one to add a 15ns delay in the DOUT signal path  
to provide a longer hold time. Writing a one to the  
SLOW bit also clears the contents of the FIFO. Set the  
FBGON bit to one to force the bias block and bandgap  
reference to power up regardless of the state of the  
DAC and activity of the ADC block. Setting the FBGON  
bit high also removes the programmed wake-up delay  
between conversions in clock modes 01 and 11.  
Setting the FBGON bit high also clears the FIFO.  
DAC Select Register  
Write a command byte 0001XXXX to the DAC select  
register (as shown in Table 10) to set up the DAC inter-  
face and indicate that another word will follow. The last  
4 bits of the DAC select register are don’t-care bits. The  
word that follows the DAC select-register command  
Table 10ꢀ DAC Select Register  
BꢂT  
IAME  
BꢂT  
FUICTꢂOI  
X
7 (MSB) Set to zero to select DAC select register.  
6
5
4
3
2
1
0
Set to zero to select DAC select register.  
Set to zero to select DAC select register.  
Set to one to select DAC select register.  
Don’t care.  
Table 12ꢀ GPꢂO Command Register  
X
Don’t care.  
BꢂT IAME  
BꢂT  
FUICTꢂOI  
X
Don’t care.  
7 (MSB)  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
Set to zero to select GPIO register.  
GPIO configuration bit.  
X
Don’t care.  
6
5
Table 11ꢀ Reset Register  
4
3
BꢂT  
BꢂT  
FUICTꢂOI  
2
1
IAME  
GPIOSEL1  
GPIOSEL2  
7 (MSB) Set to zero to select ADC reset register.  
0 (LSB)  
GPIO write bit.  
6
5
4
3
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to zero to select ADC reset register.  
Set to one to select ADC reset register.  
GPꢂOSEꢁ1 GPꢂOSEꢁ2  
FUICTꢂOI  
GPIO configuration; written data is  
entered in the GPIO configuration  
register.  
1
1
0
1
0
1
Set to zero to clear the FIFO only. Set to  
one to set the device in its power-on  
condition.  
RESET  
SLOW  
2
1
GPIO write; written data is entered  
in the GPIO write register.  
Set to one to turn on slow mode.  
GPIO read; the next 8/16 SCLK  
cycles transfer the state of all GPIO  
drivers into DOUT.  
Set to one to force internal bias block and  
bandgap reference to be always powered  
up.  
FBGON 0 (LSB)  
______________________________________________________________________________________ 29  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
GPꢂO Command  
Write a command byte to the GPIO command register  
to configure, write, or read the GPIOs, as detailed in  
Table 12.  
ration register in the MAX1257/MAX1258. See Tables  
13 and 14. The register bits are updated after the last  
CS rising edge. All GPIOs default to inputs upon power-  
up.  
Write the command byte 00000011 to configure the  
GPIOs. The eight SCLK cycles following the command  
byte load data from DIN to the GPIO configuration reg-  
ister in the MAX1220. The 16 SCLK cycles following the  
command byte load data from DIN to the GPIO configu-  
The data in the register controls the function of each  
GPIO, as shown in Tables 13–19.  
Table 13ꢀ MAX1220 GPꢂO Configuration  
DATA PꢂI  
DꢂI  
DOUT  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
0
X
0
Table 14ꢀ MAX1257/MAX1258 GPꢂO Configuration  
DATA PIN  
GPIO COMMAND BYTE  
DATA BYTE 1  
DATA BYTE 2  
DIN  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
X
0
X
X
X
0
DOUT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
07/MAX1258  
Table 15ꢀ MAX1220 GPꢂO Write  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
GPIOC1  
0
GPIOC0  
0
GPIOA1  
0
GPIOA0  
0
X
0
X
0
X
X
0
DOUT  
0
Table 16ꢀ MAX1257/MAX1258 GPꢂO Write  
DATA PIN  
GPIO COMMAND BYTE  
DATA BYTE 1  
DATA BYTE 2  
DIN  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
X
0
X
X
X
0
DOUT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
GPꢂO Write  
Write the command byte 00000010 to indicate a GPIO  
write operation. The eight SCLK cycles following the  
command byte load data from DIN into the GPIO write  
register in the MAX1220. The 16 SCLK cycles following  
the command byte load data from DIN into the GPIO  
write register in the MAX1257/MAX1258. See Tables 15  
and 16. The register bits are updated after the last CS  
rising edge.  
GPꢂO Read  
Write the command byte 00000001 to indicate a GPIO  
read operation. The eight SCLK cycles following the  
command byte transfer the state of the GPIOs to DOUT  
in the MAX1220. The 16 SCLK cycles following the com-  
mand byte transfer the state of the GPIOs to DOUT in the  
MAX1257/MAX1258. See Tables 18 and 19.  
DAC Serial ꢂnterface  
Write a command byte 0001XXXX to the DAC select  
register to indicate the word to follow is written to the  
DAC serial interface, as detailed in Tables 1, 10, 20, and  
21. Write the next 16 bits to the DAC interface register,  
as shown in Tables 20 and 21. Following the high-to-low  
transition of CS, the data is shifted synchronously and  
latched into the input register on each falling edge of  
SCLK. Each word is 16 bits. The first 4 bits are the con-  
trol bits followed by 12 data bits (MSB first) and 2 don’t-  
care sub-bits. See Figures 10–12 for DAC timing  
specifications.  
Table 17ꢀ GPꢂO-Mode Control  
CONFIGURATION  
BIT  
WRITE  
BIT  
OUTPUT  
STATE  
GPIO  
FUNCTION  
1
1
0
1
0
1
1
Output  
Output  
Input  
0
Three-state  
Pulldown  
(open drain)  
0
0
0
Table 18ꢀ MAX1220 GPꢂO Read  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
0
X
X
X
X
DOUT  
GPIOC1  
GPIOC0  
GPIOA1  
GPIOA0  
Table 19ꢀ MAX1257/MAX1258 GPꢂO Read  
DATA PꢂI  
DꢂI  
GPꢂO COMMAID BYTE  
DATA BYTE 1  
DATA BYTE 2  
0
0
0
0
0
0
0
0
1
0
X
0
X
0
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUT  
0
0
0
0
0
0
0
______________________________________________________________________________________ 31  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Table 20ꢀ DAC Serial-ꢂnterface Configuration  
16-BꢂT SERꢂAꢁ WORD  
MSB  
COITROꢁ  
BꢂTS  
C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
ꢁSB  
DESCRꢂPTꢂOI  
FUICTꢂOI  
DATA BꢂTS  
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
No operation.  
Reset all internal registers to 000h and  
leave output buffers in their present state.  
0
0
0
1
0
X
0
X
X
X
X
X
X
X
X
X
RESET  
Preset all internal registers to FFFh and  
leave output buffers in their present state.  
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
X
1
X
X
X
X
X
X
X
X
X
Pull-High  
DAC0  
DAC1  
DAC2  
DAC3  
DAC4  
DAC5  
DAC6  
DAC7  
D11–D0 to input register 0,  
DAC output unchanged.  
D11–D0 to input register 1,  
DAC output unchanged.  
D11–D0 to input register 2,  
DAC output unchanged.  
D11–D0 to input register 3,  
DAC output unchanged.  
D11–D0 to input register 4,  
DAC output unchanged.  
D11–D0 to input register 5,  
DAC output unchanged.  
07/MAX1258  
D11–D0 to input register 6,  
DAC output unchanged.  
D11–D0 to input register 7,  
DAC output unchanged.  
D11–D0 to input registers 0–3 and DAC  
registers 0–3. DAC outputs updated  
(write-through).  
1
1
0
0
1
1
0
1
DAC0–DAC3  
D11–D0 to input registers 4–7 and DAC  
DAC4–DAC7 registers 4–7. DAC outputs updated  
(write-through).  
D11–D0 to input registers 0–7 and DAC  
registers 0–7. DAC outputs updated  
(write-through).  
1
1
1
1
0
0
0
1
DAC0–DAC7  
DAC0–DAC7  
D11–D0 to input registers 0–7.  
DAC outputs unchanged.  
Input registers to DAC registers indicated  
by ones, DAC outputs updated,  
equivalent to software LDAC.  
1
1
1
0
X
X
X
X
DAC0–DAC7  
(No effect on DACs indicated by zeros.)  
32 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Table 21ꢀ DAC Power-Up and Power-Down Commands  
COITROꢁ  
DATA BꢂTS  
BꢂTS  
DESCRꢂPTꢂOI  
FUICTꢂOI  
C3 C2 C1 C0  
D3 D2 D1 D0  
Power up individual DAC buffers indicated by data  
in DAC0 through DAC7. A one indicates the DAC  
output is connected and active. A zero does not  
affect the DAC’s present state.  
1
1
1
1
1
1
1
1
— — — — — — — —  
0
0
0
1
1
0
X
X
Power-Up  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
DAC output is disconnected and high impedance.  
A zero does not affect the DAC’s present state.  
— — — — — — — —  
Power-Down 1  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
DAC output is disconnected and pulled to AGND  
with a 1kresistor. A zero does not affect the DAC’s  
present state.  
1
1
1
1
1
1
1
1
1
1
1
1
— — — — — — — —  
— — — — — — — —  
— — — — — — — —  
1
0
1
0
0
1
0
0
1
X
X
X
Power-Down 2  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
Power-Down 3 DAC output is disconnected and pulled to AGND  
with a 100kresistor. A zero does not affect the  
DAC’s present state.  
Power down individual DAC buffers indicated by  
data in DAC0 through DAC7. A one indicates the  
Power-Down 4 DAC output is disconnected and pulled to REF1 with  
a 100kresistor. A zero does not affect the DAC’s  
present state.  
two’s complement for bipolar mode and temperature  
results. See Figures 3, 4, and 5 for input/output and  
temperature-transfer functions.  
If CS goes high prior to completing 16 SCLK cycles, the  
command is discarded. To initiate a new transfer, drive  
CS low again.  
For example, writing the DAC serial interface word 1111  
0000 and 1111 0100 disconnects DAC outputs 4  
through 7 and forces them to a high-impedance state.  
DAC outputs 0 through 3 remain in their previous state.  
ADC Transfer Functions  
Figure 3 shows the unipolar transfer function for single-  
ended or differential inputs. Figure 4 shows the bipolar  
transfer function for differential inputs. Code transitions  
occur halfway between successive-integer LSB values.  
Output-Data Format  
Figures 6–9 illustrate the conversion timing for the  
MAX1220/MAX1257/MAX1258. All 12-bit conversion  
results are output in 2-byte format, MSB first, with four  
leading zeros. Data appears on DOUT on the falling  
edges of SCLK. Data is binary for unipolar mode and  
Output coding is binary, with 1 LSB = V  
/4096  
REF1  
(MAX1257) and 1 LSB = V  
/4096 (MAX1220/  
REF1  
MAX1258) for unipolar and bipolar operation, and 1  
LSB = +0.125°C for temperature measurements.  
Bipolar true-differential results and temperature-sensor  
______________________________________________________________________________________ 33  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
results are available in two’s complement format, while  
all others are in binary. See Tables 6, 7, and 8 for  
details on which setting (unipolar or bipolar) takes  
precedence.  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 6 for clock mode 00 timing after a  
command byte is issued. See Table 5 for details on  
programming the clock mode in the setup register.  
In unipolar mode, AIN+ can exceed AIN- by up to  
V
. In bipolar mode, either input can exceed the  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX1220/MAX1257/  
MAX1258 then wake up, scan all requested channels,  
store the results in the FIFO, and shut down. After the  
REF1  
other by up to V  
/2.  
REF1  
Partial Reads and Partial Writes  
If the 1st byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the remaining bits are lost for that byte. The next byte of  
data that is read out contains the next 8 bits. If the first  
byte of an entry in the FIFO is read out fully, but the  
second byte is read out partially, the rest of that byte is  
lost. The remaining data in the FIFO is unaffected and  
can be read out normally after taking CS low again, as  
long as the 4 leading bits (normally zeros) are ignored.  
If CS is pulled low before EOC goes low, a conversion  
may not be completed and the FIFO data may not be  
correct. Incorrect writes (pulling CS high before com-  
pleting eight SCLK cycles) are ignored and the register  
remains unchanged.  
V
= V - V  
REF+ REF-  
REF  
V
V
REF  
REF  
011....111  
011....110  
011....101  
FS = V /2 + V  
REF  
COM  
ZS = COM  
-FS = -V /2  
REF  
V
REF  
1 LSB = V /4096  
REF  
000....001  
000....000  
111....111  
(COM)  
V
REF  
100....011  
100....010  
100....001  
100....000  
Applications Information  
Internally Timed Acquisitions and  
Conversions Using CNVST  
-FS  
-1 0 +1  
(COM)  
+FS - 1 LSB  
ADC Conversions in Clock Mode 00  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated through CNVST  
07/MAX1258  
INPUT VOLTAGE (LSB)  
Figure 4. Bipolar Transfer Function—Full Scale ( FS) =  
V /2  
REF  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
111....111  
111....110  
111....101  
011....111  
011....110  
FS = V  
REF  
1 LSB = V /4096  
REF  
000....010  
000....001  
000....000  
111....111  
111....110  
111....101  
000....011  
000....010  
000....001  
000....000  
100....001  
100....000  
0
1
2
3
FS  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
0
-256  
+255.5  
TEMPERATURE (°C)  
Figure 5. Temperature Transfer Function  
Figure 3. Unipolar Transfer Function—Full Scale (FS) = V  
REF  
34 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
CNVST  
CS  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
SCLK  
DOUT  
LSB1  
MSB2  
MSB1  
t
RDS  
EOC  
Figure 6. Clock Mode 00—After writing a command byte, set CNVST low for at least 40ns to begin a conversion.  
t
CSW  
CNVST  
(CONVERSION 2)  
(ACQUISITION 1)  
(ACQUISITION 2)  
CS  
t
DOV  
SCLK  
(CONVERSION 1)  
DOUT  
EOC  
LSB1  
MSB2  
MSB1  
Figure 7. Clock Mode 01—After writing a command byte, request multiple conversions by setting CNVST low for each conversion.  
Externally Timed Acquisitions and  
scan is complete, EOC is pulled low and the results are  
available in the FIFO. Wait until EOC goes low before  
pulling CS low to communicate with the serial interface.  
EOC stays low until CS or CNVST is pulled low again. A  
temperature-conversion result, if requested, precedes  
all other FIFO results.  
Internally Timed Conversions with CNVST  
ADC Conversions in Clock Mode 01  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using  
the internal oscillator. See Figure 7 for clock mode 01  
timing after a command byte is issued.  
Do not issue a second CNVST signal before EOC goes  
low; otherwise, the FIFO can be corrupted. Wait until all  
conversions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC signal-to-noise ratio (SNR).  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
at least 1.4µs to complete the acquisition. If reference  
mode 00 or 10 is selected, an additional 45µs is  
required for the internal reference to power up. If a tem-  
perature measurement is being requested, reference  
power-up and temperature measurement is internally  
timed. In this case, hold CNVST low for at least 40ns.  
______________________________________________________________________________________ 35  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CONVERSION BYTE  
DIN  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
MSB1  
LSB1  
MSB2  
t
DOV  
EOC  
Figure 8. Clock Mode 10—The command byte to the conversion register begins the acquisition (CNVST is not required).  
Initiate a scan by writing a command byte to the conver-  
sion register. The MAX1220/MAX1257/MAX1258 then  
power up, scan all requested channels, store the results  
in the FIFO, and shut down. After the scan is complete,  
EOC is pulled low and the results are available in the  
FIFO. If a temperature measurement is requested, the  
temperature result precedes all other FIFO results. EOC  
stays low until CS is pulled low again. Wait until all con-  
versions are complete before reading the FIFO. SPI  
communications to the DAC and GPIO registers are per-  
mitted during conversion. However, coupled noise may  
result in degraded ADC SNR.  
Set CNVST high to begin a conversion. Sampling is  
completed approximately 500ns after CNVST goes  
high. After the conversion is complete, the ADC shuts  
down and pulls EOC low. EOC stays low until CS or  
CNVST is pulled low again. Wait until EOC goes low  
before pulling CS or CNVST low. The number of CNVST  
signals must equal the number of conversions request-  
ed by the scan and averaging registers to correctly  
update the FIFO. Wait until all conversions are com-  
plete before reading the FIFO. SPI communications to  
the DAC and GPIO registers are permitted during  
conversion. However, coupled noise may result in  
degraded ADC SNR.  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
If averaging is turned on, multiple CNVST pulses need to  
be performed before a result is written to the FIFO. Once  
the proper number of conversions has been performed  
to generate an averaged FIFO result (as specified to the  
averaging register), the scan logic automatically switch-  
es the analog input multiplexer to the next requested  
channel. If a temperature measurement is programmed,  
it is performed after the first rising edge of CNVST follow-  
ing the command byte written to the conversion register.  
The temperature-conversion result is available on DOUT  
once EOC has been pulled low.  
07/MAX1258  
ADC Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing a command byte to the conversion  
register and are performed one at a time using SCLK  
as the conversion clock. Scanning, averaging and the  
FIFO are disabled, and the conversion result is avail-  
able at DOUT during the conversion. Output data is  
updated on the rising edge of SCLK in clock mode 11.  
See Figures 9a and 9b for clock mode 11 timing.  
Initiate a conversion by writing a command byte to the  
conversion register followed by 16 SCLK cycles. If CS  
is pulsed high between the eighth and ninth cycles, the  
pulse width must be less than 100µs. To continuously  
convert at 16 cycles per conversion, alternate 1 byte of  
zeros (NOP byte) between each conversion byte. If 2  
NOP bytes follow a conversion byte, the analog cells  
power down at the end of the second NOP. Set the  
FBGON bit to one in the reset register to keep the inter-  
nal bias block powered.  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
ADC Conversions in Clock Mode 10  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequence is initiated by writing a com-  
mand byte to the conversion register, and is performed  
automatically using the internal oscillator. This is the  
default clock mode upon power-up. See Figure 8 for  
clock mode 10 timing.  
36 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
CONVERSION BYTE #1  
NOP  
CONVERSION BYTE #2  
NOP  
CONVERSION  
DIN  
ACQUISITION #1  
ACQUISITION #2  
CONVERSION #1  
CONVERSION #2  
CS  
SCLK  
DOUT  
MSB1  
LSB1  
MSB2  
EOC  
Figure 9a. Clock Mode 11—Externally Timed Acquisition, Sampling and Conversion without CNVST for Maximum ADC Throughput  
CONVERSION BYTE  
NOP  
NOP  
DIN  
ACQUISITION  
CONVERSION  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
Figure 9b. Clock Mode 11—Externally Timed Acquisition, Sampling and Conversion without CNVST to Reduce Analog Power  
Dissipation  
If reference mode 00 is requested, or if an external ref-  
erence is selected but a temperature measurement is  
being requested, wait 45µs with CS high after writing  
the conversion byte to extend the acquisition and allow  
the internal reference to power up. To perform a tem-  
perature measurement, write 24 bytes (192 cycles) of  
zeros after the conversion byte using 8-bit NOP com-  
mands each framed by CS (to match production test  
method; other length NOP sequences are not produc-  
tion tested). The temperature result appears on DOUT  
during the last 2 bytes of the 192 cycles. For tempera-  
ture conversion in clock mode 11 with the TEMP bit set  
in the conversion register, no scanning of AIN0 to  
AIN15 is performed. Therefore, the CHSEL[3:0] bits are  
don’t cares. These bits can be set to 0000b. When the  
conversion is complete, only the temperature data is  
available.  
sion in clock mode 00 and 10 (see the Electrical  
Characteristics, as applicable):  
Total conversion time =  
t
x n  
x n  
+ t + t  
CONV  
AVG  
SCAN TS INT-REF,SU  
where:  
t
= t  
, where t  
is dependent on the clock  
DOV  
CONV  
DOV  
mode and the reference mode selected  
n
AVG  
= samples per result (amount of averaging)  
n
= number of times each channel is scanned; set  
SCAN  
to one unless [SCAN1, SCAN0] = 10  
t
= time required for temperature measurement  
TS  
(53.1µs); set to zero if temperature measurement is not  
requested  
t
= t  
(external-reference wake-up); if a  
WU  
INT-REF,SU  
conversion using the external reference is requested  
In clock mode 01, the total conversion time depends on  
how long CNVST is held low or high. Conversion time in  
externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
Conversion-Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, if a temperature  
measurement is requested, and if the external refer-  
ence is in use. Use the following formula to calculate  
the total conversion time for an internally timed conver-  
______________________________________________________________________________________ 37  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
t
CH  
t
CL  
32  
16  
8
SCLK  
DIN  
5
1
2
3
4
t
DH  
t
DS  
Dn-3  
Dn-4  
Dn-5  
Dn-1  
Dn-2  
D1  
D0  
t
DOT  
t
DOD  
t
DOE  
D15  
D7  
D14  
D6  
D12  
D4  
D13  
D5  
DOUT  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
CS  
NOTE: FOR THE MAX1220 GPIO WRITES, n = 16; FOR ALL DAC WRITES AND GPIO WRITES ON THE MAX1257/MAX1258, n = 24.  
Figure 10. DAC/GPIO Serial-Interface Timing (Clock Modes 00, 01, and 10)  
07/MAX1258  
DAC/GPꢂO Timing  
Figures 10–13 detail the timing diagrams for writing to  
the DAC and GPIOs. Figure 10 shows the timing speci-  
fications for clock modes 00, 01, and 10. Figure 11  
shows the timing specifications for clock mode 11.  
Figure 12 details the timing specifications for the DAC  
input select register and 2 bytes to follow. Output data  
is updated on the rising edge of SCLK in clock mode  
11. Figure 13 shows the GPIO timing. Figure 14 shows  
the timing details of a hardware LDAC command DAC-  
register update. For a software-command DAC-register  
update, t is valid from the rising edge of CS, which fol-  
S
lows the last data bit in the software command word.  
38 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
t
CH  
t
CL  
32  
16  
8
SCLK  
5
1
2
3
4
t
DH  
t
DS  
Dn-1  
Dn-2  
Dn-3  
Dn-4  
Dn-5  
D1  
D0  
DIN  
DOUT  
CS  
t
t
DOT  
DOE  
t
DOD  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D1  
D0  
t
CSS  
t
CSPWH  
t
CSH  
NOTE: FOR THE MAX1220 GPIO WRITES, n = 16; FOR ALL DAC WRITES AND GPIO WRITES ON THE MAX1257/MAX1258, n = 24.  
Figure 11. DAC/GPIO Serial-Interface Timing (Clock Mode 11)  
SCLK  
10  
24  
1
2
8
9
DIN  
BIT 7 (MSB)  
BIT 6  
BIT 0 (LSB)  
BIT 15  
BIT 14  
BIT 1  
BIT 0  
DOUT  
CS  
THE COMMAND BYTE  
INITIALIZES THE DAC SELECT  
REGISTER  
THE NEXT 16 BITS SELECT THE DAC  
AND THE DATA WRITTEN TO IT  
Figure 12. DAC-Select Register Byte and DAC Serial-Interface Word  
______________________________________________________________________________________ 39  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
CS  
t
GOD  
t
GSU  
GPIO INPUT/OUTPUT  
Figure 13. GPIO Timing  
t
LDACPWL  
LDAC  
t
S
1 LSB  
OUT_  
07/MAX1258  
Figure 14. LDAC Functionality  
The MAX1220/MAX1257/MAX1258 thin QFN packages  
contain an exposed pad on the underside of the device.  
Connect this exposed pad to AGND. Refer to the  
MAX1258EVKIT for an example of proper layout.  
LDAC Functionality  
Drive LDAC low to transfer the content of the input reg-  
isters to the DAC registers. Drive LDAC permanently  
low to make the DAC register transparent. The DAC  
output typically settles from zero to full scale within  
LSB after 2µs. See Figure 14.  
1
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX1220/MAX1257/MAX1258 is measured using  
the end-point method.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Ensure that digi-  
tal and analog signal lines are separated from each  
other. Do not run analog and digital signals parallel to  
one another (especially clock signals) or do not run digi-  
tal lines underneath the MAX1220/MAX1257/  
MAX1258 package. High-frequency noise in the AVDD  
power supply may affect performance. Bypass the  
AVDD supply with a 0.1µF capacitor to AGND, close to  
the AVDD pin. Bypass the DVDD supply with a 0.1µF  
capacitor to DGND, close to the DVDD pin. Minimize  
capacitor lead lengths for best supply-noise rejection. If  
the power supply is very noisy, connect a 10resistor in  
series with the supply to improve power-supply filtering.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
40 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Unipolar ADC Offset Error  
For an ideal converter, the first transition occurs at 0.5  
LSB, above zero. Offset error is the amount of deviation  
between the measured first transition point and the  
ideal first transition point.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
SINAD(dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
Bipolar ADC Offset Error  
While in bipolar mode, the ADC’s ideal midscale transi-  
tion occurs at AGND -0.5 LSB. Bipolar offset error is the  
measured deviation from this ideal value.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
ADC Gain Error  
Gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed and with  
a full-scale analog input voltage applied to the ADC,  
resulting in all ones at DOUT.  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
DAC Offset Error  
DAC offset error is determined by loading a code of all  
zeros into the DAC and measuring the analog output  
voltage.  
2
2
2
2
2
THD = 20 x log  
V
+ V  
+ V  
+ V  
+ V  
/ V  
1
(
)
2
3
4
5
6
DAC Gain Error  
DAC gain error is defined as the amount of deviation  
between the ideal transfer function and the measured  
transfer function, with the offset error removed, when  
loading a code of all ones into the DAC.  
where V is the fundamental amplitude, and V through  
6
1
2
V are the amplitudes of the first five harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest distortion  
component.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
ADC Channel-to-Channel Crosstalk  
Bias the ON channel to midscale. Apply a full-scale sine  
wave test tone to all OFF channels. Perform an FFT on  
the ON channel. ADC channel-to-channel crosstalk is  
expressed in dB as the amplitude of the FFT spur at the  
frequency associated with the OFF channel test tone.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADC’s resolution (N bits):  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f1 and  
f2, are present at the inputs. The intermodulation prod-  
ucts are (f1 f2), (2 x f1), (2 x f2), (2 x f1 f2), (2 x f2  
f1). The individual input tone levels are at -7dBFS.  
SNR = (6.02 x N + 1.76)dB  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADC’s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by -3dB. Note that the T/H  
performance is usually the limiting factor for the small-  
signal input bandwidth.  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
______________________________________________________________________________________ 41  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
Pin Configurations  
TOP VIEW  
+
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CNVST/AIN15  
GPIOA0  
GPIOA1  
EOC  
1
2
3
4
5
6
7
8
9
AIN2  
+
REF1  
GPIOA0  
GPIOA1  
EOC  
1
2
3
4
5
6
7
8
9
27 AIN0  
AIN1  
26 REF1  
25 GPIOC1  
24 GPIOC0  
23 N.C.  
AIN0  
GPIOA2  
GPIOA3  
DVDD  
GPIOC3  
GPIOC2  
GPIOC1  
GPIOC0  
RES_SEL  
CS  
DVDD  
DGND  
DOUT  
SCLK  
DIN  
MAX1257  
MAX1258  
MAX1220  
22 RES_SEL  
21 CS  
DGND  
DOUT  
LDAC  
20  
SCLK 10  
DIN 11  
OUT0  
19 OUT7  
LDAC  
OUT7  
OUT0 12  
TQFN  
TQFN  
07/MAX1258  
Full-Power Bandwidth  
Chip Information  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
PROCESS: BiCMOS  
Package Information  
DAC Digital Feedthrough  
DAC digital feedthrough is the amount of noise that  
appears on the DAC output when the DAC digital con-  
trol lines are toggled.  
For the latest package outline information and land patterns  
(footprints), go to wwwꢀmaxim-icꢀcom/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
ADC Power-Supply Rejection  
ADC power-supply rejection (PSR) is defined as the  
shift in offset error when the power supply is moved  
from the minimum operating voltage to the maximum  
operating voltage.  
ꢁAID  
PATTERI IOꢀ  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTꢁꢂIE IOꢀ  
90-0050  
90-0132  
36 TQFN-EP  
48 TQFN-EP  
T3666+3  
T4877+6  
21-0141  
21-0144  
DAC Power-Supply Rejection  
DAC PSR is the amount of change in the converter’s  
value at full-scale as the power-supply voltage changes  
from its nominal value. PSR assumes the converter’s lin-  
earity is unaffected by changes in the power-supply  
voltage.  
42 ______________________________________________________________________________________  
12-Bit, Multichannel ADCs/DACs with FIFO,  
Temperature Sensing, and GPIO Ports  
07/MAX1258  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
5
12/07  
Changed timing characteristic specification.  
Changed the Ordering Information table to show lead(Pb)-free packages.  
Added Note 18 to the Electrical Characteristics table (t spec).  
7
1
7, 8  
20  
DOV  
Added the ADDITIONAL NO. OF BYTES column to Table 1.  
6
7
1/10  
2/12  
Corrected Figure 8, replaced Figure 9 with Figures 9a and 9b, and modified Figures  
10 and 11.  
36–39  
Updated the ADC Conversions in Clock Mode 11 section.  
36  
8
Clarified Note 9.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
43 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1258

12-Bit, Multichannel ADCs/DACs with FIFO,Temperature Sensing, and GPIO Ports
MAXIM

MAX1258BETM

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1258BETM+

12-Bit, Multichannel ADCs/DACs with FIFO,Temperature Sensing, and GPIO Ports
MAXIM

MAX1258BETM-T

Analog Circuit, 1 Func, BICMOS, 7X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48
MAXIM

MAX1259

MAX1259 Battery Manager
MAXIM

MAX1259C/D

MAX1259 Battery Manager
MAXIM

MAX1259C/W

Battery Management
MAXIM

MAX1259CPE

MAX1259 Battery Manager
MAXIM

MAX1259CPE

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP16, PLASTIC, DIP-16
ROCHESTER

MAX1259CWE

MAX1259 Battery Manager
MAXIM

MAX1259CWE

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, SOP-16
ROCHESTER

MAX1259CWE+

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO16, SOP-16
MAXIM