MAX1240BCSA [MAXIM]

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO; + 2.7V ,低功耗, 12位串行ADC的8引脚SO
MAX1240BCSA
型号: MAX1240BCSA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
+ 2.7V ,低功耗, 12位串行ADC的8引脚SO

转换器 模数转换器 光电二极管 信息通信管理
文件: 总16页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1155; Rev 2; 11/98  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
__________________Ge n e ra l De s c rip t io n  
________________________________Fe a t u re s  
The MAX1240/MAX1241 are low-power, 12-bit analog-  
to-digital converters (ADCs) available in 8-pin pack-  
ages. The MAX1240 operates with a single +2.7V to  
+3.6V supply, and the MAX1241 operates with a single  
+2.7V to +5.25V supply. Both devices feature a 7.5µs  
s uc c e s s ive -a p p roxima tion ADC, a fa s t tra c k/hold  
(1.5µs), an on-chip clock, and a high-speed, 3-wire ser-  
ial interface.  
Single-Supply Operation:  
+2.7V to +3.6V (MAX1240)  
+2.7V to +5.25V (MAX1241)  
12-Bit Resolution  
Internal 2.5V Reference (MAX1240)  
Small Footprint: 8-Pin DIP/SO Packages  
Low Power: 3.7µW (73ksps, MAX1240)  
3mW (73ksps, MAX1241)  
Power consumption is only 37mW (V  
= 3V) at the  
DD  
73ksps maximum sampling speed. A 2µA shutdown  
mode reduces power at slower throughput rates.  
66µW (1ksps, MAX1241)  
5µW (power-down mode)  
The MAX1240 has an internal 2.5V reference, while the  
MAX1241 requires an external reference. The MAX1241  
Internal Track/Hold  
SPI/QSPI/MICROWIRE 3-Wire Serial Interface  
Internal Clock  
accepts signals from 0V to V  
, and the reference  
REF  
input range includes the positive supply rail. An exter-  
na l c loc k a c c e s s e s d a ta from the 3-wire inte rfa c e ,  
which connects directly to standard microcontroller I/O  
ports. The interface is compatible with SPI™, QSPI™,  
and MICROWIRE™.  
Ord e rin g In fo rm a t io n  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP. RANGE  
Excellent AC characteristics and very low power com-  
bined with ease of use and small package size make  
these converters ideal for remote-sensor and data-  
a c q uis ition a p p lic a tions , or for othe r c irc uits with  
demanding power consumption and space require-  
ments. The MAX1240/MAX1241 are available in 8-pin  
DIP and SO packages.  
MAX1240ACPA  
MAX1240BCPA  
MAX1240CCPA  
MAX1240ACSA  
MAX1240BCSA  
MAX1240CCSA  
MAX1240BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
±1/2  
±1  
±1  
±1/2  
8 SO  
±1  
8 SO  
±1  
Dice*  
±1  
Ap p lic a t io n s  
Ordering Information continued at end of data sheet.  
*Dice are specified at T = +25°C, DC parameters only.  
A
Battery-Powered Systems  
Portable Data Logging  
Isolated Data Acquisition  
Process Control  
Fu n c t io n a l Dia g ra m  
V
DD  
1
Instrumentation  
7
8
CS  
SCLK  
P in Co n fig u ra t io n  
3
CONTROL  
LOGIC  
INT  
SHDN  
CLOCK  
TOP VIEW  
OUTPUT  
SHIFT  
6
DOUT  
REGISTER  
V
DD  
SCLK  
CS  
1
2
3
4
8
7
6
5
12-BIT  
SAR  
AIN  
SHDN  
REF  
2
4
T/H  
AIN  
REF  
MAX1240  
MAX1241  
DOUT  
GND  
2.5V REFERENCE  
(MAX1240 ONLY)  
MAX1240  
MAX1241  
5
GND  
DIP/SO  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND .............................................................-0.3V to +6V  
Operating Temperature Ranges  
AIN to GND................................................-0.3V to (V + 0.3V)  
MAX1240_C_A/MAX1241_C_A .........................0°C to +70°C  
MAX1240_E_ A/MAX1241_E_ A.....................-40°C to +85°C  
MAX1240_MJA/MAX1241_MJA ...................-55°C to +125°C  
Storage Temperature Range ............................-60°C to +150°C  
Lead Temperature (soldering, 10sec)............................+300°C  
DD  
REF to GND ...............................................-0.3V to (V + 0.3V)  
DD  
Digital Inputs to GND...............................................-0.3V to +6V  
DOUT to GND............................................-0.3V to (V + 0.3V)  
DD  
DOUT Current..................................................................±25mA  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 9.09mW/°C above +70°C) ...........727mW  
SO (derate 5.88mW/°C above +70°C)........................471mW  
CERDIP (derate 8.00mW/°C above +70°C)................640mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +3.6V (MAX1240); V = +2.7V to +5.25V (MAX1241); 73ksps, f  
= 2.1MHz (50% duty cycle); MAX1240—4.7µF  
CLK  
DD  
DD  
S
capacitor at REF pin, MAX1241—external reference; V  
= 2.500V applied to REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
REF  
A
MIN  
0/MAX241  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
LSB  
MAX124_A  
±0.5  
±1.0  
±1  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
MAX124_B/C  
DNL  
No missing codes over temperature  
MAX124_A  
±0.5  
±0.5  
±3.0  
±4.0  
±4.0  
MAX124_B/C  
Gain Error (Note 3)  
±0.5  
LSB  
Gain Temperature Coefficient  
±0.25  
ppm/°C  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 0V to 2.500Vp-p, 73ksps, f  
= 2.1MHz)  
SCLK  
MAX124_A/B  
MAX124_C  
70  
80  
Signal-to-Noise Plus  
Distortion Ratio  
SINAD  
THD  
dB  
dB  
dB  
71.5  
-88  
MAX124_A/B  
MAX124_C  
-80  
Total Harmonic Distortion  
Up to the 5th harmonic  
MAX124_A/B  
MAX124_C  
-3dB rolloff  
Spurious-Free Dynamic Range  
SFDR  
88  
2.25  
1.0  
Small-Signal Bandwidth  
Full-Power Bandwidth  
CONVERSION RATE  
Conversion Time  
MHz  
MHz  
t
5.5  
7.5  
1.5  
73  
µs  
µs  
CONV  
Track/Hold Acquisition Time  
Throughput Rate  
t
ACQ  
f
= 2.1MHz  
ksps  
ns  
SCLK  
Aperture Delay  
t
Figure 8  
30  
APR  
Aperture Jitter  
<50  
ps  
ANALOG INPUT  
Input Voltage Range  
Input Capacitance  
0
V
REF  
V
16  
pF  
2
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V (MAX1240); V = +2.7V to +5.25V (MAX1241); 73ksps, f  
= 2.1MHz (50% duty cycle); MAX1240—4.7µF  
CLK  
DD  
DD  
S
capacitor at REF pin, MAX1241—external reference; V  
= 2.500V applied to REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE (MAX1240 only)  
REF Output Voltage  
T
A
= +25°C  
2.480 2.500 2.520  
30  
V
REF Short-Circuit Current  
mA  
MAX1240AC/BC  
MAX1240AE/BE  
MAX1240AM/BM  
MAX1240C  
±30  
±30  
±30  
±30  
0.35  
±50  
±60  
±80  
REF Temperature Coefficient  
ppm/°C  
Load Regulation (Note 4)  
Capacitive Bypass at REF  
0mA to 0.2mA output load  
4.7  
µF  
EXTERNAL REFERENCE (V  
= 2.500V)  
REF  
V
50mV  
+
DD  
1.00  
Input Voltage Range  
V
Input Current  
100  
25  
150  
10  
µA  
kΩ  
µA  
µF  
Input Resistance  
18  
REF Input Current in Shutdown  
Capacitive Bypass at REF  
±0.01  
SHDN = 0V  
0.1  
DIGITAL INPUTS: SCLK, CS, SHDN  
SCLK, CS Input High Voltage  
SCLK, CS Input Low Voltage  
V
3.6V  
2.0  
3.0  
DD  
V
V
IH  
V
DD  
> 3.6V (MAX1241)  
V
IL  
0.8  
V
V
V
0.2  
SCLK, CS Input Hysteresis  
SCLK, CS Input Leakage  
SCLK, CS Input Capacitance  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
HYST  
I
IN  
V
IN  
= 0V or V  
DD  
±0.01  
±1  
15  
µA  
pF  
V
C
(Note 5)  
IN  
V
V
- 0.4  
SH  
DD  
V
0.4  
V
SL  
±4.0  
µA  
V
SHDN = 0V or V  
DD  
V
1.1  
V
- 1.1  
SHDN Input Mid Voltage  
SHDN Voltage, Floating  
SM  
DD  
V
V
DD  
/2  
V
SHDN = float  
SHDN = float  
FLT  
SHDN Max Allowed Leakage,  
Mid Input  
±100  
nA  
V
DIGITAL OUTPUT: DOUT  
I
= 5mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
OL  
I
= 16mA  
SINK  
Output Voltage High  
V
OH  
I
= 0.5mA  
V - 0.5  
DD  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
±0.01 ±10  
15  
µA  
pF  
CS = V  
L
DD  
C
CS = V (Note 5)  
OUT  
DD  
_______________________________________________________________________________________  
3
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +3.6V (MAX1240); V = +2.7V to +5.25V (MAX1241); 73ksps, f  
= 2.1MHz (50% duty cycle); MAX1240—4.7µF  
CLK  
DD  
DD  
S
capacitor at REF pin, MAX1241—external reference; V  
= 2.500V applied to REF pin; T = T  
to T ; unless otherwise noted.)  
MAX  
REF  
A
MIN  
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
MAX1240  
MAX1241  
2.7  
2.7  
3.6  
5.25  
2.0  
3.5  
1.5  
2.5  
2.8  
3.8  
10  
Supply Voltage  
V
V
DD  
MAX1240A/B  
MAX1240C  
= 3.6V  
1.4  
1.4  
0.9  
1.6  
0.9  
1.6  
1.9  
3.5  
±0.3  
V
DD  
V
DD  
= 3.6V  
= 5.25V  
= 3.6V  
= 5.25V  
= 3.6V  
= 5.25V  
Operating  
mode  
MAX1241A/B  
MAX1241C  
mA  
V
DD  
Supply Current  
I
DD  
V
DD  
V
DD  
V
DD  
Power-down, digital inputs  
at 0V or V  
µA  
DD  
V
DD  
15  
0/MAX241  
Supply Rejection  
PSR  
(Note 5)  
mV  
TIMING CHARACTERISTICS (Figure 8)  
(V = +2.7V to +3.6V (MAX1240); V = +2.7V to +5.25V (MAX1241); T = T  
to T , unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN  
1.5  
20  
TYP  
MAX  
UNITS  
Acquisition Time  
t
µs  
CS = V (Note 6)  
ACQ  
DD  
MAX124_ _C/E  
MAX124_ _M  
200  
240  
240  
240  
2.1  
Figure 1,  
= 50pF  
SCLK Fall to Output Data Valid  
t
ns  
DO  
C
LOAD  
20  
t
Figure 1, C  
Figure 2, C  
= 50pF  
= 50pF  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
SCLK Clock Frequency  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Low to CS Fall Setup Time  
DOUT Rise to SCLK Rise (Note 5)  
CS Pulse Width  
DV  
LOAD  
LOAD  
t
TR  
f
0
MHz  
ns  
SCLK  
t
200  
200  
50  
CH  
t
ns  
CL  
t
ns  
CS0  
t
0
ns  
STR  
t
CS  
240  
ns  
Note 1: Tested at V = +2.7V.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range and  
offset have been calibrated.  
Note 3: MAX1240—internal reference, offset nulled; MAX1241—external reference (V  
= +2.500V), offset nulled.  
REF  
Note 4: External load should not change during conversion for specified accuracy.  
Note 5: Guaranteed by design. Not subject to production testing.  
Note 6: Measured as [V (2.7V) - V (V  
)].  
FS  
FS DD(MAX  
Note 7: To guarantee acquisition time, t  
is the maximum time the device takes to acquire the signal, and is also the minimum  
ACQ  
time needed for the signal to be acquired.  
4
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
+2.7V  
6k  
DOUT  
DOUT  
6k  
C
= 50pF  
C
= 50pF  
LOAD  
LOAD  
DGND  
a) High-Z to V and V to V  
DGND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OH  
OL  
OH  
Figure 1. Load Circuits for DOUT Enable Time  
+2.7V  
6k  
DOUT  
DOUT  
6k  
C
= 50pF  
C
= 50pF  
LOAD  
LOAD  
DGND  
DGND  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 2. Load Circuits for DOUT Disable Time  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 3.0V, V  
= 2.5V, f  
= 2.1MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
REF  
SCLK  
L
A
OPERATING SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.3  
1.2  
1.1  
1.0  
R =   
CODE = 101010100000  
L
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX1240  
MAX1240  
MAX1241  
MAX1241  
=  
0.9  
0.8  
R
LOAD  
CODE = 10101010000  
-60 -20 20  
TEMPERATURE (°C)  
2
3
4
5
6
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
60  
100  
140  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, V  
= 2.5V, f  
= 2.1MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
REF  
SCLK  
L
A
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
4.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
DD  
= 2.7V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-30  
-55  
-5 20 45 70 95 120 145  
TEMPERATURE (°C)  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
-60  
-20  
20  
60  
100  
140  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
0/MAX241  
MAX1240  
GAIN ERROR  
vs. SUPPLY VOLTAGE  
GAIN ERROR  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
DD  
= 2.7V  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
-55 -30 -5 20 45 70 95 120 145  
TEMPERATURE (°C)  
V
(V)  
DD  
MAX1240  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
2.501  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
DD  
= 2.7V  
2.500  
2.499  
V
DD  
= 3.6V  
V
= 2.7V  
DD  
2.498  
2.497  
2.496  
MAX1240  
MAX1241  
MAX1240  
MAX1241  
2.495  
2.494  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
-60  
-20  
20  
60  
100  
140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, REF = 2.5V, f  
= 2.1MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
L A  
DD  
SCLK  
INTEGRAL NONLINEARITY  
vs. CODE  
FFT PLOT  
20  
0
0.6  
0.4  
0.2  
0
f
AIN  
= 10kHz, 2.5Vp-p  
f
= 73ksps  
SAMPLE  
-20  
-40  
-60  
-80  
-0.2  
-100  
-0.4  
-0.6  
-120  
-140  
0
18.75  
37.50  
0
1024  
2048  
3072  
4096  
CODE  
FREQUENCY (kHz)  
_______________________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage: 2.7V to 3.6V, (MAX1240); 2.7 to 5.25V (MAX1241)  
2
AIN  
Sampling Analog Input, 0V to V  
range  
REF  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX1240/MAX1241 down to 15µA (max)  
supply current. Both the MAX1240 and MAX1241 are fully operational with either SHDN high or float-  
ing. For the MAX1240, pulling SHDN high enables the internal reference, and letting SHDN float dis-  
ables the internal reference and allows for the use of an external reference.  
3
4
SHDN  
Reference Voltage for Analog-to-Digital Conversion. Internal 2.5V reference output for MAX1240;  
bypass with 4.7µF capacitor. External reference voltage input for MAX1241, or for MAX1240 with the  
internal reference disabled. Bypass REF with a minimum of 0.1µF when using an external reference.  
REF  
5
6
GND  
Analog and Digital Ground  
Serial Data Output. Data changes state at SCLK’s falling edge. DOUT is high impedance when CS is  
high.  
DOUT  
Active-Low Chip Select initiates conversions on the falling edge. When CS is high, DOUT is high  
impedance.  
7
8
CS  
SCLK  
Serial Clock Input. SCLK clocks data out at rates up to 2.1MHz.  
_______________________________________________________________________________________  
7
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
+2.7V to +3.6V*  
*V  
DD,MAX  
= +5.25V (MAX1241)  
**4.7µF (MAX1240)  
0.1µF (MAX1241)  
12-BIT CAPACITIVE DAC  
REF  
4.7µF 0.1µF  
COMPARATOR  
1
2
8
C
HOLD  
TRACK  
V
SCLK  
AIN  
INPUT  
ZERO  
DD  
-
+
7
SERIAL  
INTERFACE  
ANALOG INPUT  
16pF  
MAX1240  
MAX1241  
AIN  
CS  
HOLD  
0V TO V  
REF  
9k  
R
IN  
C
3
4
6
5
SHUTDOWN  
INPUT  
SWITCH  
SHDN  
REF  
DOUT  
GND  
HOLD  
TRACK  
AT THE SAMPLING INSTANT,  
THE INPUT SWITCHES FROM  
AIN TO GND.  
REFERENCE  
INPUT  
(MAX1241 ONLY)  
C**  
GND  
Figure 3. Operational Diagram  
Figure 4. Equivalent Input Circuit  
0/MAX241  
switch opens and maintains a constant input to the  
ADCs SAR section.  
_______________De t a ile d De s c rip t io n  
Co n ve rt e r Op e ra t io n  
The MAX1240/MAX1241 use an input track/hold (T/H)  
and successive-approximation register (SAR) circuitry  
to convert an analog input signal to a digital 12-bit out-  
put. No external-hold capacitor is needed for the T/H.  
Figure 3 shows the MAX1240/MAX1241 in its simplest  
configuration. The MAX1240/MAX1241 convert input  
signals in the 0V to VREF range in 9µs, including T/H  
acquisition time. The MAX1240s internal reference is  
trimmed to 2.5V, while the MAX1241 requires an external  
reference. Both devices accept voltages from 1.0V to  
During acquisition, the analog input (AIN) charges  
capacitor CHOLD. Bringing CS low ends the acquisition  
interval. At this instant, the T/H switches the input side  
of CHOLD to GND. The retained charge on CHOLD repre-  
sents a sample of the input, unbalancing node ZERO at  
the comparators input.  
In hold mode, the capacitive digital-to-analog converter  
(DAC) adjusts during the remainder of the conversion  
cycle to restore node ZERO to 0V within the limits of 12-  
bit resolution. This action is equivalent to transferring a  
charge from CHOLD to the binary-weighted capacitive  
DAC, which in turn forms a digital representation of the  
analog input signal. At the conversions end, the input  
s id e of CHOLD s witc he s b a c k to AIN, a nd CHOLD  
charges to the input signal again.  
V . The serial interface requires only three digital lines  
DD  
(SCLK, CS, and DOUT) and provides an easy interface  
to microprocessors (µPs).  
The MAX1240/MAX1241 have two modes: normal and  
shutdown. Pulling SHDN low shuts the device down and  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time  
reduces supply current below 10µA (V 3.6V), while  
DD  
pulling SHDN high or leaving it open puts the device  
into operational mode. Pulling CS low initiates a conver-  
sion. The conversion result is available at DOUT in  
unipolar serial format. The serial data stream consists  
of a high bit, signaling the end of conversion (EOC), fol-  
lowed by the data bits (MSB first).  
(t  
) is the maximum time the device takes to acquire  
ACQ  
the signal, and is also the minimum time needed for the  
signal to be acquired. Acquisition time is calculated by:  
An a lo g In p u t  
Figure 4 illustrates the sampling architecture of the ana-  
log-to-digital converters (ADCs) comparator. The full-  
scale input voltage is set by the voltage at REF.  
tACQ = 9(RS + RIN) x 16pF  
where RIN = 9k, RS = the input signal’s source imped-  
ance, and tACQ is never less than 1.5µs. Source imped-  
ances below 1kdo not significantly affect the ADCs  
AC performance.  
Track/Hold  
In track mode, the analog signal is acquired and stored  
in the internal hold capacitor. In hold mode, the T/H  
8
_______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
Higher source impedances can be used if a 0.01µF  
down (see the section Using SHDN to Reduce Supply  
Current). The internal reference is enabled by pulling the  
SHDN pin high. Letting SHDN float disables the internal  
reference, which allows the use of an external reference,  
as described in the External Reference section.  
capacitor is connected to the analog input. Note that  
the input capacitor forms an RC filter with the input  
sourc e imp e d a nc e , limiting the ADCs inp ut signa l  
bandwidth.  
External Reference  
The MAX1240/MAX1241 operate with an external refer-  
ence at the REF pin. To use the MAX1240 with an  
external reference, disable the internal reference by let-  
ting SHDN float. Stay within the +1.0V to VDD voltage  
range to achieve specified accuracy. The minimum  
input impedance is 18kfor DC currents. During con-  
version, the external reference must be able to deliver  
up to 250µA of DC load current and have an output  
impedance of 10or less. The recommended mini-  
mum value for the bypass capacitor is 0.1µF. If the ref-  
e re nc e ha s hig he r outp ut imp e d a nc e or is nois y,  
bypass it close to the REF pin with a 4.7µF capacitor.  
Input Bandwidth  
The ADCs input tracking circuitry has a 2.25MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid aliasing of  
unwanted high-frequency signals into the frequency  
band of interest, anti-alias filtering is recommended.  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
input to V  
and GND, allow the input to swing from  
DD  
GND - 0.3V to VDD + 0.3V without damage. However,  
for accurate conversions near full scale, the input must  
not exceed VDD by more than 50mV, or be lower than  
GND by 50mV.  
____________________S e ria l In t e rfa c e  
In it ia liza t io n a ft e r P o w e r-Up a n d  
S t a rt in g a Co n ve rs io n  
If the analog input exceeds 50mV beyond the sup-  
plies, limit the input current to 2mA.  
When power is first applied, and if SHDN is not pulled  
low, it ta ke s the fully d is c ha rg e d 4.7µF re fe re nc e  
bypass capacitor up to 20ms to provide adequate  
charge for specified accuracy. With an external refer-  
ence, the internal reset time is 10µs after the power  
supplies have stabilized. No conversions should be  
performed during these times.  
Internal Reference (MAX1240)  
The MAX1240 ha s a n on-c hip volta g e re fe re nc e  
trimmed to 2.5V. The internal reference output is con-  
nected to REF and also drives the internal capacitive  
DAC. The output can be used as a reference voltage  
source for other components and can source up to  
400µA. Bypass REF with a 4.7µF capacitor. Larger  
capacitors increase wake-up time when exiting shut-  
To start a conversion, pull CS low. At CSs falling edge,  
the T/H enters its hold mode and a conversion is initiat-  
COMPLETE CONVERSION SEQUENCE  
CS  
t
WAKE  
SHDN  
DOUT  
CONVERSION 0  
POWERED UP  
CONVERSION 1  
POWERED UP  
POWERED DOWN  
Figure 5. Shutdown Sequence  
_______________________________________________________________________________________  
9
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
ed. After an internally timed conversion period, the end  
of conversion is signaled by DOUT pulling high. Data  
can then be shifted out serially with the external clock.  
10  
1
V
R
LOAD  
= V = 3.0V  
DD REF  
= , C  
= 50pF  
LOAD  
CODE = 010101010000  
Us in g SHDN t o Re d u c e S u p p ly Cu rre n t  
Power consumption can be reduced significantly by  
shutting down the MAX1240/MAX1241 between con-  
versions. Figure 6 shows a plot of average supply cur-  
rent versus conversion rate. Because the MAX1241  
uses an external reference voltage (assumed to be pre-  
sent continuously), it “wakes up” from shutdown more  
quickly (in 4µs) and therefore provides lower average  
0.1  
0.01  
MAX1240  
MAX1241  
1k  
supply currents. The wake-up time (t  
) is the time  
WAKE  
0.001  
from when SHDN is deasserted to the time when a con-  
version may be initiated (Figure 5). For the MAX1240,  
this time depends on the time in shutdown (Figure 7)  
because the external 4.7µF reference bypass capacitor  
loses charge slowly during shutdown.  
0.1  
1
10  
100  
10k 100k  
CONVERSION RATE (Hz)  
Figure 6. Average Supply Current vs. Conversion Rate  
0/MAX241  
Ex t e rn a l Clo c k  
The actual conversion does not require the external  
clock. This allows the conversion result to be read back  
at the µPs convenience at any clock rate from up to  
2.1MHz. The clock duty cycle is unrestricted if each  
clock phase is at least 200ns. Do not run the clock  
while a conversion is in progress.  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Tim in g a n d Co n t ro l  
Conversion-start and data-read operations are controlled  
by the CS and SCLK digital inputs. The timing diagrams  
of Figures 8 and 9 outline serial-interface operation.  
A
CS falling edge initiates a conversion sequence: the  
T/H stage holds the input voltage, the ADC begins to  
convert, and DOUT changes from high impedance to  
logic low. SCLK must be kept low during the conver-  
sion. An internal register stores the data when the con-  
version is in progress.  
0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (sec)  
Figure 7. Typical Reference Power-Up Delay vs. Time in  
Shutdown  
CS  
1
4
8
12  
16  
SCLK  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
EOC  
EOC  
CONVERSION  
IN PROGRESS  
TRAILING  
ZEROS  
CLOCK OUT SERIAL DATA  
TRACK  
INTERFACE IDLE  
TRACK/HOLD  
IDLE  
HOLD  
HOLD  
TRACK  
STATE  
0.24µs  
(t  
12.5 × 0.476µs = 5.95µs  
TOTAL = 13.7µs  
0µs  
7.5µs (t  
)
0µs  
CONV  
)
CS  
CYCLE TIME  
Figure 8. Interface Timing Sequence  
10 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
t
CS  
CS  
t
CS0  
t
CH  
SCLK  
DOUT  
t
DO  
t
CL  
t
TR  
t
DV  
t
CONV  
B2  
B1  
B0  
t
APR  
t
STR  
(TRACK/ACQUIRE)  
(HOLD)  
(TRACK/ACQUIRE)  
INTERNAL  
T/H  
Figure 9. Detailed Serial-Interface Timing  
End of conversion (EOC) is signaled by DOUT going  
high. DOUT’s rising edge can be used as a framing  
signal. SCLK shifts the data out of this register any time  
after the conversion is complete. DOUT transitions on  
SCLK’s falling edge. The next falling clock edge pro-  
duces the MSB of the conversion at DOUT, followed by  
the remaining bits. Since there are 12 data bits and one  
leading high bit, at least 13 falling clock edges are  
needed to shift out these bits. Extra clock pulses occur-  
ring after the conversion result has been clocked out,  
and prior to a rising edge of CS, produce trailing zeros  
at DOUT and have no effect on converter operation.  
ing the conversions LSB. After the specified minimum  
time (t ), CS can be pulled low again to initiate the  
CS  
next conversion.  
Ou t p u t Co d in g a n d Tra n s fe r Fu n c t io n  
The data output from the MAX1240/MAX1241 is binary,  
and Figure 10 depicts the nominal transfer function.  
Code transitions occur halfway between successive-  
integer LSB values. If VREF = +2.500V, then 1 LSB =  
610µV or 2.500V/4096.  
____________Ap p lic a t io n s In fo rm a t io n  
Co n n e c t io n t o S t a n d a rd In t e rfa c e s  
The MAX1240/MAX1241 serial interface is fully compat-  
ible with SPI/QSPI and MICROWIRE standard serial  
interfaces (Figure 11).  
Minimum cycle time is accomplished by using DOUTs  
rising edge as the EOC signal. Clock out the data with  
12.5 clock cycles at full speed. Pull CS high after read-  
If a serial interface is available, set the CPUs serial  
interface in master mode so the CPU generates the ser-  
ial clock. Choose a clock frequency up to 2.1MHz.  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11111  
1) Use a general-purpose I/O line on the CPU to pull CS  
11110  
11101  
low. Keep SCLK low.  
2) Wait the for the maximum conversion time specified  
before activating SCLK. Alternatively, look for a DOUT  
rising edge to determine the end of conversion.  
FS = V - 1LSB  
REF  
V
REF  
1LSB =  
3) Activate SCLK for a minimum of 13 clock cycles. The  
first falling clock edge produces the MSB of the  
DOUT conversion. DOUT output data transitions on  
SCLK’s falling edge and is available in MSB-first for-  
mat. Observe the SCLK to DOUT valid timing char-  
a c te ris tic . Da ta c a n b e c loc ke d into the µP on  
SCLK’s rising edge.  
4096  
00011  
00010  
00001  
00000  
0
1
2
3
FS  
4) Pull CS high at or after the 13th falling clock edge. If  
CS remains low, trailing zeros are clocked out after  
the LSB.  
INPUT VOLTAGE (LSBs)  
FS - 3/2LSB  
Figure 10. Unipolar Transfer Function, Full Scale (FS) = V  
-
REF  
1LSB, Zero Scale (ZS) = GND  
______________________________________________________________________________________ 11  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
5) With CS = high, wait the minimum specified time, tCS,  
before initiating a new conversion by pulling CS low.  
If a conversion is aborted by pulling CS high before  
the conversions end, wait for the minimum acquisi-  
I/O  
SCK  
CS  
SCLK  
DOUT  
MISO  
tion time, t  
, before starting a new conversion.  
ACQ  
+3V  
CS must be held low until all data bits are clocked out.  
Data can be output in two bytes or continuously, as  
shown in Figure 8. The bytes contain the result of the  
conversion padded with one leading 1, and trailing 0s.  
MAX1240  
MAX1241  
SS  
a) SPI  
SPI a nd MICROWIRE  
When using SPI or MICROWIRE, set CPOL = 0 and  
CPHA = 0. Conversion begins with a CS falling edge.  
DOUT goes low, indicating a conversion in progress. Wait  
until DOUT goes high or until the maximum specified  
7.5µs conversion time elapses. Two consecutive 1-byte  
reads are required to get the full 12 bits from the ADC.  
DOUT output data transitions on SCLK’s falling edge and  
is clocked into the µP on SCLKs rising edge.  
CS  
SCK  
CS  
SCLK  
DOUT  
MISO  
+3V  
MAX1240  
MAX1241  
SS  
0/MAX241  
b) QSPI  
The first byte contains a leading 1, and seven bits of con-  
version result. The second byte contains the remaining  
five bits and three trailing zeros. See Figure 11 for con-  
nections and Figure 12 for timing.  
I/O  
SK  
SI  
CS  
SCLK  
DOUT  
QSPI  
Set CPOL = CPHA = 0. Unlike SPI, which requires two  
1-byte reads to acquire the 12 bits of data from the ADC,  
QSPI allows the minimum number of clock cycles neces-  
s a ry to c loc k in the d a ta . The MAX1240/MAX1241  
requires 13 clock cycles from the µP to clock out the 12  
bits of data with no trailing zeros (Figure 13). The maxi-  
mum clock frequency to ensure compatibility with QSPI is  
2.097MHz.  
MAX1240  
MAX1241  
c) MICROWIRE  
Figure 11. Common Serial-Interface Connections to the  
MAX1241  
La yout, Grounding, a nd Bypa s s ing  
For best performance, use printed circuit boards. Wire-  
wrap boards are not recommended. Board layout should  
ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital (especially  
clock) lines parallel to one another, or digital lines under-  
neath the ADC package.  
the ADCs high-speed comparator. Bypass this supply to  
the single-point analog ground with 0.1µF and 4.7µF  
bypass capacitors. Minimize capacitor lead lengths for  
best supply-noise rejection. If the power supply is very  
noisy, a 10resistor can be connected as a lowpass filter  
to attenuate supply noise (Figure 14).  
Figure 14 shows the recommended system ground con-  
nections. Establish a single-point analog ground (star”  
ground point) at GND, separate from the logic ground.  
Connect all other analog grounds and DGND to this star  
ground point for further noise reduction. No other digital  
system ground should be connected to this single-point  
analog ground. The ground return to the power supply for  
this ground should be low impedance and as short as  
possible for noise-free operation.  
High-frequency noise in the VDD power supply may affect  
12 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
1ST BYTE READ  
2ND BYTE READ  
SCLK  
CS  
t
CONV  
HIGH-Z  
D11 D10 D9  
MSB  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT*  
LSB  
EOC  
*WHEN CS IS HIGH, DOUT = HIGH -Z  
Figure 12. SPI/MICROWIRE Serial Interface Timing (CPOL = CPHA = 0)  
SCLK  
CS  
t
CONV  
HIGH-Z  
D11 D10 D9  
MSB  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT*  
LSB  
EOC  
*WHEN CS IS HIGH, DOUT = HIGH -Z  
Figure 13. QSPI Serial Interface Timing (CPOL = CPHA = 0)  
SUPPLIES  
+3V  
+3V  
GND  
R* = 10Ω  
4.7µF  
0.1µF  
V
GND  
+3V DGND  
DD  
DIGITAL  
CIRCUITRY  
MAX1240  
MAX1241  
*OPTIONAL  
Figure 14. Power-Supply Grounding Condition  
______________________________________________________________________________________ 13  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
__Ord e rin g In fo rm a t io n (c o n t in u e d )  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP. RANGE  
MAX1240AEPA -40°C to +85°C  
MAX1240BEPA -40°C to +85°C  
MAX1240CEPA -40°C to +85°C  
MAX1240AESA -40°C to +85°C  
MAX1240BESA -40°C to +85°C  
MAX1240CESA -40°C to +85°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
±1/2  
±1  
±1  
±1/2  
8 SO  
±1  
8 SO  
±1  
MAX1240AMJA -55°C to +125°C 8 CERDIP**  
MAX1240BMJA -55°C to +125°C 8 CERDIP**  
MAX1240CMJA -55°C to +125°C 8 CERDIP**  
±1/2  
±1  
±1  
MAX1241ACPA  
MAX1241BCPA  
MAX1241CCPA  
MAX1241ACSA  
MAX1241BCSA  
MAX1241CCSA  
MAX1241BC/D  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
±1/2  
±1  
±1  
±1/2  
0/MAX241  
8 SO  
±1  
8 SO  
±1  
Dice*  
±1  
MAX1241AEPA -40°C to +85°C  
MAX1241BEPA -40°C to +85°C  
MAX1241CEPA -40°C to +85°C  
MAX1241AESA -40°C to +85°C  
MAX1241BESA -40°C to +85°C  
MAX1241CESA -40°C to +85°C  
8 Plastic DIP  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
±1/2  
±1  
±1  
±1/2  
8 SO  
±1  
8 SO  
±1  
MAX1241AMJA -55°C to +125°C 8 CERDIP**  
MAX1241BMJA -55°C to +125°C 8 CERDIP**  
MAX1241CMJA -55°C to +125°C 8 CERDIP**  
±1/2  
±1  
±1  
* Dice are specified at T = +25°C, DC parameters only.  
A
** Contact factory for availability and processing to MIL-STD-883.  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2558  
SUBSTRATE CONNECTED TO GND  
14 ______________________________________________________________________________________  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
0/MAX241  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
+2 .7 V, Lo w -P o w e r,  
1 2 -Bit S e ria l ADCs in 8 -P in S O  
___________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
0/MAX241  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1240BCSA+

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BCSA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8
MAXIM

MAX1240BCSA-T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX1240BEPA

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BEPA+

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BESA

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BESA+

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BESA+T

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8
MAXIM

MAX1240BESA/V+

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BESA/V+T

暂无描述
MAXIM

MAX1240BESV+

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM

MAX1240BMJA

+2.7V, Low-Power, 12-Bit Serial ADCs in 8-Pin SO
MAXIM