MAX12558ETK-D [MAXIM]

ADC, Proprietary Method, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.80 MM HEIGHT, MO-220WNND-2, TQFN-68;
MAX12558ETK-D
型号: MAX12558ETK-D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.80 MM HEIGHT, MO-220WNND-2, TQFN-68

转换器
文件: 总30页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3842; Rev 0; 10/05  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
General Description  
Features  
The MAX12558 is a dual, 3.3V, 14-bit analog-to-digital  
converter (ADC) featuring fully differential wideband  
track-and-hold (T/H) inputs, driving internal quantizers.  
The MAX12558 is optimized for low power, small size,  
and high dynamic performance in intermediate frequen-  
cy (IF) and baseband sampling applications. This dual  
ADC operates from a single 3.3V supply, consuming  
only 756mW while delivering a typical 71.7dB signal-to-  
noise ratio (SNR) performance at a 175MHz input fre-  
quency. The T/H input stages accept single-ended or  
differential inputs up to 400MHz. In addition to low oper-  
ating power, the MAX12558 features a 330µW power-  
down mode to conserve power during idle periods.  
Direct IF Sampling Up to 400MHz  
Excellent Dynamic Performance  
74.4dB/71.7dB SNR at f = 70MHz/175MHz  
84.2dBc/79dBc SFDR at f = 70MHz/175MHz  
IN  
IN  
3.3V Low-Power Operation  
789mW (Differential Clock Mode)  
756mW (Single-Ended Clock Mode)  
Fully Differential or Single-Ended Analog Input  
Adjustable Differential Analog Input Voltage  
750MHz Input Bandwidth  
Adjustable, Internal or External, Shared Reference  
Differential or Single-Ended Clock  
Accepts 25% to 75% Clock Duty Cycle  
User-Selectable DIV2 and DIV4 Clock Modes  
Power-Down Mode  
A flexible reference structure allows the MAX12558 to  
use the internal 2.048V bandgap reference or accept  
an externally applied reference and allows the refer-  
ence to be shared between the two ADCs. The refer-  
ence structure allows the full-scale analog input range  
to be adjusted from 0.35V to 1.15V. The MAX12558  
provides a common-mode reference to simplify design  
and reduce external component count in differential  
analog input circuits.  
CMOS Outputs in Two’s Complement or Gray  
Code  
Out-of-Range and Data-Valid Indicators  
Small, 68-Pin Thin QFN Package  
(10mm x 10mm x 0.8mm)  
12-Bit, Pin-Compatible Version Available  
The MAX12558 supports either a single-ended or differ-  
ential input clock. User-selectable divide-by-two (DIV2)  
and divide-by-four (DIV4) modes allow for design flexibil-  
ity and help to reduce the negative effects of clock jitter.  
Wide variations in the clock duty cycle are compensated  
with the ADC’s internal duty-cycle equalizer (DCE).  
(MAX12528)  
Evaluation Kit Available (Order MAX12558EVKIT)  
Ordering Information  
PKG  
CODE  
The MAX12558 features two parallel, 14-bit-wide,  
CMOS-compatible outputs. The digital output format is  
pin-selectable to be either two’s complement or Gray  
code. A separate power-supply input for the digital out-  
puts accepts a 1.7V to 3.6V voltage for flexible interfac-  
ing with various logic levels. The MAX12558 is available  
in a 10mm x 10mm x 0.8mm, 68-pin thin QFN package  
with exposed paddle (EP), and is specified for the  
extended (-40°C to +85°C) temperature range.  
PART  
TEMP RANGE PIN-PACKAGE  
MAX12558ETK -40°C to +85°C 68 Thin QFN-EP* T6800-2  
MAX12558ETK+ -40°C to +85°C 68 Thin QFN-EP* T6800-2  
*EP = Exposed paddle.  
+Denotes lead-free package.  
Selector Guide  
For a 12-bit, pin-compatible version of this ADC, refer to  
the MAX12528 data sheet. See the Selector Guide for  
more selections.  
SAMPLING RATE  
(Msps)  
RESOLUTION  
(Bits)  
PART  
Applications  
IF and Baseband Communication Receivers  
Cellular, LMDS, Point-to-Point Microwave,  
MMDS, HFC, WLAN  
MAX12559**  
MAX12558  
MAX12557  
MAX12529**  
MAX12528  
MAX12527  
95  
80  
65  
95  
80  
65  
14  
14  
14  
12  
12  
12  
I/Q Receivers  
Ultrasound and Medical Imaging  
Portable Instrumentation  
Digital Set-Top Boxes  
**Future product—contact factory for availability.  
Low-Power Data Acquisition  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ................................................................-0.3V to +3.6V  
DIFFCLK/SECLK, G/T, PD, SHREF, DIV2,  
DIV4 to GND .........-0.3V to the lower of (V + 0.3V) and +3.6V  
D0A–D13A, D0B–D13B, DAV,  
DORA, DORB to GND..............................-0.3V to (OV + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
68-Pin Thin QFN, 10mm x 10mm x 0.8mm  
(derate 70mW/°C above +70°C) ....................................4000mW  
Operating Temperature Range................................-40°C to +85°C  
Junction Temperature...........................................................+150°C  
Storage Temperature Range .................................-65°C to +150°C  
Lead Temperature (soldering 10s).......................................+300°C  
OV to GND............-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
DD  
DD  
INAP, INAN to GND ...-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
INBP, INBN to GND ...-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
CLKP, CLKN to  
DD  
GND........................-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
REFIN, REFOUT  
to GND ..................-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
REFAP, REFAN,  
COMA to GND ......-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
REFBP, REFBN,  
COMB to GND ......-0.3V to the lower of (V + 0.3V) and +3.6V  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T =  
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
14  
Bits  
Integral Nonlinearity  
INL  
f
f
= 3MHz  
1.4  
0.6  
LSB  
IN  
= 3MHz, no missing codes over  
IN  
Differential Nonlinearity  
DNL  
-1.0  
+1.2  
LSB  
temperature (Note 2)  
Offset Error  
Gain Error  
0.1  
0.1  
0.7  
4.6  
%FSR  
%FSR  
External reference, V  
= 2.048V  
REFIN  
ANALOG INPUT (INAP, INAN, INBP, INBN)  
Differential Input Voltage Range  
Common-Mode Input Voltage  
Analog Input Resistance  
V
Differential or single-ended inputs  
Each input, Figure 3  
1.024  
V
V
DIFF  
V
/ 2  
DD  
R
2.8  
kΩ  
IN  
Fixed capacitance to ground,  
each input, Figure 3  
C
2
PAR  
Analog Input Capacitance  
pF  
Switched capacitance,  
each input, Figure 3  
C
4.5  
SAMPLE  
CONVERSION RATE  
Maximum Clock Frequency  
Minimum Clock Frequency  
f
80  
MHz  
MHz  
CLK  
5
Clock  
Cycles  
Data Latency  
Figure 5  
8
DYNAMIC CHARACTERISTICS  
Small-Signal Noise Floor  
SSNF  
SNR  
Input at -35dBFS  
75.4  
72.7  
76.8  
75.2  
74.7  
74.4  
71.7  
dBFS  
dB  
f
IN  
f
IN  
f
IN  
f
IN  
= 3MHz  
= 40MHz  
= 70MHz  
= 175MHz  
Signal-to-Noise Ratio  
69.9  
2
_______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T =  
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
74.8  
73.5  
73.7  
70.6  
86.9  
81.9  
84.2  
79  
MAX  
UNITS  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 3MHz  
71.1  
= 40MHz  
= 70MHz  
= 175MHz  
= 3MHz  
Signal-to-Noise Plus Distortion  
SINAD  
dB  
68.6  
73.8  
= 40MHz  
= 70MHz  
= 175MHz  
= 3MHz  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Second Harmonic  
SFDR  
THD  
HD2  
HD3  
dBc  
dBc  
dBc  
dBc  
72.8  
-85.3  
-79.7  
-81.7  
-77.1  
-87.3  
-84.8  
-86.7  
-79.9  
-91.4  
-81.9  
-84.3  
-81.3  
-72.9  
-71.3  
= 40MHz  
= 70MHz  
= 175MHz  
= 3MHz  
= 40MHz  
= 70MHz  
= 175MHz  
= 3MHz  
= 40MHz  
= 70MHz  
= 175MHz  
Third Harmonic  
f
f
= 68.5MHz at -7dBFS  
= 71.5MHz at -7dBFS  
IN1  
IN2  
-86.5  
-87.1  
3rd-Order Intermodulation  
Distortion  
IM3  
dBc  
f
f
= 172.5MHz at -7dBFS  
= 177.5MHz at -7dBFS  
IN1  
IN2  
MHz  
ns  
Full-Power Bandwidth  
Aperture Delay  
FPBW  
Input at -0.2dBFS, -3dB rolloff  
Figure 5  
750  
1.2  
t
AD  
ps  
RMS  
Aperture Jitter  
t
AJ  
< 0.1  
INAP = INAN = COMA  
INBP = INBN = COMB  
Output Noise  
n
0.91  
LSB  
RMS  
OUT  
_______________________________________________________________________________________  
3
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T =  
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
10% beyond full scale  
MIN  
TYP  
MAX  
UNITS  
Clock  
Cycle  
Overdrive Recovery Time  
1
INTERCHANNEL CHARACTERISTICS  
f
f
or f  
or f  
= 70MHz at -1dBFS  
= 175MHz at -1dBFS  
95  
INA  
INB  
INB  
Crosstalk Rejection  
dB  
87  
INA  
Gain Matching  
0.01  
0.01  
0.1  
dB  
Offset Matching  
%FSR  
INTERNAL REFERENCE (REFOUT)  
REFOUT Output Voltage  
V
2.000  
2.048  
35  
2.080  
V
REFOUT  
REFOUT Load Regulation  
REFOUT Temperature Coefficient  
-1mA < I  
< +1mA  
mV/mA  
ppm/°C  
REFOUT  
TC  
50  
REF  
Short to V —sinking  
DD  
0.24  
2.1  
REFOUT Short-Circuit Current  
mA  
Short to GND—sourcing  
BUFFERED REFERENCE MODE (REFIN is driven by REFOUT or an external 2.048V single-ended reference source;  
/V /V and V /V /V are generated internally)  
V
REFAP REFAN COMA  
REFBP REFBN COMB  
REFIN Input Voltage  
V
R
2.048  
> 50  
V
REFIN  
REFIN Input Resistance  
MΩ  
REFIN  
V
V
COMA  
COMB  
COM_ Output Voltage  
REF_P Output Voltage  
REF_N Output Voltage  
V
V
V
V
= V  
/ 2  
1.60  
1.65  
2.418  
0.882  
1.536  
25  
1.70  
V
COM_  
REF_P  
REF_N  
DD  
V
V
REFAP  
REFBP  
= V  
/ 2 + (V  
x 3/8)  
x 3/8)  
V
DD  
REFIN  
V
V
REFAN  
REFBN  
= V  
/ 2 - (V  
V
V
DD  
REFIN  
V
V
REFA  
REFB  
Differential Reference Voltage  
= V  
- V  
REF_N  
1.456  
1.595  
REF_  
REF_P  
Differential Reference  
Temperature Coefficient  
TC  
ppm/°C  
REF  
UNBUFFERED EXTERNAL REFERENCE (REFIN = GND, V  
/V  
/V  
and V  
/V  
/V  
are applied  
REFAP REFAN COMA  
REFBP REFBN COMB  
externally, V  
= V  
= V  
/ 2)  
COMA  
COMB  
DD  
V
V
REFAP  
REFBP  
REF_P Input Voltage  
V
- V  
+0.768  
V
REF_P  
COM_  
V
V
REFAN  
REFBN  
REF_N Input Voltage  
COM_ Input Voltage  
V
V
V
- V  
-0.768  
1.65  
V
V
V
REF_N  
COM_  
COM_  
V
= V  
/ 2  
DD  
COM_  
V
V
REFA  
REFB  
Differential Reference Voltage  
= V  
- V  
= V x 3/4  
REFIN  
1.536  
REF_  
REF_P  
REF_N  
4
_______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T  
=
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
REF_P Sink Current  
SYMBOL  
CONDITIONS  
= 2.418V  
MIN  
TYP  
MAX  
UNITS  
I
I
REFAP  
V
V
V
1.2  
mA  
REF_P  
REF_N  
COM_  
REFBP  
I
I
REFAN  
REF_N Source Current  
COM_ Sink Current  
= 0.882V  
= 1.65V  
0.85  
0.85  
mA  
mA  
REFBN  
I
I
COMA  
COMB  
C
C
,
REF_P  
REF_P, REF_N Capacitance  
13  
6
pF  
pF  
REF_N  
COM_ Capacitance  
C
COM_  
CLOCK INPUTS (CLKP, CLKN)  
Single-Ended Input High  
Threshold  
Single-Ended Input Low  
Threshold  
0.8 x  
V
DIFFCLK/SECLK = GND, CLKN = GND  
DIFFCLK/SECLK = GND, CLKN = GND  
V
V
IH  
V
DD  
0.2 x  
V
IL  
V
DD  
Minimum Differential Clock Input  
Voltage Swing  
DIFFCLK/SECLK = OV  
0.2  
V
DD  
P-P  
V
Differential Input Common-Mode  
Voltage  
DIFFCLK/SECLK = OV  
V
/ 2  
DD  
DD  
CLKP, CLKN Input Resistance  
CLKP, CLKN Input Capacitance  
R
Each input, Figure 4  
5
2
kΩ  
CLK  
CLK  
C
pF  
DIGITAL INPUTS (DIFFCLK/SECLK, G/T, PD, DIV2, DIV4, SHREF)  
0.8 x  
OV  
Input High Threshold  
Input Low Threshold  
V
V
V
IH  
DD  
0.2 x  
V
IL  
OV  
DD  
5
OV  
applied to input  
DD  
Input Leakage Current  
µA  
pF  
Input connected to ground  
5
Digital Input Capacitance  
C
5
DIN  
DIGITAL OUTPUTS (D0A–D13A, D0B–D13B, DORA, DORB, DAV)  
D0A–D13A, D0B–D13B, DORA, DORB:  
0.2  
I
= 200µA  
Output-Voltage Low  
Output-Voltage High  
V
V
SINK  
OL  
DAV: I  
= 600µA  
0.2  
SINK  
D0A–D13A, D0B–D13B, DORA, DORB:  
= 200µA  
OV  
0.2  
-
DD  
I
SOURCE  
V
V
OH  
OV  
-
DD  
DAV: I  
= 600µA  
SOURCE  
0.2  
OV  
applied to input  
5
5
Tri-State Leakage Current  
(Note 3)  
DD  
I
µA  
LEAK  
Input connected to ground  
_______________________________________________________________________________________  
5
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T =  
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
D0A–D13A, DORA,  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D0B–D13B, and DORB Tri-State  
Output Capacitance (Note 3)  
C
3
pF  
OUT  
DAV  
DAV Tri-State Output  
Capacitance (Note 3)  
C
6
pF  
POWER REQUIREMENTS  
Analog Supply Voltage  
V
3.15  
1.70  
3.30  
2.0  
3.60  
V
V
DD  
Digital Output Supply Voltage  
OV  
V
DD  
DD  
Normal operating mode  
= 175MHz  
single-ended clock  
f
IN  
229  
(DIFFCLK/SECLK = GND)  
Normal operating mode  
Analog Supply Current  
I
mA  
VDD  
f
IN  
= 175MHz  
239  
0.1  
273  
differential clock  
(DIFFCLK/SECLK = OV  
)
DD  
Power-down mode (PD = OV  
clock idle  
)
DD  
Normal operating mode  
f
= 175MHz  
IN  
756  
single-ended clock  
(DIFFCLK/SECLK = GND)  
Normal operating mode  
Analog Power Dissipation  
P
mW  
VDD  
f
IN  
= 175MHz  
789  
900  
differential clock  
(DIFFCLK/SECLK = OV  
)
DD  
Power-down mode (PD = OV  
clock idle  
)
)
DD  
0.33  
22.6  
Normal operating mode  
f
IN  
= 175MHz, C  
L 10pF  
Digital Output Supply Current  
I
mA  
OVDD  
Power-down mode (PD = OV  
clock idle  
DD  
0.004  
6
_______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 10pF at digital outputs, V = -1dBFS (differential),  
DD  
DD  
L
IN  
DIFFCLK/SECLK = OV , PD = GND, SHREF = GND, DIV2 = GND, DIV4 = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T =  
DD  
CLK  
A
-40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 5)  
Clock Pulse-Width High  
Clock Pulse-Width Low  
Data-Valid Delay  
t
6.2  
6.2  
5.8  
ns  
ns  
ns  
CH  
t
CL  
t
(Note 4)  
DAV  
Data Setup Time Before Rising  
Edge of DAV  
t
(Notes 4, 5), OV  
(Notes 4, 5), OV  
= 1.8V  
= 1.8V  
5.5  
5.5  
ns  
SETUP  
DD  
DD  
Data Hold Time After Rising Edge  
of DAV  
t
ns  
HOLD  
Wake-Up Time from Power-Down  
t
V
= 2.048V  
10  
ms  
WAKE  
REFIN  
Note 1: Specifications +25°C guaranteed by production test, < +25°C guaranteed by design and characterization.  
Note 2: Guaranteed by design and characterization. Device tested for performance during production test.  
Note 3: During power-down, D0A–D13A, D0B–D13B, DORA, DORB, and DAV are high impedance.  
Note 4: Data outputs settle to V or V .  
IH  
IL  
Note 5: Guaranteed by design and characterization.  
Typical Operating Characteristics  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 5pF at digital outputs, V = -1dBFS (differential),  
IN  
DD L  
DD  
DIFFCLK/SECLK = OV , PD = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
DD  
CLK  
A
FFT PLOT (32,768-POINT DATA RECORD)  
FFT PLOT (32,768-POINT DATA RECORD)  
FFT PLOT (32,768-POINT DATA RECORD)  
0
0
0
f
f
A
= 80MHz  
= 3.00883MHz  
= -1.013dBFS  
f
f
A
= 80MHz  
CLK  
= 39.50928MHz  
IN  
= -1.024dBFS  
IN  
f
f
A
= 80MHz  
= 70.09846MHz  
= -1.03dBFS  
CLK  
IN  
IN  
CLK  
IN  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
SNR = 75.3dB  
SNR = 74.4dB  
SNR = 74.2dB  
SINAD = 75.1dB  
THD = -90.1dBc  
SFDR = 91.8dBc  
HD2 = -91.8dBc  
HD3 = -102dBc  
SINAD = 73.5dB  
THD = -80.8dBc  
SFDR = 83.3dBc  
HD2 = -85.5dBc  
HD3 = -82.6dBc  
SINAD = 73.7dB  
THD = -83.3dBc  
SFDR = 85.8dBc  
HD2 = -88.7dBc  
HD3 = -85.8dBc  
HD3  
HD2  
HD2  
HD3  
-80  
-90  
-80  
-90  
-80  
-90  
HD3  
HD2  
-100  
-100  
-100  
-110  
-120  
-110  
-120  
-110  
-120  
0
5
10 15 20 25 30 35 40  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 5pF at digital outputs, V = -1dBFS (differential),  
IN  
DD L  
DD  
DIFFCLK/SECLK = OV , PD = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
DD  
CLK  
A
TWO-TONE IMD PLOT  
(32,768-POINT DATA RECORD)  
TWO-TONE IMD PLOT  
(32,768-POINT DATA RECORD)  
FFT PLOT (32,768-POINT DATA RECORD)  
0
-20  
0
0
-20  
f
f
f
= 80MHz  
f
f
f
= 80MHz  
f
f
= 80MHz  
= 174.97827MHz  
= -1.093dBFS  
CLK  
IN1  
IN2  
CLK  
IN1  
IN2  
CLK  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
= 68.50117MHz  
= 71.49933MHz  
= A = -7dBFS  
= 172.499299MHz  
= 177.499492MHz  
= A = -7dBFS  
A
f
IN  
IN2  
A
A
SNR = 71.8dB  
IN1  
IN2  
IN1  
IN2  
f
IN2  
f
IN1  
IM3 = -94.7dBc  
IM3 = -87.5dBc  
SINAD = 70.9dB  
THD = -78.2dBc  
SFDR = 79.4dBc  
HD2 = -102.3dBc  
HD3 = -79.4dBc  
-40  
f
IN1  
-40  
-60  
-60  
2f + f  
IN1 IN2  
f
- f  
IN2 IN1  
HD3  
f
- f  
IN2 IN1  
f
+ f  
2f - f  
IN2 IN1  
IN1 IN2  
2f - f  
2f + f  
IN2 IN1  
IN1 IN2  
-80  
-80  
-80  
-90  
HD2  
-100  
-120  
-100  
-100  
-120  
-110  
-120  
0
5
10 15 20 25 30 35  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35  
0
5
10 15 20 25 30 35 40  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SNR, SINAD vs. ANALOG INPUT FREQUENCY  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
(f  
CLK  
= 80MHz, A = -1dBFS)  
IN  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1.00  
0.75  
0.50  
0.25  
0
2.0  
1.6  
SNR  
1.2  
0.8  
0.4  
SINAD  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.25  
-0.50  
-0.75  
-1.00  
0
50 100 150 200 250 300 350 400  
(MHz)  
0
2048 4096 6144 8192 10,240 12,288 14,336 16,384  
DIGITAL OUTPUT CODE  
0
2048 4096 6144 8192 10,240 12,288 14,336 16,384  
DIGITAL OUTPUT CODE  
f
IN  
SNR, SINAD vs. ANALOG INPUT AMPLITUDE  
-THD, SFDR vs. ANALOG INPUT AMPLITUDE  
-THD, SFDR vs. ANALOG INPUT FREQUENCY  
(f  
CLK  
= 80MHz, f = 70MHz)  
(f = 80MHz, f = 70MHz)  
CLK IN  
(f  
CLK  
= 80MHz, A = -1dBFS)  
IN  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
95  
85  
75  
65  
55  
45  
35  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR  
SFDR  
SFDR  
SINAD  
-THD  
-THD  
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
(dBFS)  
0
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
(dBFS)  
0
0
50 100 150 200 250 300 350 400  
(MHz)  
A
A
IN  
f
IN  
IN  
8
_______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 5pF at digital outputs, V = -1dBFS (differential),  
IN  
DD L  
DD  
DIFFCLK/SECLK = OV , PD = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
DD  
CLK  
A
SNR, SINAD vs. CLOCK SPEED  
(f = 70MHz, A = -1dBFS)  
SNR, SINAD vs. ANALOG INPUT AMPLITUDE  
-THD, SFDR vs. ANALOG INPUT AMPLITUDE  
(f  
CLK  
= 80MHz, f = 175MHz)  
(f = 80MHz, f = 175MHz)  
CLK IN  
IN  
IN  
IN  
95  
85  
75  
65  
55  
45  
35  
80  
76  
72  
68  
64  
60  
75  
65  
55  
45  
35  
25  
15  
SNR  
SNR  
SFDR  
SINAD  
SINAD  
-THD  
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
(dBFS)  
0
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
(dBFS)  
0
30  
40  
50  
60  
(MHz)  
70  
80  
A
A
f
CLK  
IN  
IN  
-THD, SFDR vs. CLOCK SPEED  
SNR, SINAD vs. CLOCK SPEED  
-THD, SFDR vs. CLOCK SPEED  
(f = 70MHz, A = -1dBFS)  
(f = 175MHz, A = -1dBFS)  
(f = 175MHz, A = -1dBFS)  
IN  
IN  
IN  
IN  
IN  
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
SFDR  
SFDR  
SNR  
-THD  
SINAD  
-THD  
60  
55  
50  
30  
40  
50  
60  
(MHz)  
70  
80  
30  
40  
50  
60  
70  
80  
30  
40  
50  
60  
(MHz)  
70  
80  
f
f
(MHz)  
f
CLK  
CLK  
CLK  
-THD, SFDR vs. ANALOG SUPPLY VOLTAGE  
SNR, SINAD vs. ANALOG SUPPLY VOLTAGE  
SNR, SINAD vs. ANALOG SUPPLY VOLTAGE  
(f = 80MHz, f = 175MHz)  
(f  
CLK  
= 80MHz, f = 70MHz)  
IN  
(f  
CLK  
= 80MHz, f = 70MHz)  
IN  
CLK  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
SNR  
SNR  
SFDR  
SINAD  
SINAD  
-THD  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
V
V
DD  
V
DD  
DD  
_______________________________________________________________________________________  
9
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 5pF at digital outputs, V = -1dBFS (differential),  
IN  
DD L  
DD  
DIFFCLK/SECLK = OV , PD = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
DD  
CLK  
A
-THD, SFDR vs. DIGITAL SUPPLY VOLTAGE  
-THD, SFDR vs. ANALOG SUPPLY VOLTAGE  
SNR, SINAD vs. DIGITAL SUPPLY VOLTAGE  
(f  
CLK  
= 80MHz, f = 70MHz)  
(f  
CLK  
= 80MHz, f = 175MHz)  
(f = 80MHz, f = 70MHz)  
CLK IN  
IN  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
85  
80  
75  
70  
65  
60  
80  
75  
70  
65  
60  
55  
50  
SNR  
SFDR  
SFDR  
SINAD  
-THD  
-THD  
3.6  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
OV (V)  
V
OV (V)  
DD  
DD  
DD  
-THD, SFDR vs. DIGITAL SUPPLY VOLTAGE  
P
(ANALOG), I  
vs. ANALOG SUPPLY VOLTAGE  
SNR, SINAD vs. DIGITAL SUPPLY VOLTAGE  
DISS  
VDD  
(f  
CLK  
= 80MHz, f = 175MHz)  
(f  
CLK  
= 80MHz, f = 175MHz)  
(f  
CLK  
= 80MHz, f = 175MHz)  
IN  
IN  
(ANALOG)  
IN  
80  
75  
70  
65  
60  
55  
50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
85  
81  
77  
73  
69  
65  
P
DISS  
SNR  
SFDR  
-THD  
SINAD  
I
VDD  
3.6  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
OV (V)  
DD  
V
OV (V)  
DD  
DD  
P
(DIGITAL), I  
OVDD  
DISS  
vs. DIGITAL SUPPLY VOLTAGE  
SNR, SINAD vs. CLOCK DUTY CYCLE  
-THD, SFDR vs. CLOCK DUTY CYCLE  
(f  
= 80MHz, f = 175MHz)  
(f = 70MHz, A = -1dBFS)  
(f = 70MHz, A = -1dBFS)  
CLK  
IN  
IN  
IN  
IN  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
0
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
SFDR  
SNR  
SINAD  
P
(DIGITAL)  
DISS  
-THD  
I
OVDD  
SINGLE-ENDED CLOCK DRIVE  
SINGLE-ENDED CLOCK DRIVE  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
25  
35  
45  
55  
65  
75  
25  
35  
45  
55  
65  
75  
OV (V)  
DD  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
10 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, OV  
= 2.0V, GND = 0, REFIN = REFOUT (internal reference), C 5pF at digital outputs, V = -1dBFS (differential),  
IN  
DD L  
DD  
DIFFCLK/SECLK = OV , PD = GND, G/T = GND, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
DD  
CLK  
A
SNR, SINAD vs. TEMPERATURE  
(f = 175MHz, A = -1dBFS)  
-THD, SFDR vs. TEMPERATURE  
(f = 175MHz, A = -1dBFS)  
IN  
IN  
IN  
IN  
75  
72  
69  
66  
63  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
SNR  
SFDR  
SINAD  
-THD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR vs. TEMPERATURE  
(V  
REFIN  
= 2.048V)  
OFFSET ERROR vs. TEMPERATURE  
1.0  
0.6  
0.3  
0.2  
0.1  
0
0.2  
-0.2  
-0.6  
-1.0  
-0.1  
-0.2  
-0.3  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 5, 9,  
13, 14, 17  
GND  
Converter Ground. Connect all ground pins and the exposed paddle (EP) together.  
2
3
6
INAP  
INAN  
Channel A Positive Analog Input  
Channel A Negative Analog Input  
COMA  
Channel A Common-Mode Voltage I/O. Bypass COMA to GND with a 0.1µF capacitor.  
Channel A Positive Reference I/O. Channel A conversion range is 2/3 x (V  
- V  
). Bypass  
REFAP  
REFAN  
REFAP with a 0.1µF capacitor to GND. Connect a 4.7µF and a 0.1µF bypass capacitor between REFAP  
and REFAN. Place the 0.1µF REFAP-to-REFAN capacitor as close to the device as possible on the  
same side of the PC board.  
7
8
REFAP  
REFAN  
REFBN  
REFBP  
Channel A Negative Reference I/O. Channel A conversion range is 2/3 x (V  
- V  
). Bypass  
REFAP  
REFAN  
REFAN with a 0.1µF capacitor to GND. Connect a 4.7µF and a 0.1µF bypass capacitor between REFAP  
and REFAN. Place the 0.1µF REFAP-to-REFAN capacitor as close to the device as possible on the  
same side of the PC board.  
Channel B Negative Reference I/O. Channel B conversion range is 2/3 x (V  
- V  
). Bypass  
REFBP  
REFBN  
REFBN with a 0.1µF capacitor to GND. Connect a 4.7µF and a 0.1µF bypass capacitor between REFBP  
and REFBN. Place the 0.1µF REFBP-to-REFBN capacitor as close to the device as possible on the  
same side of the PC board.  
10  
11  
Channel B Positive Reference I/O. Channel B conversion range is 2/3 x (V  
- V  
). Bypass  
REFBP  
REFBN  
REFBP with a 0.1µF capacitor to GND. Connect a 4.7µF and a 0.1µF bypass capacitor between REFBP  
and REFBN. Place the 0.1µF REFBP-to-REFBN capacitor as close to the device as possible on the  
same side of the PC board.  
12  
15  
16  
COMB  
INBN  
INBP  
Channel B Common-Mode Voltage I/O. Bypass COMB to GND with a 0.1µF capacitor.  
Channel B Negative Analog Input  
Channel B Positive Analog Input  
Differential/Single-Ended Input Clock Drive. This input selects between single-ended or differential clock  
DIFFCLK/ input drives.  
18  
SECLK  
CLKN  
CLKP  
DIFFCLK/SECLK = GND: Selects single-ended clock input drive.  
DIFFCLK/SECLK = OV : Selects differential clock input drive.  
DD  
Negative Clock Input. In differential clock input mode (DIFFCLK/SECLK = OV ), connect a differential  
clock signal between CLKP and CLKN. In single-ended clock mode (DIFFCLK/SECLK = GND), apply  
the clock signal to CLKP and connect CLKN to GND.  
Positive Clock Input. In differential clock input mode (DIFFCLK/SECLK = OV ), connect a differential  
clock signal between CLKP and CLKN. In single-ended clock mode (DIFFCLK/SECLK = GND), apply  
the single-ended clock signal to CLKP and connect CLKN to GND.  
DD  
19  
20  
DD  
21  
22  
DIV2  
DIV4  
Divide-by-Two Clock-Divider Digital Control Input. See Table 2 for details.  
Divide-by-Four Clock-Divider Digital Control Input. See Table 2 for details.  
23–26, 61,  
62, 63  
Analog Power Input. Connect V  
capacitor combination of 10µF and 0.1µF. Connect all V  
to a 3.15V to 3.60V power supply. Bypass V  
to GND with a parallel  
DD  
DD  
V
DD  
pins to the same potential.  
DD  
Output-Driver Power Input. Connect OV  
parallel capacitor combination of 10µF and 0.1µF.  
to a 1.7V to V  
power supply. Bypass OV  
to GND with a  
DD  
DD  
DD  
27, 43, 60  
OV  
DD  
12 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Pin Description (continued)  
PIN  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
NAME  
D0B  
FUNCTION  
Channel B CMOS Digital Output, Bit 0 (LSB)  
Channel B CMOS Digital Output, Bit 1  
Channel B CMOS Digital Output, Bit 2  
Channel B CMOS Digital Output, Bit 3  
Channel B CMOS Digital Output, Bit 4  
Channel B CMOS Digital Output, Bit 5  
Channel B CMOS Digital Output, Bit 6  
Channel B CMOS Digital Output, Bit 7  
Channel B CMOS Digital Output, Bit 8  
Channel B CMOS Digital Output, Bit 9  
Channel B CMOS Digital Output, Bit 10  
Channel B CMOS Digital Output, Bit 11  
Channel B CMOS Digital Output, Bit 12  
Channel B CMOS Digital Output, Bit 13 (MSB)  
D1B  
D2B  
D3B  
D4B  
D5B  
D6B  
D7B  
D8B  
D9B  
D10B  
D11B  
D12B  
D13B  
Channel B Data Out-of-Range Indicator. The DORB digital output indicates when the channel B analog  
input voltage is out of range.  
DORB = 1: Digital outputs exceed full-scale range.  
42  
DORB  
DORB = 0: Digital outputs are within full-scale range.  
Data-Valid Digital Output. The rising edge of DAV indicates that data is present on the digital outputs.  
The MAX12558 evaluation kit utilizes DAV to latch data into any external back-end digital logic.  
44  
DAV  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
D0A  
D1A  
D2A  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
D9A  
D10A  
D11A  
D12A  
D13A  
Channel A CMOS Digital Output, Bit 0 (LSB)  
Channel A CMOS Digital Output, Bit 1  
Channel A CMOS Digital Output, Bit 2  
Channel A CMOS Digital Output, Bit 3  
Channel A CMOS Digital Output, Bit 4  
Channel A CMOS Digital Output, Bit 5  
Channel A CMOS Digital Output, Bit 6  
Channel A CMOS Digital Output, Bit 7  
Channel A CMOS Digital Output, Bit 8  
Channel A CMOS Digital Output, Bit 9  
Channel A CMOS Digital Output, Bit 10  
Channel A CMOS Digital Output, Bit 11  
Channel A CMOS Digital Output, Bit 12  
Channel A CMOS Digital Output, Bit 13 (MSB)  
Channel A Data Out-of-Range Indicator. The DORA digital output indicates when the channel A analog  
input voltage is out of range.  
DORA = 1: Digital outputs exceed full-scale range.  
DORA = 0: Digital outputs are within full-scale range.  
Output Format Select Digital Input.  
59  
64  
DORA  
G/T  
G/T = GND: Two’s-complement output format selected.  
G/T = OV : Gray-code output format selected.  
DD  
______________________________________________________________________________________ 13  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Power-Down Digital Input.  
65  
PD  
PD = GND: ADCs are fully operational.  
PD = OV : ADCs are powered down.  
DD  
Shared Reference Digital Input.  
SHREF = V : Shared reference enabled.  
DD  
SHREF = GND: Shared reference disabled.  
When sharing the reference, externally connect REFAP and REFBP together to ensure that V  
66  
67  
SHREF  
=
REFAP  
V
. Similarly, when sharing the reference, externally connect REFAN to REFBN together to ensure  
REFBP  
that V  
= V  
.
REFBN  
REFAN  
Internal Reference Voltage Output. The REFOUT output voltage is 2.048V and REFOUT can deliver 1mA.  
For internal reference operation, connect REFOUT directly to REFIN or use a resistive divider from  
REFOUT REFOUT to set the voltage at REFIN. Bypass REFOUT to GND with a 0.1µF capacitor.  
For external reference operation, REFOUT is not required and must be bypassed to GND with a 0.1µF  
capacitor.  
Single-Ended Reference Analog Input. For internal reference and buffered external reference operation,  
apply a 0.7V to 2.3V DC reference voltage to REFIN. Bypass REFIN to GND with a 4.7µF capacitor.  
Within its specified operating voltage, REFIN has a > 50Minput impedance, and the differential  
68  
REFIN  
reference voltage (V  
- V  
) is generated from REFIN. For unbuffered external reference  
REF_N  
REF_P  
operation, connect REFIN to GND. In this mode, REF_P, REF_N, and COM_ are high-impedance inputs  
that accept the external reference voltages.  
Exposed Paddle. EP is internally connected to GND. Externally connect EP to GND to achieve the  
specified dynamic performance.  
EP  
+
x2  
Σ
MAX12558  
FLASH  
DAC  
ADC  
IN_P  
STAGE 10  
END OF PIPELINE  
STAGE 1  
STAGE 2  
STAGE 9  
IN_N  
DIGITAL ERROR CORRECTION  
D0_ THROUGH D13_  
Figure 1. Pipeline Architecture—Stage Blocks  
Each pipeline converter stage converts its input voltage  
to a digital output code. At every stage, except the last,  
the error between the input voltage and the digital out-  
put code is multiplied and passed on to the next  
pipeline stage. Digital error correction compensates for  
ADC comparator offsets in each pipeline stage and  
ensures no missing codes. Figure 2 shows the  
MAX12558 functional diagram.  
Detailed Description  
The MAX12558 uses a 10-stage, fully differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half clock cycle.  
From input to output the total latency is 8 clock cycles.  
14 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
CLOCK  
14-BIT  
PIPELINE  
ADC  
D0A TO D13A  
DORA  
DIGITAL  
ERROR  
CORRECTION  
INAP  
INAN  
OUTPUT  
DRIVERS  
DATA  
FORMAT  
T/H  
REFAP  
COMA  
REFAN  
CHANNEL A  
REFERENCE  
SYSTEM  
MAX12558  
G/T  
REFIN  
REFOUT  
SHREF  
INTERNAL  
REFERENCE  
GENERATOR  
DAV  
OV  
DD  
REFBP  
COMB  
REFBN  
CHANNEL B  
REFERENCE  
SYSTEM  
14-BIT  
PIPELINE  
ADC  
INBP  
INBN  
D0B TO D13B  
DORB  
DIGITAL  
ERROR  
CORRECTION  
OUTPUT  
DRIVERS  
DATA  
FORMAT  
T/H  
CLOCK  
V
DD  
DIFFCLK/SECLK  
CLOCK  
POWER  
CONTROL  
AND  
CLKP  
CLKN  
CLOCK  
DIVIDER  
DUTY-CYCLE  
EQUALIZER  
PD  
BIAS CIRCUITS  
GND  
DIV2  
DIV4  
Figure 2. Functional Diagram  
______________________________________________________________________________________ 15  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Table 1. Reference Modes  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
V
REFIN  
REFERENCE MODE  
MAX12558  
Internal Reference Mode. REFIN is driven by  
REFOUT either through a direct short or a  
resistive divider.  
IN_P  
IN_N  
35% V  
REFOUT  
*C  
C
2pF  
SAMPLE  
PAR  
4.5pF  
to 100%  
V
V
V
= V  
= V  
= V  
/ 2  
COM_  
REF_P  
REF_N  
DD  
V
REFOUT  
/ 2 + 3/8 x V  
REFIN  
/ 2 - 3/8 x V  
REFIN  
DD  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
DD  
Buffered External Reference Mode. An  
external 0.7V to 2.3V reference voltage is  
applied to REFIN.  
*C  
C
2pF  
SAMPLE  
PAR  
4.5pF  
0.7V to 2.3V  
V
V
V
= V  
= V  
= V  
/ 2  
COM_  
REF_P  
REF_N  
DD  
/ 2 + 3/8 x V  
/ 2 - 3/8 x V  
DD  
REFIN  
SAMPLING  
CLOCK  
DD  
REFIN  
Unbuffered External Reference Mode. REF_P,  
REF_N, and COM_ are driven by external  
reference sources. The full-scale analog input  
*THE EFFECTIVE RESISTANCE OF THE  
SWITCHED SAMPLING CAPACITORS IS: R  
1
=
IN  
<0.5V  
f
x C  
SAMPLE  
CLK  
range is (V  
- V ) x 2/3.  
REF_N  
REF_P  
Figure 3. Internal T/H Circuit  
Analog Inputs and Input Track-and-Hold  
(T/H) Amplifier  
Reference Output  
An internal bandgap reference is the basis for all the  
internal voltages and bias currents used in the  
MAX12558. The power-down logic input (PD) enables  
and disables the reference circuit. REFOUT has approxi-  
mately 17kto GND when the MAX12558 is powered  
down. The reference circuit requires 10ms to power up  
and settle to its final value when power is first applied to  
the MAX12558 or when PD (power-down control line)  
transitions from high to low.  
Figure 3 displays a simplified functional diagram of the  
input T/H circuit. This input T/H circuit allows for high  
analog input frequencies (high IF) of 175MHz and  
beyond and supports a V  
voltage.  
/ 2 common-mode input  
DD  
The MAX12558 sampling clock controls the switched-  
capacitor input T/H architecture (Figure 3) allowing the  
analog input signals to be stored as charge on the  
sampling capacitors. These switches are closed (track  
mode) when the sampling clock is high and open (hold  
mode) when the sampling clock is low (Figure 4). The  
analog input signal source must be able to provide the  
dynamic currents necessary to charge and discharge  
the sampling capacitors. To avoid signal degradation,  
these capacitors must be charged to one-half LSB  
accuracy within one-half of a clock cycle. The analog  
input of the MAX12558 supports differential or single-  
ended input drive. For optimum performance with dif-  
ferential inputs, balance the input impedance of IN_P  
and IN_N and set the common-mode voltage to mid-  
The internal bandgap reference produces a buffered  
reference voltage of 2.048V 1% at the REFOUT pin  
with a 50ppm/°C temperature coefficient. Connect an  
external 0.1µF bypass capacitor from REFOUT to  
GND for stability. REFOUT sources up to 1mA and  
sinks up to 0.1mA for external circuits with a 35mV/mA  
load regulation. Short-circuit protection limits I  
REFOUT  
to a 2.1mA source current when shorted to GND and a  
0.24mA sink current when shorted to V . Similar to  
DD  
REFOUT, REFIN should be bypassed with a 4.7µF  
capacitor to GND.  
Reference Configurations  
The MAX12558 full-scale analog input range is 2/3 x  
supply (V  
/ 2). The MAX12558 provides the optimum  
DD  
common-mode voltage of V  
/ 2 through the COM  
DD  
V
V
with a V  
/ 2 0.5V common-mode input range.  
is the voltage difference between REFAP (REFBP)  
REF  
REF  
DD  
output when operating in internal reference mode and  
buffered external reference mode. This COM output  
voltage can be used to bias the input network as shown  
in Figures 9, 10, and 11.  
and REFAN (REFBN). The MAX12558 provides three  
modes of reference operation. Setting the voltage at  
REFIN (V  
(Table 1).  
) selects the reference operation mode  
REFIN  
16 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Connect REFOUT to REFIN either with a direct short or  
through a resistive divider for internal reference mode.  
COM_, REF_P, and REF_N are low-impedance outputs  
Clock Duty-Cycle Equalizer  
The MAX12558 has an internal clock duty-cycle equaliz-  
er, which makes the converter insensitive to the duty  
cycle of the signal applied to CLKP and CLKN. The con-  
verters allow clock duty-cycle variations from 25% to 75%  
without negatively impacting the dynamic performance.  
with V  
and V  
= V  
/ 2, V  
DD  
= V  
/ 2 + 3/8 x V  
,
COM_  
REF_N  
DD  
= V  
REFP  
/ 2 - 3/8 x V  
DD  
REFIN  
. Bypass REF_P,  
REFIN  
REF_N, and COM_ each with a 0.1µF capacitor to GND.  
Bypass REF_P to REF_N with a 10µF capacitor. Bypass  
REFIN and REFOUT to GND with a 0.1µF capacitor. The  
REFIN input impedance is very large (> 50M). When  
driving REFIN through a resistive divider, use resistances  
10kto avoid loading REFOUT.  
The clock duty-cycle equalizer uses a delay-locked  
loop (DLL) to create internal timing signals that are  
duty-cycle independent. Due to this DLL, the  
MAX12558 requires approximately 100 clock cycles to  
acquire and lock to new clock frequencies.  
Buffered external reference mode is virtually identical to  
the internal reference mode except that the reference  
source is derived from an external reference and not the  
MAX12558’s internal bandgap reference. In buffered  
external reference mode, apply a stable reference volt-  
age source between 0.7V to 2.3V at REFIN. Pins COM_,  
REF_P, and REF_N are low-impedance outputs with  
Clock Input and Clock Control Lines  
The MAX12558 accepts both differential and single-  
ended clock inputs with a wide 25% to 75% input clock  
duty cycle. For single-ended clock input operation,  
connect DIFFCLK/SECLK and CLKN to GND. Apply an  
external single-ended clock signal to CLKP. To reduce  
clock jitter, the external single-ended clock must have  
sharp falling edges. For differential clock input opera-  
V
V
= V  
/ 2, V  
= V  
/ 2 + 3/8 x V  
, and  
COM_  
REF_N  
DD  
REF_P  
/ 2 - 3/8 x V  
DD  
REFIN  
= V  
. Bypass REF_P, REF_N,  
REFIN  
DD  
tion, connect DIFFCLK/SECLK to OV . Apply an  
DD  
and COM_ each with a 0.1µF capacitor to GND. Bypass  
REF_P to REF_N with a 4.7µF capacitor.  
external differential clock signal to CLKP and CLKN.  
Consider the clock input as an analog input and route it  
away from any other analog inputs and digital signal  
lines. CLKP and CLKN enter high impedance when the  
MAX12558 is powered down (Figure 4).  
Connect REFIN to GND to enter unbuffered external ref-  
erence mode. Connecting REFIN to GND deactivates  
the on-chip reference buffers for COM_, REF_P, and  
REF_N. With their buffers deactivated, COM_, REF_P,  
and REF_N become high-impedance inputs and must  
be driven with separate, external reference sources.  
Low clock jitter is required for the specified SNR perfor-  
mance of the MAX12558. The analog inputs are sam-  
pled on the falling (rising) edge of CLKP (CLKN),  
requiring this edge to have the lowest possible jitter.  
Jitter limits the maximum SNR performance of any ADC  
according to the following relationship:  
Drive V  
to V  
COM_  
/ 2 5%, and drive REF_P and  
DD  
COM_  
REF_N so V  
= (V  
+ V  
) / 2. The analog  
REF_P_  
REF_N_  
) x 2/3. Bypass  
REF_N  
input range is (V  
- V  
REF_P_  
REF_P, REF_N, and COM_ each with a 0.1µF capacitor  
to GND. Bypass REF_P to REF_N with a 4.7µF capacitor.  
1
SNR = 20 × log  
For all reference modes, bypass REFOUT with a 0.1µF  
and REFIN with a 4.7µF capacitor to GND.  
2 × π × f × t  
IN  
J
The MAX12558 also features a shared reference mode,  
in which the user can achieve better channel-to-chan-  
nel matching. When sharing the reference (SHREF =  
where f represents the analog input frequency and t  
IN  
J
is the total system clock jitter. Clock jitter is especially  
critical for undersampling applications. For instance,  
assuming that clock jitter is the only noise source, to  
obtain the specified 71.7dB of SNR with an input fre-  
quency of 175MHz the system must have less than  
0.24ps of clock jitter. However, in reality there are other  
noise sources such as thermal noise and quantization  
noise that contribute to the system noise requiring the  
clock jitter to be less than 0.17ps to obtain the speci-  
fied 71.7dB of SNR at 175MHz.  
V
), externally connect REFAP and REFBP together to  
DD  
ensure that V  
= V . Similarly, when sharing  
REFBP  
REFAP  
the reference, externally connect REFAN to REFBN  
together to ensure that V = V  
.
REFBN  
REFAN  
Connect SHREF to GND to disable the shared refer-  
ence mode of the MAX12558. In this independent refer-  
ence mode, a better channel-to-channel isolation is  
achieved.  
For detailed circuit suggestions and how to drive the  
ADC in buffered/unbuffered external reference mode,  
see the Applications Information section.  
Clock-Divider Control Inputs (DIV2, DIV4)  
The MAX12558 features three different modes of sam-  
pling/clock operation (see Table 2). Pulling both control  
lines low, the clock-divider function is disabled and the  
converters sample at full clock speed. Pulling DIV4 low  
______________________________________________________________________________________ 17  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Table 2. Clock-Divider Control Inputs  
V
DD  
DIV4  
DIV2  
FUNCTION  
S
1H  
Clock Divider Disabled  
MAX12558  
0
0
f
= f  
CLK  
SAMPLE  
10kΩ  
Divide-by-Two Clock Divider  
= f / 2  
0
1
f
SAMPLE  
CLK  
CLKP  
Divide-by-Four Clock Divider  
= f / 4  
1
1
0
1
10kΩ  
f
SAMPLE  
CLK  
DUTY-CYCLE  
EQUALIZER  
S
2H  
Not Allowed  
S
1L  
10kΩ  
pled on the falling (rising) edge of CLKP (CLKN) and  
the resulting data appears at the digital outputs 8 clock  
cycles later.  
CLKN  
10kΩ  
SWITCHES S AND S ARE OPEN  
DURING POWER-DOWN, MAKING  
CLKP AND CLKN HIGH IMPEDANCE.  
The DAV indicator is synchronized with the digital out-  
put and optimized for use in latching data into digital  
back-end circuitry. Alternatively, digital back-end cir-  
cuitry can be latched with the rising edge of the con-  
version clock (CLKP - CLKN).  
1_  
2_  
S
2L  
SWITCHES S ARE OPEN IN  
2_  
GND  
SINGLE-ENDED CLOCK MODE.  
Data-Valid Output  
DAV is a single-ended version of the input clock that is  
compensated to correct for any input clock duty-cycle  
variations. The MAX12558 output data changes on the  
falling edge of DAV, and DAV rises once the output  
data is valid. The falling edge of DAV is synchronized  
to have a 5.4ns delay from the falling edge of the input  
clock. Output data at D0A/B–D13A/B and DORA/B are  
valid from 7ns before the rising edge of DAV to 7ns  
after the rising edge of DAV.  
Figure 4. Simplified Clock Input Circuit  
and DIV2 high enables the divide-by-two feature, which  
sets the sampling speed to one-half the selected clock  
frequency. In divide-by-four mode, the converter sam-  
pling speed is set to one-fourth the clock speed of the  
MAX12558. Divide-by-four mode is achieved by applying  
a high level to DIV4 and a low level to DIV2. The option to  
select either one-half or one-fourth of the clock speed for  
sampling provides design flexibility, relaxes clock  
requirements, and can minimize clock jitter.  
DAV enters high impedance when the MAX12558 is  
powered down (PD = OV ). DAV enters its high-  
DD  
System Timing Requirements  
Figure 5 shows the timing relationship between the  
clock, analog inputs, DAV indicator, DOR_ indicators,  
and the resulting output data. The analog input is sam-  
impedance state 10ns after the rising edge of PD and  
becomes active again 10ns after PD transitions low.  
DAV can sink and source 600µA and has three times the  
driving capabilities of D0A/B–D13A/B and DORA/B. DAV  
N + 4  
DIFFERENTIAL ANALOG INPUT (IN_P–IN_N)  
N + 5  
N + 3  
N + 6  
(V  
(V  
- V  
- V  
) x 2/3  
) x 2/3  
REF_P  
REF_N  
N - 3  
N - 2  
N +2  
N + 7  
N + 9  
N - 1  
N
N + 1  
N + 8  
REF_N  
REF_P  
t
AD  
CLKN  
CLKP  
t
CL  
t
CH  
t
DAV  
DAV  
t
t
HOLD  
SETUP  
D0_–D13_  
DOR  
N - 3 N - 2 N - 1  
8.0 CLOCK-CYCLE DATA LATENCY  
N
N + 1 N + 2 N + 3 N + 4 N + 5 N + 6 N + 7 N + 8 N + 9  
t
SETUP  
t
HOLD  
Figure 5. System Timing Diagram  
18 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
is typically used to latch the MAX12558 output data into  
MAX12558 is in power-down (PD = high). DOR_ enters  
a high-impedance state within 10ns after the rising edge  
of PD and becomes active 10ns after PD’s falling edge.  
an external digital back-end circuit. Keep the capacitive  
load on DAV as low as possible (< 15pF) to avoid large  
digital currents feeding back into the analog portion of  
the MAX12558, thereby degrading its dynamic perfor-  
mance. Buffering DAV externally isolates it from heavy  
capacitive loads. Refer to the MAX12558 EV kit schemat-  
ic for recommendations of how to drive the DAV signal  
through an external buffer.  
Digital Output Data and Output Format Selection  
The MAX12558 provides two 14-bit, parallel, tri-state  
output buses. D0A/B–D13A/B and DORA/B update on  
the falling edge of DAV and are valid on the rising edge  
of DAV.  
The MAX12558 output data format is either Gray code  
or two’s complement depending on the logic input G/T.  
With G/T high, the output data format is Gray code.  
With G/T low, the output data format is set to two’s com-  
plement. See Figure 8 for a binary-to-Gray and Gray-to-  
binary code conversion example.  
Data Out-of-Range Indicator  
The DORA and DORB digital outputs indicate when the  
analog input voltage is out of range. When DOR_ is high,  
the analog input is out of range. When DOR_ is low, the  
analog input is within range. The valid differential input  
range is from (V  
- V  
) x 2/3 to (V  
-
REF_N  
REF_P  
REF_N  
The following equations, Table 3, Figure 6, and Figure 7  
define the relationship between the digital output and  
the analog input.  
V
) x 2/3. Signals outside of this valid differential  
range cause DOR_ to assert high as shown in Table 1.  
REF_P  
DOR is synchronized with DAV and transitions along  
with the output data D13–D0. There is an 8 clock-cycle  
latency in the DOR function as is with the output data  
(Figure 5). DOR_ is high impedance when the  
Gray Code (G/T = 1):  
V
IN_P  
- V  
= 2/3 x (V  
- V  
) x 2 x  
REF_N  
IN_N  
REF_P  
(CODE - 8192) / 16,384  
10  
Table 3. Output Codes vs. Input Voltage  
GRAY-CODE OUTPUT CODE  
TWO’S-COMPLEMENT OUTPUT CODE  
(G/T = 1)  
(G/T = 0)  
DECIMAL  
HEXADECIMAL  
DECIMAL  
EQUIVALENT  
OF  
D13A–D0A  
D13B–D0B  
(CODE )  
10  
V
- V  
IN_N  
= 2.418V  
= 0.882V  
IN_P  
HEXADECIMAL  
EQUIVALENT  
DOR OF  
EQUIVALENT  
V
V
REF_P  
REF_N  
BINARY  
D13A–D0A  
D13B–D0B  
EQUIVALENT  
OF  
D13A–D0A  
D13B–D0B  
BINARY  
D13A–D0A  
D13B–D0B  
OF  
D13A–D0A  
D13B–D0B  
DOR  
D13A–D0A  
D13B–D0B  
(CODE  
)
10  
> +1.023875V  
(DATA OUT OF  
RANGE)  
10 0000 0000 0000  
1
0x2000  
+16,383  
01 1111 1111 1111  
1
0x1FFF  
+8191  
10 0000 0000 0000  
10 0000 0000 0001  
0
0
0x2000  
0x2001  
+16,383  
+16,382  
01 1111 1111 1111  
01 1111 1111 1110  
0
0
0x1FFF  
0x1FFE  
+8191  
+8190  
+1.023875V  
+1.023750V  
11 0000 0000 0011  
11 0000 0000 0001  
11 0000 0000 0000  
01 0000 0000 0000  
01 0000 0000 0001  
0
0
0
0
0
0x3003  
0x3001  
0x3000  
0x1000  
0x1001  
+8194  
+8193  
+8192  
+8191  
+8190  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
0
0
0
0
0
0x0002  
0x0001  
0x0000  
0x3FFF  
0x3FFE  
+2  
+1  
0
+0.000250V  
+0.000125V  
+0.000000V  
-0.000125V  
-0.000250V  
-1  
-2  
00 0000 0000 0001  
00 0000 0000 0000  
0
0
0x0001  
0x0000  
+1  
0
10 0000 0000 0001  
10 0000 0000 0000  
0
0
0x2001  
0x2000  
-8191  
-8192  
-1.023875V  
-1.024000V  
< -1.024000V  
(DATA OUT OF  
RANGE)  
00 0000 0000 0000  
1
0x0000  
0
10 0000 0000 0000  
1
0x2000  
-8192  
______________________________________________________________________________________ 19  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
1 LSB = 4/3 x (V  
- V  
) / 16,384  
REFN  
1 LSB = 4/3 x (V  
- V  
) / 16,384  
REFN  
REFP  
REFP  
2/3 x (V  
- V  
)
2/3 x (V  
- V  
)
REFN  
2/3 x (V  
- V  
)
2/3 x (V  
- V  
)
REFN  
REFP  
REFN  
REFP  
REFP  
REFN  
REFP  
0x2000  
0x2001  
0x2003  
0x1FFF  
0x1FFE  
0x1FFD  
0x3001  
0x3000  
0x1000  
0x0001  
0x0000  
0x3FFF  
0x0002  
0x0003  
0x0001  
0x0000  
0x2003  
0x2002  
0x2001  
0x2000  
-8191 -8189  
-1  
0
+1  
+8189 +8191  
-8191 -8189  
-1  
0
+1  
+8189 +8191  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 6. Two’s-Complement Transfer Function (G/T = 0)  
Two’s Complement (G/T = 0):  
Figure 7. Gray-Code Transfer Function (G/T = 1)  
low, the converter is in its normal operating mode. With  
PD high, the MAX12558 is in power-down mode.  
V
IN_P  
- V  
= 2/3 x (V  
- V  
) x 2 x  
REF_N  
IN_N  
REF_P  
CODE / 16,384  
The power-down mode allows the MAX12558 to effi-  
ciently use power by transitioning to a low-power state  
when conversions are not required. Additionally, the  
MAX12558 parallel output bus goes high impedance in  
power-down mode, allowing other devices on the bus  
to be accessed.  
10  
where CODE is the decimal equivalent of the digital  
10  
output code as shown in Table 3.  
The digital outputs D0A/B–D13A/B are high impedance  
when the MAX12558 is in power-down (PD = 1) mode.  
D0A/B–D13A/B enter this state 10ns after the rising  
edge of PD and become active again 10ns after PD  
transitions low.  
In power-down mode all internal circuits are off, the  
analog supply current reduces to less than 50µA, and  
the digital supply current reduces to 1µA. The following  
list shows the state of the analog inputs and digital out-  
puts in power-down mode.  
Keep the capacitive load on the MAX12558 digital out-  
puts D0A/B–D13A/B as low as possible (< 15pF) to  
avoid large digital currents feeding back into the ana-  
log portion of the converter and degrading its dynamic  
performance. Adding external digital buffers on the dig-  
ital outputs helps isolate the MAX12558 from heavy  
capacitive loads. To improve the dynamic performance  
of the MAX12558, add 220resistors in series with the  
digital outputs close to the MAX12558. Refer to the  
MAX12558 EV kit schematic for guidelines of how to  
drive the digital outputs through 220series resistors  
and external digital output buffers.  
1) INAP/B, INAN/B analog inputs are disconnected  
from the internal input amplifier (Figure 3).  
2) REFOUT has approximately 17kto GND.  
3) REFAP/B, COMA/B, REFAN/B enter a high-imped-  
ance state with respect to V  
and GND, but there  
DD  
is an internal 4kresistor between REFAP/B and  
COMA/B as well as an internal 4kresistor  
between REFAN/B and COMA/B.  
4) D0A–D13A, D0B–D13B, DORA, and DORB enter a  
high-impedance state.  
Power-Down Input  
The MAX12558 has two power modes that are con-  
trolled with a power-down digital input (PD). With PD  
5) DAV enters a high-impedance state.  
6) CLKP, CLKN clock inputs enter a high-impedance  
state (Figure 4).  
20 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
BINARY-TO-GRAY CODE CONVERSION  
GRAY-TO-BINARY CODE CONVERSION  
1) THE MOST SIGNIFICANT GRAY-CODE BIT IS THE SAME  
AS THE MOST SIGNIFICANT BINARY BIT.  
1) THE MOST SIGNIFICANT BINARY BIT IS THE SAME AS THE  
MOST SIGNIFICANT GRAY-CODE BIT.  
D13  
D7  
D3  
D0  
0
BIT POSITION  
BINARY  
BIT POSITION  
GRAY CODE  
D11  
1
D13  
0
D7  
1
D3  
1
D0  
0
D11  
0
1
1
1
1
0
1
0
0
1
0
0
1
1
0
1
0
1
1
0
0
1
0
GRAY CODE  
0
BINARY  
2) SUBSEQUENT GRAY-CODE BITS ARE FOUND ACCORDING  
TO THE FOLLOWING EQUATION:  
2) SUBSEQUENT BINARY BITS ARE FOUND ACCORDING TO  
THE FOLLOWING EQUATION:  
+
GRAY = BINARY  
BINARY  
BINARY = BINARY  
+
GRAY  
X
X
X + 1  
X
X+1 X  
+
+
WHERE IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
TABLE BELOW) AND X IS THE BIT POSITION:  
WHERE  
IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
TABLE BELOW) AND X IS THE BIT POSITION:  
+
GRAY = BINARY  
BINARY  
BINARY = BINARY  
+
GRAY  
12  
12  
13  
12  
13 12  
+
0
BINARY = 0  
+
1
1
GRAY = 1  
12  
12  
GRAY = 1  
12  
BINARY = 1  
12  
BIT POSITION  
BINARY  
BIT POSITION  
GRAY CODE  
D13  
0
D7  
D3  
1
D0  
D11  
D13  
0
D7  
D3  
1
D0  
0
D11  
+
1
1
0
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
1
1
0
0
1
0
+
0
GRAY CODE  
0
BINARY  
3) REPEAT STEP 2 UNTIL COMPLETE:  
3) REPEAT STEP 2 UNTIL COMPLETE:  
+
GRAY = BINARY  
BINARY  
12  
11  
11  
+
BINARY = BINARY  
GRAY  
11  
11  
12  
+
GRAY = 1  
1
11  
+
BINARY = 1  
0
11  
GRAY = 0  
11  
BINARY = 1  
11  
D13  
0
D7  
D3  
1
D0  
0
D11  
BIT POSITION  
BINARY  
BIT POSITION  
GRAY CODE  
D13  
0
D7  
0
D3  
1
D0  
0
D11  
1
1
+
1
0
0
1
1
1
0
0
1
0
1
1
0
1
1
1
0
1
1
1
0
0
1
+
0
GRAY CODE  
0
BINARY  
4) THE FINAL GRAY-CODE CONVERSION IS:  
4) THE FINAL BINARY CONVERSION IS:  
BIT POSITION  
BINARY  
D13  
0
D7  
1
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
D11  
0
D13  
0
D7  
0
D3  
1
D0  
0
D11  
1
1
0
1
1
1
1
0
1
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
GRAY CODE  
0
1
0
1
0
BINARY  
EXCLUSIVE OR TRUTH TABLE  
FIGURE 8 SHOWS THE GRAY-TO-BINARY AND BINARY-TO-GRAY  
CODE CONVERSION IN OFFSET BINARY FORMAT. THE OUTPUT  
FORMAT OF THE MAX12558 IS TWO'S-COMPLEMENT BINARY,  
HENCE EACH MSB OF THE TWO'S-COMPLEMENT OUTPUT CODE  
MUST BE INVERTED TO REFLECT TRUE OFFSET BINARY FORMAT.  
A
B
Y
=
A
+
B
0
0
1
1
0
1
0
1
0
1
1
0
Figure 8. Binary-to-Gray and Gray-to-Binary Code Conversion  
______________________________________________________________________________________ 21  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
The wake-up time from power-down mode is dominated  
Applications Information  
by the time required to charge the capacitors at REF_P,  
REF_N, and COM_. In internal reference mode and  
buffered external reference mode the wake-up time is  
typically 10ms. When operating in the unbuffered exter-  
nal reference mode the wake-up time is dependent on  
the external reference drivers.  
Using Transformer Coupling  
In general, the MAX12558 provides better SFDR and  
THD with fully differential input signals than single-  
ended input drive, especially for input frequencies  
above 125MHz. In differential input mode, even-order  
harmonics are lower as both inputs are balanced, and  
each of the ADC inputs only requires half the signal  
swing compared to single-ended input mode.  
An RF transformer (Figure 9) provides an excellent  
solution to convert a single-ended input source signal  
to a fully differential signal, required by the MAX12558  
for optimum performance. Connecting the center tap of  
IN_P  
5.6pF  
49.9Ω  
24.9Ω  
0.5%  
0.1µF  
the transformer to COM provides a V  
/ 2 DC level  
DD  
1
5
3
6
2
4
MAX12558  
V
IN  
T1  
shift to the input. Although a 1:1 transformer is shown, a  
step-up transformer can be selected to reduce the  
drive requirements. A reduced signal swing from the  
input driver, such as an op amp, can also improve the  
overall distortion. The configuration of Figure 9 is good  
COM_  
N.C.  
N.C.  
0.1µF  
49.9Ω  
0.5%  
MINI-CIRCUITS  
ADT1-1WT  
for frequencies up to Nyquist (f  
/ 2).  
CLK  
The circuit of Figure 10 converts a single-ended input  
signal to fully differential just as Figure 9. However,  
Figure 10 utilizes an additional transformer to improve  
the common-mode rejection allowing high-frequency  
signals beyond the Nyquist frequency. A set of 75Ω  
and 110termination resistors provide an equivalent  
50termination to the signal source. The second set of  
termination resistors connects to COM_ providing the  
correct input common-mode voltage. Two 0resistors  
in series with the analog inputs allow high-IF input fre-  
quencies. These 0resistors can be replaced with low-  
value resistors to limit the input bandwidth.  
IN_N  
5.6pF  
24.9Ω  
Figure 9. Transformer-Coupled Input Drive for Input Frequencies  
Up to Nyquist  
0*  
IN_P  
C
IN  
0.1µF  
110Ω  
R
IN  
1
5
3
1
5
3
6
2
4
6
2
4
75Ω  
0.5%  
V
IN  
T1  
T2  
0.5%  
MAX12558  
COM_  
IN_N  
N.C.  
N.C.  
N.C.  
N.C.  
0.1µF  
75Ω  
0.5%  
110Ω  
0.5%  
MINI-CIRCUITS  
ADT1-1WT  
MINI-CIRCUITS  
ADT1-1WT  
0*  
C
IN  
*0RESISTORS CAN BE REPLACED WITH  
LOW-VALUE RESISTORS TO LIMIT THE INPUT BANDWIDTH.  
R
IN  
Figure 10. Transformer-Coupled Input Drive for Input Frequencies Beyond Nyquist  
22 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
The input network in Figure 10 can be modified to enhance  
the frequency-range-specific AC performance of the  
MAX12558 by simply replacing the input capacitance with  
V
IN  
0.1µF  
0Ω  
a series network of resistor (R ) and capacitor (C ).  
IN  
IN  
IN_P  
MAX4108  
Table 4 displays a selection of resistors and capacitors  
that are recommended to help improve the already  
excellent performance of this ADC for specific applica-  
tions requiring only a certain range of input frequencies.  
5.6pF  
0.1µF  
5.6pF  
24.9Ω  
100Ω  
100Ω  
MAX12558  
COM_  
24.9Ω  
Table 4. Component Selection to  
Enhance the Frequency-Range-Specific  
AC Performance  
IN_N  
INPUT  
FREQUENCY  
RANGE  
C
R
IN  
IN  
COMPONENT  
VALUES  
COMPONENT  
VALUES  
Figure 11. Single-Ended, AC-Coupled Input Drive  
< 10MHz  
12pF to 22pF  
12pF  
0Ω  
50Ω  
0Ω  
Unbuffered External Reference Drives  
Multiple ADCs  
10MHz to 125MHz  
> 125MHz  
The unbuffered external reference mode allows for pre-  
cise control over the MAX12558 reference and allows  
multiple converters to use a common reference.  
Connecting REFIN to GND disables the internal refer-  
ence, allowing REF_P, REF_N, and COM_ to be driven  
directly by a set of external reference sources.  
5.6pF  
Single-Ended AC-Coupled Input Signal  
Figure 11 shows an AC-coupled, single-ended input  
application. The MAX4108 provides high speed, high  
bandwidth, low noise, and low distortion to maintain the  
input signal integrity.  
Figure 13 uses a MAX6029 precision 3.000V bandgap  
reference as a common reference for multiple convert-  
ers. A seven-component resistive divider chain follows  
the MAX6029 voltage reference. The 0.47µF capacitor  
along this chain creates a 10Hz LP filter. Three  
MAX4230 amplifiers buffer taps along this resistor  
chain providing 2.413V, 1.647V, and 0.880V to the  
MAX12558 REF_P, REF_N, and COM_ reference inputs.  
The feedback around the MAX4230 op amps provides  
additional 10Hz LP filtering. Reference voltages 2.413V  
and 0.880V set the full-scale analog input range for the  
Buffered External Reference Drives  
Multiple ADCs  
The buffered external reference mode allows for more  
control over the MAX12558 reference voltage and  
allows multiple converters to use a common reference.  
The REFIN input impedance is > 50M.  
Figure 12 shows the MAX6029 precision 2.048V bandgap  
reference used as a common reference for multiple con-  
verters. The 2.048V output of the MAX6029 passes  
through a single-pole 10Hz LP filter to the MAX4230.  
converter to 1.022V ( ꢀV  
- V ] x 2/3).  
REF_N  
REF_P  
Note that one single power supply for all active circuit  
components removes any concern regarding power-  
supply sequencing when powering up or down.  
The MAX4250 buffers the 2.048V reference and pro-  
vides additional 10Hz LP filtering before its output is  
applied to the REFIN input of the MAX12558.  
______________________________________________________________________________________ 23  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
3.3V  
0.1µF  
2.2µF  
V
DD  
REF_P  
REFIN  
2.048V  
0.1µF  
0.1µF  
47Ω  
0.1µF  
1
16.2kΩ  
1µF  
10µF  
0.1µF  
3
4
5
MAX12558  
5
300µF  
6V  
1
REF_N  
COM_  
MAX4230  
MAX6029  
(EUK21)  
0.1µF  
0.1µF  
2
2
REFOUT  
1.47kΩ  
GND  
0.1µF  
NOTE: ONE FRONT-END REFERENCE CIRCUIT  
CAN SOURCE UP TO 15mA AND SINK UP TO  
30mA OF OUTPUT CURRENT.  
3.3V  
0.1µF  
2.2µF  
V
DD  
REF_P  
REFIN  
0.1µF  
10µF  
0.1µF  
MAX12558  
REF_N  
COM_  
0.1µF  
0.1µF  
REFOUT  
GND  
0.1µF  
Figure 12. External Buffered (MAX4230) Reference Drive Using a MAX6029 Bandgap Reference  
24 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
3.3V  
3V  
0.1µF  
2.2µF  
0.1µF  
1
5
20kΩ  
1%  
V
DD  
REF_P  
MAX6029  
(EUK30)  
REFOUT  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
20kΩ  
10µF  
0.1µF  
1%  
2
MAX12558  
2.413V  
1
3
REF_N  
47Ω  
1.47kΩ  
47Ω  
4
4
4
MAX4230  
MAX4230  
MAX4230  
0.47µF  
10µF  
330µF  
6V  
6V  
52.3kΩ  
1%  
COM_  
REFIN  
GND  
1.647V  
1
3
3.3V  
10µF  
6V  
330µF  
6V  
52.3kΩ  
1%  
1.47kΩ  
47Ω  
0.1µF  
2.2µF  
0.880V  
1
3
V
DD  
REF_P  
20kΩ  
1%  
REFOUT  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
10µF  
6V  
330µF  
6V  
10µF  
0.1µF  
MAX12558  
1.47kΩ  
20kΩ  
1%  
REF_N  
20kΩ  
1%  
COM_  
REFIN  
GND  
Figure 13. External Unbuffered Reference Driving Multiple ADCs  
______________________________________________________________________________________ 25  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Offset Error  
Grounding, Bypassing, and  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Ideally the midscale  
MAX12558 transition occurs at 0.5 LSB above mid-  
scale. The offset error is the amount of deviation  
between the measured midscale transition point and  
the ideal midscale transition point.  
Board Layout  
The MAX12558 requires high-speed board layout  
design techniques. Refer to the MAX12558 EV kit data  
sheet for a board layout reference. Locate all bypass  
capacitors as close to the device as possible, prefer-  
ably on the same side as the ADC, using surface-  
mount devices for minimum inductance. Bypass V  
to  
DD  
GND with a 220µF ceramic capacitor in parallel with at  
least one 10µF, one 4.7µF, and one 0.1µF ceramic  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope of  
the ideal transfer function. The slope of the actual transfer  
function is measured between two data points: positive  
full scale and negative full scale. Ideally, the positive full-  
scale MAX12558 transition occurs at 1.5 LSBs below pos-  
itive full scale, and the negative full-scale transition  
occurs at 0.5 LSB above negative full scale. The gain  
error is the difference of the measured transition points  
minus the difference of the ideal transition points.  
capacitor. Bypass OV  
to GND with a 220µF ceramic  
DD  
capacitor in parallel with at least one 10µF, one 4.7µF,  
and one 0.1µF ceramic capacitor. High-frequency  
bypassing/decoupling capacitors should be located as  
close as possible to the converter supply pins.  
Multilayer boards with ample ground and power planes  
produce the highest level of signal integrity. All grounds  
and the exposed backside paddle of the MAX12558  
must be connected to the same ground plane. The  
MAX12558 relies on the exposed backside paddle con-  
nection for a low-inductance ground connection. Isolate  
the ground plane from any noisy digital system ground  
planes such as a DSP or output buffer ground.  
Small-Signal Noise Floor (SSNF)  
SSNF is the integrated noise and distortion power in the  
Nyquist band for small-signal inputs. The DC offset is  
excluded from this noise calculation. For this converter,  
a small signal is defined as a single tone with a -35dBFS  
amplitude. This parameter captures the thermal and  
quantization noise characteristics of the data converter  
and can be used to help calculate the overall noise fig-  
ure of a digital receiver signal path.  
Route high-speed digital signal traces away from the  
sensitive analog traces. Keep all signal lines short and  
free of 90° turns.  
Ensure that the differential, analog input network layout  
is symmetric and that all parasitic components are bal-  
anced equally. Refer to the MAX12558 EV kit data  
sheet for an example of symmetric input layout.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
Parameter Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For the MAX12558, this  
straight line is between the endpoints of the transfer  
function, once offset and gain errors have been nullified.  
INL deviations are measured at every step of the transfer  
function and the worst-case deviation is reported in the  
Electrical Characteristics table.  
SNR  
= 6.02 × N + 1.76  
ꢀmax]  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first six harmonics (HD2 through  
HD7), and the DC offset.  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. A DNL error specification of  
less than 1 LSB guarantees no missing codes and a  
monotonic transfer function. For the MAX12558, DNL  
deviations are measured at every step of the transfer  
function and the worst-case deviation is reported in the  
Electrical Characteristics table.  
SNR = 20 x log (SIGNAL  
/ NOISE  
)
RMS  
RMS  
26 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
distortion includes all spectral components to the  
Nyquist frequency excluding the fundamental and the  
DC offset.  
CLKN  
CLKP  
t
AD  
ANALOG  
INPUT  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first six harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
t
AJ  
SAMPLED  
DATA  
2
2
2
2
2
2
V
+ V + V + V + V + V  
3 4 5 6 7  
2
THD = 20 × log  
HOLD  
TRACK  
HOLD  
T/H  
V
1
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 7th-order  
harmonics (HD2 through HD7).  
7
Figure 14. T/H Aperture Timing  
1024k data points are collected. n  
taking the RMS value of the collected data points after  
the mean is removed.  
is computed by  
OUT  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
Overdrive Recovery Time  
Overdrive recovery time is the time required for the  
ADC to recover from an input transient that exceeds the  
full-scale limits. The MAX12558 specifies overdrive  
recovery time using an input transient that exceeds the  
full-scale limits by 10%. The MAX12558 requires one  
clock cycle to recover from the overdrive condition.  
3rd-Order Intermodulation (IM3)  
IM3 is the power of the 3rd-order intermodulation prod-  
uct relative to the input power of either of the input tones  
f
and f . The individual input tone power levels are  
IN2  
IN1  
set to -7dBFS for the MAX12558. The 3rd-order inter-  
modulation products are 2 x f - f and 2 x f - f  
.
IN2 IN1  
IN1 IN2  
Crosstalk  
Crosstalk indicates how well each channel is isolated  
from the other channel. In case of the MAX12558,  
crosstalk specifies the coupling onto one channel  
being driven by a (-0.5dBFS) signal when the adjacent  
interfering channel is driven by a full-scale signal.  
Measurement includes all spurs resulting from both  
direct coupling and mixing components.  
Aperture Jitter  
Figure 14 shows the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 14).  
Gain Matching  
Gain matching is a figure of merit that indicates how  
well the gains between the two channels are matched  
to each other. The same input signal is applied to both  
channels and the maximum deviation in gain is report-  
ed (typically in dB) as gain matching.  
Full-Power Bandwidth  
A large -0.2dBFS analog input signal is applied to an  
ADC and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as the  
full-power input bandwidth frequency.  
Offset Matching  
Like gain matching, offset matching is a figure of merit  
that indicates how well the offsets between the two chan-  
nels are matched to each other. The same input signal is  
applied to both channels and the maximum deviation in  
offset is reported (typically in %FSR) as offset matching.  
Output Noise (n  
)
OUT  
The output noise (n  
) parameter is similar to thermal  
OUT  
plus quantization noise and is an indication of the con-  
verter’s overall noise performance.  
No fundamental input tone is used to test for n  
.
OUT  
IN_P, IN_N, and COM_ are connected together and  
______________________________________________________________________________________ 27  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Pin Configuration  
TOP VIEW  
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35  
D7A 52  
D8A 53  
34 D6B  
33 D5B  
32 D4B  
31 D3B  
30 D2B  
29 D1B  
28 D0B  
54  
55  
D9A  
D10A  
D11A 56  
57  
58  
59  
60  
61  
62  
63  
D12A  
D13A  
DORA  
27 OV  
DD  
OV  
DD  
26  
25  
24  
23  
V
V
V
V
DD  
MAX12558  
V
DD  
V
DD  
V
DD  
DD  
DD  
DD  
G/T 64  
22 DIV4  
65  
66  
21 DIV2  
PD  
20 CLKP  
SHREF  
EXPOSED PADDLE (GND)  
REFOUT 67  
19 CLKN  
68  
18 DIFFCLK/SECLK  
REFIN  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
THIN QFN  
28 ______________________________________________________________________________________  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
68L THIN QFN, 10x10x0.8mm  
1
D
21-0142  
2
______________________________________________________________________________________ 29  
Dual, 80Msps, 14-Bit, IF/Baseband ADC  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
68L THIN QFN, 10x10x0.8mm  
2
D
21-0142  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Heaney  

相关型号:

MAX12558ETK-T

A/D Converter, 14-Bit, 2 Func, CMOS, PQCC68
MAXIM

MAX12558ETK-TD

ADC, Proprietary Method, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.80 MM HEIGHT, MO-220WNND-2, TQFN-68
MAXIM

MAX12558EVKIT

Low-Voltage and Low-Power Operation
MAXIM

MAX12559

Dual, 96Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX12559ETK

Low-Voltage and Low-Power Operation
MAXIM

MAX12559ETK+D

Dual, 96Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX12559ETK+TD

ADC, Proprietary Method, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, 10 X 10 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WNND-2, TQFN-68
MAXIM

MAX12559ETK-D

Dual, 96Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX12559EVKIT

Dual, 96Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX1257

12-Bit, Multichannel ADCs/DACs with FIFO,Temperature Sensing, and GPIO Ports
MAXIM

MAX1257BETM

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1257BETM+

12-Bit, Multichannel ADCs/DACs with FIFO,Temperature Sensing, and GPIO Ports
MAXIM