MAX1198E/D [MAXIM]

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, DIE-48;
MAX1198E/D
型号: MAX1198E/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, DIE-48

转换器
文件: 总22页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2412; Rev 0; 4/02  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
General Description  
Features  
The MAX1198 is a 3.3V, dual, 8-bit analog-to-digital con-  
verter (ADC) featuring fully differential wideband track-  
and-hold (T/H) inputs, driving two ADCs. The MAX1198  
is optimized for low power, small size, and high-dynamic  
performance for applications in imaging, instrumenta-  
tion, and digital communications. This ADC operates  
from a single 2.7V to 3.6V supply, consuming only  
264mW, while delivering a typical signal-to-noise and  
distortion (SINAD) of 48.1dB at an input frequency of  
50MHz and a sampling rate of 100Msps. The T/H-driven  
input stages incorporate 400MHz (-3dB) input ampli-  
fiers. The converters may also be operated with single-  
ended inputs. In addition to low operating power, the  
MAX1198 features a 3.2mA sleep mode, as well as a  
0.15µA power-down mode to conserve power during  
idle periods.  
o Single 2.7V to 3.6V Operation  
o Excellent Dynamic Performance  
48.1dB/47.6dB SINAD at f = 50MHz/200MHz  
IN  
66dBc/61.5dBc SFDR at f = 50MHz/200MHz  
IN  
o -72dB Interchannel Crosstalk at f = 50MHz  
IN  
o Low Power  
264mW (Normal Operation)  
10.6mW (Sleep Mode)  
0.5µW (Shutdown Mode)  
o 0.05dB Gain and 0.1° Phase Matching  
o Wide 1V  
Differential Analog Input Voltage  
P-P  
Range  
o 400MHz -3dB Input Bandwidth  
o On-Chip 2.048V Precision Bandgap Reference  
An internal 2.048V precision bandgap reference sets  
the full-scale range of the ADC. A flexible reference  
structure allows the use of this internal or an externally  
applied reference, if desired, for applications requiring  
increased accuracy or a different input voltage range.  
The MAX1198 features parallel, CMOS-compatible three-  
state outputs. The digital output format can be set to two’s  
complement or straight offset binary through a single con-  
trol pin. The device provides for a separate output power  
supply of 1.7V to 3.6V for flexible interfacing with various  
logic families. The MAX1198 is available in a 7mm x 7mm,  
48-pin TQFP package, and is specified for the extended  
industrial (-40°C to +85°C) temperature range.  
o User-Selectable Output Format—Two’s  
Complement or Offset Binary  
o Pin-Compatible 8-Bit and 10-Bit Upgrades  
Available  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1198ECM  
-40°C to +85°C  
48 TQFP-EP*  
*EP = Exposed paddle  
Functional Diagram and Pin Compatible Upgrades table  
appear at end of data sheet.  
Pin-compatible lower speed versions of the MAX1198  
are also available. Refer to the MAX1195 data sheet for  
40Msps and the MAX1197 data sheet for 60Msps. In  
addition to these speed grades, this family includes a  
multiplexed output version (MAX1196, 40Msps), for  
which digital data is presented time interleaved and on  
a single, parallel 8-bit output port.  
For a 10-bit, pin-compatible upgrade, refer to the  
MAX1180 data sheet. With the N.C. pins of the  
MAX1198 internally pulled down to ground, this ADC  
becomes a drop-in replacement for the MAX1180.  
Pin Configuration  
COM  
1
2
36 N.C.  
35 N.C.  
34 OGND  
V
DD  
GND  
INA+  
INA-  
3
4
33 OV  
32 OV  
DD  
DD  
5
V
DD  
6
31 OGND  
30 N.C.  
29 N.C.  
MAX1198  
Applications  
GND  
INB-  
INB+  
GND  
7
8
Baseband I/Q Sampling  
WLAN, WWAN, WLL,  
MMDS Modems  
D0B  
D1B  
D2B  
D3B  
9
28  
27  
26  
25  
10  
11  
12  
Multichannel IF Sampling  
Ultrasound and Medical  
Imaging  
V
DD  
Set-Top Boxes  
VSAT Terminals  
CLK  
Battery-Powered  
Instrumentation  
TQFP-EP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
, OV  
to GND ...............................................-0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
OGND to GND.......................................................-0.3V to +0.3V  
48-Pin TQFP (derate 12.5mW/°C above +70°C).........1000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
INA+, INA-, INB+, INB- to GND ...............................-0.3V to V  
REFIN, REFOUT, REFP, REFN,  
DD  
COM, CLK to GND .................................-0.3V to (V  
OE, PD, SLEEP, T/B, D7AD0A,  
+ 0.3V)  
DD  
D7BD0B to OGND .............................-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V, OV  
= 2.5V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs, f  
= 100MHz, T = T  
to T  
, unless  
MAX  
IN  
P-P  
L
CLK  
A
MIN  
otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values are at  
T
= +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
8
Bits  
Integral Nonlinearity  
INL  
f
f
= 7.5MHz (Note 1)  
0.3  
0.2  
1
1
LSB  
IN  
= 7.5MHz, no missing codes guaranteed  
IN  
Differential Nonlinearity  
DNL  
LSB  
(Note 1)  
Offset Error  
4
4
%FS  
%FS  
Gain Error  
Gain Temperature Coefficient  
ANALOG INPUT  
100  
1.0  
ppm/°C  
Differential Input Voltage Range  
V
Differential or single-ended inputs  
Switched capacitor load  
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
/ 2  
DD  
V
CM  
0.2  
Input Resistance  
R
57  
5
kΩ  
IN  
IN  
Input Capacitance  
C
pF  
CONVERSION RATE  
Maximum Clock Frequency  
f
100  
MHz  
CLK  
Clock  
Cycles  
Data Latency  
5
DYNAMIC CHARACTERISTICS (f  
= 100MHz, 4096-point FFT)  
CLK  
f
f
f
f
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 50MHz at -1dB FS  
= 115.1MHz at -1dB FS  
48.5  
48.3  
48.3  
48.1  
INA or B  
INA or B  
INA or B  
INA or B  
47.0  
Signal-to-Noise Ratio  
SNR  
dB  
2
_______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.5V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs, f  
= 100MHz, T = T  
to T  
, unless  
MAX  
IN  
P-P  
L
CLK  
A
MIN  
otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values are at  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 50MHz at -1dB FS  
= 115.1MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 50MHz at -1dB FS  
= 115.1MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 50MHz at -1dB FS  
= 115.1MHz at -1dB FS  
MIN  
TYP  
48.3  
48.2  
48.1  
48  
MAX  
UNITS  
f
f
f
f
f
f
f
f
f
f
f
f
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
46.5  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
Third-Harmonic Distortion  
SINAD  
dB  
67  
60  
67  
SFDR  
HD3  
dBc  
dBc  
66  
65  
-67  
-67  
-67  
-66  
f
f
= 1.989MHz at -7dB FS  
= 2.038MHz at -7dB FS  
IN1(A or B)  
IN2(A or B)  
Intermodulation Distortion  
(First Five Odd-Order IMDs)  
IMD  
IM3  
-69.5  
-80  
dBc  
dBc  
(Note 2)  
f
f
= 1.989MHz at -7dB FS  
= 2.038MHz at -7dB FS  
IN1(A or B)  
Third-Order Intermodulation  
Distortion  
IN2(A or B)  
(Note 2)  
f
f
f
f
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 50MHz at -1dB FS  
= 115.1MHz at -1dB FS  
-66  
-67  
-64  
-58  
500  
400  
INA or B  
INA or B  
INA or B  
INA or B  
-57  
Total Harmonic Distortion  
(First Four Harmonics)  
THD  
dBc  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Input at -20dB FS, differential inputs  
Input at -1dB FS, differential inputs  
MHz  
MHz  
FPBW  
f
f
= 106MHz at -1dB FS  
= 118MHz at -1dB FS  
IN1(A or B)  
Gain Flatness  
(12MHz Spacing)  
0.05  
dB  
ns  
IN2(A or B)  
(Note 3)  
Aperture Delay  
t
1
2
2
AD  
Aperture Jitter  
t
1dB SNR degradation at Nyquist  
ps  
RMS  
AJ  
Overdrive Recovery Time  
For 1.5 × full-scale input  
ns  
INTERNAL REFERENCE (REFIN = REFOUT through 10kresistor; REFP, REFN, and COM levels are generated internally.)  
2.048  
3%  
Reference Output Voltage  
V
(Note 4)  
(Note 5)  
(Note 5)  
(Note 5)  
V
V
V
V
REFOUT  
Positive Reference Output  
Voltage  
V
2.162  
REFP  
REFN  
Negative Reference Output  
Voltage  
V
1.138  
V
DD  
/ 2  
Common-Mode Level  
V
COM  
0.1  
_______________________________________________________________________________________  
3
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.5V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs, f  
= 100MHz, T = T  
to T  
, unless  
MAX  
IN  
P-P  
L
CLK  
A
MIN  
otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values are at  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
- V  
MIN  
TYP  
MAX  
UNITS  
Differential Reference Output  
Voltage Range  
1.024  
3%  
V  
V  
= V  
V
REF  
REF  
REF  
REFP  
REFN  
Reference Temperature  
Coefficient  
TC  
100  
ppm/°C  
BUFFERED EXTERNAL REFERENCE (V  
= 2.048V)  
(Note 5)  
REFIN  
REFP  
Positive Reference Output  
V
2.162  
1.138  
V
V
V
Voltage  
Negative Reference Output  
Voltage  
V
(Note 5)  
(Note 5)  
REFN  
V
DD  
/ 2  
Common-Mode Level  
V
COM  
0.1  
Differential Reference Output  
Voltage Range  
1.024  
2%  
V  
V  
= V  
- V  
REFN  
V
REF  
REF  
REFP  
REFIN Resistance  
R
>50  
MΩ  
mA  
REFIN  
Maximum REFP, COM Source  
Current  
I
I
5
SOURCE  
Maximum REFP, COM Sink  
Current  
I
-250  
µA  
SINK  
Maximum REFN Source Current  
Maximum REFN Sink Current  
250  
-5  
µA  
SOURCE  
I
mA  
SINK  
UNBUFFERED EXTERNAL REFERENCE (V  
= AGND, reference voltage applied to REFP, REFN, and COM)  
REFIN  
R
R
,
Measured between REFP, COM, REFN,  
and COM  
REFP  
REFP, REFN Input Resistance  
4
kΩ  
pF  
V
REFN  
REFP, REFN, COM Input  
Capacitance  
C
15  
IN  
Differential Reference Input  
Voltage Range  
1.024  
10%  
V  
V  
= V  
- V  
REFP REFN  
REF  
REF  
V
/ 2  
5%  
DD  
COM Input Voltage Range  
REFP Input Voltage  
V
V
COM  
REFP  
REFN  
V
COM  
+
V
V
V  
/ 2  
REF  
V
COM  
-
REFN Input Voltage  
V
V
V  
/ 2  
REF  
DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B)  
0.8 ×  
CLK  
V
DD  
Input High Threshold  
V
V
IH  
0.8 ×  
OV  
PD, OE, SLEEP, T/B  
DD  
4
_______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.5V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs, f  
= 100MHz, T = T  
to T  
, unless  
MAX  
IN  
P-P  
L
CLK  
A
MIN  
otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values are at  
T
A
= +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0.2 ×  
CLK  
V
DD  
Input Low Threshold  
V
V
IL  
0.2 ×  
OV  
PD, OE, SLEEP, T/B  
DD  
Input Hysteresis  
Input Leakage  
V
0.15  
5
V
HYST  
I
IH  
V
V
= V  
= 0  
= OV  
DD  
20  
IH  
IL  
DD  
µA  
pF  
I
IL  
20  
0.2  
10  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS ( D7AD0A, D7BD0B)  
Output Voltage Low  
V
I
I
= -200µA  
V
V
OL  
SINK  
OV  
0.2  
-
DD  
Output Voltage High  
V
= 200µA  
SOURCE  
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Output Supply Voltage Range  
I
OE = OV  
OE = OV  
µA  
pF  
LEAK  
DD  
C
5
OUT  
DD  
V
2.7  
1.7  
3.3  
2.5  
3.6  
3.6  
V
V
DD  
OV  
C = 15pF  
L
DD  
Operating, f  
applied to both channels  
= 20MHz at -1dB FS  
INA & B  
80  
95  
mA  
Analog Supply Current  
Output Supply Current  
Analog Power Dissipation  
I
VDD  
Sleep mode  
3.2  
Shutdown, clock idle, PD = OE = OV  
0.15  
20  
µA  
DD  
Operating, f  
= 20MHz at -1dB FS  
INA & B  
11.5  
mA  
applied to both channels (Note 6)  
I
OVDD  
Sleep mode  
2
2
µA  
Shutdown, clock idle, PD = OE = OV  
10  
DD  
Operating, f  
= 20MHz at -1dB FS  
INA & B  
264  
314  
applied to both channels  
mW  
PDISS  
PSRR  
Sleep mode  
10.6  
0.5  
3
Shutdown, clock idle, PD = OE = OV  
66  
µW  
DD  
Offset, V  
5%  
5%  
DD  
Power-Supply Rejection  
mV/V  
Gain, V  
3
DD  
TIMING CHARACTERISTICS  
CLK Rise to Output Data Valid  
Time  
t
C = 20pF (Notes 1, 7)  
L
6
8.25  
ns  
DO  
OE Fall to Output Enable Time  
OE Rise to Output Disable Time  
CLK Pulse Width High  
t
5
5
ns  
ns  
ns  
ns  
ENABLE  
t
DISABLE  
t
Clock period: 10ns (Note 7)  
Clock period: 10ns (Note 7)  
5
0.5  
0.5  
CH  
CLK Pulse Width Low  
t
5
CL  
_______________________________________________________________________________________  
5
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, OV  
= 2.5V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs, f  
= 100MHz, T = T  
to T  
, unless  
MAX  
IN  
P-P  
L
CLK  
A
MIN  
otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values are at  
T
A
= +25°C.)  
PARAMETER  
Wake-Up Time  
SYMBOL  
CONDITIONS  
Wake up from sleep mode  
MIN  
TYP  
1
MAX  
UNITS  
t
µs  
WAKE  
Wake up from shutdown mode (Note 11)  
20  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
f
f
f
= 20MHz at -1dB FS (Note 8)  
= 20MHz at -1dB FS (Note 9)  
= 20MHz at -1dB FS (Note 10)  
-72  
0.05  
0.1  
dB  
dB  
INA or B  
INA or B  
INA or B  
Gain Matching  
Phase Matching  
Degrees  
Note 1: Guaranteed by design. Not subject to production testing.  
Note 2: Intermodulation distortion is the total power of the intermodulation products relative to the total input power.  
Note 3: Analog attenuation is defined as the amount of attenuation of the fundamental bin from a converted FFT between two  
applied input signals with the same magnitude (peak-to-peak) at f and f  
.
IN2  
IN1  
Note 4: REFIN and REFOUT should be bypassed to GND with a 0.1µF (min) and 2.2µF (typ) capacitor.  
Note 5: REFP, REFN, and COM should be bypassed to GND with a 0.1µF (min) and 2.2µF (typ) capacitor.  
Note 6: Typical analog output current at f  
= 20MHz. For digital output currents vs. analog input frequency,  
INA & B  
see Typical Operating Characteristics.  
Note 7: See Figure 3 for detailed system timing diagrams. Clock to data valid timing is measured from 50% of the clock  
level to 50% of the data output level.  
Note 8: Crosstalk rejection is tested by applying a test tone to one channel and holding the other channel at DC level.  
Crosstalk is measured by calculating the power ratio of the fundamental of each channels FFT.  
Note 9: Amplitude matching is measured by applying the same signal to each channel and comparing the magnitude of the funda-  
mental of the calculated FFT.  
Note 10: Phase matching is measured by applying the same signal to each channel and comparing the phase of the fundamental  
of the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.  
Note 11: SINAD settles to within 0.5dB of its typical value in unbuffered external reference mode.  
6
_______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics  
(V  
noted.)  
= 3.3V, OV  
= 2.5V, V  
= 2.048V, differential input at -1dB FS, f  
= 100MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
REFIN  
CLK  
L
A
FFT PLOT CHA (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
FFT PLOT CHA (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
FFT PLOT CHA (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
f
f
= 100.050607MHz  
= 49.7443997MHz  
= 19.8708908MHz  
f
f
f
= 100.050607MHz  
= 114.9629350MHz  
= 99.5010126MHz  
f
f
f
= 100.050607MHz  
= 19.8708908MHz  
= 7.5355498MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
CLK  
INA  
INB  
AIN = -1dB FS  
AIN = -1dB FS  
AIN = -1dB FS  
f
INA  
COHERENT SAMPLING  
COHERENT SAMPLING  
COHERENT SAMPLING  
f
INA  
f
INA  
HD3  
HD2  
HD3  
HD3  
HD2  
f
INB  
f
f
INB  
INB  
HD2  
0
5
10 15 20 25 30 35 40 45 50  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT (DIFFERENTIAL INPUT,  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
TWO-TONE IMD PLOT (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
50  
48  
46  
44  
42  
40  
0
f
f
f
= 100.007936MHz  
= 10.022768MHz  
= 10.047184MHz  
AIN = -7dB FS  
COHERENT SAMPLING  
CHB  
CLK  
IN1  
IN2  
f
f
f
= 100.007936MHz  
= 1.989904MHz  
= 2.038736MHz  
CLK  
IN1  
IN2  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
AIN = -7dB FS  
CHA  
COHERENT SAMPLING  
f
f
IN1  
f
IN1  
f
IN2  
IN2  
7
8
9
10  
11  
12  
13  
0
40  
80  
120  
160  
200  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE + DISTORTION  
vs. ANALOG INPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
50  
48  
46  
44  
42  
40  
-40  
-48  
-56  
-64  
-72  
-80  
80  
72  
64  
56  
48  
40  
CHA  
CHA  
CHB  
CHB  
CHB  
CHA  
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
noted.)  
= 3.3V, OV  
= 2.5V, V  
= 2.048V, differential input at -1dB FS, f  
= 100MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
REFIN  
CLK  
L
A
SMALL-SIGNAL INPUT BANDWIDTH vs.  
ANALOG INPUT FREQUENCY, DIFFERENTIAL  
FULL-POWER INPUT BANDWIDTH vs.  
ANALOG INPUT FREQUENCY, DIFFERENTIAL  
SNR/SINAD, THD/SFDR vs. TEMPERATURE  
90  
80  
70  
60  
50  
40  
30  
1
2
f
= 19.87089082MHz  
SFDR  
V
IN  
= 100mV  
P-P  
IN  
0
-1  
-2  
-3  
-4  
-5  
1
0
-1  
-2  
-3  
-4  
THD  
SNR  
SINAD  
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1000  
1
10  
100  
1000  
TEMPERATURE (°C)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE RATIO vs.  
INPUT POWER (f = 19.87089082MHz)  
TOTAL HARMONIC DISTORTION vs.  
INPUT POWER (f = 19.87089082MHz)  
SIGNAL-TO-NOISE + DISTORTION vs.  
INPUT POWER (f = 19.87089082MHz)  
IN  
IN  
IN  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
SPURIOUS-FREE DYNAMIC RANGE vs.  
INPUT POWER (f = 19.87089082MHz)  
INTEGRAL NONLINEARITY  
(262144-POINT DATA RECORD)  
DIFFERENTIAL NONLINEARITY  
(262144-POINT DATA RECORD)  
IN  
75  
70  
65  
60  
55  
50  
45  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-20  
-16  
-12  
-8  
-4  
0
0
32 64 98 128 160 192 224 256  
DIGITAL OUTPUT CODE  
0
32 64 98 128 160 192 224 256  
DIGITAL OUTPUT CODE  
INPUT POWER (dB FS)  
8
_______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
noted.)  
= 3.3V, OV  
= 2.5V, V  
= 2.048V, differential input at -1dB FS, f  
= 100MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
REFIN  
CLK L A  
OFFSET ERROR vs. TEMPERATURE,  
SNR/SINAD, THD/SFDR  
vs. SAMPLING SPEED  
EXTERNAL REFERENCE V  
= 2.048V  
REFIN  
0.5  
0.3  
0.8  
0.3  
80  
72  
64  
56  
48  
40  
SFDR  
f
= 19.87089082MHz  
IN  
CHB  
CHA  
CHA  
THD  
SNR  
0.1  
-0.2  
-0.7  
-1.2  
-0.1  
-0.3  
CHB  
SINAD  
80 100  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
20  
40  
60  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SAMPLING SPEED (Msps)  
DIGITAL SUPPLY CURRENT  
vs. ANALOG INPUT FREQUENCY  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
SNR/SINAD, THD/SFDR  
vs. CLOCK DUTY CYCLE  
90  
86  
82  
78  
74  
70  
20  
16  
12  
8
80  
70  
60  
50  
40  
30  
SFDR  
THD  
SNR  
SINAD  
4
f
IN  
= 19.87089082MHz  
0
-40  
-15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
40  
44  
48  
52  
56  
60  
TEMPERATURE (°C)  
ANALOG INPUT FREQUENCY (MHz)  
CLOCK DUTY CYCLE (%)  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.0430  
2.0425  
2.0420  
2.0415  
2.0410  
2.0405  
2.0400  
2.0500  
2.0460  
2.0420  
2.0380  
2.0340  
2.0300  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
-40  
-15  
10  
35  
60  
85  
V
DD  
(V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
1
COM  
Common-Mode Voltage I/O. Bypass to GND with a 0.1µF capacitor.  
Analog Supply Voltage. Bypass to GND with a capacitor combination of 2.2µF in parallel with  
0.1µF.  
2, 6, 11, 14, 15  
V
DD  
3, 7, 10, 13, 16  
GND  
INA+  
INA-  
INB-  
INB+  
CLK  
Analog Ground  
4
5
Channel A Positive Analog Input. For single-ended operation connect signal source to INA+.  
Channel A Negative Analog Input. For single-ended operation connect INA- to COM.  
Channel B Negative Analog Input. For single-ended operation connect INB- to COM.  
Channel B Positive Analog Input. For single-ended operation connect signal source to INB+.  
Converter Clock Input  
8
9
12  
T/B Selects the ADC Digital Output Format  
High: Twos complement  
Low: Straight offset binary  
17  
18  
19  
20  
T/B  
SLEEP  
PD  
Sleep Mode Input  
High: Disables both quantizers, but leaves the reference bias circuit active  
Low: Normal operation  
Active-High Power-Down Input  
High: Power-down mode  
Low: Normal operation  
Active-Low Output Enable Input  
High: Digital outputs disabled  
Low: Digital outputs enabled  
OE  
21  
D7B  
D6B  
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
N.C.  
OGND  
Three-State Digital Output, Bit 7 (MSB), Channel B  
Three-State Digital Output, Bit 6, Channel B  
Three-State Digital Output, Bit 5, Channel B  
Three-State Digital Output, Bit 4, Channel B  
Three-State Digital Output, Bit 3, Channel B  
Three-State Digital Output, Bit 2, Channel B  
Three-State Digital Output, Bit 1, Channel B  
Three-State Digital Output, Bit 0, Channel B  
No Connection  
22  
23  
24  
25  
26  
27  
28  
29, 30, 35, 36  
31, 34  
Output Driver Ground  
Output Driver Supply Voltage. Bypass to OGND with a capacitor combination of 2.2µF in parallel  
with 0.1µF.  
32, 33  
OV  
DD  
37  
38  
39  
40  
41  
D0A  
D1A  
D2A  
D3A  
D4A  
Three-State Digital Output, Bit 0, Channel A  
Three-State Digital Output, Bit 1, Channel A  
Three-State Digital Output, Bit 2, Channel A  
Three-State Digital Output, Bit 3, Channel A  
Three-State Digital Output, Bit 4, Channel A  
10 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Pin Description (continued)  
PIN  
42  
NAME  
D5A  
FUNCTION  
Three-State Digital Output, Bit 5, Channel A  
Three-State Digital Output, Bit 6, Channel A  
43  
D6A  
44  
D7A  
Three-State Digital Output, Bit 7 (MSB), Channel A  
Internal Reference Voltage Output. May be connected to REFIN through a resistor or a resistor-  
divider.  
45  
46  
47  
48  
REFOUT  
REFIN  
REFP  
Reference Input. V  
= 2 x (V  
- V  
REFN  
).  
REFIN  
REFP  
Bypass to GND with a >0.1µF capacitor.  
Positive Reference I/O. Conversion range is (V  
Bypass to GND with a >0.1µF capacitor.  
- V  
).  
REFN  
REFP  
Negative Reference I/O. Conversion range is (V  
Bypass to GND with a >0.1µF capacitor.  
- V  
).  
REFN  
REFP  
REFN  
2-BIT FLASH  
ADC  
2-BIT FLASH  
ADC  
STAGE 1  
STAGE 2  
STAGE 6  
STAGE 7  
STAGE 1  
STAGE 2  
STAGE 6  
STAGE 7  
DIGITAL ALIGNMENT LOGIC  
8
DIGITAL ALIGNMENT LOGIC  
8
T/H  
T/H  
D7A–D0A  
D7B–D0B  
V
INA  
V
INB  
V
INA  
V
INB  
= INPUT VOLTAGE BETWEEN INA+ AND INA- (DIFFERENTIAL OR SINGLE ENDED)  
= INPUT VOLTAGE BETWEEN INB+ AND INB- (DIFFERENTIAL OR SINGLE ENDED)  
Figure 1. Pipelined Architecture—Stage Blocks  
back into analog voltages, which are then subtracted  
from the original held input signals. The resulting error  
signals are then multiplied by two, and the residues are  
passed along to the next pipeline stages where the  
process is repeated until the signals have been processed  
by all seven stages.  
Detailed Description  
The MAX1198 uses a seven-stage, fully differential  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half-clock cycle.  
Including the delay through the output latch, the total  
clock-cycle latency is five clock cycles.  
Input Track-and-Hold (T/H) Circuits  
Figure 2 displays a simplified functional diagram of the  
input T/H circuits in both track and hold mode. In track  
mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b  
Flash ADCs convert the held input voltages into a digi-  
tal code. Internal MDACs convert the digitized results  
______________________________________________________________________________________ 11  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1198  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 2. MAX1198 T/H Amplifiers  
are closed. The fully differential circuits sample the  
input signals onto the two capacitors (C2a and C2b)  
through switches S4a and S4b. S2a and S2b set the  
common mode for the amplifier input, and open simul-  
taneously with S1 sampling the input waveform.  
Switches S4a, S4b, S5a, and S5b are then opened  
before switches S3a and S3b connect capacitors C1a  
and C1b to the output of the amplifier and switch S4c is  
closed. The resulting differential voltages are held on  
capacitors C2a and C2b. The amplifiers are used to  
charge capacitors C1a and C1b to the same values  
originally held on C2a and C2b. These values are then  
presented to the first-stage quantizers and isolate the  
pipelines from the fast-changing inputs. The wide input  
bandwidth T/H amplifiers allow the MAX1198 to track  
and sample/hold analog inputs of high frequencies  
(>Nyquist). Both ADC inputs (INA+, INB+ and INA-,  
INB-) can be driven either differentially or single ended.  
12 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
5-CLOCK-CYCLE LATENCY  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
ANALOG INPUT  
CLOCK INPUT  
t
AD  
t
t
CH  
t
CL  
DO  
DATA OUTPUT  
N - 6  
N - 5  
N - 4  
N - 4  
N - 3  
N - 3  
N - 2  
N - 1  
N - 1  
N
N
N + 1  
D7AD0A  
DATA OUTPUT  
N - 6  
N - 5  
N - 2  
N + 1  
D7BD0B  
Figure 3. System Timing Diagram  
Match the impedance of INA+ and INA-, as well as  
INB+ and INB-, and set the common-mode voltage to  
In unbuffered external reference mode, connect REFIN  
to GND. This deactivates the on-chip reference buffers  
for REFP, COM, and REFN. With their buffers shut  
down, these nodes become high-impedance inputs  
and can be driven through separate, external reference  
sources.  
mid supply (V /2) for optimum performance.  
DD  
Analog Inputs and Reference  
Configurations  
The full-scale range of the MAX1198 is determined by  
the internally generated voltage difference between  
For detailed circuit suggestions and how to drive this  
dual ADC in buffered/unbuffered external reference  
mode, see the Applications Information section.  
REFP (V /2 + V  
/4) and REFN (V /2 - V  
/4).  
REFIN  
DD  
REFIN  
DD  
The full-scale range for both on-chip ADCs is  
adjustable through the REFIN pin, which is provided for  
this purpose.  
Clock Input (CLK)  
The MAX1198s CLK input accepts a CMOS-compati-  
ble clock signal. Since the interstage conversion of the  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low  
jitter and fast rise and fall times (<2ns). In particular,  
sampling occurs on the rising edge of the clock signal,  
requiring this edge to provide lowest possible jitter. Any  
significant aperture jitter would limit the SNR perfor-  
mance of the on-chip ADCs as follows:  
The MAX1198 provides three modes of reference operation:  
Internal reference mode  
Buffered external reference mode  
Unbuffered external reference mode  
In internal reference mode, connect the internal refer-  
ence output REFOUT to REFIN through a resistor (e.g.,  
10k) or resistor-divider, if an application requires a  
reduced full-scale range. For stability and noise-filtering  
purposes, bypass REFIN with a >10nF capacitor to  
GND. In internal reference mode, REFOUT, COM,  
REFP, and REFN become low-impedance outputs.  
1
SNR = 20 × log  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
In buffered external reference mode, adjust the refer-  
ence voltage levels externally by applying a stable and  
accurate voltage at REFIN. In this mode, COM, REFP,  
and REFN are outputs. REFOUT can be left open or  
connected to REFIN through a >10kresistor.  
t
AJ  
is the time of the aperture jitter.  
Clock jitter is especially critical for undersampling  
applications. The clock input should always be consid-  
ered as an analog input and routed away from any ana-  
log input or other digital signal lines.  
______________________________________________________________________________________ 13  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Table 1. MAX1198 Output Codes For  
OE  
Differential Inputs  
t
t
DISABLE  
ENABLE  
STRAIGHT  
OFFSET  
BINARY  
T/B = 0  
TWOS  
COMPLEMENT  
DIFFERENTIAL  
INPUT  
VOLTAGE*  
DIFFERENTIAL  
INPUT  
OUTPUT  
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
VALID DATA  
VALID DATA  
D7AD0A  
T/B = 1  
+Full Scale  
- 1LSB  
OUTPUT  
D7BD0B  
V
x 255/256  
1111 1111  
1000 0001  
0111 1111  
REF  
V
x 1/256  
0
+1LSB  
0000 0001  
0000 0000  
1111 1111  
REF  
Bipolar Zero 1000 0000  
Figure 4. Output Timing Diagram  
-V  
REF  
x 1/256  
-1LSB  
0111 1111  
0000 0001  
0000 0000  
The MAX1198 clock input operates with a voltage thresh-  
-Full Scale  
+ 1LSB  
-V  
x 255/256  
x 256/256  
1000 0001  
1000 0000  
REF  
REF  
old set to V /2. Clock inputs with a duty cycle other  
DD  
than 50% must meet the specifications for high and low  
-V  
*V  
-Full Scale  
periods as stated in the Electrical Characteristics table.  
= V  
- V  
REFN  
REF  
REFP  
System Timing Requirements  
Figure 3 depicts the relationship between the clock  
input, analog input, and data output. The MAX1198  
samples at the rising edge of the input clock. Output  
data for channels A and B is valid on the next rising  
edge of the input clock. The output data has an internal  
latency of five clock cycles. Figure 3 also determines  
the relationship between the input clock parameters  
and the valid output data on channels A and B.  
Power-Down and Sleep Modes  
The MAX1198 offers two power-save modessleep  
mode (SLEEP) and full power-down (PD) mode. In  
sleep mode (SLEEP = 1), only the reference bias circuit  
is active (both ADCs are disabled), and current con-  
sumption is reduced to 3.2mA.  
To enter full power-down mode, pull PD high. With OE  
simultaneously low, all outputs are latched at the last  
value prior to power-down. Pulling OE high forces the  
digital outputs into a high-impedance state.  
Digital Output Data (D0A/B–D7A/B), Output  
Data Format Selection (T/B), Output  
Enable (OE)  
Applications Information  
All digital outputs, D0AD7A (channel A) and D0BD7B  
(channel B), are TTL/CMOS-logic compatible. There is a  
five-clock-cycle latency between any particular sample  
and its corresponding output data. The output  
coding can either be straight offset binary or twos com-  
plement (Table 1) controlled by a single pin (T/B). Pull  
T/B low to select offset binary and high to activate twos  
complement output coding. The capacitive load on the  
digital outputs D0AD7A and D0BD7B should be kept  
as low as possible (<15pF), to avoid large digital cur-  
rents that could feed back into the analog portion of the  
MAX1198, thereby degrading its dynamic performance.  
Using buffers on the digital outputs of the ADCs can fur-  
ther isolate the digital outputs from heavy capacitive  
loads. To further improve the dynamic performance of  
the MAX1198, small-series resistors (e.g., 100) may  
be added to the digital output paths close to the  
MAX1198.  
Figure 5 depicts a typical application circuit containing  
two single-ended-to-differential converters. The internal  
reference provides a V /2 output voltage for level-  
DD  
shifting purposes. The input is buffered and then split  
to a voltage follower and inverter. One lowpass filter per  
amplifier suppresses some of the wideband noise  
associated with high-speed op amps. The user can  
select the R  
and C values to optimize the filter per-  
IN  
ISO  
formance, to suit a particular application. For the appli-  
cation in Figure 5, a R of 50is placed before the  
ISO  
capacitive load to prevent ringing and oscillation. The  
22pF C capacitor acts as a small filter capacitor.  
IN  
Using Transformer Coupling  
An RF transformer (Figure 6) provides an excellent  
solution to convert a single-ended source signal to a  
fully differential signal, required by the MAX1198 for  
optimum performance. Connecting the center tap of the  
transformer to COM provides a V /2 DC level shift to  
DD  
the input. Although a 1:1 transformer is shown, a step-  
up transformer can be selected to reduce the drive  
Figure 4 displays the timing relationship between out-  
put enable and data output valid, as well as power-  
down/wakeup and data output valid.  
14 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
+5V  
0.1µF  
LOWPASS FILTER  
INA-  
MAX4108  
300Ω  
R
IS0  
50Ω  
0.1µF  
C
IN  
22pF  
0.1µF  
-5V  
600Ω  
600Ω  
300Ω  
+5V  
COM  
INA+  
0.1µF  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
MAX4108  
R
IS0  
C
IN  
22pF  
50Ω  
-5V  
-5V  
+5V  
300Ω  
300Ω  
600Ω  
MAX1198  
0.1µF  
0.1µF  
LOWPASS FILTER  
INB-  
MAX4108  
300Ω  
R
IS0  
50Ω  
0.1µF  
C
IN  
22pF  
-5V  
600Ω  
+5V  
600Ω  
600Ω  
300Ω  
0.1µF  
0.1µF  
0.1µF  
+5V  
INPUT  
LOWPASS FILTER  
0.1µF  
MAX4108  
300Ω  
300Ω  
INB+  
MAX4108  
R
IS0  
50Ω  
C
IN  
22pF  
-5V  
0.1µF  
-5V  
300Ω  
300Ω  
600Ω  
Figure 5. Typical Application for Single-Ended-to-Differential Conversion  
______________________________________________________________________________________ 15  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
25Ω  
REFP  
INA+  
22pF  
1kΩ  
R
ISO  
50Ω  
V
IN  
0.1µF  
0.1µF  
INA+  
COM  
INA-  
1
2
6
5
4
T1  
V
IN  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
N.C.  
COM  
2.2µF  
0.1µF  
3
REFN  
0.1µF  
R
ISO  
50Ω  
MINICIRCUITS  
TT16-KK81  
25Ω  
25Ω  
INA-  
INB+  
C
IN  
22pF  
22pF  
22pF  
REFP  
MAX1198  
MAX1198  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
INB+  
0.1µF  
MAX4108  
1
2
3
6
5
4
T1  
C
IN  
22pF  
V
IN  
100Ω  
100Ω  
1kΩ  
N.C.  
REFN  
2.2µF  
0.1µF  
0.1µF  
R
ISO  
50Ω  
MINICIRCUITS  
TT1-6-KK81  
INB-  
25Ω  
C
IN  
22pF  
INB-  
22pF  
Figure 7. Using an Op Amp for Single-Ended, AC-Coupled  
Input Drive  
Figure 6. Transformer-Coupled Input Drive  
requirements. A reduced signal swing from the input  
driver, such as an op amp, can also improve the overall  
distortion.  
Buffered External Reference Drives  
Multiple ADCs  
Multiple-converter systems based on the MAX1198 are  
well suited for use with a common reference voltage.  
The REFIN pin of those converters can be connected  
directly to an external reference source.  
In general, the MAX1198 provides better SFDR and  
THD with fully differential input signals than single-  
ended drive, especially for very high input frequencies.  
In differential input mode, even-order harmonics are  
lower as both inputs (INA+, INA- and/or INB+, INB-) are  
balanced, and each of the ADC inputs only requires half  
the signal swing compared to single-ended mode.  
A precision bandgap reference like the MAX6062 gen-  
erates an external DC level of 2.048V (Figure 8), and  
exhibits a noise-voltage density of 150nV/Hz. Its out-  
put passes through a 1-pole lowpass filter (with 10Hz  
cutoff frequency) to the MAX4250, which buffers the  
reference before its output is applied to a second 10Hz  
lowpass filter. The MAX4250 provides a low offset volt-  
age (for high gain accuracy) and a low noise level. The  
passive 10Hz filter following the buffer attenuates noise  
produced in the voltage reference and buffer stages.  
This filtered noise density, which decreases for higher  
frequencies, meets the noise levels specified for preci-  
sion ADC operation.  
Single-Ended AC-Coupled Input Signal  
Figure 7 shows an AC-coupled, single-ended applica-  
tion. Amplifiers like the MAX4108 provide high speed,  
high bandwidth, low noise, and low distortion to main-  
tain the integrity of the input signal.  
16 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
3.3V  
3.3V  
0.1µF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
2.048V  
0.1µF  
1
MAX6062  
3
0.1µF  
16.2kΩ  
REFN  
N = 1  
5
2
3
4
2
162Ω  
COM  
1
MAX1198  
MAX4250  
2
1µF  
100µF  
10Hz LOWPASS  
FILTER  
0.1µF 0.1µF 0.1µF  
10Hz LOWPASS  
FILTER  
2.2µF  
10V  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN MAY BE USED WITH UP TO 1000 ADCs.  
0.1µF  
29  
31  
32  
1
N.C.  
REFOUT  
REFIN  
REFP  
N = 1000  
0.1µF  
REFN  
MAX1198  
2
COM  
0.1µF 0.1µF 0.1µF  
Figure 8. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference  
Note that the common power supply for all active com-  
ponents removes any concern regarding power-supply  
sequencing when powering up or down. With the out-  
puts of the MAX4252 matching better than 0.1%, the  
buffers and subsequent lowpass filters can be replicat-  
ed to support as many as 32 ADCs. For applications  
that require more than 32 matched ADCs, a voltage  
reference and divider string common to all converters  
is highly recommended.  
Unbuffered External Reference Drives  
Multiple ADCs  
Connecting each REFIN to analog ground disables the  
internal reference of each device, allowing the internal  
reference ladders to be driven directly by a set of  
external reference sources. Followed by a 10Hz low-  
pass filter and precision voltage-divider, the MAX6066  
generates a DC level of 2.500V. The buffered outputs  
of this divider are set to 2.0V, 1.5V, and 1.0V, with an  
accuracy that depends on the tolerance of the divider  
resistors.  
Typical QAM Demodulation Application  
A frequently used modulation technique in digital com-  
munications applications is quadrature amplitude  
modulation (QAM). Typically found in spread-spec-  
trum-based systems, a QAM signal represents a carrier  
frequency modulated in both amplitude and phase. At  
the transmitter, modulating the baseband signal with  
quadrature outputs, a local oscillator followed by sub-  
sequent upconversion can generate the QAM signal.  
The result is an in-phase (I) and a quadrature (Q) carri-  
er component, where the Q component is 90° phase  
These three voltages are buffered by the MAX4252,  
which provides low noise and low DC offset. The indi-  
vidual voltage followers are connected to 10Hz low-  
pass filters, which filter both the reference voltage and  
amplifier noise to a level of 3nV/Hz. The 2.0V and 1.0V  
reference voltages set the differential full-scale range  
of the associated ADCs at 2V . The 2.0V and 1.0V  
P-P  
buffers drive the ADCs internal ladder resistances  
between them.  
______________________________________________________________________________________ 17  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
3.3V  
0.1µF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
1
MAX6066  
3
2.0V  
3.3V  
4
4
4
21.5kΩ  
REFN  
N = 1  
2.0V AT 8mA  
2
3
2
1/4 MAX4252  
1
47Ω  
MAX1198  
2
COM  
10µF  
6V  
330µF  
6V  
11  
21.5kΩ  
1.47kΩ  
0.1µF 0.1µF 0.1µF  
1.5V  
3.3V  
1.5V AT 0mA  
5
6
1/4 MAX4252  
7
47Ω  
1µF  
10µF  
330µF  
11  
6V  
6V  
21.5kΩ  
2.2µF  
10V  
1.47kΩ  
0.1µF  
3.3V  
0.1µF  
1.0V  
3.3V  
1.0V AT -8mA  
10  
9
1/4 MAX4252  
8
47Ω  
21.5kΩ  
21.5kΩ  
330µF  
6V  
29  
31  
32  
1
N.C.  
10µF  
11  
REFOUT  
REFIN  
REFP  
MAX4254 POWER-SUPPLY  
6V  
BYPASSING. PLACE CAPACITOR  
AS CLOSE AS POSSIBLE TO  
THE OP AMP.  
1.47kΩ  
N = 32  
REFN  
MAX1198  
2
COM  
0.1µF 0.1µF 0.1µF  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN MAY BE USED WITH UP TO 32 ADCs.  
Figure 9. External Unbuffered Reference Drive with MAX4252 and MAX6066  
shifted with respect to the in-phase component. At the  
receiver, the QAM signal is divided down into its I and  
Q components, essentially representing the modulation  
Grounding, Bypassing,  
and Board Layout  
The MAX1198 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to  
the device as possible, preferably on the same side as  
the ADC, using surface-mount devices for minimum  
process reversed. Figure 10 displays the demodulation  
process performed in the analog domain, using the  
dual matched 3.3V, 8-bit ADC MAX1198 and the  
MAX2451 quadrature demodulator to recover and  
digitize the I and Q baseband signals. Before being  
digitized by the MAX1198, the mixed down-signal com-  
ponents may be filtered by matched analog filters, such  
as Nyquist or pulse-shaping filters, which remove  
unwanted images from the mixing process, thereby  
enhancing the overall signal-to-noise (SNR) perfor-  
mance and minimizing intersymbol interference.  
inductance. Bypass V , REFP, REFN, and COM with  
DD  
two parallel 0.1µF ceramic capacitors and a 2.2µF  
bipolar capacitor to GND. Follow the same rules to  
bypass the digital supply (OV ) to OGND. Multilayer  
DD  
boards with separated ground and power planes  
produce the highest level of signal integrity. Consider  
the use of a split ground plane arranged to match the  
18 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
MAX2451  
INA+  
INA-  
0°  
DSP  
90°  
POST-  
MAX1198  
PROCESSING  
INB+  
INB-  
DOWNCONVERTER  
÷
8
Figure 10. Typical QAM Application Using the MAX1198  
Static Parameter Definitions  
CLK  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1198 are mea-  
sured using the best-straight-line-fit method.  
ANALOG  
INPUT  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
HOLD  
TRACK  
TRACK  
T/H  
Figure 11. T/H Aperture Timing  
physical location of the analog ground (GND) and the  
digital output driver ground (OGND) on the ADCs  
package. The two ground planes should be joined at a  
single point so the noisy digital ground currents do not  
interfere with the analog ground plane. The ideal loca-  
tion for this connection can be determined experimen-  
tally at a point along the gap between the two ground  
planes, which produces optimum results. Make this  
connection with a low-value, surface-mount resistor (1Ω  
to 5), a ferrite bead, or a direct short.  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 11 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 11).  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADCs reso-  
lution (N-bits):  
Alternatively, all ground pins could share the same  
ground plane if the ground plane is sufficiently isolated  
from any noisy, digital systems ground plane (e.g.,  
downstream output buffer or DSP ground plane). Route  
high-speed digital signal traces away from the sensitive  
analog traces of either channel. Make sure to isolate  
the analog input lines to each respective converter to  
minimize channel-to-channel crosstalk. Keep all signal  
lines short and free of 90° turns.  
SNR  
= 6.02 N + 1.76  
dB dB  
dB[max]  
______________________________________________________________________________________ 19  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
In reality, there are other noise sources besides quanti-  
2
2
2
2
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
5
harmonics.  
Signal-to-Noise Plus Distortion  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio  
expressed in decibels of the RMS amplitude of the fun-  
damental (maximum signal component) to the RMS  
value of the next largest spurious component, exclud-  
ing DC offset.  
Effective Number of Bits  
Effective number of bits (ENOB) specifies the dynamic  
performance of an ADC at a specific input frequency  
and sampling rate. An ideal ADCs error consists of  
quantization noise only. ENOB for a full-scale sinusoidal  
input waveform is computed from:  
Intermodulation Distortion  
The two-tone intermodulation distortion (IMD) is the  
ratio expressed in decibels of either input tone to the  
worst third-order (or higher) intermodulation products.  
The individual input tone levels are at -7dB full scale  
and their envelope is at -1dB full scale.  
SINAD1.76  
ENOB =  
6.02  
Total Harmonic Distortion  
THD is typically the ratio of the RMS sum of the first four  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
Chip Information  
TRANSISTOR COUNT: 11,601  
PROCESS: CMOS  
20 ______________________________________________________________________________________  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Functional Diagram  
V
OGND  
OV  
DD  
GND  
DD  
INA+  
8
8
OUTPUT  
DRIVERS  
D7AD0A  
ADC  
DEC  
T/H  
INA-  
CLK  
CONTROL  
OE  
INB+  
INB-  
8
8
OUTPUT  
DRIVERS  
DEC  
T/H  
ADC  
D7BD0B  
T/B  
PD  
SLEEP  
REFERENCE  
MAX1198  
REFOUT  
REFN COM REFP  
REFIN  
Pin-Compatible Upgrades  
(Sampling Speed and Resolution)  
SAMPLING SPEED  
8-BIT PART  
10-BIT PART  
(Msps)  
MAX1195  
MAX1197  
MAX1198  
MAX1196*  
MAX1183  
MAX1182  
MAX1180  
MAX1186  
40  
60  
100  
40, multiplexed  
*Future product, please contact factory for availability.  
______________________________________________________________________________________ 21  
Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1198ECM

Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX1198ECM+D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MO-136AE, TQFP-48
MAXIM

MAX1198ECM+TD

暂无描述
MAXIM

MAX1198ECM-D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MO-136AE, TQFP-48
MAXIM

MAX1198ECM-TD

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MO-136AE, TQFP-48
MAXIM

MAX1198EVKIT

Evaluation Kit for the MAX1195/MAX1196/MAX1197/MAX1198
MAXIM

MAX11GVAD00.500

Quartz Crystal
MTRONPTI

MAX11GVAD04.000

Quartz Crystal
MTRONPTI

MAX11GVAD04.001

Quartz Crystal
MTRONPTI

MAX11GVAD10.000MHZ

CMOS/TTL Output Clock Oscillator, 10MHz Nom, DIP-4
MTRONPTI

MAX11GVAD16.000

Quartz Crystal
MTRONPTI

MAX11GVAD16.001

Quartz Crystal
MTRONPTI