MAX1248BCPE+ [MAXIM]

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16;
MAX1248BCPE+
型号: MAX1248BCPE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDIP16, 0.300 INCH, PLASTIC, MS-001AA, DIP-16

文件: 总24页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1072; Rev 2; 5/98  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX1248/MAX1249 10-bit data-acquisition sys-  
tems combine a 4-channel multiplexer, high-bandwidth  
track/hold, and serial interface with high conversion  
speed and low power consumption. They operate from  
a s ing le +2.7V to +5.25V s up p ly, a nd the ir a na log  
inputs are software configurable for unipolar/bipolar  
and single-ended/differential operation.  
4-Channel Single-Ended or 2-Channel  
Differential Inputs  
Single +2.7V to +5.25V Operation  
Internal 2.5V Reference (MAX1248)  
Low Power: 1.2mA (133ksps, +3V supply)  
54µA (1ksps, +3V supply)  
The 4-wire serial interface connects directly to SPI™/  
QSPIand MICROWIRE™ devices without external  
logic. A serial strobe output allows direct connection  
to TMS320-fa mily d ig ita l s ig na l p roc e s s ors . The  
MAX1248/MAX1249 use either the internal clock or an  
external serial-interface clock to perform successive-  
approximation analog-to-digital conversions.  
1µA (power-down mode)  
SPI/QSPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
Software-Configurable Unipolar or Bipolar Inputs  
16-Pin QSOP Package (same area as 8-pin SO)  
The MAX1248 has an internal 2.5V reference, while the  
MAX1249 requires an external reference. Both parts  
have a reference-buffer amplifier with a ±1.5% voltage  
adjustment range.  
_____________Ord e rin g In fo rm a t io n  
These devices provide a hard-wired SHDN pin and a  
s oftwa re -s e le c ta b le p owe r-d own, a nd c a n b e p ro-  
grammed to automatically shut down at the end of a  
conversion. Accessing the serial interface automatically  
p owe rs up the MAX1248/MAX1249, a nd the q uic k  
turn-on time allows them to be shut down between all  
conversions. This technique can cut supply current to  
under 60µA at reduced sampling rates.  
INL  
(LSB)  
PART†  
TEMP. RANGE PIN-PACKAGE  
MAX1248ACPE 0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
MAX1248BCPE  
MAX1248ACEE  
MAX1248BCEE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
±1/2  
±1  
16 QSOP  
The MAX1248/MAX1249 are available in a 16-pin DIP  
and a very small QSOP that occupies the same board  
area as an 8-pin SO.  
Ordering Information continued at end of data sheet.  
Contact factory for availability of alternate surface-mount  
packages.  
For 8-c ha nne l ve rs ions of the s e d e vic e s , s e e the  
MAX148/MAX149 data sheet.  
________________________Ap p lic a t io n s  
__________Typ ic a l Op e ra t in g Circ u it  
Portable Data Logging  
Medical Instruments  
Pen Digitizers  
Data Acquisition  
+3V  
Battery-Powered Instruments  
System Supervision  
V
DD  
V
CH0  
DD  
C3  
0.1µF  
0V TO  
+2.5V  
ANALOG  
INPUTS  
DGND  
MAX1248  
CH3  
AGND  
COM  
CPU  
I/O  
CS  
Pin Configuration appears at end of data sheet.  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
VREF  
DIN  
C1  
4.7µF  
DOUT  
SSTRB  
SHDN  
REFADJ  
V
SS  
C2  
0.01µF  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
ABSOLUTE MAXIMUM RATINGS  
V
to AGND, DGND .............................................. -0.3V to +6V  
QSOP (derate 8.30mW/°C above +70°C)................... 667mW  
CERDIP (derate 10.00mW/°C above +70°C).............. 800mW  
Operating Temperature Ranges  
DD  
AGND to DGND.................................................... -0.3V to +0.3V  
CH0–CH3, COM to AGND, DGND ............ -0.3V to (V + 0.3V)  
DD  
VREF to AGND........................................... -0.3V to (V + 0.3V)  
Digital Inputs to DGND............................................ -0.3V to +6V  
MAX1248_C_E/MAX1249_C_E .......................... 0°C to +70°C  
MAX1248_E_E/MAX1249_E_E........................ -40°C to +85°C  
MAX1248_MJE/MAX1249_MJE .................... -55°C to +125°C  
Storage Temperature Range ............................ -60°C to +150°C  
Lead Temperature (soldering, 10sec) ............................ +300°C  
DD  
Digital Outputs to DGND ........................... -0.3V to (V + 0.3V)  
DD  
Digital Output Sink Current .................................................25mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ......... 842mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX1248—4.7µF capacitor at VREF pin; MAX1249—external reference, VREF = 2.500V applied to VREF pin; T = T  
to T  
,
A
MIN  
MAX  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
8/MAX1249  
DC ACCURACY (Note 1)  
Resolution  
10  
Bits  
MAX124_A  
MAX124_B  
±0.5  
LSB  
±1.0  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
No missing codes over temperature  
MAX124_A  
±1  
±1  
±2  
±1  
±2  
LSB  
LSB  
MAX124_B  
MAX124_A  
Gain Error (Note 3)  
LSB  
ppm/°C  
LSB  
MAX124_B  
Gain Temperature Coefficient  
±0.25  
±0.05  
Channel-to-Channel Offset  
Matching  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 0V to 2.500Vp-p, 133ksps, 2.0MHz external clock, bipolar input mode)  
Signal-to-Noise + Distortion Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SINAD  
THD  
66  
-70  
70  
dB  
dB  
Up to the 5th harmonic  
SFDR  
dB  
65kHz, 2.500Vp-p (Note 4)  
-3dB rolloff  
-75  
2.25  
1.0  
dB  
MHz  
MHz  
Full-Power Bandwidth  
CONVERSION RATE  
5.5  
35  
6
7.5  
65  
Internal clock, SHDN = FLOAT  
Conversion Time (Note 5)  
t
µs  
Internal clock, SHDN = V  
CONV  
DD  
External clock = 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
µs  
ns  
ps  
ACQ  
30  
<50  
1.8  
Aperture Jitter  
SHDN = FLOAT  
Internal Clock Frequency  
External Clock Frequency  
MHz  
MHz  
0.225  
SHDN = V  
DD  
0.1  
0
2.0  
2.0  
Data transfer only  
2
_______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX1248—4.7µF capacitor at VREF pin; MAX1249—external reference, VREF = 2.500V applied to VREF pin; T = T  
to T  
,
A
MIN  
MAX  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
ANALOG/COM INPUTS  
Unipolar, COM = 0V  
Bipolar, COM = VREF / 2  
On/off leakage current, V  
0 to VREF  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
±VREF / 2  
±1  
Multiplexer Leakage Current  
Input Capacitance  
= 0V or V  
±0.01  
16  
µA  
pF  
CH_  
DD  
INTERNAL REFERENCE (MAX1248 only, reference buffer enabled)  
VREF Output Voltage  
T
= +25°C (Note 7)  
2.470  
2.500  
2.530  
30  
V
mA  
A
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation (Note 8)  
MAX1248  
±30  
ppm/°C  
mV  
0mA to 0.2mA output load  
Internal compensation mode  
External compensation mode  
0.35  
0
Capacitive Bypass at VREF  
µF  
4.7  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
0.01  
µF  
%
±1.5  
EXTERNAL REFERENCE AT VREF (Buffer disabled)  
VREF Input Voltage Range  
(Note 9)  
V
50mV  
+
DD  
V
1.0  
18  
VREF Input Current  
VREF = 2.500V  
100  
25  
150  
µA  
kΩ  
µA  
VREF Input Resistance  
Shutdown VREF Input Current  
0.01  
10  
V
0.5  
DD -  
REFADJ Buffer-Disable Threshold  
EXTERNAL REFERENCE AT REFADJ  
Capacitive Bypass at VREF  
V
Internal compensation mode  
External compensation mode  
MAX1248  
0
µF  
V/V  
µA  
4.7  
2.06  
2.00  
Reference-Buffer Gain  
MAX1249  
MAX1248  
±50  
±10  
REFADJ Input Current  
MAX1249  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
3.6V  
2.0  
3.0  
DD  
V
IH  
V
DIN, SCLK, CS Input High Voltage  
V
DD  
> 3.6V  
V
0.8  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
IL  
V
HYST  
0.2  
I
IN  
V
= 0V or V  
DD  
±0.01  
±1  
15  
µA  
pF  
V
IN  
C
(Note 10)  
IN  
V
SH  
V
DD  
- 0.4  
V
SM  
1.1  
V
DD  
- 1.1  
V
SHDN Input Mid Voltage  
V
SL  
0.4  
V
SHDN Input Low Voltage  
I
S
±4.0  
µA  
SHDN Input Current  
SHDN = 0V or V  
DD  
_______________________________________________________________________________________  
3
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V; COM = 0V; f  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX1248—4.7µF capacitor at VREF pin; MAX1249—external reference; VREF = 2.500V applied to VREF pin, T = T  
to T  
,
A
MIN  
MAX  
unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
DD  
/ 2  
V
SHDN Voltage, Floating  
SHDN = FLOAT  
SHDN = FLOAT  
FLT  
SHDN Maximum Allowed  
Leakage, Mid Input  
±100  
nA  
V
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
= 5mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
OL  
I
= 16mA  
SINK  
Output Voltage High  
V
OH  
I
= 0.5mA  
V
DD  
- 0.5  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
±0.01  
±10  
15  
µA  
pF  
CS = V  
L
DD  
C
CS = V (Note 10)  
OUT  
DD  
POWER REQUIREMENTS  
2
Positive Supply Voltage  
V
2.70  
5.25  
3.0  
2.0  
15  
V
DD  
V
= 5.25V  
= 3.6V  
= 5.25V  
= 3.6V  
1.6  
1.2  
3.5  
1.2  
30  
DD  
Operating mode,  
full-scale input (Note 11)  
mA  
V
DD  
I
DD  
Positive Supply Current  
V
DD  
Full power-down  
µA  
V
DD  
10  
I
DD  
Fast power-down (MAX1248) 
70  
V
= 2.7V to 5.25V, full-scale input,  
DD  
Supply Rejection (Note 12)  
PSR  
±0.3  
mV  
external reference = 2.500V  
4
_______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
TIMING CHARACTERISTICS  
(V = +2.7V to +5.25V, T = T  
to T  
, unless otherwise noted.)  
DD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
TYP  
MAX UNITS  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
µs  
ns  
ACQ  
t
DS  
100  
t
0
ns  
DH  
MAX124__C/E  
MAX124__M  
20  
20  
200  
240  
240  
240  
SCLK Fall to Output Data Valid  
t
Figure 1  
ns  
DO  
t
Figure 1  
Figure 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
DV  
t
TR  
t
100  
0
CSS  
CSH  
t
t
200  
200  
CH  
t
CL  
t
Figure 1  
240  
240  
240  
SSTRB  
t
External clock mode only, Figure 1  
External clock mode only, Figure 2  
Internal clock mode only (Note 10)  
CS Fall to SSTRB Output Enable  
CS Rise to SSTRB Output Disable  
SSTRB Rise to SCLK Rise  
SDV  
t
STR  
t
0
SCK  
Note 1: Tested at V = 2.7V; COM = 0V; unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: MAX1248—internal reference, offset nulled; MAX1249 — external reference (VREF = +2.500V), offset nulled.  
Note 4: Ground on” channel; sine wave applied to all “off” channels.  
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: The common-mode range for the analog inputs is from AGND to V  
.
DD  
Note 7 Sample tested to 0.1% AQL.  
Note 8: External load should not change during conversion for specified accuracy.  
Note 9: ADC performance is limited by the converters noise floor, typically 300µVp-p.  
Note 10 Guaranteed by design. Not subject to production testing.  
Note 11: The MAX1249 typically draws 400µA less than the values shown.  
|
|
Note 12: Measured as V (2.7V) - V (5.25V) .  
FS  
FS  
_______________________________________________________________________________________  
5
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 3.0V, VREF = 2.500V, f  
= 2.0MHz, C  
= 20pF, T = +25°C, unless otherwise noted.)  
A
DD  
SCLK  
LOAD  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5025  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
4.0  
3.5  
3.0  
2.5  
2.0  
R = ∞  
L
FULL POWER-DOWN  
CODE = 10101010  
C
LOAD  
= 50pF  
C
LOAD  
= 20pF  
MAX1248  
MAX1249  
2.5000  
C
LOAD  
= 50pF  
1.5  
1.0  
0.5  
0
C
LOAD  
= 20pF  
2.4975  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
V
DD  
(V)  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
2.501  
2.0  
1.3  
V
DD  
= 5.25V  
2.500  
2.499  
V
= 3.6V  
DD  
MAX1248  
1.6  
1.2  
0.8  
0.4  
1.2  
1.1  
1.0  
V
= 2.7V  
DD  
2.498  
2.497  
2.496  
MAX1249  
= ∞  
0.9  
0.8  
2.495  
2.494  
R
LOAD  
CODE = 1010101000  
-60 -20 20  
TEMPERATURE (°C)  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60  
-20  
20  
60  
100  
140  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. CODE  
INTERGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.100  
0.075  
0.050  
0.025  
0
0.30  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
00  
V
DD  
= 2.7V  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-0.025  
-0.050  
-0.075  
-0.100  
MAX1248  
MAX1249  
MAX1248  
MAX1249  
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
256  
512  
768  
1024  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
CODE  
6
_______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage  
Sampling Analog Inputs  
2–5  
CH0–CH3  
COM  
Ground reference for analog inputs. Sets zero-code voltage in single-ended mode. Must be stable to  
±0.5LSB.  
6
7
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX1248/MAX1249 down; otherwise, the  
devices are fully operational. Pulling SHDN high puts the reference-buffer amplifier in internal compen-  
sation mode. Letting SHDN float puts the reference-buffer amplifier in external compensation mode.  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion. In  
internal reference mode (MAX1248 only), the reference buffer provides a 2.500V nominal output,  
externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling  
8
VREF  
REFADJ to V  
.
DD  
9
REFADJ  
AGND  
DGND  
DOUT  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD  
10  
11  
12  
Analog Ground  
Digital Ground  
Serial Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial Strobe Output. In internal clock mode, SSTRB goes low when the MAX1248/MAX1249 begin the  
A/D conversion and goes high when the conversion is completed. In external clock mode, SSTRB  
pulses high for one clock period before the MSB decision. High impedance when CS is high (external  
clock mode).  
13  
SSTRB  
14  
15  
DIN  
Serial Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
CS  
Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed. (Duty cycle must be 40% to 60%.)  
16  
SCLK  
V
DD  
V
DD  
6k  
6k  
C
DOUT  
DOUT  
DOUT  
DOUT  
C
50pF  
C
50pF  
C
LOAD  
50pF  
LOAD  
LOAD  
LOAD  
6k  
6k  
50pF  
DGND  
DGND  
DGND  
DGND  
b) High-Z to V and V to V  
OL  
a) High-Z to V and V to V  
OH  
OL  
OH  
OH  
OL  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________________________________________________________________________________  
7
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
on the falling SCLK edge after the last bit of the input  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
_______________De t a ile d De s c rip t io n  
The MAX1248/MAX1249 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 10-bit digital output. A flexible  
serial interface provides easy interface to microproces-  
s ors (µPs ). Fig ure 3 is a b loc k d ia g ra m of the  
MAX1248/MAX1249.  
on C  
as a sample of the signal at IN+.  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is sim-  
ply COM. This unbalances node ZERO at the compara-  
tors inp ut. The c a p a c itive DAC a d jus ts d uring the  
re ma ind e r of the c onve rs ion c yc le to re s tore nod e  
ZERO to 0V within the limits of 10-bit resolution. This  
action is equivalent to transferring a charge of 16pF x  
P s e u d o -Diffe re n t ia l In p u t  
The sampling architecture of the ADCs analog com-  
p a ra tor is illus tra te d in the e q uiva le nt inp ut c irc uit  
(Fig ure 4). In s ing le -e nd e d mod e , IN+ is inte rna lly  
switched to CH0–CH3, and IN- is switched to COM. In  
differential mode, IN+ and IN- are selected from two  
pairs: CH0/CH1 and CH2/CH3. Configure the channels  
with Tables 2 and 3. Please note that the codes for  
CH0–CH3 in the MAX1248/MAX1249 correspond to  
the c od e s for CH2–CH5 in the e ig ht-c ha nne l  
(MAX148/MAX149) versions.  
[(V ) - (V -)] from C  
to the binary-weighted  
IN+  
IN  
HOLD  
capacitive DAC, which in turn forms a digital represen-  
tation of the analog input signal.  
Tra c k /Ho ld  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM, and the converter  
samples the “+ input. If the converter is set up for dif-  
ferential inputs, IN- connects to the -” input, and the  
difference of |IN+ - IN-| is sampled. At the end of the  
conversion, the positive input connects back to IN+,  
8/MAX1249  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain sta-  
b le within ± 0.5LSB (± 0.1LSB for b e s t re s ults ) with  
respect to AGND during a conversion. To accomplish  
this, connect a 0.1µF capacitor from IN- (the selected  
analog input) to AGND.  
and C  
charges to the input signal.  
HOLD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
15  
16  
CS  
SCLK  
CAPACITIVE DAC  
VREF  
INPUT  
SHIFT  
REGISTER  
INT  
CLOCK  
14  
7
DIN  
COMPARATOR  
INPUT  
CONTROL  
LOGIC  
C
HOLD  
SHDN  
MUX  
ZERO  
+
CH0  
CH1  
CH2  
CH3  
COM  
2
3
CH0  
CH1  
CH2  
CH3  
12  
13  
16pF  
OUTPUT  
SHIFT  
DOUT  
R
9k  
IN  
REGISTER  
SSTRB  
C
SWITCH  
ANALOG  
INPUT  
MUX  
T/H  
4
5
6
HOLD  
CLOCK  
TRACK  
IN  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
SAR  
ADC  
T/H  
SWITCH  
OUT  
1
REF  
V
DD  
COM  
11  
A 2.06*  
+1.21V  
DGND  
AGND  
20k  
REFERENCE  
(MAX1248)  
SINGLE-ENDED MODE: IN+ = CHOCH3, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1 AND CH2/CH3.  
10  
9
8
REFADJ  
VREF  
MAX1248  
MAX1249  
+2.500V  
*A 2.00 (MAX1249)  
Figure 3. Block Diagram  
Figure 4. Equivalent Input Circuit  
8
_______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7(MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the four channels are used for the conversion (Tables 2 and 3).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0V to VREF can be converted; in bipolar mode, the signal can range  
from -VREF / 2 to +VREF / 2.  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
1
PD1  
PD0  
Selects clock and power-down modes.  
0(LSB)  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full power-down  
Fast power-down (MAX1248 only)  
Internal clock mode  
External clock mode  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
An a lo g In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog input  
t
, is the maximum time the device takes to acquire  
to V and AGND, allow the channel input pins to swing  
ACQ  
DD  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by:  
from AGND - 0.3V to V  
However, for accurate conversions near full scale, the  
+ 0.3V without d a ma g e .  
DD  
inputs must not exceed V by more than 50mV or be  
lower than AGND by 50mV.  
DD  
t
= 7.6 x (R + R ) x 16pF  
S IN  
ACQ  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of off  
channels over 4mA.  
where R = 9k, R = the source impedance of the  
IN  
S
input signal, and t  
is never less than 1.5µs. Note  
ACQ  
that source impedances below 3kdo not significantly  
affect the ADCs AC performance.  
Ho w t o S t a rt a Co n ve rs io n  
A conversion is started by clocking a control byte into  
DIN. With CS low, each rising edge on SCLK clocks a bit  
from DIN into the MAX1248/MAX1249s internal shift reg-  
ister. After CS falls, the first arriving logic “1” bit defines  
the control bytes MSB. Until this first start” bit arrives,  
any number of logic “0” bits can be clocked into DIN with  
no effect. Table 1 shows the control-byte format.  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Note that the input capacitor forms an RC filter with the  
inp ut s ourc e imp e d a nc e , limiting the ADCs s ig na l  
bandwidth.  
In p u t Ba n d w id t h  
The ADCs inp ut tra c king c irc uitry ha s a 2.25MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADCs sampling  
ra te b y us ing und e rs a mp ling te c hniq ue s . To a void  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
The MAX1248/MAX1249 are compatible with SPI/QSPI  
and MICROWIRE devices. For SPI, select the correct  
clock polarity and sampling edge in the SPI control reg-  
isters: set CPOL = 0 and CPHA = 0. MICROWIRE, SPI,  
and QSPI all transmit a byte and receive a byte at the  
same time. Using the Typical Operating Circuit, the sim-  
_______________________________________________________________________________________  
9
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
DIF  
Table 2. Channel Selection in Single-Ended Mode (SGL/  
= 1)  
SEL2  
0
SEL1  
0
SEL0  
1
CH0  
CH1  
CH2  
CH3  
COM  
+
1
0
1
0
1
1
1
0
0
+
+
+
DIF  
Table 3. Channel Selection in Differential Mode (SGL/  
= 0)  
SEL2  
0
SEL1  
0
SEL0  
1
CH0  
CH1  
CH2  
CH3  
+
0
1
1
1
0
1
0
1
0
+
+
+
8/MAX1249  
plest software interface requires only three 8-bit transfers  
to perform a conversion (one 8-bit transfer to configure  
the ADC, and two more 8-bit transfers to clock out the  
10-bit conversion result). See Figure 19 for MAX1248/  
MAX1249 QSPI connections.  
serial-clock frequency and the amount of idle time  
between 8-bit transfers. To avoid excessive T/H droop,  
make sure the total conversion time does not exceed  
120µs.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 16). For bipolar inputs, the output is twos com-  
plement (Figure 17). Data is clocked out at the falling  
edge of SCLK in MSB-first format.  
Simple Software Interface  
Make sure the CPUs serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1 should be of the format: 1XXXXX11  
Clo c k Mo d e s  
The MAX1248/MAX1249 may use either an external  
serial clock or the internal clock to perform the succes-  
sive-approximation conversion. In both clock modes,  
the e xte rna l c loc k s hifts d a ta in a nd out of the  
MAX1248/MAX1249. The T/H acquires the input signal  
as the last three bits of the control byte are clocked into  
DIN. Bits PD1 and PD0 of the control byte program the  
clock mode. Figures 6–9 show the timing characteristics  
common to both modes.  
binary, where the Xs denote the particular channel  
and conversion mode selected.  
2) Use a general-purpose I/O line on the CPU to pull  
CS low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB2.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, it also drives the analog-to-digital con-  
version steps. SSTRB pulses high for one clock period  
after the last bit of the control byte. Successive-approxi-  
mation bit decisions are made and appear at DOUT on  
each of the next 10 SCLK falling edges (Figure 5).  
SSTRB and DOUT go into a high-impedance state when  
5) Transmit a byte of all zeros ($00 hex) and, simulta-  
neously, receive byte RB3.  
6) Pull CS high.  
Figure 5 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion padded  
with one leading zero, two sub-bits, and three trailing  
zeros. The total conversion time is a function of the  
10 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
SSTRB  
DOUT  
START  
RB2  
B6  
RB3  
RB1  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
B8  
B7  
B5  
B4  
B3  
B2  
B1  
S1  
S0  
ACQUISITION  
1.5µs  
CONVERSION  
A/D STATE  
IDLE  
IDLE  
(f  
CLK  
= 2MHz)  
Figure 5. 24-Clock External Clock Mode Conversion Timing (MICROWIRE and SPI-Compatible, QSPI-Compatible with f  
2MHz)  
SCLK  
• • •  
CS  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
t
t
t
TR  
DV  
DO  
DOUT  
• • •  
Figure 6. Detailed Serial-Interface Timing  
the serial-clock frequency is less than 100kHz, or if  
serial-clock interruptions could cause the conversion  
interval to exceed 120µs.  
CS goes high; after the next CS falling edge, SSTRB will  
output a logic low. Figure 7 shows the SSTRB timing in  
external clock mode.  
The conversion must complete in some minimum time,  
or d roop on the s a mp le -a nd -hold c a p a c itors ma y  
degrade conversion results. Use internal clock mode if  
______________________________________________________________________________________ 11  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
SCLK  
• • •  
• • • •  
PD0 CLOCKED IN  
Figure 7. External Clock Mode SSTRB Detailed Timing  
8/MAX1249  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8  
B7  
S1  
S0  
ACQUISITION CONVERSION  
A/D STATE  
1.5µs  
IDLE  
IDLE  
7.5µs MAX  
(f  
SCLK  
= 2MHz) (SHDN = FLOAT)  
Figure 8. Internal Clock Mode Timing  
Internal Clock  
MSB of the c onve rs ion a t DOUT, followe d b y the  
remaining bits in MSB-first format (Figure 8). CS does  
not need to be held low once a conversion is started.  
Pulling CS high prevents data from being clocked into  
the MAX1248/MAX1249 and three-states DOUT, but it  
does not adversely affect an internal clock mode con-  
version already in progress. When internal clock mode  
is selected, SSTRB does not go into a high-impedance  
state when CS goes high.  
In internal clock mode, the MAX1248/MAX1249 gener-  
ate their own conversion clocks internally. This frees the  
µP from the burden of running the SAR conversion clock  
and allows the conversion results to be read back at the  
processors convenience, at any clock rate from 0MHz  
to 2MHz. SSTRB goes low at the start of the conversion  
and then goes high when the conversion is complete.  
SSTRB is low for a maximum of 7.5µs (SHDN = FLOAT),  
during which time SCLK should remain low for best  
noise performance.  
Fig ure 9 s hows the SSTRB timing in inte rna l c loc k  
mode. In this mode, data can be shifted in and out of  
the MAX1248/MAX1249 a t c loc k ra te s e xc e e d ing  
An internal register stores data when the conversion is  
in progress. SCLK clocks the data out of this register at  
any time after the conversion is complete. After SSTRB  
goes high, the next falling clock edge produces the  
2.0MHz if the minimum acquisition time, t  
above 1.5µs.  
, is kept  
ACQ  
12 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
Most microcontrollers require that conversions occur in  
multiples of 8 SCLK clocks; 16 clocks per conversion is  
typically the fastest that a microcontroller can drive the  
MAX1248/MAX1249. Figure 10b shows the serial-inter-  
face timing necessary to perform a conversion every 16  
SCLK cycles in external clock mode.  
Da t a Fra m in g  
The falling edge of CS does not start a conversion. The  
first logic high clocked into DIN is interpreted as a start  
bit and defines the first bit of the control byte. A conver-  
sion starts on the falling edge of SCLK, after the eighth  
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as:  
__________ Ap p lic a t io n s In fo rm a t io n  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e.g., after V is applied.  
DD  
P o w e r-On Re s e t  
When power is first applied, and if SHDN is not pulled  
low, inte rna l p owe r-on re s e t c irc uitry a c tiva te s the  
MAX1248/MAX1249 in internal clock mode, ready to  
convert with SSTRB = high. After the power supplies  
have stabilized, the internal reset time is 10µs, and no  
conversions should be performed during this phase.  
SSTRB is high on power-up and, if CS is low, the first  
logical 1 on DIN is interpreted as a start bit. Until a con-  
version takes place, DOUT shifts out zeros (also see  
Table 4).  
OR  
The first high bit clocked into DIN after bit 3 of a con-  
version in progress is clocked onto the DOUT pin.  
If CS is toggled before the current conversion is com-  
plete, the next high bit clocked into DIN is recognized as  
a start bit; the current conversion is terminated, and a  
new one is started.  
The fastest the MAX1248/MAX1249 can run with CS  
held low between conversions is 15 clocks per conver-  
sion. Figure 10a shows the serial-interface timing nec-  
essary to perform a conversion every 15 SCLK cycles  
in external clock mode. If CS is tied low and SCLK is  
continuous, guarantee a start bit by first clocking in 16  
zeros.  
Re fe re n c e -Bu ffe r Co m p e n s a t io n  
In addition to its shutdown function, SHDN selects inter-  
na l or e xte rna l c omp e ns a tion. The c omp e ns a tion  
affects both power-up time and maximum conversion  
speed. The 100kHz minimum clock rate is limited by  
droop on the sample-and-hold, and is independent of  
the compensation used.  
CS  
• • •  
t
CONV  
t
CSS  
t
t
SCK  
CSH  
SSTRB  
SCLK  
• • •  
t
SSTRB  
• • •  
t
DO  
PD0 CLOCK IN  
DOUT  
• • •  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 9. Internal Clock Mode SSTRB Detailed Timing  
______________________________________________________________________________________ 13  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
CS  
1
8
1
8
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 10a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
SCLK  
8/MAX1249  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6  
CONVERSION RESULT 1  
Figure 10b. External Clock Mode, 16 Clocks/Conversion Timing  
Full power-down mode turns off all chip functions that  
draw quiescent current, reducing supply current typically  
to 2µA. Fast power-down mode turns off all circuitry  
except the bandgap reference. With fast power-down  
mode, the supply current is 30µA. Power-up time can be  
shortened to 5µs in internal compensation mode.  
Floa t SHDN to s e le c t e xte rna l c omp e ns a tion. The  
Typical Operating Circuit uses a 4.7µF capacitor at  
VREF. A value of 4.7µF or greater ensures reference-  
buffer stability and allows converter operation at the  
2MHz full clock speed. External compensation increas-  
es power-up time (see Choosing Power-Down Mode  
and Table 4).  
Table 4 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
delay and maximum sample rate. In external compensa-  
tion mode, power-up time is 20ms with a 4.7µF compen-  
sation capacitor when the capacitor is initially fully  
discharged. From fast power-down, start-up time can be  
eliminated by using low-leakage capacitors that do not  
discharge more than 1/2LSB while shut down. In power-  
down, leakage currents at VREF cause droop on the ref-  
erence bypass capacitor. Figures 11a and 11b show  
the various power-down sequences in both external and  
internal clock modes.  
Pull SHDN hig h to s e le c t inte rna l c omp e ns a tion.  
Internal compensation requires no external capacitor at  
VREF and allows for the shortest power-up times. The  
maximum clock rate is 2MHz in internal clock mode  
and 400kHz in external clock mode.  
Ch o o s in g P o w e r-Do w n Mo d e  
You can save power by placing the converter in a low-  
current shutdown state between conversions. Select full  
power-down or fast power-down mode via bits 1 and 0  
of the DIN c ontrol b yte with SHDN hig h or floa ting  
(Tables 1 and 5). In both software power-down modes,  
the serial interface remains operational, but the ADC  
does not convert. Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
14 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
Table 4. Typical Power-Up Delay Times  
REFERENCE-BUFFER  
COMPENSATION  
MODE  
VREF  
CAPACITOR  
(µF)  
POWER-UP  
DELAY  
(µs)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
POWER-DOWN  
MODE  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
Fast  
Full  
Fast  
Full  
5
26  
300  
26  
4.7  
4.7  
See Figure 13c  
133  
133  
133  
133  
See Figure 13c  
2
2
CLOCK  
MODE  
EXTERNAL  
EXTERNAL  
SHDN  
DIN  
SETS SOFTWARE  
POWER-DOWN  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
S X X X X X 1 1  
S X X X X X 0 0  
S X X X X X 1 1  
DOUT  
MODE  
VALID  
DATA  
INVALID  
DATA  
10+2 DATA BITS  
POWERED UP  
10+2 DATA BITS  
HARDWARE  
POWER-  
DOWN  
POWERED UP  
SOFTWARE  
POWER-DOWN  
POWERED UP  
Figure 11a. Timing Diagram Power-Down Modes, External Clock  
CLOCK  
MODE  
INTERNAL  
SETS  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 0  
S X X X X X 0 0  
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
POWER-DOWN  
POWERED UP  
POWERED UP  
Figure 11b. Timing Diagram Power-Down Modes, Internal Clock  
______________________________________________________________________________________ 15  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
Table 5. Software Power-Down and  
Clock Mode  
PD1  
PD0  
DEVICE  
10,000  
1000  
100  
10  
VREF = V = 3.0V  
DD  
Full Power-Down  
Fast Power-Down  
Internal Clock  
External Clock  
0
0
1
1
0
1
0
1
R
LOAD  
= ∞  
CODE = 1010101000  
4 CHANNELS  
Table 6. Hardware Power-Down and  
Internal Clock Frequency  
1 CHANNEL  
1
REFERENCE-  
BUFFER  
COMPENSATION  
INTERNAL  
CLOCK  
FREQUENCY  
SHDN  
STATE  
DEVICE  
MODE  
0.1  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
225kHz  
1.8MHz  
1
Enabled  
Enabled  
Internal  
External  
8/MAX1249  
Floating  
Figure 12. Average Supply Current vs. Conversion Rate  
with External Reference  
Power-  
Down  
0
N/A  
N/A  
This feature eases the settling-time requirement for the  
re fe re nc e volta g e . With a n e xte rna l re fe re nc e , the  
MAX1248/MAX1249 can be considered fully powered  
up within 2µs of actively pulling SHDN high.  
Software Power-Down  
Software power-down is activated using bits PD1 and PD0  
of the control byte. As shown in Table 5, PD1 and PD0  
also specify the clock mode. When software shutdown is  
asserted, the ADC operates in the last specified clock  
mode until the conversion is complete. Then the ADC  
powers down into a low quiescent-current state. In internal  
clock mode, the interface remains active, and conversion  
results may be clocked out after the MAX1248/MAX1249  
enter a software power-down.  
P o w e r-Do w n S e q u e n c in g  
The MAX1248/MAX1249 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. Figures 12, 13a, and 13b show  
the average supply current as a function of the sampling  
rate. The following discussion illustrates the various  
power-down sequences.  
Lowest Power at up to 500  
Conversions/Channel/Second  
The following examples illustrate two different power-  
down sequences. Other combinations of clock rates,  
compensation modes, and power-down modes may  
give lowest power consumption in other applications.  
The first logical 1 on DIN is interpreted as a start bit  
and powers up the MAX1248/MAX1249. Following the  
start bit, the data input word or control byte also deter-  
mines clock mode and power-down states. For exam-  
ple, if the DIN word contains PD1 = 1, then the chip  
remains powered up. If PD0 = PD1 = 0, a power-down  
resumes after one conversion.  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down (Table 6). Unlike software power-down  
mode, the conversion is not completed; it stops coinci-  
dentally with SHDN being brought low. SHDN also con-  
trols the clock frequency in internal clock mode. Letting  
SHDN float sets the internal clock frequency to 1.8MHz.  
When returning to normal operation with SHDN floating,  
Figure 13a depicts the MAX1248 power consumption  
for one or e ig ht c ha nne l c onve rs ions , utilizing full  
power-down mode and internal-reference compensa-  
tion. A 0.01µF bypass capacitor at REFADJ forms an  
RC filter with the internal 20kreference resistor with a  
0.2ms time constant. To achieve full 10-bit accuracy, 8  
time constants or 1.6ms are required after power-up.  
Waiting 1.6ms in FASTPD mode instead of in full power-  
up can reduce the power consumption by a factor of 10  
or more. This is achieved by using the sequence shown  
in Figure 14.  
there is a t  
delay of approximately 2Mx C , where  
RC  
L
C
is the capacitive loading on the SHDN pin. Pulling  
L
SHDN high sets the internal clock frequency to 225kHz.  
16 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
100  
10  
1
10,000  
R
= ∞  
R
= ∞  
LOAD  
LOAD  
CODE = 1010101000  
CODE = 1010101000  
1000  
100  
10  
4 CHANNELS  
4 CHANNELS  
1 CHANNEL  
1 CHANNEL  
1
0.01  
0.1  
1
10  
100  
1k  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
CONVERSION RATE (Hz)  
Figure 13a. MAX1248 Supply Current vs. Conversion Rate,  
FULLPD  
Figure 13b. MAX1248 Supply Current vs. Conversion Rate,  
FASTPD  
Lowest Power at Higher Throughputs  
Fig ure 13b s hows the p owe r c ons ump tion with  
external-reference compensation in fast power-down,  
with one and four channels converted. The external  
4.7µF compensation requires a 75µs wait after power-up  
with one dummy conversion. This circuit combines fast  
multi-channel conversion with lowest power consumption  
possible. Full power-down mode may provide increased  
p owe r s a ving s in a p p lic a tions whe re the  
MAX1248/MAX1249 are inactive for long periods of time,  
but where intermittent bursts of high-speed conversions  
are required.  
3.0  
2.5  
2.0  
1.5  
1.0  
In t e rn a l a n d Ex t e rn a l Re fe re n c e s  
The MAX1248 can be used with an internal or external  
reference voltage, whereas an external reference is  
required for the MAX1249. An external reference can  
be connected directly at VREF or at the REFADJ pin.  
0.5  
0
0
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (sec)  
An internal buffer is designed to provide 2.5V at VREF  
for b oth the MAX1248 a nd the MAX1249. The  
MAX1248s inte rna lly trimme d 1.21V re fe re nc e is  
buffered with a gain of 2.06. The MAX1249s REFADJ  
pin is also buffered with a gain of 2.06 to scale an  
external 1.25V reference at REFADJ to 2.5V at VREF.  
Figure 13c. Typical Reference-Buffer Power-Up Delay vs. Time  
in Shutdown  
Internal Reference (MAX1248)  
The MAX1248s full-scale range with the internal refer-  
ence is 2.5V with unipolar inputs and ±1.25V with bipo-  
lar inputs. The internal-reference voltage is adjustable  
to ±1.5% with the circuit of Figure 15.  
______________________________________________________________________________________ 17  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
COMPLETE CONVERSION SEQUENCE  
1.6ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
FULLPD  
1.21V  
1
1
1 1  
1
0 0  
FULLPD  
1
0 1  
FASTPD  
FASTPD  
NOPD  
REFADJ  
VREF  
0V  
2.50V  
0V  
τ = RC = 20kx C  
REFADJ  
t
75µs  
BUFFEN  
Figure 14. MAX1248 FULLPD/FASTPD Power-Up Sequence  
External Reference  
With both the MAX1248 and MAX1249, an external ref-  
erence can be placed at either the input (REFADJ) or  
the output (VREF) of the internal reference-buffer ampli-  
fier. The REFADJ input impedance is typically 20kfor  
the MAX1248 and higher than 100kfor the MAX1249,  
where the internal reference is omitted. At VREF, the  
DC input resistance is a minimum of 18k. During con-  
version, an external reference at VREF must deliver  
up to 350µA DC loa d c urre nt a nd ha ve a n outp ut  
impedance of 10or less. If the reference has higher  
output impedance or is noisy, bypass it close to the  
VREF pin with a 4.7µF capacitor.  
+3.3V  
8/MAX1249  
24k  
MAX1248  
REFADJ  
510k  
9
100k  
0.01µF  
Figure 15. MAX1248 Reference-Adjust Circuit  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct VREF input,  
OUTPUT CODE  
FULL-SCALE  
disable the internal buffer by tying REFADJ to V . In  
DD  
power-down, the input bias current to REFADJ can be  
TRANSITION  
11 . . . 111  
a s muc h a s 25µA with REFADJ tie d to V . Pull  
DD  
11 . . . 110  
11 . . . 101  
REFADJ to AGND to minimize the input bias current in  
power-down.  
Tra n s fe r Fu n c t io n  
Table 7 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
FS = VREF + COM  
ZS = COM  
The external reference must have a temperature coeffi-  
cient of 20ppm/°C or less to achieve accuracy to within  
1LSB over the commercial temperature range of 0°C to  
+70°C.  
VREF  
1024  
1LSB =  
00 . . . 011  
00 . . . 010  
Figure 16 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 17 shows the bipolar  
input/output transfer function. Code transitions occur  
ha lfwa y b e twe e n s uc c e s s ive -inte g e r LSB va lue s .  
Output coding is binary, with 1LSB = 2.44mV (2.500V /  
1024) for unip ola r op e ra tion a nd 1LSB = 2.44mV  
[(2.500V / 2 - -2.500V / 2) / 1024] for bipolar operation.  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSBs)  
Figure 16. Unipolar Transfer Function, Full Scale (FS) = VREF  
+ COM, Zero Scale (ZS) = COM  
18 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
Table 7. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Zero  
Negative  
Full Scale  
Full Scale  
Zero Scale  
COM  
Full Scale  
Scale  
VREF / 2  
+ COM  
-VREF / 2  
+ COM  
VREF + COM  
COM  
OUTPUT CODE  
VREF  
2
FS  
=
+ COM  
011 . . . 111  
011 . . . 110  
SUPPLIES  
ZS = COM  
-VREF  
2
-FS =  
+ COM  
VREF  
+3V  
+3V  
GND  
000 . . . 010  
000 . . . 001  
000 . . . 000  
1LSB =  
1024  
R* = 10Ω  
111 . . . 111  
111 . . . 110  
111 . . . 101  
V
DD  
AGND  
COM DGND  
+3V DGND  
100 . . . 001  
100 . . . 000  
DIGITAL  
CIRCUITRY  
MAX1248  
MAX1249  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1LSB  
* OPTIONAL  
*COM VREF / 2  
Figure 17. Bipolar Transfer Function, Zero Scale (ZS) = COM,  
Full Scale (FS) = VREF / 2 + COM  
Figure 18. Power-Supply Grounding Connection  
High-frequency noise in the V  
power supply may  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For b e s t p e rforma nc e , us e p rinte d c irc uit b oa rd s .  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
DD  
affect the ADCs high-speed comparator. Bypass the  
supply to the star ground with 0.1µF and 1µF capaci-  
tors close to pin 1 of the MAX1248/MAX1249. Minimize  
capacitor lead lengths for best supply-noise rejection.  
If the +3V power supply is very noisy, a 10resistor  
can be connected as a lowpass filter (Figure 18).  
Figure 18 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at AGND, separate from the logic  
ground. Connect all other analog grounds and DGND  
to the star ground. No other digital system ground  
should be connected to this ground. For lowest noise  
operation, the ground return to the star grounds power  
supply should be low impedance and as short as pos-  
sible.  
Hig h -S p e e d Dig it a l In t e rfa c in g w it h QS P I  
The MAX1248/MAX1249 can interface with QSPI using  
the circuit in Figure 19 (f  
= 2.0MHz, CPOL = 0,  
SCLK  
CPHA = 0). This QSPI circuit can be programmed to do a  
conversion on each of the four channels. The result is  
stored in memory without taxing the CPU, since QSPI  
incorporates its own micro-sequencer.  
The MAX1248/MAX1249 are QSPI compatible up to their  
maximum external clock frequency of 2MHz.  
______________________________________________________________________________________ 19  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
+3V  
+3V  
1µF  
16  
15  
14  
13  
12  
11  
10  
9
SCK  
1
2
3
4
5
6
7
8
V
DD  
SCLK  
CS  
0.1µF  
PCS0  
CH0  
MC683XX  
MAX1248  
MAX1249  
CH1  
DIN  
MOSI  
ANALOG  
INPUTS  
CH2  
SSTRB  
DOUT  
MISO  
CH3  
COM  
SHDN  
VREF  
DGND  
AGND  
REFADJ  
(GND)  
+2.5V  
8/MAX1249  
CLOCK CONNECTIONS NOT SHOWN  
0.1µF  
Figure 19. MAX1248/MAX1249 QSPI Connections External Reference  
TMS 3 2 0 LC3 x In t e rfa c e  
Figure 20 shows an application circuit to interface the  
MAX1248/MAX1249 to the TMS320 in external clock  
mode. The timing diagram for this interface circuit is  
shown in Figure 21.  
XF  
CLKX  
CLKR  
DX  
CS  
Use the following steps to initiate a conversion in the  
MAX1248/MAX1249 and to read the results:  
SCLK  
TMS320LC3x  
1) The TMS320 s hould b e c onfig ure d with CLKX  
(transmit clock) as an active-high output clock and  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR on the TMS320 are  
tied together with the MAX1248/MAX1249s SCLK  
input.  
MAX1249  
DIN  
DR  
DOUT  
SSTRB  
2) The MAX1248/MAX1249s CS pin is driven low by  
the TMS320s XF_ I/O port, to enable data to be  
clocked into the MAX1248/MAX1249s DIN.  
FSR  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX1248/MAX1249 to initiate a conversion and  
place the device into external clock mode. Refer to  
Table 1 to select the proper XXXXX bit values for  
your specific application.  
Figure 20. MAX1248/MAX1249-to-TMS320 Serial Interface  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 10 + 2-bit conversion result followed by  
four trailing bits, which should be ignored.  
4) The MAX1248/MAX1249s SSTRB output is moni-  
tored via the TMS320s FSR input. A falling edge on  
the SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX1248/MAX1249.  
6) Pull CS high to disable the MAX1248/MAX1249 until  
the next conversion is initiated.  
20 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
CS  
SCLK  
DIN  
START SEL2  
SEL1  
SEL0 UNI/BIP SGL/DIF PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
B0  
LSB  
DOUT  
MSB  
B8  
S1  
S0  
Figure 21. TMS320 Serial-Interface Timing Diagram  
___________________________________________Ord e rin g In fo rm a t io n (c o n t in u e d )  
INL  
(LSB)  
INL  
(LSB)  
PART†  
TEMP. RANGE  
PIN-PACKAGE  
PART†  
TEMP. RANGE PIN-PACKAGE  
MAX1248AEPE -40°C to +85°C  
MAX1248BEPE -40°C to +85°C  
MAX1248AEEE -40°C to +85°C  
MAX1248BEEE -40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
MAX1249ACEE  
MAX1249BCEE  
0°C to +70°C  
0°C to +70°C  
16 QSOP  
±1/2  
±1  
16 QSOP  
MAX1249AEPE -40°C to +85°C  
MAX1249BEPE -40°C to +85°C  
MAX1249AEEE -40°C to +85°C  
MAX1249BEEE -40°C to +85°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
±1/2  
±1  
16 QSOP  
MAX1248AMJE -55°C to +125°C 16 CERDIP*  
MAX1248BMJE -55°C to +125°C 16 CERDIP*  
±1/2  
±1  
±1/2  
±1  
16 QSOP  
MAX1249ACPE  
0°C to +70°C  
0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
±1/2  
±1  
MAX1249AMJE -55°C to +125°C 16 CERDIP*  
MAX1249BMJE -55°C to +125°C 16 CERDIP*  
±1/2  
±1  
MAX1249BCPE  
Contact factory for availability of alternate surface-mount packages.  
* Contact factory for availability of CERDIP package, and for processing to MIL-STD-883B.  
______________________________________________________________________________________ 21  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
___________________Ch ip In fo rm a t io n  
_________________P in Co n fig u ra t io n  
TRANSISTOR COUNT: 2554  
TOP VIEW  
16  
15  
14  
13  
12  
11  
10  
9
V
1
2
3
4
5
6
7
8
SCLK  
CS  
DD  
CH0  
CH1  
DIN  
CH2  
MAX1248  
MAX1249  
SSTRB  
DOUT  
DGND  
AGND  
REFADJ  
CH3  
COM  
SHDN  
VREF  
DIP/QSOP  
8/MAX1249  
________________________________________________________P a c k a g e In fo rm a t io n  
22 ______________________________________________________________________________________  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
8/MAX1249  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
______________________________________________________________________________________ 23  
+2 .7 V t o +5 .2 5 V, Lo w -P o w e r, 4 -Ch a n n e l,  
S e ria l 1 0 -Bit ADCs in QS OP -1 6  
NOTES  
8/MAX1249  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1248BEEE

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM

MAX1248BEEE+

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1248BEEE+T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1248BEEE-T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1248BEPE

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM

MAX1248BMJE

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM

MAX1249

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM

MAX1249ACEE

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM

MAX1249ACEE+

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1249ACEE+T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1249ACEE-T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1249ACPE

+2.7V to +5.25V, Low-Power, 4-Channel, Serial 10-Bit ADCs in QSOP-16
MAXIM