MAX1247 [MAXIM]

+2.7V.Low-Power.4-Channel.Serial 12-Bit ADCs in QSOP-16 ; + 2.7V.Low - Power.4 - Channel.Serial 12位ADC的QSOP -16\n
MAX1247
型号: MAX1247
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+2.7V.Low-Power.4-Channel.Serial 12-Bit ADCs in QSOP-16
+ 2.7V.Low - Power.4 - Channel.Serial 12位ADC的QSOP -16\n

文件: 总25页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1071; Rev 2; 10/01  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
General Description  
Features  
The MAX1246/MAX1247 12-bit data-acquisition systems  
combine a 4-channel multiplexer, high-bandwidth  
track/hold, and serial interface with high conversion  
speed and low power consumption. The MAX1246 oper-  
ates from a single +2.7V to +3.6V supply; the MAX1247  
operates from a single +2.7V to +5.25V supply. Both  
devices’ analog inputs are software configurable for  
unipolar/bipolar and single-ended/differential operation.  
4-Channel Single-Ended or 2-Channel  
Differential Inputs  
Single-Supply Operation:  
+2.7V to +3.6V (MAX1246)  
+2.7V to +5.25V (MAX1247)  
Internal 2.5V Reference (MAX1246)  
Low Power: 1.2mA (133ksps, 3V supply)  
54µA (1ksps, 3V supply)  
The 4-wire serial interface connects directly to SPI™/  
QSPI™ and MICROWIRE™ devices without external  
logic. A serial strobe output allows direct connection to  
TMS320-family digital signal processors. The MAX1246/  
MAX1247 use either the internal clock or an external seri-  
al-interface clock to perform successive-approximation  
analog-to-digital conversions.  
1µA (power-down mode)  
SPI/QSPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
Software-Configurable Unipolar or Bipolar Inputs  
16-Pin QSOP Package (same area as 8-pin SO)  
The MAX1246 has an internal 2.5V reference, while the  
MAX1247 requires an external reference. Both parts have  
a reference-buffer amplifier with a 1.5ꢀ voltage-  
adjustment range. These devices provide a hard-wired  
SHDN pin and a software-selectable power-down, and  
can be programmed to automatically shut down at the  
end of a conversion. Accessing the serial interface auto-  
matically powers up the MAX1246/MAX1247, and the  
quick turn-on time allows them to be shut down between  
all conversions. This technique can cut supply current to  
under 60µA at reduced sampling rates. The MAX1246/  
MAX1247 are available in a 16-pin DIP and a small QSOP  
that occupies the same board area as an 8-pin SO.  
Ordering Information  
INL  
(LSB)  
PART  
TEMP RANGE PIN-PACKAGE  
MAX1246ACPE 0°C to +70°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
1/2  
1
MAX1246BCPE  
MAX1246ACEE  
MAX1246BCEE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
1/2  
1
16 QSOP  
Ordering Information continued at end of data sheet.  
For 8-channel versions of these devices, see the  
MAX146/MAX147 data sheet.  
________________________Applications  
__________Typical Operating Circuit  
Portable Data Logging  
Medical Instruments  
Pen Digitizers  
+3V  
V
V
CH0  
DD  
DD  
0.1µF  
Data Acquisition  
0V TO  
+2.5V  
DGND  
Battery-Powered Instruments  
Process Control  
ANALOG  
INPUTS  
MAX1246  
CH3  
AGND  
COM  
CPU  
I/O  
VREF  
CS  
4.7µF  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
DIN  
Pin Configuration appears at end of data sheet.  
DOUT  
REFADJ  
0.047µF  
SSTRB  
SHDN  
V
SPI and QSPI are registered trademarks of Motorola, Inc.  
SS  
MICROWIRE is a registered trademark of National  
Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
ABSOLUTE MAXIMUM RATINGS  
DD  
AGND to DGND...................................................... -0.3V to 0.3V  
CH0–CH3, COM to AGND, DGND ............ -0.3V to (V + 0.3V)  
V
to AGND, DGND................................................. -0.3V to 6V  
QSOP (derate 8.36mW/°C above +70°C)................... 667mW  
CERDIP (derate 10.00mW/°C above +70°C).............. 800mW  
Operating Temperature Ranges  
DD  
VREF to AGND........................................... -0.3V to (V + 0.3V)  
Digital Inputs to DGND .............................................. -0.3V to 6V  
MAX1246_C_E/MAX1247_C_E.......................... 0°C to +70°C  
MAX1246_E_E/MAX1247_E_E........................ -40°C to +85°C  
MAX1246_MJE/MAX1247_MJE.................... -55°C to +125°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
DD  
Digital Outputs to DGND ........................... -0.3V to (V + 0.3V)  
DD  
Digital Output Sink Current .................................................25mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ......... 842mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +3.6V (MAX1246); V = +2.7V to +5.25V (MAX1247); COM = 0V; f = 2.0MHz; external clock (50ꢀ duty cycle);  
DD  
DD  
SCLK  
15 clocks/conversion cycle (133ksps); MAX1246—4.7µF capacitor at VREF pin; MAX1247—external reference, VREF = 2.5V applied  
to VREF pin; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
12  
MAX124_A  
±±0.  
±10±  
±20±  
Relative Accuracy (Note 2)  
INL  
MAX124_B  
MAX1247C  
LSB  
No Missing Codes  
NMC  
DNL  
12  
Bits  
MAX124_A/MAX124_B  
MAX124_C  
±1  
Differential Nonlinearity  
LSB  
±±0ꢀ  
±±0.  
±±0.  
±±0.  
±±02.  
MAX124_A  
±ꢁ  
±4  
±4  
Offset Error  
LSB  
MAX124_B  
Gain Error (Note ꢁ)  
LSB  
Gain Temperature Coefficient  
ppm/°C  
Channel-to-Channel Offset  
Matching  
±±02.  
LSB  
DYNAMIC SPECIFICATIONS (1±kHz sine-wave input, ±V to 20.±±Vp-p, 1ꢁꢁksps, 20±MHz external clock, bipolar input mode)  
MAX124_A/MAX124_B  
MAX1247C  
7±  
7ꢁ  
7ꢁ  
Signal-to-Noise + Distortion  
Ratio  
SINAD  
THD  
dB  
dB  
dB  
MAX124_A/MAX124_B  
MAX1247C  
-ꢀꢀ  
-ꢀꢀ  
9±  
-ꢀ±  
Up to the .th  
harmonic  
Total Harmonic Distortion  
MAX124_A/MAX124_B  
MAX1247C  
ꢀ±  
Spurious-Free Dynamic Range  
SFDR  
9±  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
Full-Power Bandwidth  
6.kHz, 20.±±V  
-ꢁdB rolloff  
(Note 4)  
-ꢀ.  
202.  
10±  
dB  
P-P  
MHz  
MHz  
2
_______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +207V to +ꢁ06V (MAX1246); V = +207V to +.02.V (MAX1247); COM = ±V; f = 20±MHz; external clock (.±% duty cycle);  
DD  
DD  
SCLK  
1. clocks/conversion cycle (1ꢁꢁksps); MAX1246407µF capacitor at VREF pin; MAX1247external reference, VREF = 20.V applied  
to VREF pin; T = T  
to T ; unless otherwise noted0)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
Internal clock, SHDN = FLOAT  
Internal clock, SHDN = V  
.0.  
ꢁ.  
70.  
6.  
DD  
Conversion Time (Note .)  
t
µs  
µs  
CONV  
External clock = 2MHz, 12 clocks/  
conversion  
6
Track/Hold Acquisition Time  
t
10.  
ACQ  
Aperture Delay  
Aperture Jitter  
ꢁ±  
<.±  
10ꢀ  
ns  
ps  
SHDN = FLOAT  
Internal Clock Frequency  
MHz  
MHz  
SHDN = V  
±022.  
DD  
±01  
±
20±  
20±  
External Clock Frequency  
Data transfer only  
ANALOG/COM INPUTS  
Unipolar, COM = ±V  
± to VREF  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
Bipolar, COM = VREF / 2  
±VREF / 2  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V _ = ±V or V  
±±0±1  
±1  
µA  
pF  
CH  
DD  
16  
INTERNAL REFERENCE (MAX1246 only, reference buffer enabled)  
VREF Output Voltage  
T
A
= +2.°C  
204ꢀ±  
20.±±  
20.2±  
ꢁ±  
V
VREF Short-Circuit Current  
mA  
MAX1246_C  
±±  
±±  
±.±  
±6±  
±±  
VREF Temperature Coefficient  
ppm/°C  
MAX1246_E  
MAX1246_M  
±±  
Load Regulation (Note ꢀ)  
Capacitive Bypass at VREF  
±mA to ±02mA output load  
Internal compensation mode  
External compensation mode  
±±0ꢁ.  
mV  
µF  
±
407  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
±0±47  
µF  
%
V
= V = V = 2ꢀV, V = 10.V  
±10.  
BST  
LX  
IN  
FB  
EXTERNAL REFERENCE AT VREF (Buffer disabled)  
VREF Input Voltage Range  
(Note 9)  
VDD +  
.±mV  
10±  
1ꢀ  
V
VREF Input Current  
VREF = 20.V  
1±±  
2.  
1.±  
V
VREF Input Resistance  
Shutdown VREF Input Current  
k  
µA  
±0±1  
1±±  
REFADJ Buffer Disable  
Threshold  
VDD -  
±0.  
V
_______________________________________________________________________________________  
3
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +207V to +ꢁ06V (MAX1246); V = +207V to +.02.V (MAX1247); COM = ±V; f = 20±MHz; external clock (.±% duty cycle);  
DD  
DD  
SCLK  
1. clocks/conversion cycle (1ꢁꢁksps); MAX1246407µF capacitor at VREF pin; MAX1247external reference, VREF = 20.V applied  
to VREF pin; T = T  
to T ; unless otherwise noted0)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
External compensation mode  
MAX1246  
±
Capacitive Bypass at VREF  
µF  
V/V  
µA  
407  
20±6  
20±±  
Reference Buffer Gain  
REFADJ Input Current  
MAX1247  
MAX1246  
±.±  
±1±  
MAX1247  
4
_______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +207V to +ꢁ06V (MAX1246); V = +207V to +.02.V (MAX1247); COM = ±V; f = 20±MHz; external clock (.±% duty cycle);  
DD  
DD  
SCLK  
1. clocks/conversion cycle (1ꢁꢁksps); MAX1246407µF capacitor at VREF pin; MAX1247external reference, VREF = 20.V applied  
to VREF pin; T = T  
to T ; unless otherwise noted0)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
V
ꢁ06V  
20±  
ꢁ0±  
DD  
V
IH  
V
DIN, SCLK, CS Input High Voltage  
> ꢁ06V, MAX1247 only  
DD  
V
±0ꢀ  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Mid Voltage  
IL  
V
±02  
HYST  
I
IN  
V
= ±V or V  
DD  
±±0±1  
±1  
1.  
µA  
pF  
V
IN  
C
IN  
(Note 7)  
V
SH  
V
- ±04  
DD  
V
SM  
101  
V
DD  
- 101  
±04  
V
V
SL  
V
SHDN Input Low Voltage  
I
SHDN = ±V or V  
SHDN = FLOAT  
±40±  
µA  
V
SHDN Input Current  
S
DD  
V
V
DD  
/ 2  
SHDN Voltage, Floating  
FLT  
SHDN Maximum Allowed  
Leakage, Mid Input  
SHDN = FLOAT  
±1±±  
nA  
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
I
I
= .mA  
±04  
±0ꢀ  
SINK  
Output Voltage Low  
V
OL  
V
= 16mA  
SINK  
Output Voltage High  
V
OH  
= ±0.mA  
V - ±0.  
DD  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
I
±±0±1  
±1±  
1.  
µA  
pF  
CS = V  
CS = V  
L
DD  
DD  
C
(Note 7)  
OUT  
MAX1246  
MAX1247  
207±  
207±  
ꢁ06±  
.02.  
20±  
7±  
Positive Supply Voltage  
V
V
DD  
Operating mode, full-scale input  
102  
ꢁ±  
mA  
µA  
Positive Supply Current, MAX1246  
I
I
V
DD  
= ꢁ06V Fast power-down  
Full power-down  
DD  
102  
10ꢀ  
±09  
ꢁ±  
1±  
V
DD  
V
DD  
= .02.V  
= ꢁ06V  
20.  
10.  
7±  
Operating mode,  
full-scale input  
mA  
µA  
Positive Supply Current, MAX1247  
Supply Rejection (Note 1±)  
Fast power-down  
Full power-down  
DD  
V
V
= .02.V  
= ꢁ06V  
ꢁ0.  
102  
1.  
DD  
1±  
DD  
V
DD  
= 207V to V  
, full-scale input,  
DD(MAX)  
PSR  
±±0ꢁ  
mV  
external reference = 20.±±V  
_______________________________________________________________________________________  
5
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
TIMING CHARACTERISTICS  
(V = +207V to +ꢁ06V (MAX1246); V = +207V to +.02.V (MAX1247); T = T  
to T  
; unless otherwise noted0)  
MAX  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
10.  
TYP  
MAX UNITS  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
µs  
ns  
ACQ  
t
1±±  
DS  
t
±
ns  
DH  
MAX124_ _C/E  
MAX124_ _M  
2±  
2±  
2±±  
24±  
24±  
24±  
SCLK Fall to Output Data Valid  
t
Figure 1  
ns  
DO  
t
Figure 1  
Figure 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
DV  
t
TR  
t
1±±  
±
CSS  
CSH  
t
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
2±±  
2±±  
CH  
t
CL  
SCLK Fall to SSTRB  
t
Figure 1  
24±  
24±  
24±  
SSTRB  
t
External clock mode only, Figure 1  
External clock mode only, Figure 2  
Internal clock mode only (Note 7)  
CS Fall to SSTRB Output Enable  
CS Rise to SSTRB Output Disable  
SSTRB Rise to SCLK Rise  
SDV  
t
STR  
t
±
SCK  
Note 1: Tested at V  
= 207V; COM = ±V; unipolar single-ended input mode0  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated0  
Note 3: MAX1246internal reference, offset nulled; MAX1247external reference (V  
Note 4: Ground onchannel; sine wave applied to all offchannels0  
= +20.±±V), offset nulled0  
REF  
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has .±% duty cycle0  
Note 6: The common-mode range for the analog inputs is from AGND to V  
Note 7: Guaranteed by design0 Not subject to production testing0  
0
DD  
Note 8: External load should not change during conversion for specified accuracy0  
Note 9: ADC performance is limited by the converters noise floor, typically ꢁ±±µVp-p0  
Note 10: Measured as V (207V) - V (V  
) 0  
FS  
FS DD0MAX  
|
|
__________________________________________Typical Operating Characteristics  
(V  
= ꢁV, VREF = 20.V, f  
= 2MHz, C  
= 2±pF, T = +2.°C, unless otherwise noted0)  
DD  
SCLK  
LOAD  
A
INTEGRAL NONLINEARITY  
vs. CODE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.5  
0.4  
0.3  
0.50  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
V
= 2.7V  
DD  
0.45  
0.40  
MAX1246  
0.35  
0.2  
0.1  
MAX1246  
0.30  
0.25  
0.20  
0
-0.1  
MAX1247  
MAX1247  
-0.2  
-0.3  
0.15  
0.10  
0.05  
0.00  
0.10  
0.05  
0.00  
-0.4  
-0.5  
-60  
-20  
20  
60  
100  
140  
0
1024  
2048  
3072  
4096  
2.25  
2.75 3.25  
3.75  
(V)  
4.25 4.75 5.25  
CODE  
V
TEMPERATURE (°C)  
DD  
6
_______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
____________________________Typical Operating Characteristics (continued)  
(V  
= ꢁV, VREF = 20.V, f  
= 2MHz, C  
= 2±pF, T = +2.°C, unless otherwise noted0)  
DD  
SCLK  
LOAD  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
2.00  
4.0  
3.5  
3.0  
2.5  
2.0  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
R = ∞  
L
FULL POWER-DOWN  
CODE = 101010100000  
C
= 50pF  
LOAD  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
MAX1246  
1.5  
1.0  
0.5  
0
C
= 20pF  
LOAD  
MAX1247  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
V
DD  
(V)  
V
(V)  
DD  
MAX1246  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
2.501  
2.0  
1.3  
1.2  
1.1  
1.0  
2.500  
2.499  
V
= 3.6V  
MAX1246  
DD  
1.6  
1.2  
0.8  
0.4  
V
= 2.7V  
DD  
2.498  
2.497  
2.496  
MAX1247  
0.9  
0.8  
2.495  
2.494  
R
= ∞  
LOAD  
CODE = 101010100000  
-60 -20 20  
TEMPERATURE (°C)  
0
-60  
-20  
20  
60  
100  
140  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
EFFECTIVE NUMBER OF BITS  
vs. FREQUENCY  
FFT PLOT  
20  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
V
= 2.7V  
DD  
= 10k  
V
= 2.7V  
DD  
f
f
IN  
SAMPLE  
0
= 133k  
-20  
-40  
-60  
-80  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
70  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
7
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
____________________________Typical Operating Characteristics (continued)  
(V  
= ꢁV, VREF = 20.V, f  
= 2MHz, C  
= 2±pF, T = +2.°C, unless otherwise noted0)  
DD  
SCLK  
LOAD  
A
GAIN ERROR  
vs. SUPPLY VOLTAGE  
0.50  
CHANNEL-TO-CHANNEL GAIN MATCHING  
vs. SUPPLY VOLTAGE  
OFFSET vs. SUPPLY VOLTAGE  
0.50  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.75 3.25 3.75  
(V)  
4.25 4.75 5.25  
2.25  
2.25 2.75  
3.25 3.75 4.25 4.75 5.25  
(V)  
2.25  
2.75 3.25  
3.75 4.25 4.75 5.25  
(V)  
V
V
V
DD  
DD  
DD  
GAIN ERROR  
vs. TEMPERATURE  
CHANNEL-TO-CHANNEL GAIN MATCHING  
vs. TEMPERATURE  
OFFSET vs. TEMPERATURE  
0.50  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-55  
-30  
-55 -30 -5  
20 45  
TEMPERATURE (˚C)  
-5 20 45 70 95 120 145  
-5 20 45 70 95 120 145  
TEMPERATURE (˚C)  
70 95 120 145  
-55 -30  
TEMPERATURE (˚C)  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
vs. TEMPERATURE  
0.50  
CHANNEL-TO-CHANNEL OFFSET MATCHING  
vs. SUPPLY VOLTAGE  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
-30 -5  
-55  
20 45 70 95 120 145  
TEMPERATURE (˚C)  
2.25 2.75 3.25  
3.75 4.25 4.75 5.25  
(V)  
V
DD  
8
_______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
1
V
Positive Supply Voltage  
Sampling Analog Inputs  
DD  
2.  
CH±CHꢁ  
Ground reference for analog inputs0 COM sets zero-code voltage in single-ended mode0 Must be  
stable to ±±0.LSB0  
6
7
COM  
Three-Level Shutdown Input0 Pulling SHDN low shuts the MAX1246/MAX1247 down; otherwise, they  
are fully operational0 Pulling SHDN high puts the reference-buffer amplifier in internal compensation  
mode0 Letting SHDN float puts the reference-buffer amplifier in external compensation mode0  
SHDN  
Reference-Buffer Output/ADC Reference Input0 Reference voltage for analog-to-digital conversion0  
In internal reference mode (MAX1246 only), the reference buffer provides a 20.±±V nominal output,  
externally adjustable at REFADJ0 In external reference mode, disable the internal buffer by pulling  
VREF  
REFADJ to V  
0
DD  
9
REFADJ  
AGND  
DGND  
DOUT  
Input to the Reference-Buffer Amplifier0 To disable the reference-buffer amplifier, tie REFADJ to V  
0
DD  
1±  
11  
12  
Analog Ground  
Digital Ground  
Serial Data Output0 Data is clocked out at SCLKs falling edge0 High impedance when CS is high0  
Serial Strobe Output0 In internal clock mode, SSTRB goes low when the MAX1246/MAX1247 begin the  
A/D conversion, and goes high when the conversion is finished0 In external clock mode, SSTRB pulses  
high for one clock period before the MSB decision0 High impedance when CS is high (external clock  
mode)0  
1ꢁ  
SSTRB  
14  
1.  
DIN  
Serial Data Input0 Data is clocked in at SCLKs rising edge0  
Active-Low Chip Select0 Data will not be clocked into DIN unless CS is low0 When CS is high, DOUT is  
high impedance0  
CS  
Serial Clock Input0 Clocks data in and out of serial interface0 In external clock mode, SCLK also sets  
the conversion speed0 (Duty cycle must be 4±% to 6±%0)  
16  
SCLK  
V
V
DD  
DD  
6kΩ  
6kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
C
C
LOAD  
50pF  
C
C
LOAD  
50pF  
LOAD  
50pF  
LOAD  
50pF  
6kΩ  
6kΩ  
DGND  
DGND  
DGND  
DGND  
a) High-Z to V and V to V  
OH  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
OH  
b) V to High-Z  
OL  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________________________________________________________________________________  
9
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
input control word has been entered0 At the end of the  
acquisition interval, the T/H switch opens, retaining  
charge on C as a sample of the signal at IN+0  
_______________Detailed Description  
The MAX1246/MAX1247 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 12-bit digital output0 A flexible seri-  
al interface provides easy interface to microprocessors  
(µPs)0 Figure ꢁ is a block diagram of the MAX1246/  
MAX12470  
HOLD  
The conversion interval begins with the input multiplexer  
switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-)0 In single-ended mode, IN- is simply  
COM0 This unbalances node ZERO at the comparators  
input0 The capacitive DAC adjusts during the remainder  
of the conversion cycle to restore node ZERO to ±V  
within the limits of 12-bit resolution0 This action is equiv-  
Pseudo-Differential Input  
The sampling architecture of the ADCs analog com-  
parator is illustrated in the equivalent input circuit  
(Figure 4)0 In single-ended mode, IN+ is internally  
switched to CH±CHꢁ, and IN- is switched to COM0 In  
differential mode, IN+ and IN- are selected from two  
pairs: CH±/CH1 and CH2/CHꢁ0 Configure the channels  
with Tables 2 and ꢁ0 Please note that the codes for  
CH±CHꢁ in the MAX1246/MAX1247 correspond to the  
codes for CH2CH. in the eight-channel (MAX146/  
MAX147) versions0  
alent to transferring a 16pF x [(VIN+) - (V -)] charge  
IN  
from C  
to the binary-weighted capacitive DAC,  
HOLD  
which in turn forms a digital representation of the analog  
input signal0  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the ꢀ-bit control word has been  
shifted in0 It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in0 If the converter is set up for single-ended  
inputs, IN- is connected to COM, and the converter  
samples the +input0 If the converter is set up for dif-  
ferential inputs, IN- connects to the -input, and the  
difference of |IN+ - IN-| is sampled0 At the end of the  
conversion, the positive input connects back to IN+,  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs0 This configuration is  
pseudo-differential to the effect that only the signal at IN+  
is sampled0 The return side (IN-) must remain stable within  
±±0.LSB (±±01LSB for best results) with respect to AGND  
during a conversion0 To accomplish this, connect a ±01µF  
capacitor from IN- (the selected analog input) to AGND0  
and C  
charges to the input signal0  
HOLD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged0 If the input signals source impedance is high,  
the acquisition time lengthens, and more time must be  
During the acquisition interval, the channel selected  
as the positive input (IN+) charges capacitor C  
0
HOLD  
The acquisition interval spans three SCLK cycles and  
ends on the falling SCLK edge after the last bit of the  
15  
16  
CS  
SCLK  
12-BIT CAPACITIVE DAC  
VREF  
INPUT  
SHIFT  
INT  
14  
7
DIN  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
COMPARATOR  
INPUT  
C
SHDN  
HOLD  
MUX  
ZERO  
+
CH0  
CH1  
CH2  
CH3  
COM  
2
3
4
5
6
12  
13  
CH0  
CH1  
CH2  
OUTPUT  
SHIFT  
DOUT  
16pF  
REGISTER  
SSTRB  
R
IN  
ANALOG  
INPUT  
MUX  
9kΩ  
T/H  
C
SWITCH  
CLOCK  
HOLD  
IN  
12-BIT  
SAR  
ADC  
TRACK  
CH3  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
OUT  
1
T/H  
SWITCH  
REF  
V
DD  
COM  
11  
A 2.06*  
+1.21V  
DGND  
AGND  
20kΩ  
REFERENCE  
(MAX1246)  
10  
9
8
REFADJ  
VREF  
SINGLE-ENDED MODE: IN+ = CH0CH3, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1 AND CH2/CH3.  
MAX1246  
MAX1247  
+2.500V  
*A 2.00 (MAX1247)  
Figure 4. Equivalent Input Circuit  
Figure 3. Block Diagram  
10 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL±  
UNI/BIP  
SGL/DIF  
PD1  
PD±  
BIT  
NAME  
DESCRIPTION  
7(MSB)  
START  
The first logic 1bit after CS goes low defines the beginning of the control byte0  
6
.
4
SEL2  
SEL1  
SEL±  
These three bits select which of the four channels are used for the conversion (Tables 2 and ꢁ)0  
UNI/BIP  
1 = unipolar, ± = bipolar0 Selects unipolar or bipolar conversion mode0 In unipolar mode, an  
analog input signal from ±V to VREF can be converted; in bipolar mode, the signal can range  
from -VREF / 2 to +VREF / 20  
2
SGL/DIF  
1 = single ended, ± = differential0 Selects single-ended or differential conversions0 In single-  
ended mode, input signal voltages are referred to COM0 In differential mode, the voltage  
difference between two channels is measured (Tables 2 and ꢁ)0  
1
PD1  
PD±  
Selects clock and power-down modes0  
±(LSB)  
PD1  
±
PD±  
±
Mode  
Full power-down  
Fast power-down  
Internal clock mode  
External clock mode  
±
1
1
±
1
1
allowed between conversions0 The acquisition time,  
, is the maximum time the device takes to acquire  
the signal, and is also the minimum time needed for the  
signal to be acquired0 It is calculated by the following  
equation:  
Analog Input Protection  
t
Internal protection diodes, which clamp the analog input  
ACQ  
to V  
and AGND, allow the channel input pins to swing  
DD  
from AGND - ±0ꢁV to V  
+ ±0ꢁV without damage0  
DD  
However, for accurate conversions near full scale, the  
inputs must not exceed V by more than .±mV or be  
DD  
t
= 9 x (R + R ) x 16pF  
S IN  
ACQ  
lower than AGND by .±mV0  
where R = 9k, R = the source impedance of the  
IN  
S
ACQ  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off channels over 4mA.  
input signal, and t  
is never less than 10.µs0 Note  
that source impedances below 1kdo not significantly  
affect the ADCs AC performance0  
Higher source impedances can be used if a ±0±1µF  
capacitor is connected to the individual analog inputs0  
Note that the input capacitor forms an RC filter with the  
input source impedance, limiting the ADCs signal  
bandwidth0  
How to Start a Conversion  
Start a conversion by clocking a control byte into DIN0  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX1246/MAX1247s internal shift register0  
After CS falls, the first arriving logic 1bit defines the  
control bytes MSB0 Until this first startbit arrives, any  
number of logic ±bits can be clocked into DIN with no  
effect0 Table 1 shows the control-byte format0  
Input Bandwidth  
The ADCs input tracking circuitry has a 202.MHz  
small-signal bandwidth, so it is possible to digitize  
high-speed transient events and measure periodic sig-  
nals with bandwidths exceeding the ADCs sampling  
rate by using undersampling techniques0 To avoid  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended0  
The MAX1246/MAX1247 are compatible with SPI/  
QSPIand Microwiredevices0 For SPI, select the  
correct clock polarity and sampling edge in the SPI  
control registers: set CPOL = ± and CPHA = ±0 Micro-  
wire, SPI, and QSPI all transmit a byte and receive a  
byte at the same time0 Using the Typical Operating  
______________________________________________________________________________________ 11  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
Table 2. Channel Selection in Single-Ended Mode (SGL/  
= 1)  
SEL2  
0
SEL1  
0
SEL0  
1
CH0  
CH1  
CH2  
CH3  
COM  
+
1
0
1
0
1
1
1
0
0
+
+
+
Table 3. Channel Selection in Differential Mode (SGL/  
= 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
+
CH3  
0
0
1
1
0
1
0
1
1
0
1
0
+
+
+
Circuit, the simplest software interface requires only  
three ꢀ-bit transfers to perform a conversion (one ꢀ-bit  
transfer to configure the ADC, and two more ꢀ-bit trans-  
fers to clock out the 12-bit conversion result)0 See Figure  
19 for MAX1246/MAX1247 QSPI connections0  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 16)0 For bipolar inputs, the output is twos com-  
plement (Figure 17)0 Data is clocked out at the falling  
edge of SCLK in MSB-first format0  
Simple Software Interface  
Make sure the CPUs serial interface runs in master  
mode so the CPU generates the serial clock0 Choose a  
clock frequency from 1±±kHz to 2MHz0  
Clock Modes  
The MAX1246/MAX1247 may use either an external  
serial clock or the internal clock to perform the succes-  
sive-approximation conversion0 In both clock modes,  
the external clock shifts data in and out of the  
MAX1246/MAX12470 The T/H acquires the input signal  
as the last three bits of the control byte are clocked into  
DIN0 Bits PD1 and PD± of the control byte program the  
clock mode0 Figures 69 show the timing characteristics  
common to both modes0  
1) Set up the control byte for external clock mode and  
call it TB10 TB1 should be of the format: 1XXXXX11  
binary, where the Xs denote the particular channel  
and conversion mode selected0  
2) Use a general-purpose I/O line on the CPU to pull  
CS low0  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the analog-to-digital  
conversion steps0 SSTRB pulses high for one clock  
period after the last bit of the control byte0 Succes-  
sive-approximation bit decisions are made and appear  
at DOUT on each of the next 12 SCLK falling edges  
(Figure .)0 SSTRB and DOUT go into a high-impedance  
state when CS goes high; after the next CS falling edge,  
SSTRB outputs a logic low0 Figure 7 shows the SSTRB  
timing in external clock mode0  
ꢁ) Transmit TB1 and, simultaneously, receive a byte  
and call it RB10 Ignore RB10  
4) Transmit a byte of all zeros ($±± hex) and, simulta-  
neously, receive byte RB20  
.) Transmit a byte of all zeros ($±± hex) and, simulta-  
neously, receive byte RBꢁ0  
6) Pull CS high0  
Figure . shows the timing for this sequence0 Bytes RB2  
and RBꢁ contain the result of the conversion, padded  
with one leading zero and three trailing zeros0 The total  
conversion time is a function of the serial-clock fre-  
quency and the amount of idle time between ꢀ-bit  
transfers0 To avoid excessive T/H droop, make sure the  
total conversion time does not exceed 12±µs0  
The conversion must complete in some minimum time,  
or droop on the sample-and-hold capacitors may  
degrade conversion results0 Use internal clock mode if  
the serial clock frequency is less than 1±±kHz, or if  
serial clock interruptions could cause the conversion  
interval to exceed 12±µs0  
12 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
SSTRB  
DOUT  
START  
RB2  
B8  
RB3  
RB1  
FILLED WITH  
ZEROS  
B11  
B0  
B10 B9  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
MSB  
LSB  
ACQUISITION  
1.5µs  
CONVERSION  
A/D STATE  
IDLE  
IDLE  
(f  
= 2MHz)  
SCLK  
Figure 5. 24-Clock External Clock Mode Conversion Timing (Microwire and SPI Compatible, QSPI Compatible with f  
2MHz)  
SCLK  
• • •  
• • •  
CS  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
t
TR  
DV  
DO  
DOUT  
Figure 6. Detailed Serial-Interface Timing  
Internal Clock  
An internal register stores data when the conversion is  
in progress0 SCLK clocks the data out of this register at  
any time after the conversion is complete0 After SSTRB  
goes high, the next falling clock edge produces the  
MSB of the conversion at DOUT, followed by the  
remaining bits in MSB-first format (Figure ꢀ)0 CS does  
not need to be held low once a conversion is started0  
Pulling CS high prevents data from being clocked into  
the MAX1246/MAX1247 and three-states DOUT, but it  
does not adversely affect an internal clock mode  
In internal clock mode, the MAX1246/MAX1247 generate  
their own conversion clocks internally0 This frees the µP  
from the burden of running the SAR conversion clock  
and allows the conversion results to be read back at the  
processors convenience, at any clock rate from ±MHz  
to 2MHz0 SSTRB goes low at the start of the conversion  
and then goes high when the conversion is complete0  
SSTRB is low for a maximum of 70.µs (SHDN = FLOAT),  
during which time SCLK should remain low for best  
noise performance0  
______________________________________________________________________________________ 13  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
SCLK  
• • • •  
• • • •  
PD0 CLOCKED IN  
Figure 7. External Clock Mode SSTRB Detailed Timing  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP  
SEL2 SEL1 SEL0  
PD1 PD0  
DIF  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B11  
MSB  
B0  
LSB  
DOUT  
B10  
B9  
B2  
B1  
ACQUISITION  
CONVERSION  
A/D STATE  
1.5µs  
IDLE  
IDLE  
7.5µs MAX  
(f  
= 2MHz) (SHDN = FLOAT)  
SCLK  
Figure 8. Internal Clock Mode Timing  
conversion already in progress0 When internal clock  
mode is selected, SSTRB does not go into a high-  
impedance state when CS goes high0  
conversion starts on SCLKs falling edge, after the eighth  
bit of the control byte (the PD± bit) is clocked into DIN0  
The start bit is defined as follows:  
Figure 9 shows the SSTRB timing in internal clock  
mode0 In this mode, data can be shifted in and out of  
the MAX1246/MAX1247 at clock rates exceeding  
The first high bit clocked into DIN with CS low any  
time the converter is idle; e0g0, after V  
is applied0  
DD  
OR  
20±MHz if the minimum acquisition time (t  
above 10.µs0  
) is kept  
ACQ  
The first high bit clocked into DIN after bit . of a con-  
version in progress is clocked onto the DOUT pin0  
Data Framing  
The falling edge of CS does not start a conversion0  
The first logic high clocked into DIN is interpreted as a  
start bit and defines the first bit of the control byte0 A  
If CS is toggled before the current conversion is com-  
plete, the next high bit clocked into DIN is recognized as  
a start bit; the current conversion is terminated, and a  
new one is started0  
14 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
Most microcontrollers (µCs) require that conversions  
occur in multiples of ꢀ SCLK clocks; 16 clocks per con-  
version is typically the fastest that a µC can drive the  
MAX1246/MAX12470 Figure 1±b shows the serial-  
interface timing necessary to perform a conversion every  
16 SCLK cycles in external clock mode0  
The fastest the MAX1246/MAX1247 can run with CS held  
low between conversions is 1. clocks per conversion0  
Figure 1±a shows the serial-interface timing necessary to  
perform a conversion every 1. SCLK cycles in external  
clock mode0 If CS is tied low and SCLK is continuous,  
guarantee a start bit by first clocking in 16 zeros0  
CS  
t
CONV  
t
CSS  
t
t
SCK  
CSH  
SSTRB  
SCLK  
t
SSTRB  
t
DO  
PD0 CLOCK IN  
DOUT  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 9. Internal Clock Mode SSTRB Detailed Timing  
CS  
1
8
15  
1
8
15  
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 1  
DOUT  
SSTRB  
Figure 10a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
1
8
16  
1
8
16  
SCLK  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8  
CONVERSION RESULT 1  
Figure 10b. External Clock Mode, 16 Clocks/Conversion Timing  
______________________________________________________________________________________ 15  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
(Tables 1 and .)0 In both software power-down modes,  
__________ Applications Information  
the serial interface remains operational, but the ADC  
does not convert0 Pull SHDN low at any time to shut  
down the converter completely0 SHDN overrides bits 1  
and ± of the control byte0  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1246/MAX1247 in internal clock mode, ready to  
convert with SSTRB = high0 After the power supplies  
stabilize, the internal reset time is 1±µs, and no conver-  
sions should be performed during this phase0 SSTRB is  
high on power-up and, if CS is low, the first logical 1 on  
DIN is interpreted as a start bit0 Until a conversion takes  
place, DOUT shifts out zeros0 (Also see Table 40)  
Full power-down mode turns off all chip functions that  
draw quiescent current, reducing supply current to 2µA  
(typ)0 Fast power-down mode turns off all circuitry  
except the bandgap reference0 With fast power-down  
mode, the supply current is ꢁ±µA0 Power-up time can be  
shortened to .µs in internal compensation mode0  
Table 4 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
delay and maximum sample rate0 In external compensa-  
tion mode, power-up time is 2±ms with a 407µF compen-  
sation capacitor when the capacitor is initially fully  
discharged0 From fast power-down, start-up time can be  
eliminated by using low-leakage capacitors that do not  
discharge more than 1/2LSB while shut down0 In power-  
down, leakage currents at VREF cause droop on the ref-  
erence bypass capacitor0 Figures 11a and 11b show  
the various power-down sequences in both external and  
internal clock modes0  
Reference-Buffer Compensation  
In addition to its shutdown function, SHDN selects inter-  
nal or external compensation0 The compensation  
affects both power-up time and maximum conversion  
speed0 The1±±kHz minimum clock rate is limited by  
droop on the sample-and-hold and is independent of  
the compensation used0  
Float SHDN to select external compensation0 The  
Typical Operating Circuit uses a 407µF capacitor at  
VREF0 A 407µF value ensures reference-buffer stability  
and allows converter operation at the 2MHz full clock  
speed0 External compensation increases power-up  
time (see the Choosing Power-Down Mode section and  
Table 4)0  
Software Power-Down  
Software power-down is activated using bits PD1 and PD±  
of the control byte0 As shown in Table ., PD1 and PD±  
also specify the clock mode0 When software shutdown is  
asserted, the ADC operates in the last specified clock  
mode until the conversion is complete0 Then the ADC  
powers down into a low quiescent-current state0 In internal  
clock mode, the interface remains active and conversion  
results may be clocked out after the MAX1246/MAX1247  
enter a software power-down0  
Pull SHDN high to select internal compensation0  
Internal compensation requires no external capacitor at  
VREF and allows for the shortest power-up times0 The  
maximum clock rate is 2MHz in internal clock mode  
and 4±±kHz in external clock mode0  
Choosing Power-Down Mode  
You can save power by placing the converter in a low-  
current shutdown state between conversions0 Select full  
power-down mode or fast power-down mode via bits 1  
and ± of the DIN control byte with SHDN high or floating  
The first logical 1 on DIN is interpreted as a start bit  
and powers up the MAX1246/MAX12470 Following  
the start bit, the data input word or control byte also  
Table 4. Typical Power-Up Delay Times  
REFERENCE-  
VREF  
POWER-UP  
DELAY  
(µs)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
BUFFER  
COMPENSATION  
MODE  
POWER-DOWN  
MODE  
CAPACITOR  
(µF)  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
.
26  
26  
ꢁ±±  
407  
407  
Fast  
Full  
See Figure 1ꢁc  
1ꢁꢁ  
1ꢁꢁ  
1ꢁꢁ  
1ꢁꢁ  
See Figure 1ꢁc  
Fast  
Full  
2
2
16 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
CLOCK  
MODE  
EXTERNAL  
EXTERNAL  
SHDN  
SETS SOFTWARE  
POWER-DOWN  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X  
1
1
S X  
X
X X X  
0
0
S
X X X X X  
1 1  
DOUT  
VALID  
DATA  
INVALID  
DATA  
12 DATA BITS  
POWERED UP  
12 DATA BITS  
HARDWARE  
POWER-  
DOWN  
POWERED UP  
MODE  
SOFTWARE  
POWER-DOWN  
POWERED UP  
Figure 11a. Timing Diagram Power-Down Modes, External Clock  
CLOCK  
MODE  
INTERNAL  
SETS  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X  
1
0
S X  
X
X X X  
0
0
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
POWER-DOWN  
POWERED UP  
POWERED UP  
Figure 11b. Timing Diagram Power-Down Modes, Internal Clock  
determines clock mode and power-down states0 For  
example, if the DIN word contains PD1 = 1, then the  
chip remains powered up0 If PD± = PD1 = ±, a  
power-down resumes after one conversion0  
controls the clock frequency in internal clock mode0  
Letting SHDN float sets the internal clock frequency to  
10ꢀMHz0 When returning to normal operation with SHDN  
floating, there is a t delay of approximately 2Mx C ,  
RC  
L
where C is the capacitive loading on the SHDN pin0  
L
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down (Table 6)0 Unlike software power-down  
mode, the conversion is not completed; it stops coin-  
cidentally with SHDN being brought low0 SHDN also  
Pulling SHDN high sets internal clock frequency to  
22.kHz0 This feature eases the settling-time requirement  
for the reference voltage0 With an external reference, the  
MAX1246/MAX1247 can be considered fully powered up  
within 2µs of actively pulling SHDN high0  
______________________________________________________________________________________ 17  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
Figure 1ꢁa depicts the MAX1246 power consumption  
Power-Down Sequencing  
The MAX1246/MAX1247 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates0 Figures 12, 1ꢁa, and 1ꢁb show  
the average supply current as a function of the sam-  
pling rate0 The following discussion illustrates the vari-  
ous power-down sequences0  
for one or four channel conversions utilizing full power-  
down mode and internal-reference compensation0 A  
±0±47µF bypass capacitor at REFADJ forms an RC filter  
with the internal 2±kreference resistor with a ±09ms  
time constant0 To achieve full 12-bit accuracy, 1± time  
constants or 9ms are required after power-up0 Waiting  
this 9ms in FASTPD mode instead of in full power-up  
can reduce power consumption by a factor of 1± or  
more0 This is achieved by using the sequence shown in  
Figure 140  
Lowest Power at up to 500  
Conversions/Channel/Second  
The following examples show two different power-down  
sequences0 Other combinations of clock rates, compen-  
sation modes, and power-down modes may give lowest  
power consumption in other applications0  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
WITH EXTERNAL REFERENCE  
10,000  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
(USING FULLPD)  
100  
VREF = V = 3.0V  
DD  
= ∞  
R
= ∞  
LOAD  
R
LOAD  
CODE = 101010100000  
CODE = 101010100000  
1000  
100  
10  
4 CHANNELS  
4 CHANNELS  
10  
1 CHANNEL  
1 CHANNEL  
1
0.1  
1
0.01  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
0.1  
1
10  
100  
1k  
CONVERSION RATE (Hz)  
Figure 12. Average Supply Current vs. Conversion Rate with  
External Reference  
Figure 13a. MAX1246 Supply Current vs. Conversion Rate,  
FULLPD  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE  
(USING FASTPD)  
TYPICAL REFERENCE-BUFFER POWER-UP  
DELAY vs. TIME IN SHUTDOWN  
10,000  
2.0  
R
= ∞  
LOAD  
CODE = 101010100000  
1000  
100  
1.5  
1.0  
4 CHANNELS  
1 CHANNEL  
10  
1
0.5  
0.0  
0.1  
1
10 100 1k 10k 100k 1M  
CONVERSION RATE (Hz)  
0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (sec)  
Figure 13b. MAX1246 Supply Current vs. Conversion Rate,  
FASTPD  
Figure 13c. Typical Reference-Buffer Power-Up Delay vs. Time  
in Shutdown  
18 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
COMPLETE CONVERSION SEQUENCE  
9ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
1
1 1  
1
0 0  
1
0 1  
FULLPD  
1.21V  
FASTPD  
NOPD  
FULLPD  
FASTPD  
REFADJ  
VREF  
0V  
2.50V  
0V  
τ = RC = 20kx C  
REFADJ  
t
200µs  
BUFFEN  
Figure 14. MAX1246 FULLPD/FASTPD Power-Up Sequence  
Lowest Power at Higher Throughputs  
Figure 1ꢁb shows the power consumption with  
external-reference compensation in fast power-down,  
with one and four channels converted0 The external  
407µF compensation requires a 2±±µs wait after  
power-up with one dummy conversion0 This circuit  
combines fast multi-channel conversion with the lowest  
power consumption possible0 Full power-down mode  
may provide increased power savings in applications  
where the MAX1246/MAX1247 are inactive for long  
periods of time, but where intermittent bursts of  
high-speed conversions are required0  
+3.3V  
24k  
MAX1246  
510k  
100k  
REFADJ  
9
0.047µF  
Figure 15. MAX1246 Reference-Adjust Circuit  
Internal and External References  
The MAX1246 can be used with an internal or external  
reference voltage, whereas an external reference is  
required for the MAX12470 An external reference can  
be connected directly at VREF or at the REFADJ pin0  
Table 5. Software Power-Down  
and Clock Mode  
An internal buffer is designed to provide 20.V at  
VREF for both the MAX1246 and the MAX12470 The  
MAX1246s internally trimmed 1021V reference is buf-  
fered with a 20±6 gain0 The MAX1247s REFADJ pin is  
also buffered with a 20±± gain to scale an external 102.V  
reference at REFADJ to 20.V at VREF0  
PD1  
±
PD0  
±
DEVICE MODE  
Full Power-Down  
Fast Power-Down  
±
1
1
1
±
1
Internal Clock  
External Clock  
Internal Reference (MAX1246)  
The MAX1246s full-scale range with the internal refer-  
ence is 20.V with unipolar inputs and ±102.V with bipo-  
lar inputs0 The internal reference voltage is adjustable  
to ±10.% with the circuit in Figure 1.0  
Table 6. Hard-Wired Power-Down  
and Internal Clock Frequency  
REFERENCE  
BUFFER  
COMPENSATION FREQUENCY  
INTERNAL  
CLOCK  
DEVICE  
MODE  
SHDN  
STATE  
External Reference  
With both the MAX1246 and MAX1247, an external ref-  
erence can be placed at either the input (REFADJ) or  
the output (VREF) of the internal reference-buffer ampli-  
fier0 The REFADJ input impedance is typically 2±kfor  
the MAX1246, and higher than 1±±kfor the MAX12470  
1
Floating  
±
Enabled  
Enabled  
Internal  
External  
N/A  
22.kHz  
10ꢀMHz  
N/A  
Power-Down  
______________________________________________________________________________________ 19  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
At VREF, the DC input resistance is a minimum of 1ꢀk0  
During conversion, an external reference at VREF must  
deliver up to ꢁ.±µA DC load current and have 1±or  
less output impedance0 If the reference has a higher  
output impedance or is noisy, bypass it close to the  
VREF pin with a 407µF capacitor0  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
11 . . . 101  
Using the REFADJ input makes buffering the external  
reference unnecessary0 To use the direct VREF input,  
disable the internal buffer by tying REFADJ to V 0 In  
DD  
FS = VREF + COM  
ZS = COM  
power-down, the input bias current to REFADJ can be  
as much as 2.µA with REFADJ tied to V 0 Pull  
DD  
REFADJ to AGND to minimize the input bias current in  
power-down0  
VREF  
4096  
1LSB =  
00 . . . 011  
00 . . . 010  
Transfer Function  
Table 7 shows the full-scale voltage ranges for unipolar  
and bipolar modes0  
00 . . . 001  
00 . . . 000  
The external reference must have a temperature coeffi-  
cient of 4ppm/°C or less to achieve accuracy to within  
1LSB over the ±°C to +7±°C commercial temperature  
range0  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 16. Unipolar Transfer Function, Full Scale (FS) = VREF  
+ COM, Zero Scale (ZS) = COM  
Figure 16 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 17 shows the bipolar  
input/output transfer function0 Code transitions occur  
halfway between successive-integer LSB values0  
Output coding is binary, with 1LSB = 61±µV (20.V /  
4±96) for unipolar operation, and 1LSB = 61±µV [(20.V /  
2 - -20.V / 2) / 4±96] for bipolar operation0  
supply should be low impedance and as short as  
possible0  
High-frequency noise in the V  
power supply may  
DD  
affect the high-speed comparator in the ADC0 Bypass  
the supply to the star ground with ±01µF and 1µF  
capacitors close to pin 1 of the MAX1246/MAX12470  
Minimize capacitor lead lengths for best supply-noise  
rejection0 If the power supply is very noisy, a 1±resis-  
tor can be connected as a lowpass filter (Figure 1ꢀ)0  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards0  
Wire-wrap boards are not recommended0 Board layout  
should ensure that digital and analog signal lines are  
separated from each other0 Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package0  
High-Speed Digital Interfacing with QSPI  
The MAX1246/MAX1247 can interface with QSPI using  
the circuit in Figure 19 (f  
= 20±MHz, CPOL = ±,  
SCLK  
Figure 1ꢀ shows the recommended system ground  
connections0 Establish a single-point analog ground  
(star ground point) at AGND, separate from the logic  
ground0 Connect all other analog grounds and DGND  
to the star ground0 No other digital system ground  
should be connected to this ground0 For lowest-noise  
operation, the ground return to the star grounds power  
CPHA = ±)0 This QSPI circuit can be programmed to do a  
conversion on each of the four channels0 The result is  
stored in memory without taxing the CPU, since QSPI  
incorporates its own microsequencer0  
The MAX1246/MAX1247 are QSPI compatible up to its  
maximum external clock frequency of 2MHz0  
Table 7. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale  
Zero Scale  
COM  
VREF / 2  
+ COM  
-VREF / 2  
+ COM  
VREF + COM  
COM  
20 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
OUTPUT CODE  
VREF  
2
FS  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
SUPPLIES  
ZS = COM  
+3V  
+3V  
GND  
-VREF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
VREF  
4096  
1LSB =  
R* = 10Ω  
111 . . . 111  
111 . . . 110  
111 . . . 101  
V
DD  
AGND  
COM DGND  
+3V  
DGND  
100 . . . 001  
100 . . . 000  
DIGITAL  
CIRCUITRY  
MAX1246  
MAX1247  
COM*  
- FS  
+FS - 1LSB  
*OPTIONAL  
INPUT VOLTAGE (LSB)  
*COM VREF / 2  
Figure 18. Power-Supply Grounding Connection  
Figure 17. Bipolar Transfer Function, Full Scale (FS) =  
VREF / 2 + COM, Zero Scale (ZS) = COM  
4) The MAX1246/MAX1247s SSTRB output is moni-  
tored via the TMSꢁ2±s FSR input0 A falling edge on  
the SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX1246/MAX12470  
TMS320LC3x Interface  
Figure 2± shows an application circuit to interface the  
MAX1246/MAX1247 to the TMSꢁ2± in external clock  
mode0 The timing diagram for this interface circuit is  
shown in Figure 210  
.) The TMSꢁ2± reads in one data bit on each of the  
next 16 rising edges of SCLK0 These data bits rep-  
resent the 12-bit conversion result followed by four  
trailing bits, which should be ignored0  
Use the following steps to initiate a conversion in the  
MAX1246/MAX1247 and to read the results:  
1) The TMSꢁ2± should be configured with CLKX  
(transmit clock) as an active-high output clock and  
CLKR (TMSꢁ2± receive clock) as an active-high  
input clock0 CLKX and CLKR on the TMSꢁ2± are  
tied together with the MAX1246/MAX1247s SCLK  
input0  
6) Pull CS high to disable the MAX1246/MAX1247 until  
the next conversion is initiated0  
2) The MAX1246/MAX1247s CS pin is driven low by  
the TMSꢁ2±s XF_ I/O port to enable data to be  
clocked into the MAX1246/MAX1247s DIN0  
ꢁ) An ꢀ-bit word (1XXXXX11) should be written to the  
MAX1246/MAX1247 to initiate a conversion and  
place the device into external clock mode0 Refer to  
Table 1 to select the proper XXXXX bit values for  
your specific application0  
______________________________________________________________________________________ 21  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
+3V  
+3V  
(POWER SUPPLIES)  
1µF  
16  
15  
14  
13  
12  
11  
10  
9
SCK  
1
2
3
4
5
6
7
8
V
DD  
SCLK  
CS  
0.1µF  
PCS0  
CH0  
MAX1246  
MAX1247  
CH1  
DIN  
MOSI  
ANALOG  
INPUTS  
MC683XX  
CH2  
SSTRB  
DOUT  
MISO  
CH3  
COM  
SHDN  
VREF  
DGND  
AGND  
+2.5V  
REFADJ  
0.1µF  
(GND)  
Figure 19. MAX1246/MAX1247 QSPI Connections, External Reference  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
TMS320LC3x  
MAX1246  
MAX1247  
DIN  
DR  
DOUT  
SSTRB  
FSR  
Figure 20. MAX1246/MAX1247-to-TMS320 Serial Interface  
22 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B10  
B1  
LSB  
Figure 21. TMS320 Serial-Interface Timing Diagram  
_Ordering Information (continued)  
__________________Pin Configuration  
INL  
(LSB)  
PART†  
TEMP RANGE PIN-PACKAGE  
TOP VIEW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
V
SCLK  
CS  
DD  
MAX1246AEPE -4±°C to +ꢀ.°C  
MAX1246BEPE -4±°C to +ꢀ.°C  
MAX1246AEEE -4±°C to +ꢀ.°C  
MAX1246BEEE -4±°C to +ꢀ.°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
CH0  
CH1  
DIN  
±1/2  
±1  
CH2  
MAX1246  
MAX1247  
SSTRB  
DOUT  
16 QSOP  
MAX1246AMJE -..°C to +12.°C 16 CERDIP*  
MAX1246BMJE -..°C to +12.°C 16 CERDIP*  
±1/2  
±1  
CH3  
COM  
SHDN  
VREF  
11 DGND  
MAX1247ACPE ±°C to +7±°C  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
10  
9
AGND  
MAX1247BCPE  
MAX1247ACEE  
MAX1247BCEE  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
REFADJ  
±1/2  
±1  
16 QSOP  
DIP/QSOP  
MAX1247CCEE -±°C to +7±°C  
MAX1247AEPE -4±°C to +ꢀ.°C  
MAX1247BEPE -4±°C to +ꢀ.°C  
MAX1247AEEE -4±°C to +ꢀ.°C  
MAX1247BEEE -4±°C to +ꢀ.°C  
MAX1247CEEE -4±°C to +ꢀ.°C  
16 QSOP  
±2  
16 Plastic DIP  
16 Plastic DIP  
16 QSOP  
±1/2  
±1  
±1/2  
±1  
___________________Chip Information  
16 QSOP  
16 QSOP  
±2  
TRANSISTOR COUNT: 2..4  
MAX1247AMJE -..°C to +12.°C 16 CERDIP*  
MAX1247BMJE -..°C to +12.°C 16 CERDIP*  
±1/2  
±1  
* Contact factory for availability of CERDIP package, and for  
processing to MIL-STD-883B.  
______________________________________________________________________________________ 23  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
________________________________________________________Package Information  
24 ______________________________________________________________________________________  
+2.7V, Low-Power, 4-Channel,  
Serial 12-Bit ADCs in QSOP-16  
___________________________________________Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2±±1 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products0  

相关型号:

MAX1247ACEE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247ACPE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247ACPE+

暂无描述
MAXIM

MAX1247AEEE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247AEEE+

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1247AEEE+T

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1247AEEE-T

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1247AEPE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247AMJE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247BCEE

+2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16
MAXIM

MAX1247BCEE+

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX1247BCEE-T

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Serial Access, CMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM