MAX1182 [MAXIM]

Dual 10-Bit, 65Msps, +3V, Low-Power ADC with Internal Reference and Parallel Outputs; 双路10位,支持65Msps , + 3V ,低功耗ADC ,内置电压基准及并行输出
MAX1182
型号: MAX1182
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual 10-Bit, 65Msps, +3V, Low-Power ADC with Internal Reference and Parallel Outputs
双路10位,支持65Msps , + 3V ,低功耗ADC ,内置电压基准及并行输出

文件: 总22页 (文件大小:686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2094; Rev 0; 7/01  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
General Description  
Features  
The MAX1182 is a +3V, dual 10-bit analog-to-digital  
converter (ADC) featuring fully-differential wideband  
track-and-hold (T/H) inputs, driving two pipelined, 9-  
stage ADCs. The MAX1182 is optimized for low-power,  
high-dynamic performance applications in imaging,  
instrumentation and digital communication applications.  
This ADC operates from a single +2.7V to +3.6V sup-  
ply, consuming only 195mW while delivering a typical  
signal-to-noise ratio (SNR) of 59dB at an input frequen-  
cy of 20MHz and a sampling rate of 65Msps. The T/H  
driven input stages incorporate 400MHz (-3dB) input  
amplifiers. The converters may also be operated with  
single-ended inputs. In addition to low operating power,  
the MAX1182 features a 2.8mA sleep mode as well as a  
1µA power-down mode to conserve power during idle  
periods.  
o Single +3V Operation  
o Excellent Dynamic Performance:  
59dB SNR at f = 20MHz  
IN  
77dB SFDR at f = 20MHz  
IN  
o Low Power:  
65mA (Normal Operation)  
2.8mA (Sleep Mode)  
1µA (Shutdown Mode)  
o 0.02dB Gain and 0.25° Phase Matching (typ)  
o Wide 1V  
Differential Analog Input Voltage  
P-P  
Range  
o 400MHz -3dB Input Bandwidth  
o On-Chip +2.048V Precision Bandgap Reference  
o User-Selectable Output Format—Two’s  
Complement or Offset Binary  
o 48-Pin TQFP Package with Exposed Pad for  
Improved Thermal Dissipation  
o Evaluation Kit Available  
An internal +2.048V precision bandgap reference sets  
the full-scale range of the ADC. A flexible reference  
structure allows the use of the internal or an externally  
derived reference, if desired for applications requiring  
increased accuracy or a different input voltage range.  
The MAX1182 features parallel, CMOS-compatible  
three-state outputs. The digital output format is set to  
two’s complement or straight offset binary through a  
single control pin. The device provides for a separate  
output power supply of +1.7V to +3.6V for flexible inter-  
facing. The MAX1182 is available in a 7mm x 7mm, 48-  
pin TQFP package, and is specified for the extended  
industrial (-40°C to +85°C) temperature range.  
Ordering Information  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX1182ECM  
-40°C to +85°C  
48 TQFP-EP  
Pin Configuration  
Pin-compatible higher and lower speed versions of the  
MAX1182 are also available. Please refer to the  
MAX1180 datasheet for 105Msps, the MAX1181  
datasheet for 80Msps, the MAX1183 datasheet for  
40Msps, and the MAX1184 datasheet for 20Msps. In  
addition to these speed grades, this family includes a  
20Msps multiplexed output version (MAX1185), for  
which digital data is presented time-interleaved on a  
single, parallel 10-bit output port.  
COM  
1
2
36 D1A  
35 D0A  
34 OGND  
V
DD  
GND  
INA+  
INA-  
3
4
33 OV  
32 OV  
DD  
DD  
5
Applications  
V
6
31 OGND  
30 D0B  
29 D1B  
DD  
MAX1182  
GND  
INB-  
INB+  
GND  
7
High Resolution Imaging  
I/Q Channel Digitization  
Multchannel IF Undersampling  
Instrumentation  
8
D2B  
D3B  
D4B  
D5B  
9
28  
27  
26  
25  
10  
11  
12  
V
DD  
CLK  
Video Application  
48 TQFP-EP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
, OVDD to GND...............................................-0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
A
OGND to GND.......................................................-0.3V to +0.3V  
48-Pin TQFP (derate 12.5mW/°C above +70°C).......1000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead temperature (soldering, 10s) ..................................+300°C  
INA+, INA-, INB+, INB- to GND ...............................-0.3V to V  
REFIN, REFOUT, REFP, REFN, CLK,  
DD  
COM to GND ..........................................-0.3V to (V + 0.3V)  
DD  
OE, PD, SLEEP, T/B, D9AD0A,  
D9BD0B to OGND .............................-0.3V to (OV + 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +3V, OV  
= +2.5V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through  
DD  
DD  
a 10kresistor, V = 2Vp-p (differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 65MHz (50% duty cycle),  
IN  
L
CLK  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
10  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
f
f
= 7.47MHz  
0.6  
0.4  
1.9  
1.0  
1.7  
2
IN  
IN  
DNL  
= 7.47MHz, no missing codes guaranteed  
LSB  
<
1
% FS  
% FS  
Gain Error  
0
ANALOG INPUT  
Differential Input Voltage  
Range  
V
Differential or single-ended inputs  
Switched capacitor load  
1.0  
/2  
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
DD  
V
CM  
0.5  
Input Resistance  
R
33  
5
kΩ  
IN  
IN  
Input Capacitance  
C
pF  
CONVERSION RATE  
Maximum Clock Frequency  
f
65  
MHz  
CLK  
Clock  
Cycles  
Data Latency  
5
DYNAMIC CHARACTERISTICS (f  
= 65MHz, 4096-point FFT)  
CLK  
f
f
f
f
f
f
f
f
f
= 7.47MHz, T = +25°C  
56.8  
56.5  
59.5  
59  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
A
Signal-to-Noise Ratio  
SNR  
dB  
dB  
= 20MHz, T = +25°C  
A
= 39.9MHz (Note 1)  
59  
= 7.47MHz, T = +25°C  
56.5  
56  
59  
A
Signal-to-Noise and Distortion  
(up to 5th harmonic)  
SINAD  
SFDR  
= 20MHz, T = +25°C  
58.5  
58.5  
76  
A
= 39.9MHz (Note 1)  
= 7.47MHz, T = +25°C  
65  
65  
A
Spurious-Free Dynamic Range  
dBc  
= 20MHz, T = +25°C  
77  
A
= 39.9MHz, (Note 1)  
75  
2
_______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V, OV  
= +2.5V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through  
DD  
DD  
a 10kresistor, V = 2Vp-p (differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 65MHz (50% duty cycle),  
IN  
L
CLK  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 7.47MHz  
MIN  
TYP  
-83  
-82  
-77  
MAX  
UNITS  
f
f
f
f
f
f
f
f
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
Third-Harmonic Distortion  
HD3  
= 20MHz  
dBc  
= 39.9MHz (Note 1)  
= 19.13042MHz at -6.5dB FS  
= 21.2886MHz at -6.5dB FS (Note 2)  
Intermodulation Distortion  
(first 5 odd-order IMDs)  
IMD  
THD  
-75  
dBc  
dBc  
= 7.47MHz, T = +25°C  
-75.5  
-76  
-74  
500  
400  
1
-64  
-63  
A
Total Harmonic Distortion  
(first 5 harmonics)  
= 20MHz, T = +25°C  
A
= 39.9MHz, (Note 1)  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
Input at -20dB FS, differential inputs  
Input at -0.5dB FS, differential inputs  
MHz  
MHz  
ns  
FPBW  
t
AD  
Aperture Jitter  
t
2
ps  
RMS  
AJ  
Overdrive Recovery Time  
Differential Gain  
For 1.5 x full-scale input  
2
ns  
%
1
Differential Phase  
Output Noise  
0.25  
0.2  
degrees  
INA+ = INA- = INB+ = INB- = COM  
LSB  
RMS  
INTERNAL REFERENCE  
2.048  
3%  
Reference Output Voltage  
REFOUT  
V
Reference Temperature  
Coefficient  
TC  
60  
ppm/°C  
REF  
Load Regulation  
1.25  
mV/mA  
BUFFERED EXTERNAL REFERENCE (V  
= +2.048V)  
REFIN  
REFIN Input Voltage  
V
2.048  
2.012  
V
V
REFIN  
Positive Reference Output  
Voltage  
V
REFP  
Negative Reference Output  
Voltage  
V
0.988  
V
REFN  
Differential Reference Output  
Voltage Range  
V  
V  
= V  
- V  
REFN  
0.98  
1.024  
>50  
1.07  
V
REF  
REF  
REFP  
REFIN Resistance  
R
MΩ  
REFIN  
_______________________________________________________________________________________  
3
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V, OV  
= +2.5V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through  
DD  
DD  
a 10kresistor, V = 2Vp-p (differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 65MHz (50% duty cycle),  
IN  
L
CLK  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum REFP, COM Source  
Current  
I
>5  
mA  
SOURCE  
Maximum REFP, COM Sink  
Current  
I
250  
µA  
SINK  
Maximum REFN Source Current  
Maximum REFN Sink Current  
I
250  
>5  
µA  
SOURCE  
I
mA  
SINK  
(V  
REFIN  
= AGND, reference voltage applied to REFP, REFN, and COM)  
UNBUFFERED EXTERNAL REFERENCE  
R
R
,
Measured between REFP and COM, and  
REFN and COM  
REFP  
REFP, REFN Input Resistance  
4
kΩ  
V
REFN  
Differential Reference Input  
Voltage  
1.024  
10%  
V  
V  
= V  
V  
REFP REFN  
REF  
REF  
VDD/2  
10%  
COM Input Voltage  
REFP Input Voltage  
REFN Input Voltage  
V
V
COM  
REFP  
REFN  
V
+
COM  
V
V
V  
/2  
REF  
V
-
COM  
V
V
V  
/2  
REF  
OE  
DIGITAL INPUTS (CLK, PD,  
, SLEEP, T/B)  
CLK  
0.8 x V  
DD  
Input High Threshold  
V
V
IH  
PD, OE, SLEEP, T/B  
CLK  
0.8xOV  
DD  
0.2 x V  
DD  
Input Low Threshold  
Input Hysteresis  
Input Leakage  
V
V
V
IL  
PD, OE, SLEEP, T/B  
0.2xOV  
DD  
V
0.1  
5
HYST  
I
IH  
V
V
= OV or V (CLK)  
5
5
IH  
IL  
DD  
DD  
µA  
pF  
I
= 0  
IL  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (D9AD0A, D9BD0B)  
Output Voltage Low  
V
I
I
= 200µA  
0.2  
10  
V
V
OL  
SINK  
Output Voltage High  
V
= 200µA  
OV - 0.2  
DD  
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
OE = OV  
OE = OV  
µA  
pF  
LEAK  
DD  
DD  
C
5
OUT  
4
_______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V, OV  
= +2.5V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through  
DD  
DD  
a 10kresistor, V = 2Vp-p (differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 65MHz (50% duty cycle),  
IN  
L
CLK  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Output Supply Voltage Range  
V
2.7  
1.7  
3.0  
2.5  
65  
2.8  
1
3.6  
3.6  
80  
V
V
DD  
OV  
DD  
Operating, f  
Sleep mode  
= 20MHz at -0.5dB FS  
INA or B  
mA  
µA  
Analog Supply Current  
I
VDD  
Shutdown, clock idle, PD = OE = OV  
15  
DD  
Operating, C = 15pF, f  
L
-0.5dB FS  
= 20MHz at  
INA or B  
11  
mA  
Output Supply Current  
I
OVDD  
Sleep mode  
100  
2
µA  
Shutdown, clock idle, PD = OE = OV  
10  
DD  
Operating, f  
Sleep mode  
= 20MHz at -0.5dB FS  
195  
8.4  
3
240  
INA or B  
mW  
Power Dissipation  
PDISS  
PSRR  
Shutdown, clock idle, PD = OE = OV  
45  
8
µW  
mV/V  
%/V  
DD  
Offset  
Gain  
0.2  
0.1  
Power-Supply Rejection Ratio  
TIMING CHARACTERISTICS  
CLK Rise to Output Data Valid  
Output Enable Time  
t
Figure 3 (Note 3)  
5
ns  
ns  
ns  
ns  
ns  
DO  
t
Figure 4  
10  
ENABLE  
Output Disable Time  
t
Figure 4  
1.5  
DISABLE  
7.7 1.5  
7.7 1.5  
CLK Pulse Width High  
CLK Pulse Width Low  
t
Figure 3, clock period: 15.4ns  
Figure 3, clock period: 15.4ns  
Wakeup from Sleep mode (Note 4)  
Wakeup from Shutdown (Note 4)  
CH  
t
CL  
0.42  
1.5  
Wake-Up Time  
t
µs  
WAKE  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
f
f
f
= 20MHz at -0.5dB FS  
= 20MHz at -0.5dB FS  
= 20MHz at -0.5dB FS  
-70  
dB  
dB  
INA or B  
INA or B  
INA or B  
Gain Matching  
0.02  
0.25  
0.2  
Phase Matching  
degrees  
Note 1: SNR, SINAD, THD, SFDR, and HD3 are based on an analog input voltage of -0.5dB FS referenced to a +1.024V full-scale  
input voltage range.  
Note 2: Intermodulation distortion is the total power of the intermodulation products relative to the individual carrier. This number is  
6dB or better, if referenced to the two-tone envelope.  
Note 3: Digital outputs settle to V , V . Parameter guaranteed by design.  
IH IL  
Note 4: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.  
Note 5: Equivalent dynamic performance is obtainable over full OV  
range with reduced C .  
DD  
L
_______________________________________________________________________________________  
5
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Typical Operating Characteristics  
(V = +3V, OV = +2.5V, internal reference, differential input at -0.5dB FS, f  
noted.)  
= 65MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
CLK  
L
A
FFT PLOT CHA (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
FFT PLOT CHB (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
FFT PLOT CHA (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
f
= 6.0065MHz  
= 7.51410MHz  
= 65.00057MHz  
f
f
f
= 6.0065MHz  
= 7.51410MHz  
= 65.00057MHz  
CHB  
CHA  
INA  
INB  
CLK  
INA  
INB  
CLK  
f
f
f
= 20.08257MHz  
= 25.09727MHz  
= 65.00057MHz  
CHA  
INA  
INB  
CLK  
AINA = -0.55dB FS  
AINB = -0.56dB FS  
AINB = -0.52dB FS  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT CHB (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
FFT PLOT CHA (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
FFT PLOT CHB (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
f
= 37.31661MHz  
= 46.99687MHz  
= 65.00057MHz  
f
f
f
= 20.08257MHz  
= 25.09727MHz  
= 65.00057MHz  
INA  
INB  
CLK  
f
f
f
= 37.31661MHz  
= 46.99687MHz  
= 65.00057MHz  
INA  
INB  
CLK  
CHB  
INA  
INB  
CLK  
CHA  
CHB  
AINB = -0.49dB FS  
AINB = -0.52dB FS  
AINB = -0.52dB FS  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT (8192-POINT RECORD,  
DIFFERENTIAL INPUT)  
SIGNAL-TO-NOISE + DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
62  
60  
58  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
61  
60  
59  
58  
57  
56  
55  
DIFFERENTIAL INPUT CONFIGURATION  
CHB  
DIFFERENTIAL INPUT CONFIGURATION  
f
f
f
= 19.13042MHz  
= 21.28864MHz  
= 65.00057MHz  
IN1  
IN2  
CLK  
CHB  
f
IN1  
AIN = -6.5dB FS  
TWO-TONE ENVELOPE  
= -0.47dB FS  
CHA  
f
IN2  
CHA  
3rd ORDER IMD  
2nd ORDER IMD  
56  
54  
1
10  
100  
1
10  
100  
0
5
10  
15  
20  
25  
30  
35  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = +3V, OV = +2.5V, internal reference, differential input at -0.5dB FS, f  
noted.)  
= 65MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
CLK  
L
A
FULL-POWER INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY, SINGLE-ENDED  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
-65  
6
87  
83  
79  
75  
71  
67  
63  
DIFFERENTIAL INPUT  
CONFIGURATION  
DIFFERENTIAL INPUT  
CHA  
CONFIGURATION  
4
2
-68  
-71  
-74  
-77  
CHB  
0
-2  
-4  
-6  
-8  
CHA  
CHB  
-80  
1
10  
100  
1
10  
100  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SMALL-SIGNAL INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY, SINGLE-ENDED  
SIGNAL-TO-NOISE RATIO  
SIGNAL-TO-NOISE + DISTORTION  
vs. INPUT POWER (f = 20.085279MHz)  
vs. INPUT POWER (f = 20.085279MHz)  
IN  
IN  
6
65  
65  
60  
55  
50  
45  
40  
35  
A
IN  
= 100mV  
P-P  
4
2
60  
55  
50  
45  
40  
35  
0
-2  
-4  
-6  
-8  
1
10  
100  
1000  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
ANALOG INPUT FREQUENCY (MHz)  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
TOTAL HARMONIC DISTORTION  
vs. INPUT POWER (f = 20.085279MHz)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. INPUT POWER (f = 20.085279MHz)  
INTEGRAL NONLINEARITY  
(BEST-ENDPOINT FIT)  
IN  
IN  
1.0  
-55  
-60  
-65  
-70  
-75  
-80  
80  
76  
72  
68  
64  
60  
0.5  
0
-0.5  
-1.0  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
_______________________________________________________________________________________  
7
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = +3V, OV = +2.5V, internal reference, differential input at -0.5dB FS, f  
noted.)  
= 65MHz, C 10pF, T = +25°C, unless otherwise  
DD  
DD  
CLK  
L
A
OFFSET ERROR vs. TEMPERATURE,  
EXTERNAL REFERENCE  
GAIN ERROR vs. TEMPERATURE,  
EXTERNAL REFERENCE (V  
= +2.048V)  
DIFFERENTIAL NONLINEARITY  
REFIN  
(V  
= +2.048V)  
REFIN  
0.5  
0.4  
1.0  
0.5  
0.15  
0.10  
0.05  
0
CHB  
0.3  
0
CHB  
0.2  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
CHA  
-0.05  
-0.10  
-0.15  
CHA  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
ANALOG POWER-DOWN CURRENT  
vs. ANALOG POWER SUPPLY  
80  
70  
60  
50  
40  
85  
0.30  
0.24  
0.18  
0.12  
0.06  
0
OE = PD = OV  
DD  
75  
65  
55  
45  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
(V)  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
(V)  
V
DD  
TEMPERATURE (°C)  
V
DD  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG POWER VOLTAGE  
SFDR, SNR, THD, SINAD  
vs. CLOCK DUTY CYCLE  
2.045  
2.040  
2.035  
2.030  
2.025  
2.020  
90  
80  
70  
60  
50  
40  
f
= 25.097265MHz  
IN  
SFDR  
THD  
SNR  
SINAD  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
30 35 40 45 50 55 60 65 70  
CLOCK DUTY CYCLE (%)  
V
DD  
(V)  
8
_______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = +3V, OV = +2.5V, internal reference, differential input at -0.5dB FS, f  
noted.)  
= 65MHz, C 10pF, T = +25°C, unless otherwise  
L A  
DD  
DD  
CLK  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OUTPUT NOISE HISTOGRAM (DC INPUT)  
160000  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
129421  
926  
N-1  
725  
N+1  
0
0
N-2  
N
N+2  
-40  
-15  
10  
35  
60  
85  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
1
COM  
Common-Mode Voltage Input/Output. Bypass to GND with a 0.1µF capacitor.  
Analog Supply Voltage. Bypass to GND with a capacitor combination of 2.2µF in parallel with  
0.1µF.  
2, 6, 11, 14, 15  
V
DD  
3, 7, 10, 13, 16  
GND  
INA+  
INA-  
INB-  
INB+  
CLK  
Analog Ground  
4
5
Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.  
Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.  
Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.  
Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.  
Converter Clock Input  
8
9
12  
T/B selects the ADC digital output format.  
High: Twos complement.  
Low: Straight offset binary.  
17  
18  
19  
20  
T/B  
SLEEP  
PD  
Sleep Mode Input.  
High: Deactivates the two ADCs, but leaves the reference bias circuit active.  
Low: Normal operation.  
Power-Down Input.  
High: Power-down mode  
Low: Normal operation  
Output Enable Input.  
High: Digital outputs disabled  
Low: Digital outputs enabled  
OE  
_______________________________________________________________________________________  
9
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Pin Description (continued)  
PIN  
21  
NAME  
D9B  
D8B  
D7B  
D6B  
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
OGND  
FUNCTION  
Three-State Digital Output, Bit 9 (MSB), Channel B  
22  
Three-State Digital Output, Bit 8, Channel B  
Three-State Digital Output, Bit 7, Channel B  
Three-State Digital Output, Bit 6, Channel B  
Three-State Digital Output, Bit 5, Channel B  
Three-State Digital Output, Bit 4, Channel B  
Three-State Digital Output, Bit 3, Channel B  
Three-State Digital Output, Bit 2, Channel B  
Three-State Digital Output, Bit 1, Channel B  
Three-State Digital Output, Bit 0 (LSB), Channel B  
Output Driver Ground  
23  
24  
25  
26  
27  
28  
29  
30  
31, 34  
Output Driver Supply Voltage. Bypass to OGND with a capacitor combination of 2.2µF in  
parallel with 0.1µF.  
32, 33  
OV  
DD  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
D0A  
D1A  
D2A  
D3A  
D4A  
D5A  
D6A  
D7A  
D8A  
D9A  
Three-State Digital Output, Bit 0 (LSB), Channel A  
Three-State Digital Output, Bit 1, Channel A  
Three-State Digital Output, Bit 2, Channel A  
Three-State Digital Output, Bit 3, Channel A  
Three-State Digital Output, Bit 4, Channel A  
Three-State Digital Output, Bit 5, Channel A  
Three-State Digital Output, Bit 6, Channel A  
Three-State Digital Output, Bit 7, Channel A  
Three-State Digital Output, Bit 8, Channel A  
Three-State Digital Output, Bit 9 (MSB), Channel A  
Internal Reference Voltage Output. May be connected to REFIN through a resistor or a resistor  
divider.  
45  
46  
47  
48  
REFOUT  
REFIN  
REFP  
Reference Input. V  
= 2 (V  
REFP  
- V  
REFN  
). Bypass to GND with a >1nF capacitor.  
REFIN  
Positive Reference Input/Output. Conversion range is (V  
> 0.1µF capacitor.  
- V  
REFN  
). Bypass to GND with a  
REFP  
REFN  
Negative Reference Input/Output. Conversion range is (V  
a > 0.1µF capacitor.  
- V  
REFN  
). Bypass to GND with  
REFP  
10 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
hold mode. In track mode, switches S1, S2a, S2b, S4a,  
Detailed Description  
S4b, S5a and S5b are closed. The fully-differential cir-  
The MAX1182 uses a 9-stage, fully-differential  
cuits sample the input signals onto the two capacitors  
pipelined architecture (Figure 1) that allows for high-  
(C2a and C2b) through switches S4a and S4b. S2a and  
speed conversion while minimizing power consump-  
S2b set the common mode for the amplifier input, and  
tion. Samples taken at the inputs move progressively  
open simultaneously with S1, sampling the input wave-  
through the pipeline stages every half clock cycle.  
form. Switches S4a and S4b are then opened before  
Counting the delay through the output latch, the clock-  
switches S3a and S3b, connect capacitors C1a and  
cycle latency is five clock cycles.  
C1b to the output of the amplifier, and switch S4c is  
1.5-bit (2-comparator) flash ADCs convert the held-  
input voltages into a digital code. The digital-to-analog  
converters (DACs) convert the digitized results back  
into analog voltages, which are then subtracted from  
the original held input signals. The resulting error sig-  
nals are then multiplied by two and the residues are  
passed along to the next pipeline stages where the  
process is repeated until the signals have been  
processed by all nine stages. Digital error correction  
compensates for ADC comparator offsets in each of  
these pipeline stages and ensures no missing codes.  
closed. The resulting differential voltages are held on  
capacitors C2a and C2b. The amplifiers are used to  
charge capacitors C1a and C1b to the same values  
originally held on C2a and C2b. These values are then  
presented to the first-stage quantizers and isolate the  
pipelines from the fast-changing inputs. The wide input  
bandwidth T/H amplifiers allow the MAX1182 to track-  
and-sample/hold analog inputs of high frequencies (>  
Nyquist). The ADC inputs (INA+, INB+, INA-, and INB-)  
can be driven either differentially or single-ended.  
Match the impedance of INA+ and INA- as well as  
INB+ and INB- and set the common-mode voltage to  
Input Track-and-Hold (T/H) Circuits  
Figure 2 displays a simplified functional diagram of the  
input track-and-hold (T/H) circuits in both track and  
mid-supply (V /2) for optimum performance.  
DD  
V
IN  
V
IN  
V
OUT  
V
OUT  
x2  
x2  
Σ
Σ
T/H  
T/H  
FLASH  
ADC  
FLASH  
ADC  
DAC  
DAC  
1.5 BITS  
1.5 BITS  
2-BIT FLASH  
ADC  
2-BIT FLASH  
ADC  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
DIGITAL CORRECTION LOGIC  
10  
DIGITAL CORRECTION LOGIC  
10  
T/H  
T/H  
D9A–D0A  
D9B–D0B  
V
INA  
V
INB  
V
INA  
V
INB  
= INPUT VOLTAGE BETWEEN INA+ AND INA- (DIFFERENTIAL OR SINGLE-ENDED)  
= INPUT VOLTAGE BETWEEN INB+ AND INB- (DIFFERENTIAL OR SINGLE-ENDED)  
Figure 1. Pipelined Architecture—Stage Blocks  
______________________________________________________________________________________ 11  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1182  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 2. MAX1182 T/H Amplifiers  
12 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
ered as an analog input and routed away from any ana-  
log input or other digital signal lines.  
Analog Inputs and Reference  
Configurations  
The full-scale range of the MAX1182 is determined by the  
internally generated voltage difference between REFP  
The MAX1182 clock input operates with a voltage thresh-  
old set to V /2. Clock inputs with a duty cycle other than  
DD  
(V /2 + V  
/4) and REFN (V /2 - V  
/4). The  
REFIN  
DD  
REFIN  
DD  
50%, must meet the specifications for high and low peri-  
full-scale range for both on-chip ADCs is adjustable  
ods as stated in the Electrical Characteristics.  
through the REFIN pin, which is provided for this purpose.  
System Timing Requirements  
Figure 3 depicts the relationship between the clock  
input, analog input, and data output. The MAX1182  
samples at the rising edge of the input clock. Output  
data for channels A and B is valid on the next rising  
edge of the input clock. The output data has an internal  
latency of five clock cycles. Figure 4 also determines  
the relationship between the input clock parameters  
and the valid output data on channels A and B.  
REFOUT, REFP, COM (VDD/2), and REFN are internally  
buffered low-impedance outputs.  
The MAX1182 provides three modes of reference oper-  
ation:  
Internal reference mode  
Buffered external reference mode  
Unbuffered external reference mode  
In internal reference mode, connect the internal refer-  
ence output REFOUT to REFIN through a resistor (e.g.,  
10k) or resistor divider, if an application requires a  
reduced full-scale range. For stability and noise filtering  
purposes bypass REFIN with a >10nF capacitor to  
GND. In internal reference mode, REFOUT, COM,  
REFP, and REFN become low-impedance outputs.  
Digital Output Data, Output Data Format  
Selection (T/B), Output Enable (/OE)  
All digital outputs, D0AD9A (Channel A) and D0BD9B  
(Channel B), are TTL/CMOS logic-compatible. There is  
a 5-clock-cycle latency between any particular sample  
and its corresponding output data. The output coding  
can be chosen to be either straight offset binary or  
twos complement (Table 1) controlled by a single pin  
(T/B). Pull T/B low to select offset binary and high to  
activate twos complement output coding. The capaci-  
tive load on the digital outputs D0AD9A and D0BD9B  
should be kept as low as possible (<15pF), to avoid  
large digital currents that could feed back into the ana-  
log portion of the MAX1182, thereby degrading its  
dynamic performance. Using buffers on the digital out-  
puts of the ADCs can further isolate the digital outputs  
from heavy capacitive loads. To further improve the  
dynamic performance of the MAX1182 small-series  
resistors (e.g., 100) maybe added to the digital output  
paths, close to the MAX1182.  
In buffered external reference mode, adjust the refer-  
ence voltage levels externally by applying a stable and  
accurate voltage at REFIN. In this mode, COM, REFP,  
and REFN become outputs. REFOUT may be left open  
or connected to REFIN through a >10kresistor.  
In unbuffered external reference mode, connect REFIN  
to GND. This deactivates the on-chip reference buffers  
for REFP, COM, and REFN. With their buffers shut  
down, these nodes become high impedance and may  
be driven through separate external reference sources.  
Clock Input (CLK)  
The MAX1182s CLK input accepts CMOS-compatible  
clock signals. Since the interstage conversion of the  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low  
jitter and fast rise and fall times (< 2ns). In particular,  
sampling occurs on the rising edge of the clock signal,  
requiring this edge to provide lowest possible jitter. Any  
significant aperture jitter would limit the SNR perfor-  
mance of the on-chip ADCs as follows:  
Figure 4 displays the timing relationship between out-  
put enable and data output valid as well as power  
down/wake-up and data output valid.  
Power-Down (PD) and  
Sleep (SLEEP) Modes  
The MAX1182 offers two power-save modessleep and  
full power-down mode. In sleep mode (SLEEP = 1), only  
the reference bias circuit is active (both ADCs are dis-  
abled), and current consumption is reduced to 2.8mA.  
SNR = 20 log (1 / [2π x fIN x tAJ]),  
dB  
10  
To enter full power-down mode, pull PD high. With OE  
simultaneously low, all outputs are latched at the last  
value prior to the power down. Pulling OE high forces  
the digital outputs into a high impedance state.  
where fIN represents the analog input frequency and t  
is the time of the aperture jitter.  
AJ  
Clock jitter is especially critical for undersampling  
applications. The clock input should always be consid-  
______________________________________________________________________________________ 13  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
5 CLOCK-CYCLE LATENCY  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
ANALOG INPUT  
CLOCK INPUT  
t
D0  
t
CH  
t
CL  
DATA OUTPUT  
N - 6  
N - 6  
N - 5  
N - 5  
N - 4  
N - 4  
N - 3  
N - 3  
N - 2  
N - 1  
N - 1  
N
N
N + 1  
D9AD0A  
DATA OUTPUT  
N - 2  
N + 1  
D9BD0B  
Figure 3. System Timing Diagram  
amplifiers. The user may select the R  
and C val-  
IN  
ISO  
ues to optimize the filter performance, to suit a particu-  
lar application. For the application in Figure 5, a R of  
OE  
ISO  
50is placed before the capacitive load to prevent  
ringing and oscillation. The 22pF C capacitor acts as  
IN  
a small bypassing capacitor.  
t
t
DISABLE  
ENABLE  
OUTPUT  
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
Using Transformer Coupling  
A RF transformer (Figure 6) provides an excellent solu-  
tion to convert a single-ended source signal to a fully  
differential signal, required by the MAX1182 for opti-  
mum performance. Connecting the center tap of the  
VALID DATA  
VALID DATA  
D9AD0A  
OUTPUT  
D9BD0B  
transformer to COM provides a V /2 DC level shift to  
DD  
the input. Although a 1:1 transformer is shown, a step-  
up transformer may be selected to reduce the drive  
requirements. A reduced signal swing from the input  
driver, such as an op amp, may also improve the over-  
all distortion.  
Figure 4. Output Timing Diagram  
Applications Information  
Figure 5 depicts a typical application circuit containing  
two single-ended to differential converters. The internal  
In general, the MAX1182 provides better SFDR and  
THD with fully-differential input signals than single-  
ended drive, especially for very high input frequencies.  
In differential input mode, even-order harmonics are  
lower as both inputs (INA+, INA- and/or INB+, INB-) are  
balanced, and each of the ADC inputs only requires  
half the signal swing compared to single-ended mode.  
reference provides a V /2 output voltage for level  
DD  
shifting purposes. The input is buffered and then split to  
a voltage follower and inverter. One lowpass filter per  
ADC suppresses some of the wideband noise associat-  
ed with high-speed operational amplifiers, follows the  
14 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Table 1. MAX1182 Output Codes For Differential Inputs  
STRAIGHT OFFSET  
DIFFERENTIAL INPUT  
VOLTAGE*  
DIFFERENTIAL  
INPUT  
TWOS COMPLEMENT  
BINARY  
T/B = 0  
T/B = 1  
V
x 511/512  
+FULL SCALE - 1LSB  
+ 1 LSB  
11 1111 1111  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
11 1111 1111  
10 0000 0001  
10 0000 0000  
REF  
V
x 1/512  
0
REF  
Bipolar Zero  
- V  
x 1/512  
- 1 LSB  
REF  
-V  
x 511/512  
x 512/512  
- FULL SCALE + 1 LSB  
- FULL SCALE  
REF  
REF  
-V  
= V  
*V  
REF  
- V  
REFN  
REFP  
Single-Ended AC-Coupled Input Signal  
Grounding, Bypassing, and  
Board Layout  
Figure 7 shows an AC-coupled, single-ended applica-  
tion. Amplifiers like the MAX4108 provide high-speed,  
high-bandwidth, low noise, and low distortion to main-  
tain the integrity of the input signal.  
The MAX1182 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to  
the device as possible, preferably on the same side as  
the ADC, using surface-mount devices for minimum  
Typical QAM Demodulation Application  
The most frequently used modulation technique for dig-  
ital communications applications is probably the  
Quadrature Amplitude Modulation (QAM). Typically  
found in spread-spectrum based systems, a QAM sig-  
nal represents a carrier frequency modulated in both  
amplitude and phase. At the transmitter, modulating the  
baseband signal with quadrature outputs, a local oscil-  
lator followed by subsequent up-conversion can gener-  
ate the QAM signal. The result is an in-phase (I) and a  
quadrature (Q) carrier component, where the Q compo-  
nent is 90 degree phase-shifted with respect to the in-  
phase component. At the receiver, the QAM signal is  
divided down into its I and Q components, essentially  
representing the modulation process reversed. Figure 8  
displays the demodulation process performed in the  
analog domain, using the dual matched +3V, 10-bit  
ADC MAX1182 and the MAX2451 quadrature demodu-  
lator to recover and digitize the I and Q baseband sig-  
nals. Before being digitized by the MAX1182, the  
mixed-down signal components may be filtered by  
matched analog filters, such as Nyquist or pulse-shap-  
ing filters which remove any unwanted images from the  
mixing process, thereby enhancing the overall signal-  
to-noise (SNR) performance and minimizing inter-sym-  
bol interference.  
inductance. Bypass V , REFP, REFN, and COM with  
DD  
two parallel 0.1µF ceramic capacitors and a 2.2µF  
bipolar capacitor to GND. Follow the same rules to  
bypass the digital supply (OV ) to OGND. Multilayer  
DD  
boards with separated ground and power planes pro-  
duce the highest level of signal integrity. Consider the  
use of a split ground plane arranged to match the  
physical location of the analog ground (GND) and the  
digital output driver ground (OGND) on the ADCs pack-  
age. The two ground planes should be joined at a sin-  
gle point such that the noisy digital ground currents do  
not interfere with the analog ground plane. The ideal  
location of this connection can be determined experi-  
mentally at a point along the gap between the two  
ground planes, which produces optimum results. Make  
this connection with a low-value, surface-mount resistor  
(1to 5), a ferrite bead or a direct short. Alternatively,  
all ground pins could share the same ground plane, if  
the ground plane is sufficiently isolated from any noisy,  
digital systems ground plane (e.g., downstream output  
buffer or DSP ground plane). Route high-speed digital  
signal traces away from the sensitive analog traces of  
either channel. Make sure to isolate the analog input  
lines to each respective converter to minimize channel-  
to-channel crosstalk. Keep all signal lines short and  
free of 90 degree turns.  
______________________________________________________________________________________ 15  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
+5V  
0.1µF  
LOWPASS FILTER  
INA+  
MAX4108  
R
IS0  
50Ω  
0.1µF  
300Ω  
C
IN  
22pF  
0.1µF  
-5V  
600Ω  
600Ω  
300Ω  
COM  
0.1µF  
+5V  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
INA-  
MAX4108  
R
IS0  
C
IN  
22pF  
50Ω  
-5V  
-5V  
+5V  
300Ω  
300Ω  
600Ω  
MAX1182  
0.1µF  
0.1µF  
LOWPASS FILTER  
INB+  
MAX4108  
R
IS0  
0.1µF  
300Ω  
C
IN  
22pF  
50Ω  
-5V  
600Ω  
600Ω  
300Ω  
0.1µF  
+5V  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
INB-  
MAX4108  
R
IS0  
50Ω  
C
IN  
22pF  
-5V  
-5V  
300Ω  
300Ω  
600Ω  
Figure 5. Typical Application for Single-Ended to Differential Conversion  
16 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
25  
INA+  
22pF  
0.1µF  
6
5
4
1
2
T1  
V
IN  
N.C.  
COM  
2.2µF  
0.1µF  
3
MINICIRCUITS  
TT16  
25Ω  
INA-  
INB+  
22pF  
22pF  
MAX1182  
25Ω  
0.1µF  
6
5
4
1
2
3
T1  
V
IN  
N.C.  
2.2µF  
0.1µF  
MINICIRCUITS  
TT16  
25Ω  
INB-  
22pF  
Figure 6. Transformer-Coupled Input Drive  
error specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best straight-line fit or a line drawn  
between the endpoints of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the MAX1182 are measured using  
the best straight-line fit method.  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 9 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken (Figure 9).  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step-width and the ideal value of 1LSB. A DNL  
______________________________________________________________________________________ 17  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
REFP  
1kΩ  
1kΩ  
R
V
IN  
ISO  
50Ω  
0.1µF  
INA+  
COM  
INA-  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
REFN  
0.1µF  
R
50Ω  
ISO  
C
IN  
22pF  
REFP  
MAX1182  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
INB+  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
REFN  
0.1µF  
R
ISO  
50Ω  
INB-  
C
IN  
22pF  
Figure 7: Using an Op Amp for Single-Ended, AC-Coupled Input Drive  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of the  
full-scale analog input (RMS value) to the RMS quantiza-  
tion error (residual error). The ideal, theoretical minimum  
analog-to-digital noise is caused by quantization error  
only and results directly from the ADCs resolution  
(N-Bits):  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADCs error consists of quantization noise only. ENOB  
is computed from:  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
In reality, there are other noise sources besides quanti-  
zation noise e.g. thermal noise, reference noise, clock  
jitter, etc. SNR is computed by taking the ratio of the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the fundamental, the first five  
harmonics, and the DC offset.  
SINAD  
1.76  
dB  
dB  
ENOB =  
6.02  
dB  
18 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
MAX2451  
INA+  
INA-  
0°  
DSP  
90°  
POST  
MAX1182  
PROCESSING  
INB+  
INB-  
DOWNCONVERTER  
÷
8
Figure 8. Typical QAM Application, Using the MAX1182  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first four  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
CLK  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 ×log  
10  
ANALOG  
INPUT  
V
1
t
AD  
where V is the fundamental amplitude, and V through  
5
harmonics.  
1
2
t
AJ  
V
are the amplitudes of the 2nd- through 5th-order  
SAMPLED  
DATA (T/H)  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
HOLD  
TRACK  
TRACK  
T/H  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 3rd-order (or higher) inter-  
modulation products. The individual input tone levels  
are at -6.5dB full scale and their envelope is at -0.5dB  
full scale.  
Figure 9. T/H Aperture Timing  
Chip Information  
TRANSISTOR COUNT: 10,811  
PROCESS: CMOS  
______________________________________________________________________________________ 19  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Functional Diagram  
V
OGND  
OV  
DD  
GND  
DD  
INA+  
10  
10  
OUTPUT  
DRIVERS  
PIPELINE  
ADC  
D9AD0A  
DEC  
T/H  
INA-  
CLK  
CONTROL  
OE  
INB+  
INB-  
10  
10  
PIPELINE  
ADC  
OUTPUT  
DRIVERS  
DEC  
T/H  
D9BD0B  
T/B  
PD  
SLEEP  
REFERENCE  
MAX1182  
REFOUT  
REFN COM REFP  
REFIN  
20 ______________________________________________________________________________________  
Dual 10-Bit, 65Msps, +3V, Low-Power ADC with  
Internal Reference and Parallel Outputs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MAX1182ECM

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1182ECM

2-CH 10-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
ROCHESTER

MAX1182ECM+

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1182ECM+D

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1182ECM-D

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1182ECM-T

暂无描述
MAXIM

MAX1182ECM-TD

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1183

Dual 10-Bit, 40Msps, +3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX11835

Efficient, High-Voltage, TacTouchTM, Haptic Actuator Controller with I2C Interface
MAXIM

MAX11835EWA

Efficient, High-Voltage, TacTouchTM, Haptic Actuator Controller with I2C Interface
MAXIM

MAX11835EWA+

Efficient, High-Voltage, TacTouchTM, Haptic Actuator Controller with I2C Interface
MAXIM

MAX11835EWA+T

Micro Peripheral IC
MAXIM