MAX1188ACUP-T [MAXIM]

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20;
MAX1188ACUP-T
型号: MAX1188ACUP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20

文件: 总15页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2755; Rev 0; 1/03  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
General Description  
Features  
The MAX1177/MAX1178/MAX1188 16-bit, low-power,  
successive-approximation analog-to-digital converters  
(ADCs) feature automatic power-down, a factory-  
trimmed internal clock, and a byte-wide parallel inter-  
face. The devices operate from a single +4.75V to  
+5.25V analog supply and feature a separate digital  
supply input for direct interface with +2.7V to +5.25V  
digital logic.  
Byte-Wide Parallel Interface  
Analog Input Voltage Range: ±±1Vꢀ ±ꢁVꢀ 1 to ±1V  
Single +4.7ꢁV to +ꢁ.2ꢁV Analog Supply Voltage  
Interfaces with +2.7V to +ꢁ.2ꢁV Digital Logic  
±2 LSB IꢂL ꢃ(aꢄx  
±± LSB DꢂL ꢃ(aꢄx  
The MAX1177 accepts an analog input voltage range  
from 0 to +10V. The MAX1188 accepts a bipolar analog  
input voltage range of 10V, while the MAX1178  
accepts a bipolar analog input voltage range of 5V.  
All devices consume no more than 26.5mW at a sam-  
pling rate of 135ksps when using an external reference  
and 31mW when using the internal +4.096V reference.  
AutoShutdown™ reduces supply current to 0.4mA at  
10ksps.  
Low Supply Current ꢃ(aꢄx  
2.9(A ꢃEꢄternal Referencex  
3.8(A ꢃInternal Referencex  
ꢁµA AutoShutdown Mode  
S(all Footprint  
21-Pin TSSOP Package  
Ordering Information  
The MAX1177/MAX1178/MAX1188 are ideal for high-  
performance, battery-powered, data-acquisition appli-  
cations. Excellent AC performance (THD = -100dB) and  
DC accuracy ( 2 ꢀSB ꢁIꢀ) make the MAX1177/  
MAX1178/MAX1188 ideal for industrial process control,  
instrumentation, and medical applications.  
IꢂPUT  
VOLTAGE  
RAꢂGE ꢃVx  
PIꢂ-  
PACKAGE  
PART  
TEMP RAꢂGE  
MAX±±77ACUP*  
MAX1177BCUP*  
MAX1177CCUP*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
0 to +10  
0 to +10  
0 to +10  
0 to +10  
0 to +10  
0 to +10  
The MAX1177/MAX1178/MAX1188 are available in a  
20-pin TSSOP package and are fully specified over the  
-40°C to +85°C extended temperature range and the  
0°C to +70°C commercial temperature range.  
MAX1177AEUP* -40°C to +85°C  
MAX1177BEUP* -40°C to +85°C  
MAX1177CEUP* -40°C to +85°C  
*Future product—contact factory for availability.  
Ordering Information continued at end of data sheet.  
Applications  
Typical Operating Circuit  
Temperature Sensing and Monitoring  
ꢁndustrial Process Control  
ꢁ/O Modules  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
Data-Acquisition Systems  
Precision ꢁnstrumentation  
AV  
DV  
µP DATA  
BUS  
DD  
DD  
D0–D7  
OR  
ANALOG INPUT  
AIN  
D8–D15  
MAX1177  
MAX1178  
MAX1188  
EOC  
R/C  
CS  
REF  
REFADJ  
HBEN  
Pin Configuration and Functional Diagram appear at end of  
data sheet.  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
LOW  
BYTE  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ABSOLUTE MAXIMUM RATIꢂGS  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
to DGND.........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
20-Pin TSSOP (derate 10.9mW/°C above +70°C) .......879mW  
DD  
DD  
A
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .....................................................-16.5V to +16.5V  
Operating Temperature Ranges  
MAX11_ _ _CUP..................................................0°C to +70°C  
MAX11_ _ _EUP...............................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
REF, REFADJ to AGND............................-0.3V to (AV  
+ 0.3V)  
DD  
CS, R/C, HBEN to DGND .........................................-0.3V to +6V  
D_, EOC to DGND ...................................-0.3V to (DV + 0.3V)  
DD  
Maximum Continuous Current into any Pin.........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
RES  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Bits  
Resolution  
16  
-1  
-1  
-1  
-2  
-2  
-4  
MAX11_ _A  
+1  
+1.5  
+2  
No missing codes  
overtemperature  
Diꢁꢁerential Nonlinearity  
DNL  
LSB  
MAX11_ _B  
MAX11_ _C  
MAX11_ _A  
MAX11_ _B  
MAX11_ _C  
+2  
Integral Nonlinearity  
Transition Noise  
INL  
+2  
LSB  
+4  
RMS noise, external reꢁerence  
Internal reꢁerence  
0.6  
0.75  
0
LSB  
RMS  
Oꢁꢁset Error  
Gain Error  
Oꢁꢁset Driꢁt  
Gain Driꢁt  
-10  
+10  
0.2  
mV  
0
ꢀFSR  
µV/°C  
16  
1
ppm/°C  
AC ACCURACY (ꢁ = 1kHz, V  
= ꢁull range, 135ksps)  
IN  
AIN  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
86  
87  
90  
91  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AꢂALOG IꢂPUT  
THD  
-100  
103  
-92  
SFDR  
92  
MAX1177  
0
10  
+10  
+5  
Input Range  
V
MAX1188  
-10  
-5  
V
AIN  
MAX1178  
MAX1177/MAX1178  
MAX1177  
Normal operation  
5.3  
5.3  
3.0  
7.8  
6.0  
6.9  
10  
9.2  
Shutdown mode  
Shutdown mode  
Normal operation  
Shutdown mode  
Input Resistance  
R
MAX1178  
kΩ  
AIN  
13.0  
MAX1188  
2
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢃcontinuedx  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
+10V  
MIꢂ  
-0.1  
-1.8  
-1.8  
-1.8  
-1.8  
TYP  
MAX  
UꢂITS  
MAX1177, 0 V  
+2.0  
+1.2  
+1.8  
+0.4  
+1.8  
AIN  
Normal operation  
MAX1188,  
-10V V  
+10V  
Input Current  
I
AIN  
Shutdown mode  
Normal operation  
Shutdown mode  
mA  
AIN  
MAX1178,  
-5V V  
+5V  
AIN  
MAX1188, V  
operating mode  
= +10V, shutdown mode to  
AIN  
0.5  
0.7  
1.4  
Input Current Step at Power-Up  
I
mA  
pF  
PU  
MAX1178, V  
= +5V, shutdown mode to  
AIN  
1
operating mode  
Input Capacitance  
C
10  
IN  
IꢂTERꢂAL REFEREꢂCE  
REF Output Voltage  
V
4.056  
3.8  
4.096  
35  
4.136  
V
REF  
REF Output Tempco  
ppm/°C  
mA  
REF Short-Circuit Current  
EXTERꢂAL REFEREꢂCE  
I
10  
REF-SC  
REF and REFADJ Input Voltage  
Range  
4.2  
V
V
AV  
-
AV  
-
DD  
DD  
REFADJ Buꢁꢁer Disable Threshold  
REF Input Current  
0.4  
0.1  
Normal mode, ꢁ  
= 135ksps  
60  
0.1  
16  
100  
10  
SAMPLE  
I
µA  
µA  
REF  
Shutdown mode (Note 1)  
REFADJ = AV  
REFADJ Input Current  
I
REFADJ  
DD  
DIGITAL IꢂPUTS/OUTPUTS  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V, DV  
-
DD  
SOURCE  
DD  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
V
V
V
V
V
OH  
AV  
0.4  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
OL  
AV  
DD  
0.7 ×  
DV  
V
IH  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
Digital input = DV  
or 0V  
-1  
+1  
µA  
V
DD  
V
0.2  
15  
HYST  
Input Capacitance  
C
pF  
µA  
pF  
IN  
Three-State Output Leakage  
Three-State Output Capacitance  
I
10  
OZ  
C
15  
OZ  
_______________________________________________________________________________________  
3
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢃcontinuedx  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
MAX  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
2.9  
V
V
DD  
DD  
MAX1177  
External reꢁerence,  
135ksps  
MAX1178/MAX1188  
MAX1177  
4
5.3  
Analog Supply Current  
I
mA  
AVDD  
3.8  
Internal reꢁerence,  
135ksps  
MAX1178/MAX1188  
5.2  
0.5  
3.7  
6.2  
Shutdown mode (Note 1), digital input =  
DV or 0V  
5
µA  
Shutdown Supply Current  
I
DD  
SHDN  
DVDD  
Standby mode  
mA  
mA  
Digital Supply Current  
Power-Supply Rejection  
I
0.75  
AV  
= DV  
= 4.75V to 5.25V  
DD  
3.5  
LSB  
DD  
TIMIꢂG CHARACTERISTICS ꢃFigures ± and 2x  
(AV  
= +4.75V to +5.25V 5ꢀ, DV  
= +2.7V to AV , external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
=
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
AV , C  
= 20pF, T = T  
to T  
.)  
DD LOAD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
ksps  
µs  
Maximum Sampling Rate  
Acquisition Time  
135  
SAMPLE-MAX  
t
2
ACQ  
Conversion Time  
t
4.7  
µs  
CONV  
CS Pulse Width High  
t
(Note 2)  
(Note 2)  
40  
40  
60  
0
ns  
CSH  
DV  
DV  
= 4.75V to 5.25V  
DD  
DD  
CS Pulse Width Low  
t
ns  
ns  
ns  
CSL  
= 2.7V to 5.25V  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
DS  
DH  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
60  
DD  
DD  
DD  
DD  
t
40  
80  
CS to Output Data Valid  
EOC Fall to CS Fall  
t
ns  
ns  
ns  
DO  
t
0
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
80  
40  
80  
40  
80  
DD  
DD  
DD  
DD  
DD  
DD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time  
t
ns  
ns  
BR  
HBEN Transition to Output Data  
Valid  
t
1
DO  
ꢂote ±: Maximum speciꢁication is limited by automated test equipment.  
ꢂote 2: To ensure best perꢁormance, ꢁinish reading the data and wait t beꢁore starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics  
(Typical Application Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
C
LOAD  
= 20pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
INL vs. CODE  
DNL vs. CODE  
vs. TEMPERATURE  
MAX1177/78/88 toc01  
MAX1177/78/88 toc02  
2.5  
2.0  
2.5  
2.0  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
5.25V  
5.0V  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
4.75V  
= 135ksps  
f
SAMPLE  
SHUTDOWN MODE  
BETWEEN CONVERSIONS  
0
10000 20000 30000 40000 50000 60000  
CODE  
0
10000 20000 30000 40000 50000 60000  
CODE  
80  
-40  
-20  
0
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY CURRENT (AV + DV  
DD  
)
SHUTDOWN CURRENT (AV + DV )  
DD DD  
DD  
vs. SAMPLE RATE  
vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
10  
1
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
8
NO CONVERSIONS  
6
STANDBY MODE  
4
MAX1177  
0.1  
2
0
SHUTDOWN MODE  
0.01  
0.001  
-2  
-4  
-6  
-8  
-10  
MAX1188  
MAX1178  
V
= 0V  
AIN  
0.0001  
0.01  
0.1  
1
10  
100  
1000  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
SAMPLE RATE (ksps)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTERNAL REFERENCE  
vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
FFT AT 1kHz  
0.20  
0.15  
0.10  
0.05  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
0
-20  
f
= 131ksps  
SAMPLE  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
-40  
-20  
0
20  
40  
60  
80  
0
10  
20  
30  
40  
50  
60  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
C
LOAD  
= 20pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MIN  
MAX  
A
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
THD vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
100  
80  
60  
40  
20  
0
f
= 131ksps  
f
= 131ksps  
SAMPLE  
SAMPLE  
f
= 131ksps  
SAMPLE  
1
10  
100  
1
10  
FREQUENCY (kHz)  
100  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
Pin Description  
PIꢂ  
1
ꢂAME  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
FUꢂCTIOꢂ  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
2
3
4
Three-State Digital Data Output. D15 is the MSB.  
Read/Convert Input. Power up and put the MAX1177/MAX1178/MAX1188 in acquisition mode by  
holding R/C low during the ꢁirst ꢁalling edge oꢁ CS. During the second ꢁalling edge oꢁ CS, the level on  
R/C determines whether the reꢁerence and reꢁerence buꢁꢁer power down or remain on aꢁter  
conversion. Set R/C high during the second ꢁalling edge oꢁ CS to power down the reꢁerence and  
buꢁꢁer, or set R/C low to leave the reꢁerence and buꢁꢁer powered up. Set R/C high during the third  
ꢁalling edge oꢁ CS to put valid data on the bus.  
5
R/C  
6
7
EOC  
End oꢁ Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
8
AGND  
AIN  
9
10  
AGND  
Analog Ground. Connect pin 10 to pin 8.  
Reꢁerence Buꢁꢁer Output. Bypass REFADJ with a 0.1µF capacitor to AGND ꢁor internal reꢁerence  
11  
12  
REFADJ  
REF  
mode. Connect REFADJ to AV  
to select external reꢁerence mode.  
DD  
Reꢁerence Input/Output. Bypass REF with a 10µF capacitor to AGND ꢁor internal reꢁerence mode.  
External reꢁerence input when in external reꢁerence mode.  
6
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Pin Description (continued)  
PIꢂ  
ꢂAME  
FUꢂCTIOꢂ  
High-Byte Enable Input. Used to multiplex the 16-bit conversion result.  
1: Most signiꢁicant byte available on the data bus.  
13  
HBEN  
0: Least signiꢁicant byte available on the data bus.  
Convert Start. The ꢁirst ꢁalling edge oꢁ CS powers up the device and enables acquire mode when R/C  
is low. The second ꢁalling edge oꢁ CS starts conversion. The third ꢁalling edge oꢁ CS loads the result  
onto the bus when R/C is high.  
14  
CS  
15  
16  
17  
18  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
Three-State Digital Data Output. D0 is the LSB.  
Three-State Digital Data Output  
DD  
D0/D8  
D1/D9  
D2/D10  
D3/D11  
Three-State Digital Data Output  
Three-State Digital Data Output  
Analog Input  
DV  
DD  
Input Scaler  
The MAX1177/MAX1178/MAX1188 have an input  
scaler, which allows conversion oꢁ true bipolar input  
voltages and input voltages greater than the power  
supply, while operating ꢁrom a single +5V analog sup-  
ply. The input scaler attenuates and shiꢁts the analog  
input to match the input range oꢁ the internal DAC. The  
MAX1177 has a unipolar input voltage range oꢁ 0 to  
+10V. The MAX1188 input voltage range is 10V while  
the MAX1178 input voltage range is 5V. Figure 4  
shows the equivalent input circuit oꢁ the MAX1177/  
MAX1178/MAX1188. This circuit limits the current going  
into or out oꢁ AIN to less than 1.8mA.  
1mA  
DOD15  
DOD15  
C
= 20pF  
C
= 20pF  
LOAD  
1mA  
LOAD  
DGND  
a) HIGH-Z TO V  
DGND  
,
OH  
b) HIGH-Z TO V ,  
OL  
V
V
TO V , AND  
OL  
OH  
OH  
V
OH  
V
OL  
TO V , AND  
TO HIGH-Z  
OL  
TO HIGH-Z  
Figure 1. Load Circuits  
Track and Hold (T/H)  
In track mode, the internal hold capacitor acquires the  
analog signal (see Figure 4). In hold mode, the T/H  
switches open and the capacitive DAC samples the  
analog input. During the acquisition, the analog input  
Detailed Description  
Converter Operation  
The MAX1177/MAX1178/MAX1188 use a successive-  
approximation (SAR) conversion technique with an  
inherent track-and-hold (T/H) stage to convert an ana-  
log input into a 16-bit digital output. Parallel outputs  
provide a high-speed interꢁace to microprocessors  
(µPs). The Functional Diagram shows a simpliꢁied inter-  
nal architecture oꢁ the MAX1177/MAX1178/MAX1188.  
Figure 3 shows a typical application circuit ꢁor the  
MAX1177/MAX1178/MAX1188.  
(AIN) charges capacitor C  
. The acquisition ends  
HOLD  
on the second ꢁalling edge oꢁ CS. At this instant, the  
T/H switches open. The retained charge on C rep-  
HOLD  
resents a sample oꢁ the input. In hold mode, the capac-  
itive DAC adjusts during the remainder oꢁ the  
conversion time to restore node T/H OUT to zero within  
the limits oꢁ 16-bit resolution. Force CS low to put valid  
data on the bus aꢁter conversion is complete.  
_______________________________________________________________________________________  
7
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
t
t
CSH  
CSL  
CS  
R/C  
t
ACQ  
REF POWER-  
DOWN CONTROL  
t
t
t
t
DV  
EOC  
DH  
DS  
EOC  
t
t
DO  
CONV  
HBEN  
t
t
t
DO1  
BR  
DO  
HIGH-Z  
HIGH-Z  
D7/D15D0/D8  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
Figure 2. MAX1177/MAX1178/MAX1188 Timing Diagram  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
bit during the second ꢁalling edge oꢁ CS (see the  
Selecting Standby or Shutdown Mode section). The  
MAX1177/MAX1178/MAX1188 automatically enter  
either standby mode (reꢁerence and buꢁꢁer on) or shut-  
down (reꢁerence and buꢁꢁer oꢁꢁ) aꢁter each conversion,  
depending on the status oꢁ R/C during the second  
ꢁalling edge oꢁ CS.  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
AV  
DV  
DD  
DD  
µP DATA  
BUS  
D0D7  
ANALOG INPUT  
AIN  
OR  
Internal Clock  
The MAX1177/MAX1178/MAX1188 generate an internal  
conversion clock to ꢁree the microprocessor ꢁrom the  
burden oꢁ running the SAR conversion clock. Total con-  
D8D15  
MAX1177  
MAX1178  
MAX1188  
EOC  
REF  
R/C  
CS  
version time (t  
) aꢁter entering hold mode (second  
CONV  
REFADJ  
ꢁalling edge oꢁ CS) to end oꢁ conversion (EOC) ꢁalling is  
4.7µs (max).  
HBEN  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
Applications Information  
LOW  
BYTE  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1177/MAX1178/MAX1188 (see Figure 2). The ꢁirst  
ꢁalling edge oꢁ CS powers up the device and puts it in  
acquire mode iꢁ R/C is low. The convert start is ignored  
iꢁ R/C is high. The MAX1177/MAX1178/MAX1188 need  
Figure 3. Typical Application Circuit for the MAX1177/MAX1178/  
MAX1188  
8
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
REF  
MAX1177  
MAX1178/MAX1188  
R1  
R1  
3.4k  
3.4kΩ  
C
C
HOLD  
30pF  
HOLD  
30pF  
R2  
161Ω  
R2  
161Ω  
TRACK  
S1  
TRACK  
S1  
AIN  
AIN  
T/H OUT  
T/H OUT  
R3  
R3  
HOLD  
HOLD  
TRACK  
HOLD  
S2  
TRACK  
HOLD  
S2  
S3  
POWER-  
DOWN  
R2 = 7.85k(MAX1188)  
OR 3.92k(MAX1177/MAX1178)  
S1, S2 = T/H SWITCH  
S3 = POWER-DOWN  
R3 = 5.45k(MAX1188)  
(MAX1178/MAX1188 ONLY)  
OR 17.79k(MAX1177/MAX1178)  
Figure 4. Equivalent Input Circuit  
at least 12ms (C  
internal reꢁerence to wake up and settle beꢁore starting  
the conversion, iꢁ powering up ꢁrom shutdown.  
= 0.1µF, C  
= 10µF) ꢁor the  
Standby Mode  
REFADJ  
REF  
While in standby mode, the supply current is less than  
3.7mA (typ). The next ꢁalling edge oꢁ CS with R/C low  
causes the MAX1177/MAX1178/MAX1188 to exit stand-  
by mode and begin acquisition. The reꢁerence and reꢁ-  
erence buꢁꢁer remain active to allow quick turn-on time.  
Selecting Standby or Shutdown Mode  
The MAX1177/MAX1178/MAX1188 have a selectable  
standby or low-power shutdown mode. In standby  
mode, the ADCs internal reꢁerence and reꢁerence  
buꢁꢁer do not power down between conversions, elimi-  
nating the need to wait ꢁor the reꢁerence to power up  
beꢁore perꢁorming the next conversion. Shutdown mode  
powers down the reꢁerence and reꢁerence buꢁꢁer aꢁter  
completing a conversion. The reꢁerence and reꢁerence  
Shutdown Mode  
In shutdown mode, the reꢁerence and reꢁerence buꢁꢁer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately aꢁter  
the conversion. The next ꢁalling edge oꢁ CS with R/C  
low causes the reꢁerence and buꢁꢁer to wake up and  
enter acquisition mode. To achieve 16-bit accuracy,  
buꢁꢁer require a minimum oꢁ 12ms (C  
= 0.1µF,  
REFADJ  
C
= 10µF) to power up and settle ꢁrom shutdown.  
allow 12ms (C  
= 0.1µF, C  
= 10µF) ꢁor the  
REF  
REF  
REFADJ  
internal reꢁerence to wake up.  
The state oꢁ R/C at the second ꢁalling edge oꢁ CS  
selects which power-down mode the MAX1177/  
MAX1178/MAX1188 enter upon conversion completion.  
Holding R/C low causes the MAX1177/MAX1178/  
MAX1188 to enter standby mode. The reꢁerence and  
buꢁꢁer are leꢁt on aꢁter the conversion completes. R/C  
high causes the MAX1177/MAX1178/MAX1188 to enter  
shutdown mode and power down the reꢁerence and  
buꢁꢁer aꢁter conversion (see Figures 5 and 6). Set the  
voltage at R/C high during the second ꢁalling edge oꢁ  
CS to realize the lowest current operation.  
Internal and External Reference  
Internal Reference  
The internal reꢁerence oꢁ the MAX1177/MAX1178/  
MAX1188 is internally buꢁꢁered to provide +4.096V out-  
put at REF. Bypass REF to AGND and REFADJ to  
AGND with 10µF and 0.1µF, respectively. Sink or  
source current at REFADJ to make ꢁine adjustments to  
the internal reꢁerence. The input impedance oꢁ REFADJ  
is nominally 5k. Use the circuit oꢁ Figure 7 to adjust  
the internal reꢁerence to 1.5ꢀ.  
_______________________________________________________________________________________  
9
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
DATA  
OUT  
DATA  
OUT  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
CS  
CS  
R/C  
R/C  
EOC  
EOC  
REF AND  
BUFFER  
POWER  
REF AND  
BUFFER  
POWER  
Figure 6. Selecting Shutdown Mode  
Figure 5. Selecting Standby Mode  
External Reference  
HBEN toggles the output between the high/low byte. The  
low byte is loaded onto the output bus when HBEN is low  
and the high byte is on the bus when HBEN is high.  
An external reꢁerence can be placed at either the input  
(REFADJ) or the output (REF) oꢁ the MAX1177/  
MAX1178/MAX1188sinternal buꢁꢁer ampliꢁier. Using  
the buꢁꢁered REFADJ input makes buꢁꢁering the exter-  
nal reꢁerence unnecessary. The input impedance oꢁ  
REFADJ is typically 5k. The internal buꢁꢁer output  
must be bypassed at REF with a 10µF capacitor.  
Transfer Function  
Figures 8, 9, and 10 show the MAX1177/MAX1178/  
MAX1188 output transꢁer ꢁunctions. The MAX1188 and  
MAX1178 outputs are coded in oꢁꢁset binary, while the  
MAX1177 is coded in standard binary.  
Connect REFADJ to AV  
to disable the internal buꢁꢁer.  
DD  
Directly drive REF using an external 3.8V to 4.2V reꢁer-  
ence. During conversion, the external reꢁerence must  
be able to drive 100µA oꢁ DC load current and have an  
output impedance oꢁ 10or less.  
For optimal perꢁormance, buꢁꢁer the reꢁerence through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1177/MAX1178/MAX1188sequiva-  
lent input noise (0.6 LSB) when choosing a reꢁerence.  
Input Buffer  
Most applications require an input buꢁꢁer ampliꢁier to  
achieve 16-bit accuracy and prevent loading the  
source. Switch the channels immediately aꢁter acquisi-  
tion, rather than near the end oꢁ, or aꢁter, a conversion,  
when the input signal is multiplexed. This allows more  
time ꢁor the input buꢁꢁer ampliꢁier to respond to a large  
step change in input signal. The input ampliꢁier must  
have a high enough slew rate to complete the required  
output voltage change beꢁore the beginning oꢁ the  
acquisition time. Figure 11 shows an example oꢁ this  
circuit using the MAX427.  
Reading the Conversion Result  
EOC is provided to ꢁlag the microprocessor when a  
conversion is complete. The ꢁalling edge oꢁ EOC sig-  
nals that the data is valid and ready to be output to the  
bus. D0D15 are the parallel outputs oꢁ the  
MAX1177/MAX1178/MAX1188. These three-state out-  
puts allow ꢁor direct connection to a microcontroller I/O  
bus. The outputs remain high impedance during acqui-  
sition and conversion. Data is loaded onto the output  
bus with the third ꢁalling edge oꢁ CS with R/C high (aꢁter  
Figures 12a and 12b show how the MAX1188 and  
MAX1178 analog input current varies depending on  
whether the chip is operating or powered down. The  
part is ꢁully powered down between conversions iꢁ the  
voltage at R/C is set high during the second ꢁalling  
edge oꢁ CS. The input current abruptly steps to the  
powered-up value at the start oꢁ acquisition. This step  
in the input current can disrupt the ADC input, depend-  
ing on the driving circuits output impedance at high  
ꢁrequencies. Iꢁ the driving circuit cannot ꢁully settle by  
the end oꢁ acquisition, the accuracy oꢁ the system can  
t
). Bringing CS high ꢁorces the output bus back to  
DO  
high impedance. The MAX1177/MAX1178/MAX1188  
then wait ꢁor the next ꢁalling edge oꢁ CS to start the next  
conversion cycle (see Figure 2).  
±1 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1177  
INPUT RANGE = 0V TO +10V  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 1111 1111 1111  
11 1111 1111 1110  
11 1111 1111 1101  
MAX1177  
MAX1178  
MAX1188  
+5V  
68k  
100kΩ  
REFADJ  
FULL-SCALE RANGE  
(FSR) = +10V  
0.1µF  
FSR x V  
REF  
150kΩ  
1LSB =  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
65536 x 4.096  
0
1
2
3
65535  
65534 65536  
INPUT VOLTAGE (LSB)  
Figure 8. MAX1177 Transfer Function  
Figure 7. MAX1177/MAX1178/MAX1188 Reference Adjust  
Circuit  
MAX1178  
MAX1188  
INPUT RANGE = -5V TO +5V  
INPUT RANGE = -10V TO +10V  
OUTPUT CODE  
11 1111 1111 1111  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
11 1111 1111 1111  
TRANSITION  
11 1111 1111 1110  
11 1111 1111 1101  
11 1111 1111 1110  
11 1111 1111 1101  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
FULL-SCALE RANGE  
(FSR) = +1V  
FULL-SCALE RANGE  
(FSR) = +20V  
FSR x V  
FSR x V  
REF  
REF  
1LSB =  
1LSB =  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
65536 x 4.096  
65536 x 4.096  
-32768 -32766  
0
+32766 +32768  
+32767  
-32768 -32766  
0
+32766 +32768  
+32767  
-32767 -32765 -1  
+1  
INPUT VOLTAGE (LSB)  
-32767 -32765 -1  
+1  
INPUT VOLTAGE (LSB)  
Figure 10. MAX1178 Transfer Function  
Figure 9. MAX1188 Transfer Function  
be compromised. To avoid this situation, increase the  
acquisition time, use a driving circuit that can settle  
planes with only one point connecting the two ground  
systems (analog and digital) as close to the device as  
possible.  
within t  
, or leave the MAX1178/MAX1188 powered  
ACQ  
up by setting the voltage at R/C low during the second  
ꢁalling edge oꢁ CS.  
Route digital signals ꢁar away ꢁrom sensitive analog and  
reꢁerence inputs. Iꢁ digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
onto the analog lines. Iꢁ the analog and digital sections  
share the same supply, isolate the digital and analog  
supply by connecting them with a low value (10)  
resistor or ꢁerrite bead.  
Layout, Grounding, and Bypassing  
For best perꢁormance, use printed circuit boards. Do  
not run analog and digital lines parallel to each other,  
and do not lay out digital signal paths underneath the  
ADC package. Use separate analog and digital ground  
______________________________________________________________________________________ ±±  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1178  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
REF  
**  
1.5  
1.0  
0.5  
0
MAX1177  
MAX1178  
MAX1188  
SHUTDOWN  
MODE  
ANALOG  
INPUT  
*
MAX427  
AIN  
-0.5  
-1.0  
-1.5  
STANDBY  
MODE  
*MAX1177 ONLY.  
**MAX1178/MAX1188 ONLY.  
-5.0  
-2.5  
0
2.5  
5.0  
ANALOG INPUT VOLTAGE (V)  
Figure 11. MAX1177/MAX1178/MAX1188 Fast-Settling Input  
Buffer  
Figure 12a. MAX1178 Analog Input Current  
The ADC is sensitive to high-ꢁrequency noise on the  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
MAX1188  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
1.5  
DD  
capacitor in parallel with a 1µF to 10µF low-ESR capac-  
itor with the smallest capacitor closest to the device.  
Keep capacitor leads short to minimize stray induc-  
tance.  
1.0  
Definitions  
0.5  
0
SHUTDOWN  
MODE  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the end points oꢁ the transꢁer ꢁunction,  
once oꢁꢁset and gain errors have been nulliꢁied. The  
static linearity parameters ꢁor the MAX1177/MAX1178/  
MAX1188 are measured using the end-point method.  
STANDBY  
MODE  
-0.5  
-1.0  
-1.5  
-10  
-5  
0
5
10  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step width and the ideal value oꢁ 1 LSB. A  
DNL error speciꢁication oꢁ 1 LSB guarantees no missing  
codes and a monotonic transꢁer ꢁunction.  
ANALOG INPUT VOLTAGE (V)  
Figure 12b. MAX1188 Analog Input Current  
±2 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
zation noise only. With an input range equal to the ꢁull-  
scale range oꢁ the ADC, calculate the eꢁꢁective number  
oꢁ bits as ꢁollows:  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples, signal-to-noise ratio (SNR) is the ratio oꢁ the  
ꢁull-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly ꢁrom the ADCs res-  
olution (N bits):  
SINAD1.76  
ENOB=  
6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
SNR = (6.02 × N + 1.76) dB  
where N = 16 bits.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reꢁerence noise, clock jitter,  
etc. The SNR is computed by taking the ratio oꢁ the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the ꢁundamental, the ꢁirst ꢁive  
harmonics, and the DC oꢁꢁset.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
where V is the ꢁundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
2
1
5
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all the other ADC output signals:  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ the  
RMS amplitude oꢁ the ꢁundamental (maximum signal  
component) to the RMS value oꢁ the next-largest ꢁre-  
quency component.  
Signal  
(Noise+Distortion)  
RMS  
SINAD(dB) = 20 × log  
RMS  
Effective Number of Bits  
Eꢁꢁective number oꢁ bits (ENOB) indicates the global  
accuracy oꢁ an ADC at a speciꢁic input ꢁrequency and  
sampling rate. An ideal ADCs error consists oꢁ quanti-  
______________________________________________________________________________________ ±3  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Functional Diagram  
REFADJ  
HBEN  
AV AGND DV DGND  
DD  
DD  
5k  
REFERENCE  
8 BITS  
8 BITS  
OUTPUT  
REGISTERS  
D0D7  
OR  
D8D15  
REF  
INPUT  
SCALER  
CAPACITIVE  
DAC  
AIN  
MAX1177  
MAX1178  
MAX1188  
AGND  
SUCCESSIVE-  
CLOCK  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
EOC  
CS  
R/C  
Ordering Information (continued)  
Pin Configuration  
IꢂPUT  
VOLTAGE  
RAꢂGE ꢃVx  
PIꢂ-  
PACKAGE  
TOP VIEW  
PART  
TEMP RAꢂGE  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
R/C  
1
2
20 D3/D11  
19  
18  
D2/D10  
D1/D9  
MAX±±78ACUP  
MAX1178BCUP  
MAX1178CCUP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
5
5
3
4
17 D0/D8  
16  
5
MAX1177  
MAX1178  
MAX1188  
5
DV  
DD  
MAX1178AEUP -40°C to +85°C  
MAX1178BEUP -40°C to +85°C  
MAX1178CEUP -40°C to +85°C  
5
EOC  
6
15 DGND  
5
7
14  
13  
12  
11  
AV  
DD  
CS  
5
8
AGND  
AIN  
HBEN  
REF  
MAX±±88ACUP  
MAX1188BCUP  
MAX1188CCUP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
10  
10  
10  
10  
10  
10  
9
10  
AGND  
REFADJ  
MAX1188AEUP -40°C to +85°C  
MAX1188BEUP -40°C to +85°C  
MAX1188CEUP -40°C to +85°C  
TSSOP  
Chip Information  
TRANSISTOR COUNT: 15,383  
PROCESS: BiCMOS  
±4 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation,  
go to www.(aꢄi(-ic.co(/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ ±ꢁ  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

MAX1188AEUP

暂无描述
MAXIM

MAX1188AEUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188AEUP+T

暂无描述
MAXIM

MAX1188BCUP

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188BCUP

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO20, 4.40 MM, MO-153, TSSOP-20
ROCHESTER

MAX1188BCUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188BEUP

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188BEUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188BEUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188CCUP

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO20, 4.40 MM, MO-153, TSSOP-20
ROCHESTER

MAX1188CCUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1188CEUP

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM